KR890002613B1 - Process for manufacturing of high tension wire rod - Google Patents

Process for manufacturing of high tension wire rod Download PDF

Info

Publication number
KR890002613B1
KR890002613B1 KR1019850009547A KR850009547A KR890002613B1 KR 890002613 B1 KR890002613 B1 KR 890002613B1 KR 1019850009547 A KR1019850009547 A KR 1019850009547A KR 850009547 A KR850009547 A KR 850009547A KR 890002613 B1 KR890002613 B1 KR 890002613B1
Authority
KR
South Korea
Prior art keywords
cooling
sec
vanadium
wire rod
rolling
Prior art date
Application number
KR1019850009547A
Other languages
Korean (ko)
Other versions
KR870006206A (en
Inventor
이충복
유선준
강신왕
권수한
Original Assignee
포항종합제철 주식회사
안병화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사, 안병화 filed Critical 포항종합제철 주식회사
Priority to KR1019850009547A priority Critical patent/KR890002613B1/en
Publication of KR870006206A publication Critical patent/KR870006206A/en
Application granted granted Critical
Publication of KR890002613B1 publication Critical patent/KR890002613B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The method for producing high tension wire rod involves (i) heating a billet comprising (in wt.%) 0.08-0.82% C, 0.02-0.23% Si, 0.77-0.82% Mn, not more than 0.023% P, not more than 0.01% S, 0.02-0.1% V, balance Fe and unavoidable impurities to 1,150-1,200 deg.C, (ii) retaining for 1-1.5 hours, (iii) high speed rolling at the rate of 35-40 m/sec, (iv) rapid cooling to 800±10 deg.C by water-injection, (v) coiling and cooling to room temperature at the rate of 10-15 deg.C.

Description

제어냉각에 의한 공석조성의 바나듐첨가고장력 선재의 제조방법Manufacturing method of vanadium-added high tension wire of vacancy composition by controlled cooling

제1도는 본 발명에 이용한 제어냉각설비의 평면개략도.1 is a schematic plan view of a control cooling system used in the present invention.

본 발명은 냉간 가공성이 우수한 고강도, 고연성의 바나듐(V) 첨가고장력 선재 제조에 관한 것이다. 공석조성(0.80/0.82%탄소)으로 구성된 일반경강선재는 PC, 스프링, 대경와이어로프(Wire Rope)용 강선의 소재에 사용되어왔고 이 용도의 강선은 가공량 60%이상에서 상품화되기 때문에 이의 소재인 선재는 우수한 냉간 가공성은 물론, 교량, 전신주, 콘크리트 파일 등의 콘크리트보강용으로 서는 구조물의 경량화 및 세멘트사용량의 절감추이에 따라 고강도 및 고연성의 소재가 요구되어왔다.The present invention relates to the production of high strength, high ductility vanadium (V) -added high tensile strength wire rods excellent in cold workability. General steel wire composed of vacancy composition (0.80 / 0.82% carbon) has been used in the material of steel wire for PC, spring, and large diameter wire rope. Wire rods have been required for high strength and high ductility, as well as excellent cold workability, as well as the weight reduction of structures and the reduction of cement consumption for reinforcing concrete such as bridges, telegraph poles and concrete piles.

그러므로 이러한 용도를 목적으로하는 선재는 상기성질을 확보하기 위해 통상 가공전에 450-500℃로 유지된 납욕(Pb Bath)에 소입처리하여 미세한 펄라이트(pearlite) 조직을 형성시키고 미세분산된 경한 세멘타이트(Cementite)와 연한 훼라이트(Ferrite)를 냉간 가공하여 섬유상으로 조합하여 고강도를 얻어왔다.Therefore, wire rods intended for this purpose are usually quenched in Pb baths maintained at 450-500 ° C. prior to processing to form fine pearlite structures and finely dispersed hard cementite Cementite) and soft ferrite have been cold worked and combined in a fibrous form to obtain high strength.

그러나 1965년경 제어냉각설비의 출현에따라 냉간가공전 납욕처리를 생략하여 2차가공의 원가절감을 물론 상호동등한 기계적 성질수준의 선재제조에 노력하여 왔지만 항상 제어냉각 선재의 강도가 납욕처리 선재에 비해 열한 문제점이 있어왔다.However, in 1965, with the emergence of controlled cooling facilities, we have tried to reduce the cost of secondary processing and manufacture wire rods with the same mechanical property level by omitting the lead bath treatment before cold working, but the strength of the control cooling wire is always higher than that of the lead bath treatment wire. There have been eleven problems.

따라서 본 발명은 제어냉각선재의 이러한 문제점을 해결하기위해 공석조성의 일반경강 선재에 바나듐을 소량첨가하여 미세한 바나듐 카바이드(VC)를 냉각중 펄라이틱 훼라이트(Pearlitic Ferrite)에 석출시켜 분산 강화시키고 펄라이트변태시에는 A1변태온도와의 과냉도를 증가시켜 펄라이트 층상간격(Pearlite Interlamellar Spacing)을 미세화 시키기위한 제어냉각법으로 행한 바나듐 첨가고장력 선재 제조방법으로서 특히 큰트리트 보강용으로 사용하는 PC 강선에 사용된다.Therefore, in order to solve this problem of the controlled cooling wire rod, a small amount of vanadium is added to the general hard steel wire of vacancy composition to precipitate and disperse fine vanadium carbide (VC) in pearlitic ferrite during cooling to disperse and strengthen it. In the case of pearlite transformation, a method of manufacturing vanadium-added high-strength wire rod which is controlled by a cooling method for minimizing the pearlite interlamellar spacing by increasing the supercooling with the A 1 transformation temperature. do.

본 발명의 구성을 설명하면 다음과 같다.The configuration of the present invention is as follows.

본 발명은 중량%로 탄소 : 0.80-0.82%, 규소 : 0.20-0.23%, 망간 : 0.77-0.82%, 인 : 0.023%이하, 황 : 0.01%이하, 바나듐 : 0.02-0.1%, 나머지는 철과 불순원소들이 함유된 빌레트(Billet)를 1150-1200℃로 가열한후 고속압연하고 이때발생한 압연열을 가진 압연된 제품을 800±10℃의 범위로 물 분사시켜 급속냉각한후 권취하여 상온까지 10-15℃/Sec의 냉각속도로 냉각하는 것을 특징으로한다.According to the present invention, carbon: 0.80-0.82%, silicon: 0.20-0.23%, manganese: 0.77-0.82%, phosphorus: 0.023% or less, sulfur: 0.01% or less, vanadium: 0.02-0.1%, and the rest is iron and After heating the billet containing impurity elements to 1150-1200 ℃ and rolling it at high speed, the rolled product with rolling heat generated at this time is sprayed with water in the range of 800 ± 10 ℃, rapidly cooled and wound up to room temperature. Cooling at a cooling rate of -15 ℃ / Sec.

이하 본 발명에 대하여 상세히 설명하기로한다.Hereinafter, the present invention will be described in detail.

먼저 본 발명의 성분범위에 대하여 설명하면 다음과같다.First, the component range of the present invention will be described.

본 발명의 설명에서 조성비는 중량%를 의미한다.In the description of the present invention, the composition ratio means weight%.

탄소는 초석(初析) 세멘타이트(Proeutectoid Cementite)의 결정입계 석출에 의해 냉간가공성을 저하시키지만 탄성을 향상시키므로 상한선을 0.82%로하고 본 강재의 적정강도 확보를 위해 하한선은 0.80%로하였다.Carbon decreases cold workability by grain boundary precipitation of Proeutectoid Cementite but improves elasticity, so the upper limit is 0.82% and the lower limit is 0.80% to secure the appropriate strength of the steel.

규소는 강도증가를 위해 필요하고 연성을 저하하지만 치환형고용에 의한 강화수단으로 상한선을 0.23%로 하고 냉간가공경화정도를 고려 하한선을 0.20%로하였다.Silicon needed to increase strength and lowered ductility, but the upper limit was 0.23% as a reinforcing means by substitutional employment, and the lower limit was 0.20% considering the degree of cold work hardening.

망간은 펄라이트층상간격을 미세화시켜 강도 및 연성을 향상시킬 뿐만 아니라 경화능을 좋게하기 때문에 하한선은 0.77%로하고 냉간가공성을 악화시키는 베이나이트(Bainite)와 마르텐사이트(Martensite)의 발생이 용이하므로 상한선을 0.82%이하로 하였다. 인은 인성을 저하시키고 냉간가공에 영향을 주므로 0.023%이하로 규제하였다. 황은 인성을 저하시키고 유화물을 형성시켜 냉간가공성에 영향을 주므로 0.01%이하로 하였다. 바나듐은 제어냉각하는 동안 펄라이틱훼라이트에서의 석출분산강화효과 및 오스테나이트(Austenite)와 펄라이트 계면을 따라 확산에 의한 세멘타이트상의 재분포나 A1변태온도상승에 따라 과냉도를 증가시켜 펄라이트 층상간격을 미세화시키므로 이러한 목적을 위해 하한선을 0.02%로하고 저온 변태상의 발생을 방지하기 위해 상한선을 0.1%로 하였다.Since manganese not only improves the strength and ductility by making the pearlite layer spacing fine, but also improves the hardenability, the lower limit is 0.77% and the upper limit is easily generated because bainite and martensite, which worsen cold workability, are easily generated. Was 0.82% or less. Phosphorus is regulated to less than 0.023% because it lowers toughness and affects cold working. Sulfur was lowered to 0.01% because it lowered toughness and formed an emulsion, affecting cold workability. Vanadium increases the supercooling according to the control cooling pulse Lai tikhwe precipitated dispersion strengthening effect, and austenite (Austenite) and pearlite redistribution on the cementite by diffusion along the interface or the A 1 transformation temperature rise in the light during the pearlite lamellar For this purpose, the lower limit was set to 0.02% and the upper limit was set to 0.1% to prevent the occurrence of low temperature transformation.

다음은 본 발명의 압연 및 냉각방법에 대하여 설명하기로한다.Next, a rolling and cooling method of the present invention will be described.

일반적으로 고온에서 압연을 실시하면 압연온도 및 속도, 변형량 등의 조건에따라 재결정현상이 발생한다.In general, when rolling at high temperature, recrystallization occurs depending on the conditions such as rolling temperature, speed, and deformation amount.

본 발명은 이러한 현상을 이용하여 오스테나이트결정립을 미세화시키고 냉각시에는 변태 핵생성수와 속도를 증가사시켜 미세펄라이트를 용이하게 생성할 수 있도록하기 위해 압연중 부분재결정온도구역을 피하여 상기한 조성의 빌레트를 1150℃이상으로 가열하여 빌레트의 내.외부온도가 균일하게 될때까지 바람직하게는 1시간-1시간 30분동안 유지한후 고속압연을 실시하게 되는데, 이때의 압연속도는 35m/sec-40m/sec가 바람직하며 90m/sec의 압연속도까지도 가능하다.The present invention utilizes this phenomenon to refine the austenite grains and to increase the transformed nucleation number and speed during cooling so as to easily generate fine pearlite. The billet is heated to more than 1150 ℃ and maintained for 1 hour-1 hour and 30 minutes until the inside and outside temperature of the billet is uniform, and then high-speed rolling is carried out at this time, the rolling speed is 35m / sec-40m / sec is preferred and a rolling speed of 90 m / sec is possible.

그러나, 압연속도가 35m/sec이하인 경우에는 생산량이 떨어지고 열단위가 상승하고 온도저하로 인한 압연모터부하가 심하며 냉각속도조절이 어렵게되고 90m/sec이상인 경우에는 압연모터의 부하가 심하여 작업위험성이있고 냉각속도 조절이 어렵게된다.However, when the rolling speed is 35m / sec or less, the production yield drops, the heat unit rises, the rolling motor load is severe due to the temperature drop, the cooling speed is difficult to control, and when the rolling speed is more than 90m / sec, the rolling motor load is severe and there is a risk of work. Cooling speed adjustment becomes difficult.

이와같이 압연된 소재의 오스테나이트결정립 성장을 억제하고져 1.0초이내로 800±10℃까지 물 분사에의한 강제급속냉각을 실시한다. 이때 권취온도를 810℃이상으로하면 오스테나이트결정립성장에 의해 탄소원자확산 거리가 증가되므로서 펄라이트층 발달이 불균일하게되어 소재의 강도는 증가하나 연성이 악화된다.Thus, austenitic grain growth of the rolled material is suppressed and forced rapid cooling by water injection is carried out to 800 ± 10 ° C. within 1.0 second. At this time, if the coiling temperature is higher than 810 ° C, the carbon atom diffusion distance is increased due to the austenite grain growth, resulting in uneven development of the pearlite layer, which increases the strength of the material but deteriorates the ductility.

또한 790℃이하로하면 탄소원자확산거리는 짧아지나 저온변태상인 마르텐사이트마 베이나이트생성이 용이하게 되어 냉간가공시 단선(斷線)의 발생용인으로 작용한다.In addition, below 790 ° C, the carbon atom diffusion distance is shortened, but the martensitic bainite, which is a low temperature transformation, can be easily produced, which acts as a cause of disconnection during cold working.

한편, 급속냉각된 압연제품을 코일형태로 권취하여 연속적으로 움직이는 콘베어(Conveyor)상에서 송풍량을 조절하여 냉각속도를 10-15C/sec로 상온까지 냉각한다.On the other hand, by winding the cold-rolled rolled product in the form of a coil to continuously control the air flow on the conveyor (Conveyor) by cooling the cooling rate to room temperature at 10-15C / sec.

이때 냉각속도는 최종품질에 직접 영향을 미치는 요소로서 10℃/sec이하이면 조대펄라이트나 결정입계훼라이트들이 형성되어 소재의 강도를 저하시키기 때문에 하한 냉각속도를 10℃/sec로 하였다. 또한 15℃/sec이상이면 탄소원자의 확산속도가 늦어져서 펄라이트층의 발달이 불충분하고 세멘타이트(Cementite) 입자들이 소지에 분산된 형태로 나타나거나 탄소의 편석부분에서 극부적으로 마르텐사이트들이 발생되어 냉간가공과 연성을 악화시키므로 상한냉각속도를 15℃/sec로 하였다.At this time, the cooling rate is a factor directly affecting the final quality, and the coarse pearlite or grain boundary ferrite is formed when the temperature is less than 10 ° C./sec. Thus, the lower limit cooling rate is 10 ° C./sec. In addition, the diffusion rate of carbon atoms is slower than 15 ° C./sec, resulting in insufficient development of the pearlite layer and the appearance of cementite particles dispersed in the substrate or martensite in the segregation of carbon. The upper limit cooling rate was set to 15 ° C / sec in order to deteriorate processing and ductility.

이하 본 발명의 실시예에 대해 설명한다.Hereinafter, embodiments of the present invention will be described.

[실시예 1]Example 1

하기 표1의 조성을 갖는 빌렐트를 제1도와같은 장치를 이용하여 압연 및 제어냉각하여 8.0mmø의 선재를 제조하였다.The billet having the composition shown in Table 1 was rolled and controlled cooled using an apparatus as shown in FIG. 1 to prepare a wire rod of 8.0 mm.

이때 빌레트의 가열조건은 1200℃×1.5hr이고 최종사상 압연속도는 37m/sec로 하였으며, 또한 압연열에 의한 오스테나이트결정립 성장을 억제하기위하여 권취온도를 800℃로 하여 물분사시켜 조절하였고 이후 냉각속도는공기의 송풍량을 조절하여 12℃/sec로 하였다.At this time, the heating condition of billet was 1200 ℃ × 1.5hr and final rolling speed was 37m / sec. Also, to suppress austenite grain growth by rolling heat, winding temperature was adjusted to 800 ℃ to adjust the water spray and then cooling rate. The air blowing amount of air was adjusted to 12 ° C./sec.

또한, 제1도는 본 발명을 실시하는데 적합한 장치의 평면개략도로서 1은 가열로, 2는 수평식공형압연스탠드(25개), 3은 수냉각구역, 4는 권취기, 5는 콘베어이다.1 is a plan schematic view of a device suitable for carrying out the present invention, where 1 is a heating furnace, 2 is a horizontal ball rolling stand (25), 3 is a water cooling zone, 4 is a winder, and 5 is a conveyor.

[표 1]TABLE 1

Figure kpo00001
Figure kpo00001

[표 2]TABLE 2

Figure kpo00002
Figure kpo00002

상기표 2에 나타난 바와같이, 본 발명재 1,2,3은 비교재 A에 비해 인장강도는 4.6-7.5㎏/㎟이 상승되었고 또한 단면 감면율도 46.5%이상의 양호한 결과를 나타냈다. 이의 상승요인은 바나듐첨가에 의한 펄라이트 층상간격의 미세화와 조대펄라이트양의 감소에 기인됨을 알 수 있고 특히 0.19%바나듐 첨가강인 비교재 B는 인장강도는 뚜렷하게 증가를 하였지만 단면 감소율이 38.6%로서, 이는 저온변태상인 마르텐사이트의 발생에 기인된것이다.As shown in Table 2, the present invention materials 1, 2 and 3 showed a higher tensile strength of 4.6-7.5 kg / mm 2 and a good sectional reduction rate of 46.5% or more as compared with the comparative material A. It can be seen that the synergistic factor is due to the decrease in the coarse pearlite spacing due to the addition of vanadium and the decrease in the coarse pearlite content. Particularly, the comparative strength B of 0.19% vanadium-added steel increased the tensile strength but the cross-sectional reduction rate was 38.6% This is due to the occurrence of martensite, a low temperature transformation state.

[실시예 2]Example 2

냉간가공성을 조사하기위하여 텅그스켄 카바이드다이스(WC Dies)가 고정된 신선기를 이용하여 상기실시예 1의 시편들에 대하여 신선속도 40m/min, 평균 감면량 20.3%로 4단게 연속냉간 신선한후 냉간가공성 및 가공경화정도를 측정하여 하기표3 및 표4에 각각 나타내었다.In order to investigate the cold workability, four steps of continuous cold fresh and cold workability were performed with a drawing speed of 40 m / min and an average reduction of 20.3% for the specimens of Example 1 using a drawing machine fixed with Tungsten Scan Carbide (WC Dies). And the degree of work hardening was measured and shown in Tables 3 and 4, respectively.

[표 3]TABLE 3

Figure kpo00003
Figure kpo00003

[표 4]TABLE 4

Figure kpo00004
Figure kpo00004

* 인장강도차이=인장강도(5.08mmø)-인장강도(8.0mmø)* Tensile Strength Difference = Tensile Strength (5.08mmø) -Tensile Strength (8.0mmø)

상기표3 및 표4에 나타난 바와같이, 본 발명재 1,2,3은 비교재와 동등한 수준인 60%이상 냉간가공성을 보였고 인장강도는 8.7-11.9㎏/㎟ 상승하였다.As shown in Table 3 and Table 4, the present invention materials 1, 2, 3 showed cold workability of 60% or more, which is equivalent to that of the comparative material, and the tensile strength increased 8.7-11.9 kg / mm 2.

이때의 가공경화도는 4.7㎏/㎟ 이하로써 양호한 결과를 보였다. 그러나 국부 마르텐사이트를 포함하는 0.19%첨가 바나듐 고장력선재인 비교재 B의 경우 48%의 낮은 냉간가공성을 보이는것은 냉간가공중 경한 마르텐사이트와 펄라이트 주위가 응력집중점이되어 단선 발생의 요인이되었고 상품화가 불가하였다.The work hardening at this time was 4.7 kg / mm 2 or less, showing good results. However, the low cold workability of 48% was observed for comparative material B, which contains 0.19% vanadium high tensile wire containing local martensite, causing stress due to stress concentration around light martensite and pearlite during cold working and commercialization. It was impossible.

상술한 바와같이, 본 발명은 바나듐을 소량첨가하고 제어냉각법에 의해 냉각시키므로써, 미세한 바나듐카바이드를 냉각중 펄라이틱 훼라이트에 석출시켜 분산 강화시키고 펄라이트 변태시에는 A1변태온도와의 과냉도를 증가시켜 층상간격을 미세화시켜 안장강도 및 냉간가공성 등이 우수한 고장력선재를 제조할 수 있는것이다.As described above, according to the present invention, by adding a small amount of vanadium and cooling by a controlled cooling method, the fine vanadium carbide is precipitated and dispersed and dispersed in pearlitic ferrite during cooling, and the supercooling with A 1 transformation temperature during pearlite transformation. It is possible to manufacture high tensile wire with excellent saddle strength and cold workability by increasing the layer spacing by increasing.

Claims (1)

중량%로, 탄소 : 0.08-0.82%, 규소 : 0.02-0.23%, 망간 : 0.77-0.82%, 인 : 0.023%이하, 황 : 0.01%이하, 바나듐 : 0.02-0.1% 및 나머지는 철과 불순물로 조성되는 빌레트 1150-1200℃로 가열하여 1시간-1시간 30분동안 유지한후 35m/sec-40m/sec의 압연속도로 고속압연한다음 800±10℃의 범위까지 물분사에 의해 급속냉각하여 권취하고 상온까지 10-15℃/sec의 냉각속도로 냉각하는것을 특징으로하는 제어냉각에 의한 공석조서의 바나듐첨가 고장력선재의 제조방법.By weight, carbon: 0.08-0.82%, silicon: 0.02-0.23%, manganese: 0.77-0.82%, phosphorus: 0.023% or less, sulfur: 0.01% or less, vanadium: 0.02-0.1% and the rest are iron and impurities It is heated to 1150-1200 ℃ and maintained for 1 hour-1 hour 30 minutes, and then it is rapidly rolled at a rolling speed of 35m / sec-40m / sec and rapidly cooled by water spraying to a range of 800 ± 10 ℃. The method for producing vanadium-added high tensile strength wire of vacancy document by controlled cooling, characterized in that the cooling is carried out at a cooling rate of 10-15 ° C / sec to room temperature.
KR1019850009547A 1985-12-18 1985-12-18 Process for manufacturing of high tension wire rod KR890002613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019850009547A KR890002613B1 (en) 1985-12-18 1985-12-18 Process for manufacturing of high tension wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019850009547A KR890002613B1 (en) 1985-12-18 1985-12-18 Process for manufacturing of high tension wire rod

Publications (2)

Publication Number Publication Date
KR870006206A KR870006206A (en) 1987-07-10
KR890002613B1 true KR890002613B1 (en) 1989-07-20

Family

ID=19244233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019850009547A KR890002613B1 (en) 1985-12-18 1985-12-18 Process for manufacturing of high tension wire rod

Country Status (1)

Country Link
KR (1) KR890002613B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045112C (en) * 1994-03-29 1999-09-15 中国科学院金属研究所 Heat-resistant steel wire for logging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340498B1 (en) * 1997-09-18 2002-09-18 주식회사 포스코 A Method for Manufracturing a High Carbon Hard Steel Wire Rode Having Superior Anti-rust on its Surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1045112C (en) * 1994-03-29 1999-09-15 中国科学院金属研究所 Heat-resistant steel wire for logging

Also Published As

Publication number Publication date
KR870006206A (en) 1987-07-10

Similar Documents

Publication Publication Date Title
US4016009A (en) Producing rolled steel products
CN109385570A (en) A kind of high strength steel plate and its manufacturing method
KR890002613B1 (en) Process for manufacturing of high tension wire rod
CN109207851A (en) A kind of ultra-high strength steel plate and its manufacturing method
JPH0672258B2 (en) Method for producing rolled steel bar with excellent homogeneity
KR890002614B1 (en) Process for manufacturing of high tension wire rod for pc steel wire
KR100431849B1 (en) Method for manufacturing medium carbon wire rod containing high silicon without low temperature structure
JPH03271329A (en) Manufacture of high strength steel wire
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
JPH0525941B2 (en)
CN111621718B (en) Steel for high-ductility cold-rolled steel bar for welded mesh and production method thereof
JP4112676B2 (en) Manufacturing method of high strength steel wire
JPS60152635A (en) Manufacture of high-strength low-carbon steel material having superior heavy workability
JPH08260046A (en) Production of high-carbon low alloy steel wire rod excellent in wiredrawability
KR100256346B1 (en) The manufacturing method for wire drawing hypereutectoid wire rod
KR101987670B1 (en) High carbon wire material with uniform internal material and manufacturing of the same
KR920004944B1 (en) Making process for the wire rod for the high tensile bolt
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JPH0233768B2 (en)
JP3176465B2 (en) Manufacturing method of hypereutectoid steel wire
JPH02179847A (en) Hot rolled steel plate excellent in workability and its production
JPS58733B2 (en) Method for manufacturing non-temperature high tensile strength hot rolled steel strip for processing
KR100347581B1 (en) Method for preparing wire rod with high stiffness
JPH0243319A (en) Production of case hardening cr-mo steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19990629

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee