KR20230077063A - 에틸렌 알파-올레핀 공중합체 및 이의 제조방법 - Google Patents

에틸렌 알파-올레핀 공중합체 및 이의 제조방법 Download PDF

Info

Publication number
KR20230077063A
KR20230077063A KR1020210163906A KR20210163906A KR20230077063A KR 20230077063 A KR20230077063 A KR 20230077063A KR 1020210163906 A KR1020210163906 A KR 1020210163906A KR 20210163906 A KR20210163906 A KR 20210163906A KR 20230077063 A KR20230077063 A KR 20230077063A
Authority
KR
South Korea
Prior art keywords
group
alkyl
acetal
ketal
formula
Prior art date
Application number
KR1020210163906A
Other languages
English (en)
Inventor
김호석
홍연진
신은혜
이래하
하달용
장지훈
채병훈
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020210163906A priority Critical patent/KR20230077063A/ko
Priority to PCT/KR2022/018707 priority patent/WO2023096368A1/ko
Publication of KR20230077063A publication Critical patent/KR20230077063A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명에 따르면 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 포함하는 에틸렌 알파-올레핀 공중합체에 있어서, 시차주사열량계(DSC)로 측정 시 두 개의 용융온도(Tm) 피크(Peak)를 가지고, 제로 전단 점도가 10,000 Pa*s 이상인, 에틸렌 알파-올레핀 공중합체가 제공된다.

Description

에틸렌 알파-올레핀 공중합체 및 이의 제조방법{ETHYLENE ALPHA-OLEFIN COPOLYMER AND PREPARING METHOD THEREOF}
본 발명은 에틸렌 알파-올레핀 공중합체 및 이의 제조방법에 관한 것이다.
단일 활성점을 갖는 메탈로센계 촉매 하에서 중합된 폴리올레핀은 분자량 분포가 좁을 뿐만 아니라, 일정한 공단량체 분포를 갖는다.
이러한 폴리올레핀은 단일의 용융 온도를 가지므로, 특정 온도에서만 용융되기 때문에 낮은 열안정성을 나타낸다. 이에 따라 가교 공정 등을 추가하여 가공 후 열안정성을 향상시킬 필요가 있다.
본 발명의 목적은 가공성 및 가공 후 열안정성이 개선된 에틸렌 알파-올레핀 공중합체를 제공하는 것이다.
본 발명의 일 견지에 의하면, 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 포함하는 에틸렌 알파-올레핀 공중합체에 있어서, 시차주사열량계(DSC)로 측정 시 두 개의 용융온도(Tm) 피크(Peak)를 가지고, 제로 전단 점도가 10,000 Pa*s 이상인 에틸렌 알파-올레핀 공중합체가 제공된다.
본 발명의 다른 견지에 의하면, 하기 화학식 1로 표시되는 전이금속 화합물의 R형 및 S형을 포함하는 촉매 조성물 하에서 에틸렌 단량체 및 알파-올레핀 단량체를 중합하는 단계를 포함하는 에틸렌 알파-올레핀 공중합체 제조방법이 제공된다.
[화학식 1]
Figure pat00001
(상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있고, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12는 서로 연결되어 고리를 형성할 수 있고, 상기 R12와 R13은 서로 연결되어 고리를 형성할 수 있다)
본 발명에 따르면 상이한 두 개의 용융온도(Tm) 피크(Peak)를 갖는 에틸렌 알파-올레핀 공중합체가 제공된다. 상기 에틸렌 알파-올레핀 공중합체는 유사한 밀도 및 용융지수(MI)를 갖는 종래 에틸렌 알파-올레핀 공중합체에 비해 높은 제로 전단 점도 및 강도 인자를 나타내며 우수한 가공성 및 가공 후 열안정성을 갖는다.
도 1은 본 발명에 따른 실시예 및 비교예에서 제조된 에틸렌 알파-올레핀 공중합체의 강도 인자를 도시한 그래프이다.
도 2는 신장 점도 증가 비율 측정 방법을 도시한 도면이다.
이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명에 기재된 용어 「알킬」은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미하는 것으로, 이러한 알킬 라디칼의 예는 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 옥틸, 도데실, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「알케닐」은 하나 이상의 탄소-탄소 이중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 포함하지만, 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「알키닐」은 하나 이상의 탄소-탄소 삼중 결합을 함유하는 직쇄 또는 분지쇄의 탄화수소 라디칼을 의미하는 것으로, 메티닐, 에티닐, 프로피닐, 부티닐, 펜티닐, 헥시닐, 헵티닐, 옥티닐 등을 포함하지만, 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 단일 또는 융합고리계를 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 플루오레닐, 페난트릴, 트라이페닐레닐, 피렌일, 페릴렌일, 크라이세닐, 나프타세닐, 플루오란텐일 등을 포함하지만, 이에 한정되지 않는다.
또한, 본 발명에 기재된 용어 「알킬아릴」은 아릴기의 1 이상의 수소가 알킬기에 의하여 치환된 유기기를 의미하는 것으로, 메틸페닐, 에틸페닐, n-프로필페닐, 이소프로필페닐, n-부틸페닐, 이소부틸페닐, t-부틸페닐 등을 포함하지만, 이에 한정되지 않는다.
또한, 본 발명에 기재된 용어 「아릴알킬」은 알킬기의 1 이상의 수소가 아릴기에 의하여 치환된 유기기를 의미하는 것으로, 페닐프로필, 페닐헥실 등을 포함하지만, 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「아미도」는 카르보닐기(C=O)에 결합된 아미노기(-NH2)를 의미하며, 「알킬아미도」는 아미도기의 -NH2에서 적어도 하나의 수소가 알킬기로 치환된 유기기를 의미하며, 「아릴아미도」는 아미도기의 -NH2에서 적어도 하나의 수소가 아릴기로 치환된 유기기를 의미하고, 상기 알킬아미도기에서 알킬기, 상기 아릴아미도기에서의 아릴기는 전술한 알킬기 및 아릴기의 예시와 같을 수 있으나, 이에 한정하지 않는다.
또한, 본 발명에 기재된 용어 「알킬리덴」은 알킬기의 동일한 탄소원자로부터 2개의 수소 원자가 제거된 2가의 지방족 탄화수소기를 의미하는 것으로, 에틸리덴, 프로필리덴, 이소프로필리덴, 부틸리덴, 펜틸리덴 등을 포함하지만, 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「아세탈」은 알코올과 알데하이드의 결합으로 형성되는 유기기 즉, 한 개의 탄소에 두 개의 에테르(-OR)결합을 가진 치환기를 의미하며, 메톡시메톡시, 1-메톡시에톡시, 1-메톡시프로필옥시, 1-메톡시부틸옥시, 1-에톡시에톡시, 1-에톡시프로필옥시, 1-에톡시부틸옥시, 1-(n-부톡시)에톡시, 1-(이소-부톡시)에톡시, 1-(2급-부톡시)에톡시, 1-(3급-부톡시)에톡시, 1-(시클로헥실옥시)에톡시, 1-메톡시-1-메틸메톡시, 1-메톡시-1-메틸에톡시 등을 포함하지만 이에 한정되지는 않는다
또한, 본 발명에 기재된 용어 「에테르」는 적어도 1개의 에테르 결합(-O-)을 지니는 유기기이며, 2-메톡시에틸, 2-에톡시에틸, 2-부톡시에틸, 2-페녹시에틸, 2-(2-메톡시에톡시)에틸, 3-메톡시프로필, 3-부톡시프로필, 3-페녹시프로필, 2-메톡시-1-메틸에틸, 2-메톡시-2-메틸에틸, 2-메톡시에틸, 2-에톡시에틸, 2-부톡시에틸, 2-페녹시에틸 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「실릴」은 실란(silane)으로부터 유도된 -SiH3 라디칼을 의미하며, 상기 실릴기 내 수소 원자 중 적어도 하나가 알킬, 할로겐 등의 다양한 유기기로 치환될 수 있으며, 구체적으로 트리메틸실릴, 트리에틸실릴, t-부틸디메틸실릴, 비닐디메틸실릴, 프로필디메틸실릴, 트리페닐실릴, 디페닐실릴, 페닐실릴, 트리메톡시실릴, 메틸디메록시실릴, 에틸디에톡시실릴, 트리에톡시실릴, 비닐디메톡시실릴, 트리페녹시실릴 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「알콕시」는 -O-알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알콕시 라디칼의 예는 메톡시, 에톡시, 프로폭시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함하지만 이에 한정되지는 않는다.
또한, 본 발명에 기재된 용어 「할로겐」은 불소, 염소, 브롬 또는 요오드 원자를 의미한다.
또한, 본 발명에 기재된 용어 「Cn」은 탄소수가 n개인 것을 의미한다.
본 발명은 가교를 위한 첨가제를 투입하는 등 추가 공정 없이도 높은 가공성 및 가공 후 열안정성을 갖는 에틸렌 알파-올레핀 공중합체를 제공한다.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 시차주사열량계(DSC)로 측정 시 두 개의 용융온도(Tm) 피크(Peak)를 가지고, 높은 제로 전단 점도를 갖는다.
후술하는 바와 같이, 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 전이금속 화합물의 R형 및 S형을 포함하는 촉매 조성물 하에서 중합되므로, 상기 용융온도(Tm) 피크는 서로 상이한 제1 용융온도 및 제2 용융온도 피크를 포함할 수 있다. 이와 같이 에틸렌 알파-올레핀 공중합체가 두 개의 용융온도 피크를 갖는 경우 넓은 온도 범위에서 중합체의 용융 거동이 변화하므로 신장 점도가 증가하며 가공성이 향상될 수 있다.
바람직하게는 상기 제1 용융온도 피크는 30℃ 이상 100℃ 이하에서 존재할 수 있고, 상기 제2 용융온도 피크는 100℃ 초과 120℃ 이하에서 존재할 수 있다.
본 발명에서 에틸렌 알파-올레핀 공중합체는 10,000 Pa*s 이상의 제로 전단 점도(zero shear viscosity)를 가질 수 있으며, 이에 따라 중합체의 용융강도 및 열안정성이 증가하여 안정적으로 중합체를 가공할 수 있다. 특히, 가교를 위한 퍼옥사이드 등의 첨가제를 투입하지 않고도 충분히 높은 제로 전단 점도를 갖는 에틸렌 알파-올레핀 공중합체를 제조할 수 있다는 이점이 있다.
본 발명에 따른 에틸렌 알파-올레핀 공중합체의 LCB(long chain branch) 함량을 수치화하기 위해 하기 식 1을 이용하여 강도 인자(Strength factor)를 측정할 수 있다. 식 1은 중량평균분자량 인자를 포함하므로 하기 식 1을 이용하면 다양한 분자량을 가지는 에틸렌 알파-올레핀 공중합체의 LCB 함량을 객관적으로 예측할 수 있다.
[식 1]
강도 인자= Mw/104 + 5/(Mw/105)*exp(신장 점도 증가 비율)
상기 식 1에서, Mw는 에틸렌 알파-올레핀 공중합체의 중량평균분자량이고, 신장 점도 증가 비율은 상기 에틸렌 알파-올레핀 공중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170℃에서 헨키 변형률 1 s-1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다(도 2 참조).
바람직하게는 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 식 1에 따라 측정 시 50 이상의 강도 인자를 가질 수 있다.
상기 식 1에서 에틸렌 알파-올레핀 공중합체의 중량평균분자량(Mw)은 10,000 내지 1,000,000 g/mol, 바람직하게는 50,000 내지 800,000 g/mol, 더욱 바람직하게는 230,000 내지 500,000 g/mol일 수 있다.
또한, 상기 식 1에서 에틸렌 알파-올레핀 공중합체의 신장 점도 증가 비율은 2 이상일 수 있다. 일반적으로 이성질체를 갖지 않는 전이금속 화합물 함유 촉매 하에서 중합된 에틸렌 알파-올레핀 공중합체는 시간에 따라 신장 점도가 일정하게 증가하는 경향을 보이며 신장 점도 증가 비율이 낮다. 그러나, 본 발명에 따른 에틸렌 알파-올레핀 공중합체의 경우 신장 점도가 일정하게 증가하다가 특정 시점 이후 급격하게 증가하는 변형 경화성(Strain Hardening)을 나타내며, 이를 고려하면 종래 에틸렌 알파-올레핀 공중합체에 비해 향상된 가공성을 보일 것을 예상할 수 있다. 상기 에틸렌 알파-올레핀 공중합체의 신장 점도 증가 비율의 상한은 특별히 한정되지 않으나, 충분한 기계적 강도를 유지하기 위해 5 이하인 것이 바람직하다.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 상술한 물성을 만족하면서 동시에 이성질체를 갖지 않는 전이금속 화합물 함유 촉매 하에서 중합된 에틸렌 알파-올레핀 공중합체와 유사한 물성을 나타낼 수 있다.
바람직하게는 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 0.850 내지 0.920 g/mL의 밀도, 0.1 내지 40 g/10min의 용융지수(MI)를 나타낼 수 있다.
또한, 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 1 내지 10, 바람직하게는 1.5 내지 8, 더욱 바람직하게는 1.5 내지 6의 분자량 분포(Mw/Mn)를 나타낼 수 있다.
본 발명에 따른 에틸렌 알파-올레핀 공중합체는 에틸렌과 알파-올레핀의 공중합에 의해 제조된 것으로, 상기 알파-올레핀은 C3-C12, 또는 C3-C8의 지방족 올레핀일 수 있다. 보다 구체적으로 상기 알파-올레핀은 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-데센(1-decene), 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센 또는 3,4-디메틸-1-헥센 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
중합 시 반응기에 투입되는 에틸렌 및 알파-올레핀의 비율은 특별히 한정되지 않으나, 에틸렌:알파-올레핀이 1:0.5~1:1.3의 중량비로 투입되는 것이 바람직하다. 상기 중량비로 에틸렌 및 알파-올레핀이 투입될 경우, 고분자량을 가지면서도 공단량체 함량이 높은 올레핀 공중합체를 얻을 수 있다.
에틸렌 및 알파-올레핀의 중합은 하기 화학식 1로 표시되는 전이금속 화합물의 R형 및 S형을 포함하는 촉매 조성물 하에서 수행될 수 있다.
[화학식 1]
Figure pat00002
상기 화학식 1에서,
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있고, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12는 서로 연결되어 고리를 형성할 수 있고, 상기 R12와 R13은 서로 연결되어 고리를 형성할 수 있다.
상기 화학식 1로 표시되는 전이금속 화합물은 아미도 리간드와 오르소-페닐렌이 축합 고리를 형성하고, 상기 오르소-페닐렌에 결합한 5각 고리 파이-리간드가 티오펜 헤테로 고리에 의해 융합된 새로운 구조의 리간드를 포함한다. 이에 따라, 상기 전이금속 화합물은 티오펜 헤테로 고리가 융합되지 않은 전이금속 화합물에 비하여, 에틸렌과 알파-올레핀의 공중합 활성이 높은 장점이 있다.
본 발명에 따르면, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12 및 R13은 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함하는 치환기로 치환된 것일 수 있는데, 상기와 같은 치환기로 치환될 경우 담체의 표면에 전이금속 화합물을 담지시키는데 보다 유리할 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 M은 티타늄(Ti), 지르코늄(Zr) 또는 하프늄(Hf)일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 Q1 및 Q2 는 각각 독립적으로 할로겐 또는 (C1-C20)알킬인 것이 바람직하고, 보다 바람직하게는 염소 또는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 (C1-C20)알킬일 수 있고, 바람직하게는 각각 독립적으로 수소 또는 메틸일 수 있다. 보다 바람직하게는, 상기 R1, R2, R3, R4 및 R5 는 각각 독립적으로 수소 또는 메틸일 수 있고, 다만 R3 및 R4 중 적어도 하나는 메틸이고, R5는 메틸일 수 있다.
또한, 상기 화학식 1로 표시되는 전이금속 화합물에 있어서, 상기 R6, R7, R8, R9, R10, R11, R12 및 R13 은 각각 수소인 것이 바람직하다.
상기 화학식 1로 표시되는 전이금속 화합물은 상기와 같은 치환기들을 포함하는 것이 금속 주위의 전자적, 입체적 환경 제어를 위해 선호된다.
본 발명에서 상기 촉매 조성물은 조촉매 화합물을 더 포함할 수 있다. 상기 조촉매 화합물은 촉매 화합물을 활성화시키는 것으로, 알루미녹산(Aluminoxane) 화합물, 유기알루미늄(Organo-aluminum) 화합물, 또는 촉매 화합물을 활성화시키는 벌키(Bulky)한 화합물 등을 사용할 수 있다. 구체적으로, 상기 조촉매 화합물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택될 수 있다.
[화학식 2]
-[Al(Ra)-O]n-
상기 화학식 2에서,
Ra는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이고,
n은 2 이상의 정수이다.
[화학식 3]
Q(Rb)3
상기 화학식 3에서,
Q는 알루미늄 또는 보론이고,
Rb는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이다.
[화학식 4]
[W]+[Z(Rc)4]-
상기 화학식 4에서,
[W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,
Z는 13족 원소이고,
Rc는 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다.
상기 조촉매 화합물은 상기 화학식 1로 표시되는 전이금속 화합물과 함께 촉매에 포함되어 상기 전이금속 화합물을 활성화시키는 역할을 한다. 구체적으로, 상기 전이금속 화합물이 올레핀 중합에 사용되는 활성 촉매 성분이 되기 위하여, 전이금속 화합물 중의 리간드를 추출하여 중심금속(M1 또는 M2)을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 상기 화학식 2로 표시되는 단위를 포함하는 화합물, 화학식 3으로 표시되는 화합물 및 화학식 4로 표시되는 화합물이 조촉매로서 함께 작용한다.
상기 화학식 2로 표시되는 '단위'는 화합물 내에서 [ ] 내의 구조가 n개 연결되는 구조로, 화학식 2로 표시되는 단위를 포함하는 경우라면 화합물 내의 다른 구조는 특별히 한정하지 않으며, 화학식 2의 반복 단위가 서로 연결된 클러스터형 예컨대, 구상의 화합물일 수 있다.
조촉매 화합물이 보다 우수한 활성화 효과를 나타낼 수 있도록 하기 위하여, 상기 화학식 2로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않으나, 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
또한 상기 화학식 3으로 표시되는 화합물은 알킬 금속 화합물로서 특별히 한정되지 않으며, 이의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리시클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 있다. 상기 전이금속 화합물의 활성을 고려할 때, 트리메틸알루미늄, 트리에틸알루미늄 및 트리이소부틸알루미늄로 이루어진 군에서 선택된 1종 또는 2종 이상이 바람직하게 사용될 수 있다.
화학식 4로 표시되는 화합물은 상기 전이금속 화합물의 활성을 고려할 때, 상기 [W]+가 수소 원자가 결합한 양이온성 루이스 산인 경우, 디메틸아닐리늄 양이온이고, [W]+가 양이온성 루이스 산인 경우, [(C6H5)3C]+이고, 상기 [Z(Rc)4]-는 [B(C6F5)4]-인 것이 바람직하게 사용될 수 있다.
화학식 4로 표시되는 화합물은 특별히 한정되지 않으나, [W]+가 수소 원자가 결합한 양이온성 루이스산인 경우의 비제한적인 예로는 트리페닐카르베늄 보레이트, 트리메틸암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데시클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트, 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2,6-디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디(옥타데실)암모늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디(테트라데실)-암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리이틸 테트라키스(펜타플루오로페닐)보레이트 등을 들 수 있다.
상기 화학식 1 내지 화학식 4의 화합물을 이용하여 촉매를 제조할 수 있으며 이때 촉매 제조방법으로는 하기 예시된 방법을 이용할 수 있다.
첫 번째로, 화학식 1로 표시되는 전이금속 화합물의 Q1 및 Q2가 할로겐일 경우 화학식 2로 표시되는 화합물을 접촉시키는 방법이 있다. 두 번째로 화학식 1의 Q1 및 Q2가 알킬 라디칼인 경우 전이금속 화합물과 화학식 3 및 4로 표시되는 화합물의 혼합물을 접촉시켜 촉매를 제조할 수 있고, 혹은 화학식 3 및 4로 표시되는 화합물을 각각 중합기에 직접 투입하여 제조하기도 한다.
조촉매 화합물의 첨가량은 화학식 1로 표시되는 전이금속 화합물의 첨가량 및 전이금속 화합물을 충분히 활성화시키는 데 필요한 양 등을 고려하여 결정될 수 있다. 조촉매 화합물의 함량은 화학식 1로 표시되는 전이금속 화합물에 함유된 전이금속 1몰에 대하여, 조촉매 화합물에 함유된 금속의 몰비를 기준으로 1:1~100,000일 수 있고, 바람직하게는 1:1~10,000, 보다 바람직하게는 1:1~5,000일 수 있다.
보다 구체적으로, 상기 첫 번째 방법의 경우, 화학식 2로 표시되는 화합물은 화학식 1로 표시되는 전이금속 화합물에 대하여 바람직하게는 1:10~5,000 몰비, 더욱 바람직하게는 1:50~1,000 몰비, 가장 바람직하게는 1:100~1,000 몰비로 포함될 수 있다. 화학식 1의 전이금속 화합물에 대한 화학식 2로 표시되는 화합물의 몰비가 1:10 미만일 경우에는 알루미녹산의 양이 매우 작아 전이금속 화합물의 활성화가 완전히 진행되지 못하는 문제가 발생할 수 있고, 1:5,000을 초과하는 경우에는 과량의 알루미녹산이 촉매독으로 작용하여 고분자 사슬이 잘 자라지 못할 수 있다.
상기 두 번째 방법의 경우에 있어서 화학식 3으로 표시되는 조촉매 화합물의 A가 보론인 경우에는, 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1~100, 바람직하게는 1:1~10, 더욱 바람직하게는 1:1~3의 몰비로 포함될 수 있다. 또한, 화학식 3으로 표시되는 조촉매 화합물의 A가 알루미늄인 경우에는, 중합시스템 내의 물의 양에 따라 달라질 수 있으나, 화학식 1로 표시되는 전이금속 화합물에 대하여 1:1~1000, 바람직하게는 1:1~500, 더욱 바람직하게는 1:1~100의 몰비로 포함될 수 있다.
또한 화학식 4로 표시되는 조촉매 화합물은 화학식 1로 표시되는 전이금속 화합물에 대하여 1:0.5~30, 바람직하게는 1:0.7~20, 더욱 바람직하게는 1:1~10의 몰비로 포함될 수 있다. 화학식 4로 표시되는 조촉매 화합물의 비가 1:0.5 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해, 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있을 수 있고, 1:30을 초과하는 경우에는 금속 화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적이지 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있을 수 있다.
한편, 상기 전이금속 화합물 및 상기 조촉매 화합물을 포함하는 본 발명의 촉매 조성물은 담체를 더 포함할 수 있다. 여기서, 상기 담체로는 본 발명이 속하는 기술분야에서 촉매의 제조에 사용되는 무기 또는 유기 소재의 담체가 제한 없이 사용될 수 있다.
본 발명에 따르면, 상기 담체는 SiO2, Al2O3, MgO, MgCl2, CaCl2, ZrO2, TiO2, B2O3, CaO, ZnO, BaO, ThO2, SiO2-Al2O3, SiO2-MgO, SiO2-TiO2, SiO2-V2O5, SiO2-Cr2O3, SiO2-TiO2-MgO, 보오크사이트, 제올라이트, 전분(starch), 사이클로덱스트린(cyclodextrine), 또는 합성고분자일 수 있다.
바람직하게는, 상기 담체는 표면에 히드록시기를 포함하는 것으로서, 실리카(SiO2), 실리카-알루미나(SiO2-Al2O3) 및 실리카-마그네시아(SiO2-MgO)로 이루어진 군에서 선택되는 1종 이상일 수 있다.
상기 담체에 상기 전이금속 화합물 및 상기 조촉매 화합물을 포함하는 촉매를 담지시키는 방법으로는 수분이 제거된(dehydrated) 담체에 상기 전이금속 화합물을 직접 담지시키는 방법; 상기 담체를 상기 조촉매 화합물로 전처리한 후 상기 전이금속 화합물을 담지시키는 방법; 상기 담체에 상기 전이금속 화합물을 담지시킨 후 상기 조촉매 화합물로 후처리하는 방법; 상기 전이금속 화합물과 상기 조촉매 화합물을 반응시킨 후 상기 담체를 첨가하여 반응시키는 방법 등이 사용될 수 있다.
상기 담지 방법에서 사용 가능한 용매는 방향족 탄화수소계 용매, 방향족 탄화수소계 용매, 할로겐화 지방족 탄화수소계 용매 또는 이들의 혼합물일 수 있다.
상기 지방족 탄화수소계 용매는 비제한적인 예로, 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane) 또는 도데칸(Dodecane) 등을 들일 수 있다.
상기 방향족 탄화수소계 용매로는 비제한적인 예로, 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 또는 톨루엔(Toluene) 등을 들수 있다.
상기 할로겐화 지방족 탄화수소계 용매는 비제한적인 예로, 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 디클로로에탄(Dichloroethane), 또는 트리클로로에탄(Trichloroethane) 등을 들수 있다.
또한, 상기 담지 방법은 -70 내지 200℃, 바람직하게는 -50 내지 150℃, 보다 바람직하게는 0 내지 100℃의 온도 하에서 수행되는 것이 담지 공정의 효율면에서 유리하다.
한편, 본 발명에서 에틸렌 및 알파-올레핀 공단량체 화합물을 직접 접촉시켜 수행되는 중합 과정을 통해 생성되는 에틸렌 알파-올레핀 공중합체는, 촉매 부위가 비교적 불용성이고/이거나 고정성이어서 중합체 사슬이 이들 정보에 따라 신속하게 고정화되는 조건하에 단량체들의 중합에 의해 제조될 수 있다. 이러한 고정화는 예를 들면, 고체 불용성 촉매를 사용하고, 생성된 중합체가 일반적으로 불용성인 매질에서 중합이 수행되고, 중합 반응물 및 생성물을 중합체의 결정화 온도(Tc) 이하로 유지시킴으로써 수행될 수 있다.
전술한 촉매는 에틸렌 및 알파-올레핀의 공중합에 바람직하게 적용할 수 있다. 이하에서는 상기 촉매 하에서 에틸렌 및 알파-올레핀을 공중합시키는 단계를 포함하는 에틸렌 알파-올레핀 공중합체 제조방법에 대해 설명한다.
에틸렌 알파-올레핀 공중합체 중합 공정은 당업계에서 익히 공지되어 있으며, 벌크 중합, 용액 중합, 슬러리 중합 및 저압 기상 중합을 포함한다. 메탈로센 촉매는 단일, 직렬 또는 병렬 반응기에서 수행되는 고정층, 이동층 또는 슬러리 공정을 사용하는 공지된 조작 형태에 특히 유용하다.
상기 중합 반응이 액상 또는 슬러리상에서 실시될 경우에는 용매 또는 프로필렌 또는 에틸렌 단량체 자체를 매질로 사용할 수 있다.
본 발명에서 제시된 촉매는 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액 중합 공정에 적용하는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속 옥사이드 지지체에 상기 전이금속 화합물 및 조촉매를 지지시켜 얻어지는 비균일 촉매 조성물의 형태로 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다. 따라서, 본 발명의 상기 촉매를 무기계 담체 또는 유기 고분자 담체와 함께 사용하면 슬러리 또는 기상 공정에도 적용 가능하다. 즉, 상기 전이금속 화합물과 조촉매 화합물은 무기계 담체 또는 유기 고분자 담체에 담지된 형태로도 이용할 수 있다.
중합 반응 시 사용 가능한 용매는 지방족 탄화수소계 용매, 방향족 탄화수소계 용매, 할로겐화 지방족 탄화수소계 용매 또는 이들의 혼합물일 수 있다. 여기서, 상기 지방족 탄화수소계 용매는 비제한적인 예로, 부탄(Butane), 이소부탄(Isobutane), 펜탄(Pentane), 헥산(Hexane), 헵탄(Heptane), 옥탄(Octane), 노난(Nonane), 데칸(Decane), 운데칸(Undecane), 도데칸(Dodecane), 시클로펜탄(Cyclopentane), 메틸시클로펜탄(Methylcyclopentane), 시클로헥산(Cyclohexane) 등을 들 수 있다. 또한 상기 방향족 탄화수소계 용매는 비제한적인 예로, 벤젠(Benzene), 모노클로로벤젠(Monochlorobenzene), 디클로로벤젠(Dichlorobenzene), 트리클로로벤젠(Trichlorobenzene), 톨루엔(Toluene), 자일렌(Xylene), 클로로벤젠(Chlorobenzene) 등을 들 수 있다. 또한 상기 할로겐화 지방족 탄화수소 용매는 비제한적인 예로, 디클로로메탄(Dichloromethane), 트리클로로메탄(Trichloromethane), 클로로에탄(Chloroethane), 디클로로에탄(Dichloroethane), 트리클로로에탄(Trichloroethane), 1,2-디클로로에탄(1,2-Dichloroethane) 등을 들 수 있다.
상술한 바와 같이, 본 발명에 따른 에틸렌 알파-올레핀 공중합체는 상기의 촉매 조성물의 존재 하에서 에틸렌 및 알파-올레핀 공단량체를 중합시켜 제조될 수 있다. 이때 전이금속 화합물과 조촉매 성분은 별도로 반응기 내에 투입되거나 또는 각 성분을 미리 혼합하여 반응기에 투입할 수 있으며, 투입 순서, 온도 또는 농도 등의 혼합조건은 별도의 제한이 없다. 예를 들어, 에틸렌 및 1-부텐의 공중합체를 제조하는 경우 1-부텐은 0.1~99.9 중량% 함량으로 포함될 수 있으며, 바람직하게는 1~75 중량%, 더욱 바람직하게는 5~50 중량% 함량으로 포함될 수 있다.
한편, 본 발명에 따른 중합 반응에서 상기 촉매의 첨가량은 슬러리상, 액상, 기상 또는 용액 공정에 따라 단량체의 중합 반응이 충분히 일어날 수 있는 범위 내에서 결정될 수 있으므로, 특별히 제한하지 않는다. 다만, 상기 촉매의 첨가량은 단량체의 단위 부피(L)당 전이금속 화합물에서 중심금속(M)의 농도를 기준으로 10-8 내지 1 mol/L인 것이 바람직하고, 10-7 내지 10-1 mol/L인 것이 더욱 바람직하고, 10-7 내지 10-2 mol/L인 것이 더욱 더 바람직하다.
또한, 본 발명의 중합 반응은 배치식(Batch Type), 반연속식(Semi-continuous Type) 또는 연속식(Continuous Type) 반응으로 이루어지며, 바람직하게는 연속식 반응으로 이루어질 수 있다.
본 발명의 중합 반응의 온도 및 압력 조건은 적용하고자 하는 반응의 종류 및 반응기의 종류에 따라 중합 반응의 효율을 고려하여 결정할 수 있으나, 중합 온도가 40~150℃, 바람직하게는 60~100℃일 수 있으며, 압력이 1~100 기압, 바람직하게는 5~50 기압일 수 있다.
본 발명에 따른 촉매 조성물 하에서 서로 다른 범위의 용융온도를 갖는 에틸렌 알파-올레핀 공중합체가 제조된다. 상기 에틸렌 알파-올레핀 공중합체는 유사한 밀도 및 용융지수(MI)를 갖는 종래 에틸렌 알파-올레핀 공중합체에 비해 높은 제로 전단 점도 및 강도 인자를 나타내며 우수한 가공성 및 가공 후 열안정성을 갖는다.
실시예
이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.
실시예
(1) 전이금속 화합물 제조
하기 반응식 1에 따라, 주촉매로 사용되는 전이금속 화합물(CAT-1)을 합성하였다. 구체적인 합성 과정은 다음과 같다.
[반응식 1]
Figure pat00003
화합물(1) 화합물(2)
먼저 화합물(1)(0.58 g, 1.79 mmol)이 용해되어 있는 디에틸에테르 용액(10 mL)에 -30℃에서 메틸리튬(1.63 g, 3.55 mmol, 1.6 M 디에틸에테르 용액)을 적가하였다(i). 상기 용액을 상온에서 밤새도록 교반한 후 -30℃로 온도를 낮춘 다음 Ti(NMe2)2Cl2(0.37g, 1.79 mmol)를 한꺼번에 첨가하였다(ii). 상기 용액을 3시간 동안 교반한 다음 진공 펌프를 이용하여 용매를 모두 제거하였다. 생성된 고체를 톨루엔(8 mL)에 용해시킨 후 이 용액에 Me2SiCl2(1.16g, 8.96 mmol)를 가하였다(iii). 상기 용액을 80℃에서 3일 동안 교반한 후 진공 펌프를 이용하여 용매를 제거하였다. 그 결과 붉은색 고체화합물(2)이 얻어졌다(0.59 g, 수율 75%).
1H NMR스펙트럼을 통하여 두 개의 입체화합물이 2:1로 존재함을 확인하였다.
1H NMR (C6D6): δ 7.10 (t, J = 4.4 Hz, 1H), 6.90 (d, J = 4.4 Hz, 2H), 5.27 and 5.22 (m, 1H, NCH), 2.54-2.38 (m, 1H, CH2), 2.20-2.08 (m, 1H, CH2), 2.36 and 2.35 (s, 3H), 2.05 and 2.03 (s, 3H), 1.94 and 1.93 (s, 3H), 1.89 and 1.84 (s, 3H), 1.72-1.58 (m, 2H, CH2), 1.36-1.28 (m, 2H, CH2), 1.17 and 1.14 (d, J = 6.4, 3H, CH3) ppm.
13C{1H} NMR (C6D6): 162.78, 147.91, 142.45, 142.03, 136.91, 131.12, 130.70, 130.10, 128.90, 127.17, 123.39, 121.33, 119.87, 54.18, 26.48, 21.74, 17.28, 14.46, 14.28, 13.80, 13.27 ppm.
(2) 에틸렌 알파-올레핀 공중합체 제조
상온에서 고압 반응기(내부 용량: 2 L, 스테인레스 스틸)의 내부를 질소로 치환한 후, 노르말 헥산 1 L와 트리아이소부틸알루미늄 2 mL를 가하였다. 이어서, 에틸렌 가스 100g을 기준으로 공단량체(1-부텐 또는 1-옥텐)를 하기 표 1에 나타낸 비율만큼 주입하였다. 그 후 반응기 온도를 140 ℃로 예열하고, 상기 제조예에서 합성된 전이금속 화합물(5)(1.5 μmol)과 트리아이소부틸 알루미늄(187.5 μmol)의 혼합용액에 디메틸아닐리늄 테트라키스 (펜타블루오로페닐) 보레이트 조촉매 (45.0 μmol) 용액을 혼합하여 반응기 내에 주입한 후 5 분 동안 중합 반응을 실시하였다.
중합 반응이 끝나면 10% HCl로 희석된 에탄올을 이용하여 반응을 종결한 후 온도를 상온으로 낮춘 다음 여분의 가스를 배출시켰다. 이어서, 용매 속에 분산되어 있는 공중합체 중합 용액을 용기에 옮긴 후, 진공 오븐 내에서 80 ℃로 15 시간 이상 건조시켜 에틸렌 알파-올레핀 공중합체를 제조하였다.
비교예
전이금속 화합물로서 이성질체를 형성하지 않는 [(1,2,3,4-테트라하이드로퀴놀린-8-일)테트라메틸시클로펜타디에닐-N]티타늄 디메틸(CAT-2)을 이용한 것을 제외하고, 실시예와 동일한 방법으로 에틸렌 알파-올레핀 공중합체를 제조하였다.
촉매 공단량체 종류 공단량체/에틸렌 (중량비)
실시예1 CAT-1 1-부텐 1.4
실시예2 CAT-1 1-부텐 1.2
실시예3 CAT-1 1-부텐 1.0
실시예4 CAT-1 1-부텐 0.8
실시예5 CAT-1 1-옥텐 1.2
실시예6 CAT-1 1-옥텐 1.0
실시예7 CAT-1 1-옥텐 0.8
비교예1 CAT-2 1-부텐 1.4
비교예2 CAT-2 1-부텐 1.2
비교예3 CAT-2 1-부텐 1.0
비교예4 CAT-2 1-부텐 0.8
비교예5 CAT-2 1-옥텐 1.2
비교예6 CAT-2 1-옥텐 1.0
비교예7 CAT-2 1-옥텐 0.8
에틸렌 알파-올레핀 공중합체의 물성 분석
실시예 및 비교예에서 제조된 에틸렌 알파-올레핀 공중합체의 물성을 측정하여 표 2 및 표 3에 기재하였다. 에틸렌 알파-올레핀 공중합체의 강도 인자는 도 1에 도시하였다.
(1) 공중합체 내 공단량체 함량: 400 MHz의 NMR(장치명: Ascend 400, 제조사: Bruker) 스펙트럼 분석법으로 테트라클로로에탄-d2 용매를 이용하여 100 ℃에서 측정하였다.
(2) 중량평균분자량(Mw) 및 분자량 분포(MWD): GPC(Gel Permeation Chromatography, 장치명: PL-GPC220, 제조사: Agilent) 분석법으로 1,2,4-트리클로로벤젠 용매를 이용하여 160 ℃에서 측정하였다.
(3) 밀도: 190℃ 프레스 몰드(Mold)로 두께 3 cm, 반지름 2 cm의 시트를 제작하고 10℃/min으로 냉각하여 메틀러(Mettler) 저울에서 측정하였다.
(4) 용융지수(Melt index, MI): ASTM D-1238(조건 E, 190 ℃, 2.16 kg 하중)법을 적용하여 기기(제조사: Mirage, 모델명: SD-120L)로 측정하였다.
(5) 융점(Tm) 및 열량(△H): TA 사에서 제조한 시차 주사 열량계(DSC: Differential Scanning Calorimeter 2920)를 이용하여 얻었다. DSC는 온도 0℃에서 평형에 이르게 한 후, 분당 10℃씩 증가시켜 200℃까지 올린 후, 분당 10℃씩 감소시켜 -90℃까지 내린 후, 분당 10℃씩 증가시켜 200℃까지 온도를 증가시키는 방법으로 측정하였다. 융점은 두 번째 온도가 상승하는 동안 흡열 곡선의 꼭대기 영역을 취해 얻어진다.
(6) 제로 전단 점도: ARES 레오미터를 이용하여 190℃에서 분석하고 Carreau-Yasuda (CY) 경험적 모델을 사용하여 곡선 적합(curve fitted)시켜 제로 전단 점도를 구하였다.
Figure pat00004
η*(ω): 점도
η0: 제로 전단 점도
τη: 응력 완화 시간
ω: 전단 속도
α: 물질 상수
n: 전단 담화 지수
(7) 신장 점도 증가 비율: ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170℃에서 헨키 변형률 1s-1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이다.
(8) 강도 인자(Strength Factor): 에틸렌 알파-올레핀 공중합체의 중량평균분자량과 신장 점도 증가 비율을 하기 식 1에 대입하여 강도 인자를 구하였다.
[식 1]
강도 인자 = Mw/104 + 5/(Mw/105)*exp(신장 점도 증가 비율)
(상기 식 1에서, Mw는 에틸렌 알파-올레핀 공중합체의 중량평균분자량이고,
신장 점도 증가 비율은 상기 에틸렌 알파-올레핀 공중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170℃에서 헨키 변형률 1 s-1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다.)
공단량체 종류 공단량체 함량
(중량%)
Mw
(g/mol)
MWD 밀도
(g/mL)
MI
(g/10min)
실시예1 1-부텐 38.4 108,400 2.1 0.863 1.1
실시예2 1-부텐 33.6 76,900 2.2 0.865 5.1
실시예3 1-부텐 30.0 110,115 2.1 0.870 1.2
실시예4 1-부텐 19.1 95,905 2.2 0.884 1.1
실시예5 1-옥텐 34.6 142,700 2.4 0.870 1.0
실시예6 1-옥텐 36.1 84,760 2.2 0.870 5.0
실시예7 1-옥텐 18.3 89,692 2.7 0.901 1.2
비교예1 1-부텐 32.2 90,280 2.6 0.862 1.2
비교예2 1-부텐 26.4 70,953 2.4 0.865 5.0
비교예3 1-부텐 24.6 104,000 2.3 0.870 1.1
비교예4 1-부텐 20.3 116,820 1.9 0.885 1.2
비교예5 1-옥텐 35.0 111,506 2.3 0.870 1.1
비교예6 1-옥텐 36.3 85,948 2.5 0.870 5.0
비교예7 1-옥텐 16.5 100,800 2.2 0.903 1.2
Tm1
(℃)
Tm2
(℃)
△H
(J/g)
제로 전단 점도
(Pa*s)
신장 점도
증가 비율
강도 인자
실시예1 38.5 113.2 23.9 11,000 2.20 52.5
실시예2 49.7 111.0 41.1 32,000 2.18 65.5
실시예3 55.3 114.0 48.9 11,000 2.21 52.4
실시예4 73.7 110.9 81.3 18,000 2.56 77.3
실시예5 66.0 113.4 39.4 13,000 2.68 65.2
실시예6 57.3 110.9 62.3 29,000 2.30 67.3
실시예7 93.2 104.2 116.2 21,000 2.80 100.6
비교예1 28.0 - 38.6 3,400 0.90 22.6
비교예2 30.8 - 45.0 9,700 0.91 24.7
비교예3 38.6 - 45.9 3,900 1.10 24.9
비교예4 69.6 - 63.2 6,500 1.67 34.5
비교예5 52.5 - 49.9 4,900 1.50 31.3
비교예6 50.5 - 61.5 8,100 1.57 36.5
비교예7 101.0 - 95.3 9,600 1.43 30.9
표 2 및 표 3을 참조하면, 실시예 1~7에 따라 제조된 에틸렌 알파-올레핀 공중합체는 두 개의 용융온도 피크를 갖는 것을 알 수 있다. 또한, 실시예 1~7에 따라 제조된 에틸렌 알파-올레핀 공중합체는 비교예 1~7에 따라 제조된 유사한 밀도 및 용융지수(MI)를 갖는 에틸렌 알파-올레핀 공중합체에 비해 높은 제로 전단 점도, 신장 점도 증가 비율, 강도 인자를 나타내는 것을 알 수 있다.

Claims (6)

  1. 에틸렌 구조 단위 및 알파-올레핀 구조 단위를 포함하는 에틸렌 알파-올레핀 공중합체에 있어서,
    시차주사열량계(DSC)로 측정 시 두 개의 용융온도(Tm) 피크(Peak)를 가지고, 제로 전단 점도가 10,000 Pa*s 이상인, 에틸렌 알파-올레핀 공중합체.
  2. 제1항에 있어서,
    하기 식 1에 의해 계산되는 강도 인자(Strength factor)가 50 이상이고,
    신장 점도 증가 비율이 2 이상인, 에틸렌 알파-올레핀 공중합체:
    [식 1]
    강도 인자= Mw/104 + 5/(Mw/105)*exp(신장 점도 증가 비율)
    (상기 식 1에서, Mw는 에틸렌 알파-올레핀 공중합체의 중량평균분자량이고,
    신장 점도 증가 비율은 상기 에틸렌 알파-올레핀 공중합체에 대하여 ARES 레오미터에 부착된 신장 점도 장치를 이용하여 170℃에서 헨키 변형률 1 s-1로 측정한 가장 높은 신장 점도 값을, 가장 높은 신장 점도 값을 얻은 시간에서의 외삽 직선의 신장 점도의 값으로 나눈 값이며, 여기서 상기 외삽 직선은 신장 점도가 시간에 따라 일정하게 증가하는 구간의 평균 기울기를 갖는 직선을, 상기 평균 기울기를 유지하면서, 신장 점도가 급격히 증가하는 구간까지 연장한 직선이다).
  3. 제1항에 있어서,
    상기 용융온도(Tm) 피크는 30℃ 이상 100℃ 이하에서 존재하는 제1 용융온도 피크 및 100℃ 초과 120℃ 이하에서 존재하는 제2 용융온도 피크를 포함하는, 에틸렌 알파-올레핀 공중합체.
  4. 하기 화학식 1로 표시되는 전이금속 화합물의 R형 및 S형을 포함하는 촉매 조성물 하에서 에틸렌 단량체 및 알파-올레핀 단량체를 중합하는 단계를 포함하는, 제1항 내지 제3항 중 어느 한 항에 따른 에틸렌 알파-올레핀 공중합체 제조방법:
    [화학식 1]
    Figure pat00005

    (상기 화학식 1에서,
    M은 4족 전이금속이고;
    Q1 및 Q2는 각각 독립적으로 할로겐, (C1-C20)알킬, (C2-C20)알케닐, (C2-C20)알키닐, (C6-C20)아릴, (C1-C20)알킬(C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬, (C1-C20)알킬아미도, (C6-C20)아릴아미도 또는 (C1-C20)알킬리덴이고;
    R1, R2, R3, R4, R5, R6, R7, R8, R9 및 R10은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 또는 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20) 실릴이고; 상기 R1과 R2는 서로 연결되어 고리를 형성할 수 있고, 상기 R3와 R4는 서로 연결되어 고리를 형성할 수 있고, 상기 R5 내지 R10 중에서 2 이상이 서로 연결되어 고리를 형성할 수 있으며;
    R11, R12 및 R13은 각각 독립적으로 수소; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C2-C20)알케닐; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬(C6-C20)아릴; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C6-C20)아릴(C1-C20)알킬; 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)실릴; (C1-C20)알콕시; 또는 (C6-C20)아릴옥시이며; 상기 R11과 R12는 서로 연결되어 고리를 형성할 수 있고, 상기 R12와 R13은 서로 연결되어 고리를 형성할 수 있다).
  5. 제4항에 있어서,
    R1, R2, R3 및 R4는 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬이고,
    R5 및 R6 중 적어도 하나는 각각 독립적으로 아세탈, 케탈 또는 에테르기를 포함 또는 포함하지 않는 (C1-C20)알킬인, 에틸렌 알파-올레핀 공중합체 제조방법.
  6. 제4항에 있어서,
    상기 촉매 조성물은 하기 화학식 2 내지 4로 표시되는 화합물로 이루어진 군에서 선택되는 조촉매 화합물을 더 포함하는 것을 특징으로 하는, 에틸렌 알파-올레핀 공중합체 제조방법.
    [화학식 2]
    -[Al(Ra)-O]n-
    (상기 화학식 2에서,
    Ra는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이고,
    n은 2 이상의 정수이다),
    [화학식 3]
    Q(Rb)3
    (상기 화학식 3에서,
    Q는 알루미늄 또는 보론이고,
    Rb는 각각 독립적으로 할로겐; 또는 할로겐으로 치환 또는 비치환된 (C1-C20)하이드로카르빌기이다),
    [화학식 4]
    [W]+[Z(Rc)4]-
    (상기 화학식 4에서,
    [W]+는 양이온성 루이스 산; 또는 수소 원자가 결합한 양이온성 루이스 산이고,
    Z는 13족 원소이고,
    Rc는 각각 독립적으로 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C6-C20)아릴기; 할로겐, (C1-C20)하이드로카르빌기, 알콕시기 및 페녹시기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환된 (C1-C20)알킬기이다).

KR1020210163906A 2021-11-25 2021-11-25 에틸렌 알파-올레핀 공중합체 및 이의 제조방법 KR20230077063A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210163906A KR20230077063A (ko) 2021-11-25 2021-11-25 에틸렌 알파-올레핀 공중합체 및 이의 제조방법
PCT/KR2022/018707 WO2023096368A1 (ko) 2021-11-25 2022-11-24 에틸렌 알파-올레핀 공중합체 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210163906A KR20230077063A (ko) 2021-11-25 2021-11-25 에틸렌 알파-올레핀 공중합체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20230077063A true KR20230077063A (ko) 2023-06-01

Family

ID=86540119

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210163906A KR20230077063A (ko) 2021-11-25 2021-11-25 에틸렌 알파-올레핀 공중합체 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20230077063A (ko)
WO (1) WO2023096368A1 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046705A1 (ko) * 2013-09-26 2015-04-02 주식회사 엘지화학 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 중합체의 제조방법
CA3011041A1 (en) * 2018-07-11 2020-01-11 Nova Chemicals Corporation Polyethylene composition and film
KR20210067338A (ko) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 폴리프로필렌 및 에틸렌 알파-올레핀 공중합체를 포함하는 복합 수지 조성물
KR20210067264A (ko) * 2019-11-29 2021-06-08 롯데케미칼 주식회사 에틸렌 알파-올레핀 공중합체

Also Published As

Publication number Publication date
WO2023096368A1 (ko) 2023-06-01

Similar Documents

Publication Publication Date Title
JP6442536B2 (ja) リガンド化合物、遷移金属化合物及びこれを含む触媒組成物
KR20200056800A (ko) 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
KR20230077063A (ko) 에틸렌 알파-올레핀 공중합체 및 이의 제조방법
US20220025083A1 (en) Polypropylene resin having excellent melt characteristics, and preparation method therefor
KR20240077274A (ko) 에틸렌 알파-올레핀 공중합체 및 이를 포함하는 수지 조성물
KR20230078018A (ko) 폴리올레핀 및 이를 이용하여 제조된 파이프
KR20230077061A (ko) 에틸렌 알파-올레핀 공중합체 및 이를 포함하는 수지 조성물
KR102656243B1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
KR20240079772A (ko) 2종의 사슬 분포를 가지는 에틸렌 알파-올레핀계 공중합체, 그 제조방법 및 상기 올레핀계 공중합체를 포함하는 수지 조성물 및 성형품
KR20240077880A (ko) 에틸렌-알파-올레핀 공중합체
KR20230077427A (ko) 분지쇄 함량이 조절된 에틸렌 알파-올레핀계 공중합체, 그 제조방법 및 상기 올레핀계 공중합체를 포함하는 수지 조성물 및 성형품
KR20230077062A (ko) 에틸렌 알파-올레핀 공중합체 및 이를 포함하는 수지 조성물
KR102432898B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 올레핀 중합체의 제조 방법
KR102026886B1 (ko) 폴리올레핀 촉매 및 이를 이용한 폴리올레핀 제조방법
KR20230072858A (ko) 폴리프로필렌 공중합체 제조방법
KR20240078994A (ko) 비대칭 이핵 메탈로센 촉매 및 이를 이용하여 제조된 폴리올레핀
KR102418590B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 및 상기 혼성 담지 메탈로센 촉매를 이용한 폴리프로필렌의 제조 방법
KR20230075552A (ko) 향상된 인장 강도를 갖는 폴리올레핀 공중합체 및 이를 이용하여 제조된 성형품
KR102423660B1 (ko) 전이금속 화합물 및 이를 포함하는 촉매 조성물
KR20230075553A (ko) 광투과율 및 생산성이 향상된 폴리올레핀 공중합체 및 이를 이용하여 제조된 필름
KR102230621B1 (ko) 바이메탈 메탈로센 화합물, 이의 제조방법, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR20230072857A (ko) 폴리프로필렌 제조방법
KR20240077317A (ko) 에틸렌 알파-올레핀 공중합체 및 이의 제조방법
KR102128569B1 (ko) 신규한 전이금속 화합물
KR20240081017A (ko) 전이금속 화합물을 포함하는 폴리올레핀 중합용 촉매 및 이를 이용한 폴리올레핀 중합체 제조방법