KR20230094102A - 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법 - Google Patents

2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법 Download PDF

Info

Publication number
KR20230094102A
KR20230094102A KR1020220037482A KR20220037482A KR20230094102A KR 20230094102 A KR20230094102 A KR 20230094102A KR 1020220037482 A KR1020220037482 A KR 1020220037482A KR 20220037482 A KR20220037482 A KR 20220037482A KR 20230094102 A KR20230094102 A KR 20230094102A
Authority
KR
South Korea
Prior art keywords
fucosyllactose
difucosyllactose
gene sequence
production
recombinant vector
Prior art date
Application number
KR1020220037482A
Other languages
English (en)
Inventor
김선기
이현재
한강희
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of KR20230094102A publication Critical patent/KR20230094102A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01004Phospholipase A2 (3.1.1.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터에 관한 것으로, 더욱 상세하게는, 포스포라이페이스 A2의 n 말단에 연결되는 신호 펩티드 PelB 또는 CelA의 절단된 돌연변이 1 의 n 말단에 연결되는 신호 펩티드 DsbA를 코딩하는 유전자를 포함하여, 숙주 세포의 세포 외 2'-푸코실락토오스 및 디푸코실락토오스 생산을 촉진하는 재조합 벡터를 제공한다.

Description

2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법{RECOMBINANT VECTOR FOR PRODUCTION OF 2'-FUCOSYLLACTOSE AND DIFUCOSYLLACTOSE AND PRODUCTION METHOD USING THE SAME}
본 발명은 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터에 관한 것으로, 더욱 상세하게는 포스포라이페이스 A2(phospholipase A2) 및 CelA의 절단된 돌연변이 1 (truncational mutant 1)를 이용하여, 2'-푸코실락토오스 및 디푸코실락토오스의 생산 촉진하는 방법을 제공한다.
사람의 모유에는 200여종 이상의 독특한 구조를 가지는 올리고당 (human milk oligosaccharides, HMO)이 다른 포유류의 젖에 비해 상당히 높은 농도 (5~15 g/L)로 존재한다.
HMO는 D-글루코오스 (Glc), D-갈락토오스 (Gal), N-아세틸글루코사민 (N-aetylglucosamine, GlcNAc), L-푸코오스 (L-fucose, Fuc)와 시알산 (sialc acid) [Sia; N-acetyl neuraminic acid (Neu5Ac)]으로 구성되어 있다. 모유 중 함량이 가장 높은 올리고당 3가지를 포함하여 137개가 푸코실화되어 그 비율은 약 77%이고, 남은 올리 고당은 대부분 시알화된 것(39개)으로 약 28%에 해당한다. 이중, 특히 2'-푸코실락토오스와 3-푸코실락토오스는 장내 유산균의 생육을 돕는 프리바이오틱 (prebiotic) 효과, 병원균 감염의 예방, 면역시스템 조절 및 두뇌발달과 같이 유아의 발달 및 건강에 긍정적 영향을 미치는 다양한 생물학적 활성을 제공하는 주요 HMO이므로, 전문 가들은 유아기의 모유수유가 매우 중요하다고 강조한다.
모유에는 약 200여종의 올리고당이 함유되어 있으며, 이 중, 특히 2'-푸코실락토오스와 3-푸코실락토오스가 앞서 언급한 다양한 생물학적 활성에 관여하는 주요 HMO인 것으로 보고되어 있다. 이로 인하여 최근 푸코실락토오스가 유아용 분유, 노인용 건강기능식품 소재 및 의약품 소재로 이용될 가능성으로 주목받고 있다.
하지만, 여성의 약 20%는 푸코실올리고당을 합성하는 푸코스전이효소에 변이 때문에, 체내에서 이들을 제대로 합성하지 못하는 것으로 알려져 있다. 이로 인하여 푸코실락토오스의 산업적 생산이 필요한 실정이다. 그러나 현재 푸코실락토오스는 산업적으로 대량생산이 어렵기 때문에, 이들을 대신하여 유사체인 갈락토올리고당 (galactooligosaccharide) 또는 프럭토올리고당 (fructooligosaccharide)을 이유식에 첨가하여 유사한 효과를 기대하고 있는 실정이다.
한편, 푸코실락토오스의 생산방법으로는 직접 모유로부터 추출하는 방법과 화학적 또는 효소적 방법으로 합성하는 방법이 있다.
직접 추출하는 방법은 모유수급의 한계와 낮은 생산성이 문제이고, 화학적 합성법은 고가의 기질, 낮은 이성체 선택성 (stereo-selectivity)과 생산수율, 독성 유기용매의 사용 등의 문제가 있다. 또한, 효소적 합성법은 푸코오스의 공여체 (donor)로 이용되는 GDP-L-fucose가 매우 고가라는 점과 푸코스 전이효소(fucosyltransferase)의 정제비용이 많이 든다는 문제점이 있다.
상기와 같은 문제점으로 인하여 직접추출, 화학적 또는 효소적 생산법은 푸코실락토오스의 대량생산에 적용이 어렵고 대량 생산을 위한 기술이 거의 없는 실정이다. 그러나, 2'-푸코실락토오스를 이용한 건강기능성식품 및 의약품 소재로의 개발을 기대할 수 있기 때문에, 미생물을 이용한 2'-푸코실락토오스의 산업적 생산을 위하여 더욱 많은 연구가 필요한 실정이다.
본 발명자들은 2'-푸코실락토오스 및 디푸코실락토오스의 대량 생산방법을 연구하던 중 포스포라이페이스 A2 또는 CelA의 절단된 돌연변이 1 (truncational mutant 1)의 신호 펩티드 결합 여부에 따라 2'-푸코실락토오스 및 디푸코실락토오스의 세포 외 생산량이 달라질 수 있음을 확인하고 본 발명을 완성하였다.
본 발명은 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터를 제공하고자 한다.
본 발명은 2'-푸코실락토오스 및 디푸코실락토오스의 세포 외 생산을 촉진하기 위한 유전자 재조합 구성을 제공하고자 한다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
이하, 본 발명을 상세히 설명한다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.
상기의 목적을 달성하기 위하여, 본 발명은 포스포라이페이스 A2(phospholipase A2)를 코딩하는 유전자 서열 및 CelA의 절단된 돌연변이 1 (truncational mutant 1)을 코딩하는 유전자 서열을 이용한 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스 생산용 재조합 벡터를 제공한다.
본 발명의 일 실시예에 따르면, 상기 재조합 벡터는 포스포라이페이스 A2(phospholipase A2)를 코딩하는 유전자 서열; 및 상기 포스포라이페이스 A2의 N-말단에 연결되는 신호 펩티드 PelB 를 코딩하는 유전자 서열을 포함할 수 있다. 본 발명에서, 신호 펩티드 PelB 가 N-말단에 연결된 포스포라이페이스를 코딩하는 유전자 서열이 포함된 벡터는 숙주세포에서 형질전환되어 2'-푸코실락토오스 (2'-fucosyllactose) 또는 디푸코실락토오스의 생산을 촉진할 수 있으며, 바람직하게는 디푸코실락토오스의 생산을 촉진할 수 있다.
본 발명의 일 실시예에 따르면, 상기 재조합 벡터는 CelA의 절단된 돌연변이 1 (truncational mutant 1)를 코딩하는 유전자 서열; 및 상기 CelA의 절단된 돌연변이 1 의 N-말단에 연결되는 신호 펩티드 DsbA을 코딩하는 유전자 서열을 포함할 수 있으며, 이를 포함하는 벡터는 숙주세포에서 형질전환되어 2'-푸코실락토오스 (2'-fucosyllactose) 또는 디푸코실락토오스의 생산을 촉진할 수 있고, 바람직하게는 2'-푸코실락토오스 (2'-fucosyllactose)의 생산을 촉진할 수 있다.
본 발명에서, 상기 포스포라이페이스 A2 (phospholipase A2)를 코딩하는 유전자 서열은 서열번호 1로, 상기 PelB 신호 펩티드를 코딩하는 유전자 서열은 서열번호 2로, 상기 CelA의 절단된 돌연변이 1 (truncational mutant 1)를 코딩하는 유전자 서열은 서열번호 5로, 상기 DsbA 단백질을 코딩하는 유전자 서열은 서열번호 6으로 표시될 수 있으며, 각각을 포함하는 유전자일 수 있다.
본 발명에 따르면, 포스포라이페이스 A2(phospholipase A2) 및 CelA의 절단된 돌연변이 1 (truncational mutant 1)가 각각 다른 플라스미드 벡터에 존재할 수 있다. 본 발명의 일 실시예에 따르면, 포스포라이페이스 A2 및 포스포라이페이스 A2의 n 말단에 연결되는 PelB 신호 펩티드를 코딩하는 유전자 서열을 포함하는 제1 플라스미드 벡터; 및 CelA의 절단된 돌연변이 1 (truncational mutant 1) 및 CelA의 절단된 돌연변이 1 의 n 말단에 연결되는 DsbA 단백질을 코딩하는 유전자 서열을 포함하는 제2 플라스미드 벡터;를 포함하는, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스 생산용 유전자 전달 복합체가 제공된다.
본 발명은 또한 상기 재조합 벡터 또는 유전자 전달 복합체로 형질 전환된 숙주세포를 제공하며, 상기 숙주 세포는 그 종류를 제한하지 않으나, 가장 바람직하게는 대장균(E. coli)이다.
본 발명은 상기 형질전환된 숙주세포를 배양하는 단계를 포함하는 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스의 생산방법을 제공한다. 본 발명의 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스 생산방법에는, (a) 서열번호 3의 유전자 서열 및 서열번호 7의 유전자 서열을 포함하는 재조합 벡터를 제조하는 단계; (b) 상기 재조합된 발현 벡터로 숙주세포를 형질전환하는 단계; (c) 상기 형질전환된 숙주세포를 배양하는 단계; 및 (d) 상기 (c) 단계의 배양액으로부터 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스를 분리 및 정제하는 단계가 포함될 수 있다.
본 발명은 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터를 제공하며, 본 발명의 재조합 벡터를 이용하는 경우, 2'-푸코실락토오스 및 디푸코실락토오스의 세포 외 생산을 증대시킬 수 있는 이점이 있다.
본 발명은 또한, 신호 펩티드 PelB 또는 DsbA의 결합 위치에 따른 2'-푸코실락토오스 및 디푸코실락토오스의 세포 외 생산 양상을 확인하여, 2'-푸코실락토오스 및 디푸코실락토오스의 세포 외 생산을 증대시킬 수 있는 신호펩티드의 결합 구성 및 2'-푸코실락토오스 및 디푸코실락토오스의 생산 메커니즘을 제공한다.
도 1은 E. coli의 세포 내(A) 및 세포 외(B) 분획에 존재하는 FKP 및 FucT2를 통한 푸코실화된 올리고당의 생산 과정을 나타내는 모식도이다.
도 2는 본 발명의 일 실시예에 따라 재조합된 FF (FucT2 및 FKP 발현; 도 2의 A), PFPF (P-FucT2 및 P-FKP 발현; 도 2의 B), DFDF (D-FucT2 및 D-FKP 발현; 도 2의 C)를 각각 포함하는 벡터로 형질전환된 균주에 의한 2'-푸코실락토오스의 생산을 비교한 그래프이다.
도 3은 본 발명의 일 실시예에 따라 재조합된 벡터에 의해 형절전환된 E. coli 균주의 세포 내(A) 및 세포 외(B) 분획에서 FKP 및 FucT2의 발현 수준을 나타낸 웨스턴 블랏 분석 결과이다.
도 4는 본 발명의 일 실시예에 따라 재조합된 벡터에 의해 형질전환된 E. coli 균주에서 세포 내 2'-푸코실락토오스의 함량을 비교한 그래프이다.
도 5는 본 발명의 일 실시예에 따라 재조합된 FF (FucT2 및 FKP 발현; 도 5의 A), FF+P-PLA2 (FucT2, FKP 및 P-PLA2 발현; 도 5의 B), FF+D-TM1 (FucT2, FKP 및 D-TM1 발현; 도 5의 C) 유전자를 각각 포함하는 벡터로 형질전환된 균주에 의한 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 비교한 그래프이다.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
본 발명에서는 2'-푸코실락토오스 (2'-fucosyllactose; 이하 2'-FL) 또는 디푸코실락토오스 (이하 Di-FL) 생산용 재조합 벡터를 제공하며, 이는 2'-FL 또는 Di-FL의 생산을 촉진할 수 있다.
본 발명에서 "벡터"라는 용어는, 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절요소를 포함하는 유전자 제조물을 뜻한다.
본 발명의 재조합 벡터는 포스포라이페이스 A2 (이하, PLA2) 및 포스포라이페이스 A2에 작동 가능하게 연결되는 신호 펩티드를 코딩하는 유전자 서열을 포함할 수 있다. 본 발명의 상기 PLA2는 서열번호 1로 표시될 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 벡터는 CelA의 절단된 돌연변이 1 (truncational mutant 1; 이하 TM1)을 코딩하는 유전자 서열; 및 상기 CelA의 절단된 돌연변이 1에 작동 가능하게 연결되는 신호 펩티드를 코딩하는 유전자 서열을 더 포함할 수 있다. 본 발명의 상기 TM1은 서열번호 5로 표시될 수 있다.
본 발명에서 "작동 가능하게 연결된"이라는 용어는, PLA2 및 TM1의 유전자 서열과 신호 펩티드 유전자 서열의 기능적 연결, 즉 발현이 필요한 유전자와 이의 조절 서열이 서로 기능적으로 결합되어 유전자 발현을 가능하게 하는 방식으로 연결되는 것을 의미한다.
본 발명의 신호 펩티드는 신호 펩티드 PelB (서열번호 2) 또는 DsbA (서열번호 6)를 포함하나 이에 한정되는 것은 아니다. 본 발명에서, 바람직하게는 PLA2의 N-말단에 신호 펩티드 PelB가, CelA의 절단된 돌연변이 1 (truncational mutant 1)의 N-말단에는 신호 펩티드 DsbA가 연결될 수 있다. 이하에서는 N-말단에 신호 펩티드 PelB가 결합된 PLA2는 P-PLA2 (서열번호 3), N-말단에 신호 펩티드 DsbA가 결합된 TM1은 D-TM1 (서열번호 7)이라 한다.
본 발명은 또한 상기의 재조합 벡터로 형질전환된 숙주세포를 제공하며, 본 발명의 숙주세포는 가장 바람직하게는 대장균일 수 있다.
본 발명에서 "숙주세포"라는 용어는, 벡터가 숙주세포에 형질전환됨으로서 숙주세포 내에서 다양한 유전적 또는 분자적 영향을 미치게 되는 세포를 의미한다.
본 발명에서 "형질전환"이라는 용어는, DNA를 숙주로 도입하여 DNA가 염색체외의 인자로서 또는 염색체로의 삽입에 의해 복제 가능하게 되는 것을 의미한다.
본 발명에 따라 P-PLA2 D-TM1의 유전자를 포함하는 벡터로 형질전환된 숙주세포는 세포 내 2'-FL의 축적을 감소시키고, 세포 외 2'-FL 및 Di-FL의 생산을 촉진할 수 있다.
본 발명의 상기 P-PLA2 및 상기 D-TM1의 유전자 서열은 하나의 플라스미드 벡터에 존재하거나 각각의 다른 플라스미드 벡터에 존재할 수 있다.
즉, 상기 P-PLA2 및 상기 D-TM1의 유전자 서열이 각각의 다른 플라스미드 벡터에 존재하는 경우, 2개 이상의 플라스미드 벡터가 포함된 유전자 전달 복합체로 숙주세포의 형질전환에 이용될 수 있다. 본 발명의 상기 유전자 전달 복합체에는 포스포라이페이스 A2 및 포스포라이페이스 A2의 N-말단에 연결되는 PelB 신호 펩티드를 코딩하는 유전자 서열을 포함하는 제1 플라스미드 벡터; 및, CelA의 절단된 돌연변이 1 (truncational mutant 1) 및 CelA의 절단된 돌연변이 1 의 N-말단에 연결되는 DsbA 단백질을 코딩하는 유전자 서열을 포함하는 제2 플라스미드 벡터가 포함될 수 있다.
본 발명에서 "유전자 전달 복합체"는 유전자 전달 물질인 플라스미드 또는 벡터 등이 둘 이상 혼합되어 있는 물질을 의미할 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 상기 제1 플라스미드에 의해 형질전환된 숙주세포에서 Di-FL의 세포 외 분비가 촉진될 수 있으며, 상기 제2 플라스미드에 의해 형질전환된 숙주세포에서 2'-FL의 세포 외 분비가 촉진될 수 있어, 상기 유전자 전달 복합체에 의해 Di-FL 및 2'-FL의 세포 외 분비가 촉진되며, 결론적으로 Di-FL 및 2'-FL의 생산이 촉진된다.
본 발명은 또한, 상기의 숙주세포를 배양하는 단계를 포함하는, 2'-푸코실락토오스 (2'-fucosyllactose) 또는 디푸코실락토오스의 생산방법을 제공한다.
본 발명에서, 상기 생산 방법은 (a) 서열번호 3의 유전자 서열 및 서열번호 6의 유전자 서열을 포함하는 재조합 벡터를 제조하는 단계; (b) 상기 재조합된 발현 벡터로 미생물을 형질전환하는 단계; (c) 상기 형질전환된 미생물을 배양하는 단계; 및 (d) 상기 (c) 단계의 배양액으로부터 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스를 분리 및 정제하는 단계를 포함할 수 있다.
본 발명에 따른 벡터는 당업계에 공지된 방법에 따라 숙주세포 내로 도입될 수 있다. 세포 내로 본 발명의 벡터를 도입하는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 일렉트로포레이션 (Electroporation), 인산 칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 레트로바이러스 감염(retroviral infection), 미세주입법 (Microinjection), PEG, DAEA 덱스트란, 양이온 피로좀법, 초산 리튬-DMSO법 등이 사용될 수 있다.
상기한 바와 같은 형질전환된 숙주세포 (형질전환체)의 배양은 본 발명이 속하는 기술분야에서 공지된 통상적인 방법에 따라 실시될 수 있다. 이들 공지된 배양 방법은 문헌 [Chmiel, (Bioprozesstechnik 1. Einfuhrung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991);및 Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994))에 기술되어 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
1-1. 유전자 서열
본 발명에서, 유전자 조작에는 E. coli TOP10 균주를, 2'-푸코실락토오스 및 디푸코실락토오스의 생산에는 E. coli BL21 star (DE3) ΔLFAR-YA 균주가 이용되었다. 본 실험에서 FKP 및 FucT2 유전자는 플라스미드 pCOLADuet-1 (Novagen, 다름슈타트, 독일)의 T7 프로모터 서열 이후에 위치한다.
본 발명에 이용된 균주 및 플라스미드 벡터는 하기 표 1과 같다.
명칭 설명
E. coli
E. coli TOP10 F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL(Str R ) endA1 nupG
E. coli BL21 star (DE3)
Figure pat00001
LFAR-YA
F- ompT hsdSB(r B -m B -) gal dcm rne131 (DE3) ΔlacZYA Tn7::lacYA ΔfucI-fucK ΔaraA ΔrhaA
플라스미드 벡터
pFF FucT2, FKP 및 KanR 의 유전자 서열을 포함하는 발현 벡터
pPFPF P-FucT2, P-FKP 및 KanR 의 유전자 서열을 포함하는 발현 벡터
pDFDF D-FucT2, D-FKP 및 KanR 의 유전자 서열을 포함하는 발현 벡터
pFF-Amp FucT2, FKP 및 AmpR 의 유전자 서열을 포함하는 발현 벡터
pFF-Amp-His FucT2-His6-tag, FKP-His6-tag 및 AmpR 의 유전자 서열을 포함하는 발현 벡터
pP-PLA2 P-PLA2 및 KanR 의 유전자 서열을 포함하는 발현 벡터
pD-TM1 D-TM1 및 KanR 의 유전자 서열을 포함하는 발현 벡터
표 1에서, 'D-'는 신호 펩티드 DsbA가 결합되었음을 의미하며, 'P-'는 신호 펩티드 PelB가 결합되었음을 의미한다.
1-2. 유전자 조작(Genetic manipulation)
pPFPF 플라스미드는 FucT2 및 FKP의 N-말단에 PelB 신호 펩티드를 부착하기 위해 2단계로 구축되었다. 먼저, FucT2의 N-말단에 PelB 신호 펩티드를 부착하기 위해 pFF 플라스미드를 주형으로 활용하여 HL48 (5'-AAATACCTGCTGCCGACCGCTGCTGCTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGCCGCT TTTAAGGTGGTGCAAATTTG-3')과 HL49 (5'-GTCGGCAGCAGGTATTTCATGGTATATCTCCTTATTAAAGT TAACAAAAT-3') 프라이머(primer)로 PCR 증폭하였다. 증폭된 DNA 절편은 NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs, Ipswich, MA, USA)를 이용해 결합하여 중간체 플라스미드인 pPFPF-itermediate를 생성하였다. 다음으로, FKP의 N-말단에 PelB 신호 펩티드를 부착하기 위해 pPFPF-itermediate 플라스미드를 HL50 (5'-ACCGCTGCTG CTGGTCTGCTGCTCCTCGCTGCCCAGCCGGCGATGGCCCAAAAACTACTATCTTTACCGTCCAA-3')과 HL51 (5'-AGACCAGCAGCAGCGGTCGGCAGCAGGTATTTCATATGTATATCTCCTTCTTATACTTAACTAATATACTAA-3') 프라이머를이용하여 PCR 증폭한 후, NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs)를 이용해 결합하여 최종적으로 pPFPF 플라스미드를 구축하였다. 또한, FucT2 및 FKP의 N-말단에 DsbA 신호 펩티드를 부착시키기 위해 pDFDF 플라스미드는 상기에 언급된 방법과 같은 절차를 통해 구축하였다. 이 때 사용된 프라이머는 1차 PCR의 경우 HL52 (5'-AAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCATCGGCGGCTTTTAAGGTGGTGCAAATTTG-3')과 HL53 (5'-GCCAGCCAAATCTTTTTCATGGTATATCTCCTTATTAAAGTTAAACAAAAT-3')이었고, 2차 PCR의 경우 HL54 (5'-CTGGCTGGTTTAGTTTTAGCGTTTAGCGCATCGGCGCAAAAACTACTATCTTTA CCGTCCAA-3')과 HL55 (5'-CTAAAACTAAACCAGCCAGCGCCAGCCAAATCTTTTTCATATGTATATCTC CTTCTTATACTTAACTAATATACTAA-3')이었다.
pFF 플라스미드의 카나마이신 (kanamycin) 항생제 마커를 암피실린(ampicillin) 항생제 마커로 대체한 pFF-Amp 플라스미드를 구축하기 위해, pFF 플라스미드를 주형으로 사용하여 SpeI 제한효소(restriction enzyme) 자리를 포함하는 HL20 (5'-AGAACTAGTTAGGCATGCTAGCGCA-3')과 KpnI 제한효소 자리를 포함하는 HL41 (5'-AGAGGTACCAGAATTA ATTCATGAGCGGATACATATT-3') 프라이머로 카나마이신 마커를 제외한 DNA 단편을 PCR 증폭하였다. 또한, 암피실린 마커를 포함하는 DNA 단편은 pHLK13 플라스미드를 주형으로 사용하여 SpeI 제한효소 자리를 포함하는 HL22 (5'- AGAACTAGTTTTGTTTATTTTTCTAAATACATTCAAATATGTATCC-3')과 KpnI 제한효소 자리를 포함하는 HL39 (5'-AGAGGTACCTTACCAATGCTTAATCAGTGAGG-3') 프라이머로 PCR증폭하였다. 이렇게 증폭된 두 개의 DNA 단편을 SpeI과 KpnI으로 동시에 절단한 후 T4 DNA 리가아제 (Takara, Shiga, Japan)로 결합하여 pFF-Amp 플라스미드를 구축하였다.
C-말단에 His6-tag이 부착된 형태의 FucT2와 FKP를 포함하는 pFF-Amp-His 플라스미드는 2단계로 구축되었다. 먼저, FucT2의 C-말단에 His6-tag를 부착하기 위해 pFF-Amp 플라스미드를 주형으로 이용하여 KH05 (5'-ATCCCAAAAGTATAACGCTCACCACCACCACCACCACTAAGAGCTCGGCGCG-3')과 KH06 (5'- GTGGTGGTGGTGGTGAGCGTTATACTTTTGGGATTTTACC-3') 프라이머로 PCR 증폭하였다. 증폭된 DNA 절편은 NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs)를 이용해 결합하여 중간체 플라스미드인 pFF-Amp-His-itermediate를 생성하였다. 다음으로, pFF-Amp-His-itermediate를 주형으로 이용하여 KH07 (5'-CACCACCACCACCACTAATTAATTAACCTAGGCTGCTGC-3')과 KH08 (5'-TGAGCGTTATACTTTTGGGATTTTACC-3') 프라이머로 PCR 증폭하였다. 증폭된 DNA 절편은 NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs)를 이용해 결합하여 최종적으로 pFF-Amp-His 플라스미드를 구축하였다.
1-3. 형질전환 및 균주 배양(culture)
2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 플라스미드는 염화칼슘 침전법을 이용해 대장균 BL21 star (DE3) ΔLFAR-YA 균주에 형질전환시켰다. 형질전환된 대장균 균주는 카나마이신 단독 혹은 카나마이신/암피실린 동시 포함 5 mL 루리아-베타니(Luria-Bertani) 액체 배지에 접종하여 12시간동안 37℃, 230 rpm 조건에서 진탕 배양하였다.
이렇게 전 배양된 대장균은 카나마이신 단독 혹은 카나마이신/암피실린 동시 포함 100 mL 라이젠버그 [13.5 g/L KH2PO4, 4.0 g/L (NH4)2HPO4, 1.7 g/L citric acid, 1.4 g/L MgSO4·7H2O, and 10 mL/L trace metal solution (10 g/L FeSO4·7H2O, 2.25 g/L ZnSO4·7H2O, 1.0 g/L CuSO4·5H2O, 0.5 g/L MnSO4·5H2O, 0.23 g/L Na2B4O7·10H2O, 0.1 g/L (NH4)6Mo7O24, and 2.0 g/L CaCl2), pH 6.8 containing 20 g/L glycerol] 액체 배지에 1% 접종하여 회분식 배양 (Batch culture)을 진행하였다. 회분식 진탕 배양은 37℃, 230 rpm 조건에서 진행하였으며, 광학밀도 (OD600)가 0.6에서 0.8 사이에 도달하였을 때, FKP와 FucT2의 발현을 유도하기 위해 배양 온도를 25℃로 전환한 후 최종적으로 배양액이 0.1 mM 이소프로필 β-D-1-티오갈락토피라노사이드 (Isopropyl β-D-1-thiogalactopyranoside, IPTG), 10 g/L 유당 (lactose), 10 g/L 푸코오스 (fucose), 15 mM 아데노신 삼인산 (Adenosine triphosphate, ATP) 및 15 mM 구아노신 삼인산 (Guanosine triphosphate, GTP)을 포함하도록 첨가하였다.
단백질의 발현 분석
2-1. ΔLFAR-YA/FF, ΔLFAR-YA/PFPF 및 ΔLFAR-YA/DFDF 균주의 2'-FL, Di-FL 생산 비교
2'-푸코실락토오스 및 디푸코실락토오스의 배지 중 농도는 Rezex ROA-organic acid H+ 컬럼 (Phenomenex, Torrance, CA) 및 RI (Refractive index) 검출기가 장착된 HPLC (High performance liquid chromatography) (Thermo fisher Ultimate 3000)를 통해 측정하였다. 컬럼 온도는 70℃로 유지하였으며 이동상으로 5 mM의 H2SO4 용액을 0.6 mL/min의 유속으로 흘려주어 2'-푸코실락토오스 및 디푸코실락토오스 생산 농도를 측정하였다.
도 2는 본 발명의 일 실시예에 따라 재조합된 pFF(FucT2 및 FKP 발현; 도 2의 A), pPFPF(P-FucT2 및 P-FKP 발현; 도 2의 B), pDFDF(D-FucT2 및 D-FKP 발현; 도 2의 C)를 각각 포함하는 벡터로 형질전환된 균주에 의한 2'-푸코실락토오스의 생산을 비교한 그래프이다.
신호 펩티드 없이 FKP 및 FucT2를 발현하는 대조군 ΔLFAR-YA 균주(ΔLFAR-YA/FF)에서 FKP의 발현 수준은 FucT2의 발현 수준보다 훨씬 높다. 본 실시예에서는, FKP 및 FucT2에 번역 후 또는 번역과 동시 분비를 매개할 수 있는 대표적인 신호 펩티드(signal peptide)인 PelB와 DsbA 신호 펩티드를 효소의 N-말단에 부착하였다. 그러나 신호 펩타이드의 부착은 FKP 및 FucT2의 발현 수준을 유의하게 감소시켰다. N-말단 DsbA 신호 펩티드(ΔLFAR-YA/DFDF)와 융합된 FKP 및 FucT2를 발현하는 ΔLFAR-YA 균주에서는 FKP 발현되지 않았다.
도 2를 참조하면, ΔLFAR-YA/DFDF 균주에서는 2'-FL 생산이 확인되지 않은 반면, 0.31 ± 0.01 g/L의 2'-FL이 ΔLFAR-YA/PFPF 균주에 의해 생산되었으며, 이는 ΔLFAR-YA/FF에 의해 생산된 것보다 48% 더 낮았다. 이러한 결과는 신호 펩티드를 세포질 단백질(FKP 또는 FucT2)에 부착하는 것이 FKP, FucT2의 기능적 발현 또는 막을 가로지르는 전위(translocation)를 보장하지 않는다는 것을 의미한다.
2-2. 웨스턴 블랏(Western blot)
IPTG 유도 (Induction) 87시간 후 배양액을 원심분리하여 상층액만 회수한 후, 3-kDa의 cut-off를 지닌 Amicon Ultra-15 Centrifugal Filter (Merck KGaA, Darmstadt, Germany)를 사용하여 10배 농축하였다. 또한, 회수한 세포는 B-PERTM Bacterial Protein Extraction Reagent (Thermo Fisher Scientific, Waltham, Massachusetts, USA)를 이용하여 용해시켰다. 용해된 세포의 단백질 총체 (도 3의 T), 수용성 단백질(도 3의 S) 그리고 세포 외 단백질에 존재하는 FKP 및 FucT2의 발현 확인은 웨스턴 블랏 방법을 이용하였다. 상기의 시료를 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)를 이용해 전기영동한후, polyvinylidene difluoride membrane (Millipore, Billerica, MA, USA)에 이동시켰다. FKP 및 FucT2 검출에 사용한 1차 항체는 Anti-6X His tag 항체 (ab18184, Abcam) (1:1000 dilution)이고, 2차 항체는 Goat Anti-Mouse 항체 (ab205719, Abcam) (1:1000 dilution)이다.
2-3. 세포 내 2'-FL의 축적 비교
IPTG 유도 (Induction) 87시간 후 배양액을 원심분리하여 세포를 회수하였다. 회수한 세포는 B-PERTM Bacterial Protein Extraction Reagent (Thermo Fisher Scientific)를 이용하여 용해시켰다. 이후, 용해된 세포의 불용성 물질은 원심분리로 제거한 후에 세포 내에 존재하는 2'-푸코실락토오스 농도를 상기에 언급된 HPLC 분석방법을 이용하여 측정하였다.
본 발명자들은 세포 외 FKP 및 FucT2로 구성된 시스템이 푸코실화된 올리고당의 세포 외 생산에서 세포 내 FKP 및 FucT2보다 우수함을 확인하고자 하였다. 본 실시예에서는 배양액에서 생산된 푸코실화 올리고당을 비교하기 전에 ΔLFAR-YA/FF, ΔLFAR-YA/FF+P-PLA2, ΔLFAR-YA/FF+D-TM1 균주의 세포내 분획에 축적된 푸코실화 올리고당의 양을 측정하였다.
도 4를 참조하면, 상당한 양(0.55g/L)의 2'-FL이 ΔLFAR-YA/FF 균주의 세포내 분획에 축적되었으나, 대조적으로, ΔLFAR-YA/FF+P-PLA2 및 ΔLFAR-YA/FF+D-TM1 균주는 대조군 균주보다 46% 더 낮은 세포내 2'-FL 농도를 나타내었다(도 4).
본 실시예에 따르면, Di-FL 생산이 모든 균주의 세포내 분획에서 관찰되지 않았음을 알 수 있으며, 이 결과는 P-PLA2 또는 D-TM1의 동시발현을 통한 FucT2 및/또는 FKP의 세포 외 분비가 2'-FL의 세포내 축적을 유의적으로 감소시킴을 알 수 있다.
2-4. ΔLFAR-YA/FF, ΔLFAR-YA/FF+P-PLA2 및 ΔLFAR-YA/FF+D-TM1 균주의 2'-FL, Di-FL 생산 비교
ΔLFAR-YA/FF, ΔLFAR-YA/FF+P-PLA2 및 ΔLFAR-YA/FF+D-TM1 균주의 2'-푸코실락토오스 및 디푸코실락토오스 생산 비교는 실시예 2-1과 동일한 방법으로 수행하였다.
본 실시예에서는 ΔLFAR-YA/FF, ΔLFAR-YA/FF+P-PLA2 및 ΔLFAR-YA/FF+D-TM1 균주에 의해 생산되는 2'-FL 및 Di-FL의 시간 경과에 따른 세포 외 농도를 측정했다. 이는 세포 내 2'-FL의 감소된 축적과 푸코실화된 올리고당의 세포 외 생산과 연관성이 있다.
본 실시예에 따른 결과인 도 5를 참조하면, ΔLFAR-YA/FF+P-PLA2 균주(도 5의 B)에서 푸코실화된 올리고당의 상이한 생산이 확인된다. ΔLFAR-YA/FF+P-PLA2 균주에 의해 생성된 2'-FL의 세포 외 농도는 대조군 ΔLFAR-YA/FF 균주의 것과 유사하지만, ΔLFAR-YA/FF+P-PLA2 균주의 배양 배지에서 상당한 양의 Di-FL (1.22 ± 0.01g/L)가 확인되었다(도 5의 A 및 B). 이에 따르면,ΔLFAR-YA/FF+P-PLA2 균주는 배양 배지에서 1.69 ± 0.01g/L 푸코실화 올리고당(즉, 2'-FL 및 Di-FL)을 생산하여 대조 균주에 비해 역가가 2.6배 증가함을 알 수 있다.
또한, D-TM1의 동시발현(ΔLFAR-YA/FF+D-TM1)은 대조군에 비해 2'-FL 및 푸코실화 올리고당의 농도가 각각 35% 및 44% 더 높았으며, 푸코실화 올리고당(fucosylated oligosaccharides)의 세포 외 생산을 증가시켰지만, P-PLA2 동시발현(ΔLFAR-YA/FF+P-PLA2) 보다 적은 정도였다.
즉, P-PLA2 및 D-TM1의 발현이 기질 접근성을 향상시키고 2'-FL의 세포내 축적을 감소시켜 푸코실화 올리고당(2'-FL 및 Di-FL)의 생산 역가를 증가시킨다는 것을 확인할 수 있다.
이상 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다.
<110> CHUNGANG University industry Academic Cooperation Foundation <120> RECOMBINANT VECTOR FOR PRODUCTION OF 2'-FUCOSYLLACTOSE AND DIFUCOSYLLACTOSE AND PRODUCTION METHOD USING THE SAME <130> 1070849 <150> KR 10-2021-0182953 <151> 2021-12-20 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 366 <212> DNA <213> Artificial Sequence <220> <223> PLA2 <400> 1 gcccccgcgg acaagcccca ggtactcgcc tccttcacgc agaccagcgc gtccagccag 60 aacgcctggc tcgcggccaa ccggaaccag tccgcctggg ccgcctacga gttcgactgg 120 tccacggacc tgtgcaccca ggcgcccgac aaccccttcg gcttcccgtt caacacggcc 180 tgcgcgcgcc acgacttcgg ttaccgcaac tacaaggcgg cgggcagctt cgacgccaac 240 aagagccgta tcgacagcgc cttctacgag gacatgaagc gcgtctgcac cggctacacc 300 ggcgagaaga acacggcctg caacagcacc gcctggacct actaccaggc cgtcaagatc 360 ttcggc 366 <210> 2 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> PelB signal <400> 2 atgaaatacc tgctgccgac cgctgctgct ggtctgctgc tcctcgctgc ccagccggcg 60 atggcc 66 <210> 3 <211> 435 <212> DNA <213> Artificial Sequence <220> <223> P-PLA2 sequence <400> 3 atgaaatacc tgctgccgac cgctgctgct ggtctgctgc tcctcgctgc ccagccggcg 60 atggccatgg cccccgcgga caagccccag gtactcgcct ccttcacgca gaccagcgcg 120 tccagccaga acgcctggct cgcggccaac cggaaccagt ccgcctgggc cgcctacgag 180 ttcgactggt ccacggacct gtgcacccag gcgcccgaca accccttcgg cttcccgttc 240 aacacggcct gcgcgcgcca cgacttcggt taccgcaact acaaggcggc gggcagcttc 300 gacgccaaca agagccgtat cgacagcgcc ttctacgagg acatgaagcg cgtctgcacc 360 ggctacaccg gcgagaagaa cacggcctgc aacagcaccg cctggaccta ctaccaggcc 420 gtcaagatct tcggc 435 <210> 4 <211> 5669 <212> DNA <213> Artificial Sequence <220> <223> Plasmids for P-PLA2 expression <400> 4 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600 tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660 actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720 gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780 aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840 agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900 cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960 aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020 tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080 tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140 taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200 ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260 tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320 tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380 cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500 gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560 gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620 agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680 aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740 agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800 cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860 accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920 aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980 ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040 cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100 gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160 tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220 agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280 tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340 caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400 ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460 gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520 gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580 gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640 aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700 ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760 acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820 ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880 tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940 tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000 cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060 gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120 ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180 catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240 ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300 gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360 gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420 ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480 atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540 cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600 tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660 ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720 aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780 atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840 cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900 gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960 tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020 agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080 gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140 ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200 catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260 tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320 tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380 gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440 ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500 tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560 catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620 cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680 tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740 ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800 ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860 cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920 gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980 aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040 ttttgtttaa ctttaagaag gagatataca tatgaaatac ctgctgccga ccgctgctgc 5100 tggtctgctg ctcctcgctg cccagccggc gatggccatg gcccccgcgg acaagcccca 5160 ggtactcgcc tccttcacgc agaccagcgc gtccagccag aacgcctggc tcgcggccaa 5220 ccggaaccag tccgcctggg ccgcctacga gttcgactgg tccacggacc tgtgcaccca 5280 ggcgcccgac aaccccttcg gcttcccgtt caacacggcc tgcgcgcgcc acgacttcgg 5340 ttaccgcaac tacaaggcgg cgggcagctt cgacgccaac aagagccgta tcgacagcgc 5400 cttctacgag gacatgaagc gcgtctgcac cggctacacc ggcgagaaga acacggcctg 5460 caacagcacc gcctggacct actaccaggc cgtcaagatc ttcggcctcg agcaccacca 5520 ccaccaccac tgagatccgg ctgctaacaa agcccgaaag gaagctgagt tggctgctgc 5580 caccgctgag caataactag cataacccct tggggcctct aaacgggtct tgaggggttt 5640 tttgctgaaa ggaggaacta tatccggat 5669 <210> 5 <211> 3303 <212> DNA <213> Artificial Sequence <220> <223> TM1 <400> 5 ggttcgttta actatgggga agctttacaa aaagctatca tgttttacga atttcaaatg 60 tctggtaaac ttccgaattg ggtacgcaac aactggcgtg gcgactcagc attaaaggat 120 ggtcaagaca atgggcttga tttgacaggt ggttggtttg acgcaggtga tcacgtcaag 180 tttaaccttc caatgtcata cactggtaca atgttgtcat gggcagtgta tgagtacaaa 240 gatgcatttg tcaagagtgg tcaattggaa catatcttaa atcaaatcga atgggttaat 300 gactattttg taaaatgtca tccaagcaaa tatgtatact attaccaggt tggggatgga 360 agtaaagatc atgcatggtg gggacctgct gaggttatgc aaatggagag accttcattt 420 aaggtcaccc aaagcagtcc tggatctaca gtagtagcag agacagcagc ttccttagca 480 gcagcttcaa ttgttttgaa agacagaaat cccactaaag cagcaacata tctgcaacat 540 gcaaaagaat tatatgagtt tgcagaagta acaaaaagcg atgcaggtta cactgctgca 600 aatggatatt acaattcatg gagcggtttc tatgatgagc tttcttgggc agcagtttgg 660 ttgtatttgg caacaaatga ttcaacatat ctcacaaaag ctgagtcata tgtccaaaat 720 tggcccaaaa tttctggcag taacacaatt gactacaagt gggctcattg ctgggatgat 780 gttcacaatg gagcggcatt attgttagca aaaattaccg gtaaggatat ttataaacaa 840 attattgaaa gtcacttaga ttactggact acaggataca atggcgaaag gattaagtat 900 acaccaaaag gattagcatg gcttgatcaa tggggttcgt tgagatatgc aacaactaca 960 gcatttttgg catttgttta tagcgattgg gttggctgtc caagcacaaa aaaagaaata 1020 tatagaaaat ttggagaaag ccagattgat tatgcgttag gctcagctgg aagaagcttt 1080 gttgttggat ttggtacaaa tccaccaaag agaccgcatc acagaactgc tcatagctca 1140 tgggcagaca gtcagagtat accttcatat cacagacata cattatatgg agcgcttgtt 1200 ggtggtccag gctctgatga tagctacaca gatgatataa gtaactatgt gaacaatgag 1260 gttgcatgtg attataatgc agggtttgtg ggtgcattag caaagatgta tcaattgtac 1320 ggtgggaatc caataccaga tttcaaagct attgaaactc caacaaacga cgaattcttt 1380 gttgaagctg gtataaatgc atccggaact aactttattg aaattaaagc gatagttaat 1440 aaccaaagtg gttggcctgc cagagcaaca gataagctta aatttagata ttttgttgac 1500 ctgagtgaat taattaaagc aggatattca ccaaatcaat taaccttgag caccaattat 1560 aatcaaggtg caaaagtaag tggaccttat gtatgggatg caagcaaaaa tatatactac 1620 attttagtag actttactgg cacattgatt tatccaggtg gtcaagacaa atataagaaa 1680 gaagtccaat tcagaattgc agcaccacag aatgtacagt gggataattc taacgactat 1740 tctttccagg atataaaggg agtttcaagt ggttcagttg ttaaaactaa atatattcca 1800 ctttatgatg gagatgtgaa agtatggggt gaagaaccag gaacttctgg agcaacaccg 1860 acaccaacag caacagcaac accaacacca acgccgacag taacaccaac accgactcca 1920 acaccaacat caactgctac accaacaccg acaccaacac cgacagtaac accaaccccg 1980 actccgacac cgactgctac accaacagca acgccaacac caacatcgac gccgagcagc 2040 acacctgtag caggtggaca gataaaggta ttgtatgcta acaaggagac aaatagcaca 2100 actaatacga taaggccatg gttgaaggta gtgaacactg gaagcagcag catagatttg 2160 agcagggtaa cgataaggta ctggtacacg gtagatgggg acaaggcaca gagtgcgata 2220 tcagactggg cacagatagg agcaagcaat gtgacattca agtttgtgaa gctgagcagt 2280 agcgtaagtg gagcggacta ttatttagag ataggattta agagtggagc tgggcagttg 2340 caggctggca aagacacagg ggagatacag ataaggttta acaagagtga ttggagcaat 2400 tacaatcagg ggaatgactg gtcatggatg cagagcatga cgaattatgg agagaatgtg 2460 aaggtaacag cgtatataga tggtgtattg gtatggggac aggagccgag tggagcgaca 2520 ccaacaccga cagcgacacc agcaccgaca gtgacaccga cacctacacc aacaccaacg 2580 tcaacaccaa ctgctacacc aacagcaacg ccaacaccaa caccgacgcc gagcagcaca 2640 cctgtagcag gcgggcagat aaaggtattg tatgctaaca aggagacaaa tagcacaaca 2700 aacacgataa ggccatggtt gaaggtagtg aacactggaa gcagcagcat agatttgagc 2760 agggtaacga taaggtactg gtacacggta gatggggaca aggcacagag tgcgatatca 2820 gactgggcac agataggagc aagcaatgtg acattcaagt ttgtgaagct gagcagtagc 2880 gtaagtggag cggactatta tttagagata ggatttaaga gtggagctgg gcagttgcag 2940 gctggtaaag acacagggga gatacagata aggtttaaca agagtgactg gagcaattac 3000 aatcagggga atgactggtc atggatgcag agcatgacga attatggaga gaatgtgaag 3060 gtaacagcgt atatagatgg tgtattggta tggggacagg agccgagtgg agcgacacca 3120 acaccgacag cgacaccagc accgacagtg acaccgacac ctacaccagc accaactcca 3180 accccgacac caacaccaac tgctacacca acaccaacgc caacaccaac cccaaccgcg 3240 acaccaacag taacagcaac accaacaccg acgccgagca gcacaccgag tgtgcttggc 3300 gaa 3303 <210> 6 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> DsbA signal <400> 6 atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcg 57 <210> 7 <211> 3360 <212> DNA <213> Artificial Sequence <220> <223> D-TM1 <400> 7 atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcgggt 60 tcgtttaact atggggaagc tttacaaaaa gctatcatgt tttacgaatt tcaaatgtct 120 ggtaaacttc cgaattgggt acgcaacaac tggcgtggcg actcagcatt aaaggatggt 180 caagacaatg ggcttgattt gacaggtggt tggtttgacg caggtgatca cgtcaagttt 240 aaccttccaa tgtcatacac tggtacaatg ttgtcatggg cagtgtatga gtacaaagat 300 gcatttgtca agagtggtca attggaacat atcttaaatc aaatcgaatg ggttaatgac 360 tattttgtaa aatgtcatcc aagcaaatat gtatactatt accaggttgg ggatggaagt 420 aaagatcatg catggtgggg acctgctgag gttatgcaaa tggagagacc ttcatttaag 480 gtcacccaaa gcagtcctgg atctacagta gtagcagaga cagcagcttc cttagcagca 540 gcttcaattg ttttgaaaga cagaaatccc actaaagcag caacatatct gcaacatgca 600 aaagaattat atgagtttgc agaagtaaca aaaagcgatg caggttacac tgctgcaaat 660 ggatattaca attcatggag cggtttctat gatgagcttt cttgggcagc agtttggttg 720 tatttggcaa caaatgattc aacatatctc acaaaagctg agtcatatgt ccaaaattgg 780 cccaaaattt ctggcagtaa cacaattgac tacaagtggg ctcattgctg ggatgatgtt 840 cacaatggag cggcattatt gttagcaaaa attaccggta aggatattta taaacaaatt 900 attgaaagtc acttagatta ctggactaca ggatacaatg gcgaaaggat taagtataca 960 ccaaaaggat tagcatggct tgatcaatgg ggttcgttga gatatgcaac aactacagca 1020 tttttggcat ttgtttatag cgattgggtt ggctgtccaa gcacaaaaaa agaaatatat 1080 agaaaatttg gagaaagcca gattgattat gcgttaggct cagctggaag aagctttgtt 1140 gttggatttg gtacaaatcc accaaagaga ccgcatcaca gaactgctca tagctcatgg 1200 gcagacagtc agagtatacc ttcatatcac agacatacat tatatggagc gcttgttggt 1260 ggtccaggct ctgatgatag ctacacagat gatataagta actatgtgaa caatgaggtt 1320 gcatgtgatt ataatgcagg gtttgtgggt gcattagcaa agatgtatca attgtacggt 1380 gggaatccaa taccagattt caaagctatt gaaactccaa caaacgacga attctttgtt 1440 gaagctggta taaatgcatc cggaactaac tttattgaaa ttaaagcgat agttaataac 1500 caaagtggtt ggcctgccag agcaacagat aagcttaaat ttagatattt tgttgacctg 1560 agtgaattaa ttaaagcagg atattcacca aatcaattaa ccttgagcac caattataat 1620 caaggtgcaa aagtaagtgg accttatgta tgggatgcaa gcaaaaatat atactacatt 1680 ttagtagact ttactggcac attgatttat ccaggtggtc aagacaaata taagaaagaa 1740 gtccaattca gaattgcagc accacagaat gtacagtggg ataattctaa cgactattct 1800 ttccaggata taaagggagt ttcaagtggt tcagttgtta aaactaaata tattccactt 1860 tatgatggag atgtgaaagt atggggtgaa gaaccaggaa cttctggagc aacaccgaca 1920 ccaacagcaa cagcaacacc aacaccaacg ccgacagtaa caccaacacc gactccaaca 1980 ccaacatcaa ctgctacacc aacaccgaca ccaacaccga cagtaacacc aaccccgact 2040 ccgacaccga ctgctacacc aacagcaacg ccaacaccaa catcgacgcc gagcagcaca 2100 cctgtagcag gtggacagat aaaggtattg tatgctaaca aggagacaaa tagcacaact 2160 aatacgataa ggccatggtt gaaggtagtg aacactggaa gcagcagcat agatttgagc 2220 agggtaacga taaggtactg gtacacggta gatggggaca aggcacagag tgcgatatca 2280 gactgggcac agataggagc aagcaatgtg acattcaagt ttgtgaagct gagcagtagc 2340 gtaagtggag cggactatta tttagagata ggatttaaga gtggagctgg gcagttgcag 2400 gctggcaaag acacagggga gatacagata aggtttaaca agagtgattg gagcaattac 2460 aatcagggga atgactggtc atggatgcag agcatgacga attatggaga gaatgtgaag 2520 gtaacagcgt atatagatgg tgtattggta tggggacagg agccgagtgg agcgacacca 2580 acaccgacag cgacaccagc accgacagtg acaccgacac ctacaccaac accaacgtca 2640 acaccaactg ctacaccaac agcaacgcca acaccaacac cgacgccgag cagcacacct 2700 gtagcaggcg ggcagataaa ggtattgtat gctaacaagg agacaaatag cacaacaaac 2760 acgataaggc catggttgaa ggtagtgaac actggaagca gcagcataga tttgagcagg 2820 gtaacgataa ggtactggta cacggtagat ggggacaagg cacagagtgc gatatcagac 2880 tgggcacaga taggagcaag caatgtgaca ttcaagtttg tgaagctgag cagtagcgta 2940 agtggagcgg actattattt agagatagga tttaagagtg gagctgggca gttgcaggct 3000 ggtaaagaca caggggagat acagataagg tttaacaaga gtgactggag caattacaat 3060 caggggaatg actggtcatg gatgcagagc atgacgaatt atggagagaa tgtgaaggta 3120 acagcgtata tagatggtgt attggtatgg ggacaggagc cgagtggagc gacaccaaca 3180 ccgacagcga caccagcacc gacagtgaca ccgacaccta caccagcacc aactccaacc 3240 ccgacaccaa caccaactgc tacaccaaca ccaacgccaa caccaacccc aaccgcgaca 3300 ccaacagtaa cagcaacacc aacaccgacg ccgagcagca caccgagtgt gcttggcgaa 3360 3360 <210> 8 <211> 8584 <212> DNA <213> Artificial Sequence <220> <223> Plasmids for D-TM1 expression <400> 8 tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60 cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120 ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180 gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240 acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300 ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420 acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480 tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540 tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600 tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660 actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720 gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780 aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840 agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900 cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960 aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020 tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080 tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140 taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200 ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260 tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320 tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380 cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440 cgtgagtttt cgttccactg agcgtcagac cccgtagaaa ctgcagacca gcctaacttc 1500 gatcattgga ccgctgatcg tcacggcgat ttatgccgcc tcggcgagca catggaacgg 1560 gttggcatgg attgtaggcg ccgccctata ccttgtctgc ctccccgcgt tgcgtcgcgg 1620 tgcatggagc cgggccacct cgacctgaat ggaagccggc ggcacctcgc taacggattc 1680 accactccgc agacccgcca taaaacgccc tgagaagccc gtgacgggct tttcttgtat 1740 tatgggtagt ttccttgcat gaatccataa aaggcgcctg tagtgccatt tacccccatt 1800 cactgccaga gccgtgagcg cagcgaactg aatgtcacga aaaagacagc gactcaggtg 1860 cctgatggtc ggagacaaaa ggaatattca gcgatttgcc cgagcttgcg agggtgctac 1920 ttaagccttt agggttttaa ggtctgtttt gtagaggagc aaacagcgtt tgcgacatcc 1980 ttttgtaata ctgcggaact gactaaagta gtgagttata cacagggctg ggatctattc 2040 tttttatctt tttttattct ttctttattc tataaattat aaccacttga atataaacaa 2100 aaaaaacaca caaaggtcta gcggaattta cagagggtct agcagaattt acaagttttc 2160 cagcaaaggt ctagcagaat ttacagatac ccacaactca aaggaaaagg actagtaatt 2220 atcattgact agcccatctc aattggtata gtgattaaaa tcacctagac caattgagat 2280 gtatgtctga attagttgtt ttcaaagcaa atgaactagc gattagtcgc tatgacttaa 2340 cggagcatga aaccaagcta attttatgct gtgtggcact actcaacccc acgattgaaa 2400 accctacaag gaaagaacgg acggtatcgt tcacttataa ccaatacgct cagatgatga 2460 acatcagtag ggaaaatgct tatggtgtat tagctaaagc aaccagagag ctgatgacga 2520 gaactgtgga aatcaggaat cctttggtta aaggctttga gattttccag tggacaaact 2580 atgccaagtt ctcaagcgaa aaattagaat tagtttttag tgaagagata ttgccttatc 2640 ttttccagtt aaaaaaattc ataaaatata atctggaaca tgttaagtct tttgaaaaca 2700 aatactctat gaggatttat gagtggttat taaaagaact aacacaaaag aaaactcaca 2760 aggcaaatat agagattagc cttgatgaat ttaagttcat gttaatgctt gaaaataact 2820 accatgagtt taaaaggctt aaccaatggg ttttgaaacc aataagtaaa gatttaaaca 2880 cttacagcaa tatgaaattg gtggttgata agcgaggccg cccgactgat acgttgattt 2940 tccaagttga actagataga caaatggatc tcgtaaccga acttgagaac aaccagataa 3000 aaatgaatgg tgacaaaata ccaacaacca ttacatcaga ttcctaccta cataacggac 3060 taagaaaaac actacacgat gctttaactg caaaaattca gctcaccagt tttgaggcaa 3120 aatttttgag tgacatgcaa agtaagtatg atctcaatgg ttcgttctca tggctcacgc 3180 aaaaacaacg aaccacacta gagaacatac tggctaaata cggaaggatc tgaggttctt 3240 atggctcttg tatctatcag tgaagcatca agactaacaa acaaaagtag aacaactgtt 3300 caccgttaca tatcaaaggg aaaactgtcc atatgcacag atgaggtacc gagttgcatg 3360 ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca ccggaaggag 3420 ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta atgagtgagc 3480 taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa cctgtcgtgc 3540 cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat tgggcgccag 3600 ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca ccgcctggcc 3660 ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa aatcctgttt 3720 gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt atcccactac 3780 cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg cgcccagcgc 3840 catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca gcatttgcat 3900 ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta tcggctgaat 3960 ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg agacagaact 4020 taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat gctccacgcc 4080 cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct ggtcagagac 4140 atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg catcctggtc 4200 atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat tgtgcaccgc 4260 cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc tggcacccag 4320 ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca gggccagact 4380 ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg ccacgcggtt 4440 gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt tcgcagaaac 4500 gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg catactctgc 4560 gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct cttccgggcg 4620 ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga tctcgacgct 4680 ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg ccgttgagca 4740 ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc ccggccacgg 4800 ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg cgagcccgat 4860 cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg gcgccggtga 4920 tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga aattaatacg 4980 actcactata ggggaattgt gagcggataa caattcccct ctagaaataa ttttgtttaa 5040 ctttaagaag gagatggatc catgaaaaag atttggctgg cgctggctgg tttagtttta 5100 gcgtttagcg catcggcggg ttcgtttaac tatggggaag ctttacaaaa agctatcatg 5160 ttttacgaat ttcaaatgtc tggtaaactt ccgaattggg tacgcaacaa ctggcgtggc 5220 gactcagcat taaaggatgg tcaagacaat gggcttgatt tgacaggtgg ttggtttgac 5280 gcaggtgatc acgtcaagtt taaccttcca atgtcataca ctggtacaat gttgtcatgg 5340 gcagtgtatg agtacaaaga tgcatttgtc aagagtggtc aattggaaca tatcttaaat 5400 caaatcgaat gggttaatga ctattttgta aaatgtcatc caagcaaata tgtatactat 5460 taccaggttg gggatggaag taaagatcat gcatggtggg gacctgctga ggttatgcaa 5520 atggagagac cttcatttaa ggtcacccaa agcagtcctg gatctacagt agtagcagag 5580 acagcagctt ccttagcagc agcttcaatt gttttgaaag acagaaatcc cactaaagca 5640 gcaacatatc tgcaacatgc aaaagaatta tatgagtttg cagaagtaac aaaaagcgat 5700 gcaggttaca ctgctgcaaa tggatattac aattcatgga gcggtttcta tgatgagctt 5760 tcttgggcag cagtttggtt gtatttggca acaaatgatt caacatatct cacaaaagct 5820 gagtcatatg tccaaaattg gcccaaaatt tctggcagta acacaattga ctacaagtgg 5880 gctcattgct gggatgatgt tcacaatgga gcggcattat tgttagcaaa aattaccggt 5940 aaggatattt ataaacaaat tattgaaagt cacttagatt actggactac aggatacaat 6000 ggcgaaagga ttaagtatac accaaaagga ttagcatggc ttgatcaatg gggttcgttg 6060 agatatgcaa caactacagc atttttggca tttgtttata gcgattgggt tggctgtcca 6120 agcacaaaaa aagaaatata tagaaaattt ggagaaagcc agattgatta tgcgttaggc 6180 tcagctggaa gaagctttgt tgttggattt ggtacaaatc caccaaagag accgcatcac 6240 agaactgctc atagctcatg ggcagacagt cagagtatac cttcatatca cagacataca 6300 ttatatggag cgcttgttgg tggtccaggc tctgatgata gctacacaga tgatataagt 6360 aactatgtga acaatgaggt tgcatgtgat tataatgcag ggtttgtggg tgcattagca 6420 aagatgtatc aattgtacgg tgggaatcca ataccagatt tcaaagctat tgaaactcca 6480 acaaacgacg aattctttgt tgaagctggt ataaatgcat ccggaactaa ctttattgaa 6540 attaaagcga tagttaataa ccaaagtggt tggcctgcca gagcaacaga taagcttaaa 6600 tttagatatt ttgttgacct gagtgaatta attaaagcag gatattcacc aaatcaatta 6660 accttgagca ccaattataa tcaaggtgca aaagtaagtg gaccttatgt atgggatgca 6720 agcaaaaata tatactacat tttagtagac tttactggca cattgattta tccaggtggt 6780 caagacaaat ataagaaaga agtccaattc agaattgcag caccacagaa tgtacagtgg 6840 gataattcta acgactattc tttccaggat ataaagggag tttcaagtgg ttcagttgtt 6900 aaaactaaat atattccact ttatgatgga gatgtgaaag tatggggtga agaaccagga 6960 acttctggag caacaccgac accaacagca acagcaacac caacaccaac gccgacagta 7020 acaccaacac cgactccaac accaacatca actgctacac caacaccgac accaacaccg 7080 acagtaacac caaccccgac tccgacaccg actgctacac caacagcaac gccaacacca 7140 acatcgacgc cgagcagcac acctgtagca ggtggacaga taaaggtatt gtatgctaac 7200 aaggagacaa atagcacaac taatacgata aggccatggt tgaaggtagt gaacactgga 7260 agcagcagca tagatttgag cagggtaacg ataaggtact ggtacacggt agatggggac 7320 aaggcacaga gtgcgatatc agactgggca cagataggag caagcaatgt gacattcaag 7380 tttgtgaagc tgagcagtag cgtaagtgga gcggactatt atttagagat aggatttaag 7440 agtggagctg ggcagttgca ggctggcaaa gacacagggg agatacagat aaggtttaac 7500 aagagtgatt ggagcaatta caatcagggg aatgactggt catggatgca gagcatgacg 7560 aattatggag agaatgtgaa ggtaacagcg tatatagatg gtgtattggt atggggacag 7620 gagccgagtg gagcgacacc aacaccgaca gcgacaccag caccgacagt gacaccgaca 7680 cctacaccaa caccaacgtc aacaccaact gctacaccaa cagcaacgcc aacaccaaca 7740 ccgacgccga gcagcacacc tgtagcaggc gggcagataa aggtattgta tgctaacaag 7800 gagacaaata gcacaacaaa cacgataagg ccatggttga aggtagtgaa cactggaagc 7860 agcagcatag atttgagcag ggtaacgata aggtactggt acacggtaga tggggacaag 7920 gcacagagtg cgatatcaga ctgggcacag ataggagcaa gcaatgtgac attcaagttt 7980 gtgaagctga gcagtagcgt aagtggagcg gactattatt tagagatagg atttaagagt 8040 ggagctgggc agttgcaggc tggtaaagac acaggggaga tacagataag gtttaacaag 8100 agtgactgga gcaattacaa tcaggggaat gactggtcat ggatgcagag catgacgaat 8160 tatggagaga atgtgaaggt aacagcgtat atagatggtg tattggtatg gggacaggag 8220 ccgagtggag cgacaccaac accgacagcg acaccagcac cgacagtgac accgacacct 8280 acaccagcac caactccaac cccgacacca acaccaactg ctacaccaac accaacgcca 8340 acaccaaccc caaccgcgac accaacagta acagcaacac caacaccgac gccgagcagc 8400 acaccgagtg tgcttggcga actcgagcac caccaccacc accactgaga tccggctgct 8460 aacaaagccc gaaaggaagc tgagttggct gctgccaccg ctgagcaata actagcataa 8520 ccccttgggg cctctaaacg ggtcttgagg ggttttttgc tgaaaggagg aactatatcc 8580 ggat 8584

Claims (12)

  1. 포스포라이페이스 A2(phospholipase A2)를 코딩하는 유전자 서열; 및
    상기 포스포라이페이스 A2의 n 말단에 연결되는 신호 펩티드를 코딩하는 유전자 서열을 포함하고,
    상기 신호 펩티드는 PelB 신호 펩티드인, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스 생산용 재조합 벡터.
  2. 제1 항에 있어서,
    CelA의 절단된 돌연변이 1 (truncational mutant 1)를 코딩하는 유전자 서열; 및
    상기 CelA의 절단된 돌연변이 1 의 n 말단에 연결되는 신호 펩티드 DsbA을 코딩하는 유전자 서열을 더 포함하는, 재조합 벡터.
  3. 제1 항에 있어서,
    상기 포스포라이페이스 A2(phospholipase A2)를 코딩하는 유전자 서열은 서열번호 1로 표시되는 것인, 재조합 벡터.
  4. 제1 항에 있어서,
    상기 PelB 신호 펩티드를 코딩하는 유전자 서열은 서열번호 2로 표시되는 것인, 재조합 벡터.
  5. 제2 항에 있어서,
    상기 CelA의 절단된 돌연변이 1 (truncational mutant 1)를 코딩하는 유전자 서열은 서열번호 5로 표시되는 것인, 재조합 벡터.
  6. 제2 항에 있어서,
    상기 DsbA 단백질을 코딩하는 유전자 서열은 서열번호 6으로 표시되는 것인, 재조합 벡터.
  7. 제1 항 내지 제6 항 중 어느 한 항의 재조합 벡터로 형질 전환된, 숙주세포.
  8. 제7 항에 있어서,
    상기 재조합 벡터로 형질 전환된 숙주세포는 대장균인, 숙주세포.
  9. 제7 항의 숙주세포를 배양하는 단계를 포함하는, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스의 생산방법.
  10. 포스포라이페이스 A2 및 포스포라이페이스 A2의 n 말단에 연결되는 PelB 신호 펩티드를 코딩하는 유전자 서열을 포함하는 제1 플라스미드 벡터; 및,
    CelA의 절단된 돌연변이 1 (truncational mutant 1) 및 CelA의 절단된 돌연변이 1 의 n 말단에 연결되는 DsbA 단백질을 코딩하는 유전자 서열을 포함하는 제2 플라스미드 벡터;를 포함하는, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스 생산용 유전자 전달 복합체.
  11. (a) 서열번호 3의 유전자 서열 및 서열번호 7의 유전자 서열을 포함하는 재조합 벡터를 제조하는 단계;
    (b) 상기 재조합된 발현 벡터로 숙주세포를 형질전환하는 단계;
    (c) 상기 형질전환된 숙주세포를 배양하는 단계; 및
    (d) 상기 (c) 단계의 배양액으로부터 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스를 분리 및 정제하는 단계를 포함하는, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스의 생산방법.
  12. 제11 항에 있어서,
    상기 숙주세포는 대장균인, 2'-푸코실락토오스(2'-fucosyllactose) 또는 디푸코실락토오스의 생산방법.
KR1020220037482A 2021-12-20 2022-03-25 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법 KR20230094102A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210182953 2021-12-20
KR1020210182953 2021-12-20

Publications (1)

Publication Number Publication Date
KR20230094102A true KR20230094102A (ko) 2023-06-27

Family

ID=86946996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220037482A KR20230094102A (ko) 2021-12-20 2022-03-25 2'-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법

Country Status (1)

Country Link
KR (1) KR20230094102A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089503A (zh) * 2023-10-17 2023-11-21 保龄宝生物股份有限公司 一种大肠杆菌k-12 mg1655 blbyzt6及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117089503A (zh) * 2023-10-17 2023-11-21 保龄宝生物股份有限公司 一种大肠杆菌k-12 mg1655 blbyzt6及其应用
CN117089503B (zh) * 2023-10-17 2024-01-02 保龄宝生物股份有限公司 一种大肠杆菌k-12 mg1655 blbyzt6及其应用

Similar Documents

Publication Publication Date Title
CN106676051B (zh) 一种制备高效合成泛酸基因工程菌的方法及其应用
CN111304232B (zh) 基于膜表面融合表达策略纯化蛋白的方法及其应用
US20030143685A1 (en) Efficient protein expression system
CN111850007B (zh) 一种适用于低钙离子浓度的纤维小体对接蛋白组合突变体36864及应用
CN110257356B (zh) 一种可用于合成肌肽的酶及其编码基因
CN108179152A (zh) 一种基于人纤维连接蛋白ⅲ型结构域展示双抗原表位制备抗原替代物的方法
CN111848758B (zh) 一种适用于低钙离子浓度的纤维小体对接蛋白突变体及应用
KR20230094102A (ko) 2&#39;-푸코실락토오스 및 디푸코실락토오스의 생산을 위한 재조합 벡터 및 이를 이용한 생산 방법
CN115074340B (zh) 一种新内含肽及其在合成人源原弹性蛋白上的应用
KR101842130B1 (ko) 돼지 설사병 백신용 섬모 및 독소를 대량 생산하는 형질전환 대장균 및 이에 의해 생산되는 섬모 및 독소를 항원으로 포함하는 돼지 설사병 예방용 백신 조성물
CN107739404B (zh) 一种保护性人朊蛋白g127i突变体及其构建方法
CN112592877B (zh) 一株过表达lsrC基因的重组大肠杆菌及其构建方法与应用
CN111848757B (zh) 一种适用于低钙离子浓度的纤维小体对接蛋白组合突变体36862及应用
CN111850005B (zh) 一种适用于低钙离子浓度的纤维小体对接蛋白组合突变体36863及应用
CN115216485A (zh) 耐阿米卡星的重组质粒pET28a(+)-rmtB及其应用
CN113474361B (zh) 由细菌连续生产重组glp-1肽的方法
CN113383080B (zh) 用于增加蛋白质分泌的细菌表达载体
KR20060098528A (ko) 대장균 발현 시스템을 이용한 인간 단백질 타이로신 탈인산화 효소의 발현 및 정제방법
CN113337491B (zh) 一种提高角蛋白酶耐高温稳定性的结构域及其应用
CN111850006B (zh) 一种适用于低钙离子浓度的纤维小体对接蛋白组合突变体36865及应用
CN114591985B (zh) 一种突变果胶裂解酶及应用
CN109439680B (zh) 一种制备抗菌重组蛋白的方法
CN113122558B (zh) 膜蛋白AmpG的表达载体及其表达纯化方法
CN113355304B (zh) 一种具有玉米赤霉烯酮降解酶活性的蛋白CpoC及其基因和应用
CN113122561B (zh) 膜蛋白SohB的表达载体及其表达纯化方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal