KR20220150993A - 반도체 검사 장치 - Google Patents

반도체 검사 장치 Download PDF

Info

Publication number
KR20220150993A
KR20220150993A KR1020227036977A KR20227036977A KR20220150993A KR 20220150993 A KR20220150993 A KR 20220150993A KR 1020227036977 A KR1020227036977 A KR 1020227036977A KR 20227036977 A KR20227036977 A KR 20227036977A KR 20220150993 A KR20220150993 A KR 20220150993A
Authority
KR
South Korea
Prior art keywords
optical path
light
light source
semiconductor device
optical
Prior art date
Application number
KR1020227036977A
Other languages
English (en)
Other versions
KR102562196B1 (ko
Inventor
도모노리 나카무라
요시타카 이와키
Original Assignee
하마마츠 포토닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하마마츠 포토닉스 가부시키가이샤 filed Critical 하마마츠 포토닉스 가부시키가이샤
Publication of KR20220150993A publication Critical patent/KR20220150993A/ko
Application granted granted Critical
Publication of KR102562196B1 publication Critical patent/KR102562196B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

검사 시스템(1)은 광원(33)과, 미러(40b)와, 갈바노 미러(44a, 44b)와, 미러(40b)와 갈바노 미러(44a, 44b)를 내부에 유지하고, 광학 소자를 장착하기 위한 장착부(46)를 가지는 케이스(32)와, 갈바노 미러(44a, 44b)의 편향각을 제어하는 제어부(21a)를 구비하고, 제어부(21a)는 반도체 디바이스(D)와 광학적으로 접속되는 광로를, 갈바노 미러(44a, 44b) 및 미러(40b)를 통과하는 제1 광로 L1과, 갈바노 미러(44a, 44b) 및 장착부(46)를 통과하는 제2 광로 L2의 사이에서 전환하도록 편향각을 제어하고, 또한 제1 광로 L1로 전환했을 때의 편향각과 제2 광로 L2로 전환했을 때의 편향각이 중복되지 않도록, 편향각을 제어한다.

Description

반도체 검사 장치 {APPARATUS FOR INSPECTION OF SEMICONDUCTOR}
본 개시는 반도체 디바이스를 검사하는 반도체 검사 장치에 관한 것이다.
종래부터, 테스트 신호를 인가하면서 반도체 디바이스를 검사하는 장치가 이용되고 있다. 예를 들면, 하기 특허 문헌 1에는, 갈바노 미러와, 2개의 광 파이버와, 그것들과 광학적으로 결합 가능한 멀티 파이버 터릿을 구비한 장치가 알려져 있고, 한쪽의 광 파이버는 레이저 스캐닝 모듈(이하,「LSM」이라고 부름. )에 광학적으로 결합되고, 다른 쪽의 광 파이버는 단일 광자 검출기에 광학적으로 접속되어 있다. 이러한 장치에서는, LSM에 의한 반도체 디바이스의 검사와, 단일 광자 검출기에 의한 발광 계측을 전환하여 실행하는 것이 가능해진다.
특허 문헌 1: 미국 특허 2009/0295414호 공보
상술한 종래의 반도체 디바이스를 검사하는 장치에 있어서는, 각 광학 소자의 각각에 있어서 최적인 광학계를 설정하는 것이 요구되고 있다. 즉, 광학 소자에 있어서 광학계를 공용하는 경우에는 각 광학 소자에 있어서의 광로의 공간적인 정밀도가 저하하는 경향이 있다.
실시 형태는 반도체 검사 장치를 제공하는 것을 목적으로 한다.
본 발명의 실시 형태는 반도체 검사 장치이다. 반도체 검사 장치는 반도체 디바이스를 검사하는 반도체 검사 장치로서, 반도체 디바이스에 조사하는 광을 발생시키는 제1 광원과, 제1 광원과 광학적으로 접속된 도광 소자와, 제1 광원과 도광 소자를 통해서 광학적으로 접속 가능한 위치에 마련된 한 쌍의 갈바노 미러와, 도광 소자와 한 쌍의 갈바노 미러를 내부에 유지하고, 한 쌍의 갈바노 미러와 광학적으로 접속 가능한 위치에 마련된 광학 소자를 장착하기 위한 제1 장착부를 가지는 케이스와, 한 쌍의 갈바노 미러의 편향각(deflection angle)을 제어하는 제어부를 구비하고, 제어부는 반도체 디바이스와 광학적으로 접속되는 광로를, 한 쌍의 갈바노 미러 및 도광 소자를 통과하는 제1 광로와, 한 쌍의 갈바노 미러 및 제1 장착부를 통과하는 제2 광로의 사이에서 전환하도록 편향각을 제어하고, 또한 제1 광로로 전환했을 때의 편향각과 제2 광로로 전환했을 때의 편향각이 중복되지 않도록, 편향각을 제어한다.
실시 형태에 의한 반도체 검사 장치에 의하면, 복수의 광학 소자에 있어서의 광로의 공간적 정밀도를 향상시킴으로써 반도체 디바이스를 고정밀도로 검사할 수 있다.
도 1은 제1 실시 형태에 따른 검사 시스템의 구성도이다.
도 2는 도 1의 광학 장치(31A)에 있어서, 제1 검사계로 전환한 상태에서의 구성 및 제1 광로를 나타내는 도면이다.
도 3은 도 1의 광학 장치(31A)에 있어서, 제2 검사계로 전환한 상태에서의 구성 및 제2 광로를 나타내는 도면이다.
도 4는 도 1의 계산기(21)의 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 편향각의 변경 범위를 나타내는 그래프이다.
도 5는 제2 실시 형태에 따른 광학 장치(31B)의 구성을 나타내는 도면이다.
도 6은 제3 실시 형태에 따른 광학 장치(31C)의 구성을 나타내는 도면이다.
도 7은 제4 실시 형태에 따른 광학 장치(31D)의 구성을 나타내는 도면이다.
도 8은 제4 실시 형태에 따른 계산기(21)의 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 편향각의 변경 범위를 나타내는 그래프이다.
도 9는 제4 실시 형태에 따른 광학 장치(31E)의 구성을 나타내는 도면이다.
도 10은 변형예에 따른 광학 장치(31F)의 구성을 나타내는 도면이다.
도 11은 변형예에 따른 광학 장치(31G)의 구성을 나타내는 도면이다.
도 12는 변형예에 따른 광학 장치(31H)의 구성을 나타내는 도면이다.
도 13은 변형예에 따른 광학 장치(31I)의 구성을 나타내는 도면이다.
이하, 도면을 참조하면서 반도체 검사 장치의 적합한 실시 형태에 대해 상세하게 설명한다. 덧붙여, 도면의 설명에 있어서는 동일 또는 상당 부분에는 동일 부호를 부여하고, 중복하는 설명을 생략한다.
[제1 실시 형태]
도 1에 나타내지는 것처럼, 제1 실시 형태에 따른 검사 시스템(1)은 피검사 디바이스(DUT:Device Under Test)인 반도체 디바이스(D)에 있어서 고장 지점을 특정하는 등, 반도체 디바이스(D)를 검사하기 위한 반도체 검사 장치이다. 또, 검사 시스템(1)은 고장 지점을 특정하는 처리 외, 당해 고장 지점의 주위에 당해 고장 지점을 나타내는 마킹을 행하는 처리 등을 행해도 된다. 당해 마킹에 의해서, 고장 해석의 후속 공정에 있어서, 검사 시스템(1)이 특정한 고장 지점을 용이하게 파악할 수 있다.
반도체 디바이스(D)로서는, 예를 들면, 개별 반도체 소자(디스크리트), 옵토일렉트로닉스 소자, 센서/액츄에이터, 로직 LSI(Large Scale Integration), 메모리 소자, 혹은 리니어 IC(Integrated Circuit) 등, 또는 그것들의 혼성 디바이스 등이다. 개별 반도체 소자는 다이오드, 파워트랜지스터 등을 포함한다. 로직 LSI는 MOS(Metal-Oxide-Semiconductor) 구조의 트랜지스터, 바이폴러 구조의 트랜지스터 등으로 구성된다. 또, 반도체 디바이스(D)는 반도체 디바이스를 포함하는 패키지, 복합 기판 등이어도 된다. 반도체 디바이스(D)는 기판상에 메탈층이 형성되어 구성되어 있다. 반도체 디바이스(D)의 기판으로서는, 예를 들면 실리콘 기판이 이용된다. 반도체 디바이스(D)는 샘플 스테이지(40)에 재치되어 있다.
이 검사 시스템(1)은 신호 인가부(11)와, 계산기(21)와, 표시부(22)와, 입력부(23)와, 광학 장치(31A)를 구비하고 있다.
신호 인가부(11)는 케이블을 통해서 반도체 디바이스(D)에 전기적으로 접속되어, 반도체 디바이스(D)에 자극 신호를 인가한다. 신호 인가부(11)는 예를 들면 테스터 유닛이며, 전원(도시하지 않음)에 의해서 동작되어, 반도체 디바이스(D)에 소정의 테스트 패턴 등의 자극 신호를 반복하여 인가한다. 신호 인가부(11)는 변조 전류 신호를 인가하는 것이어도 되고, CW(continuous wave) 전류 신호를 인가하는 것이어도 된다. 신호 인가부(11)는 케이블을 통해서 계산기(21)에 전기적으로 접속되어 있고, 계산기(21)로부터 지정된 테스트 패턴 등의 자극 신호를, 반도체 디바이스(D)에 인가한다. 덧붙여, 신호 인가부(11)는 반드시 계산기(21)에 전기적으로 접속되어 있지 않아도 된다. 신호 인가부(11)는 계산기(21)에 전기적으로 접속되어 있지 않은 경우에는, 단일 유닛으로 테스트 패턴 등의 자극 신호를 결정하고, 그 테스트 패턴 등의 자극 신호를 반도체 디바이스(D)에 인가한다. 신호 인가부(11)는 소정의 신호를 생성하여 반도체 디바이스(D)에 인가하는 펄스 제너레이터여도 된다.
계산기(21)는 케이블을 통해서 광학 장치(31A)에 전기적으로 접속되어 있다. 계산기(21)는, 예를 들면 프로세서(CPU:Central Processing Unit), 및 기억 매체인 RAM(Random Access Memory), ROM(Read Only Memory) 및 HDD(Hard Disk Drive) 등을 포함하는 컴퓨터이다. 계산기(21)는 기억 매체에 기억된 데이터에 대해, 프로세서에 의한 처리를 실행한다. 또, 계산기(21)는 마이크로컴퓨터나 FPGA(Field-Programmable Gate Array), 클라우드 서버 등으로 구성되어 있어도 된다. 계산기(21)는 광학 장치(31A)로부터 입력된 검출 신호를 기초로 패턴 화상 혹은 해석 화상(예를 들면 발광 화상 등)을 작성한다. 여기서, 해석 화상만으로는, 반도체 디바이스(D)의 패턴에 있어서의 상세한 위치를 특정하는 것이 어렵다. 이에, 계산기(21)는 반도체 디바이스(D)로부터의 반사광에 기초하는 패턴 화상과, 반도체 디바이스(D)의 해석 화상을 중첩시킨 중첩 화상을 해석 화상으로서 생성한다.
또, 계산기(21)는 작성한 해석 화상을 표시부(22)에 출력한다. 표시부(22)는 유저에게 해석 화상 등을 나타내기 위한 디스플레이 등의 표시 장치이다. 표시부(22)는 입력된 해석 화상을 표시한다. 이 경우, 유저는 표시부(22)에 표시된 해석 화상으로부터 고장 지점의 위치를 확인하여, 고장 지점을 나타내는 정보를 입력부(23)에 입력한다. 입력부(23)는 유저로부터의 입력을 접수하는 키보드 및 마우스 등의 입력 장치이다. 입력부(23)는 유저로부터 접수한, 고장 지점을 나타내는 정보를 계산기(21)에 출력한다. 덧붙여, 계산기(21), 표시부(22), 및 입력부(23)는, 스마트 디바이스 단말이어도 된다.
다음에, 도 2 및 도 3을 참조하여, 광학 장치(31A)의 구성에 대해 설명한다. 도 2는 광학 장치(31A)에 있어서, 제1 검사계로 전환한 상태에서의 구성 및 제1 광로를 나타내는 도면, 도 3은 광학 장치(31A)에 있어서, 제2 검사계로 전환한 상태에서의 구성 및 제2 광로를 나타내는 도면이다.
도 2 및 도 3에 나타내는 것처럼, 광학 장치(31A)는 케이스(32)와, 광원(제1 광원)(33)과, 광 검출기(제1 광 검출기)(34)와, 광 검출기(제2 광 검출기)(35)와, 케이스(32)의 내부에 배치된 내부 광학계(36)와, 케이스(32)의 외부에 배치된 외부 광학계(37)를 구비하고 있다.
광원(33)은 전원(도시하지 않음)에 의해서 동작되어, 반도체 디바이스(D)의 패턴 이미지를 생성하기 위한 반도체 디바이스(D)를 조명하는 광을 발생시킨다. 광원(33)은 LED(Light Emitting Diode), SLD(Super Luminescent Diode) 광원 등의 인코히렌트 광원 등이다. 광원(33)은 레이저 등의 코히런트 광원 등이어도 된다. 광원(33)으로부터 출력된 광은 내부 광학계(36) 및 외부 광학계(37)를 경유하여 반도체 디바이스(D)에 조사된다.
광 검출기(34)는 반도체 디바이스(D)로부터의 반사광을 검출하여, 반도체 디바이스(D)의 반사광의 검출 신호를 계산기(21)에 출력한다. 예를 들면, 광 검출기(34)는 광 전자 증배관, PD(Photodiode), APD(Avalanche Photodiode) 등의 수광 소자이다. 반도체 디바이스(D)로부터의 반사광은, 외부 광학계(37) 및 내부 광학계(36)를 경유하여 광 검출기(34)에 입사된다.
광 검출기(35)는 반도체 디바이스(D)에 테스트 패턴 등의 자극 신호가 인가되었을 때, 반도체 디바이스(D)에서 발생한 발광을 검출하여, 반도체 디바이스(D)의 발광의 검출 신호를 계산기(21)에 출력한다. 광 검출기(35)는, 예를 들면, 초전도 단일 광자 검출기인 SSPD(Superconducting Single Photon Detector), 광 전자 증배관, 혹은 SiPM(Silicon Photomultipliers) 등이다. 이 광 검출기(35)에는, 외부 광학계(37) 및 내부 광학계(36)를 경유하여 반도체 디바이스(D)로부터의 광이 입사된다.
내부 광학계(36)는 광 파이버(38a, 38b, 38c), 콜리메이터 렌즈(39a, 39b, 39c), 미러(40a), 도광 소자(미러)(40b), 편광 빔 스플리터(이하, 「PBS」라고 함)(41), 1/4 파장판(42), 가변 동공(43), 한 쌍의 갈바노 미러(44a, 44b), 동공 릴레이 렌즈(45)를 포함하여 구성되어 있다.
광 파이버(38a, 38b, 38c)의 일단은, 케이스(32)의 외부에 있어서, 각각, 광원(33), 광 검출기(34), 및 광 검출기(35)에 광학적으로 접속되고, 광 파이버(38a, 38b, 38c)의 타단은, 케이스(32)의 내부에 있어서, 각각, 콜리메이터 렌즈(39a, 39b, 39c)에 광학적으로 접속되어 있다. 콜리메이터 렌즈(39a)는 광원(33)으로부터 조사된 광을 평행광으로 변환하고, 콜리메이터 렌즈(39b, 39c)는, 각각, 광 검출기(34) 및 광 검출기(35)에 입사되는 광을 평행광으로 변환한다. 이와 같이, 광 파이버마다 독립된 콜리메이트 렌즈에 의해서 후술하는 광 주사부로부터의 광을 수광 함으로써, 반도체 디바이스(D)로부터의 광의 파장 또는 초점에 따라 최적인 조정이 가능하게 된다.
미러(40a)는 케이스(32)의 내부에 있어서 콜리메이터 렌즈(39a)의 광 출력측에 배치되고, PBS(41)는 콜리메이터 렌즈(39b)의 광 입력측에 배치되고, 미러(40a), PBS(41), 1/4 파장판(42), 가변 동공(43), 미러(40b)가 이 순서로 일직선상에 늘어서서 배치되어 있다. 미러(40a)는 광원(33)으로부터 출력된 광을 PBS(41)를 향해서 반사시킨다. PBS(41)는 광원(33)으로부터 출력된 광 중 직선 편광을 미러(40b)를 향해서 투과시키고, 1/4 파장판(42)은 그 직선 편광을 원 편광으로 변환하여 미러(40b)를 향해서 출력한다. 또, 1/4 파장판(42)은 미러(40b)측으로부터 입사된 반도체 디바이스(D)로부터의 반사광을, 광원(33)으로부터 출력된 광의 직선 편광과 직교하는 방향의 직선 편광으로 변환하고, PBS(41)는 그 반사광의 직선 편광을 광 검출기(34)를 향해서 반사시킨다. 가변 동공(43)은 미러(40a)와 미러(40b) 사이의 광로상에 출납 가능하게 마련되며, 동공의 크기를 변경하기 위한 것이다.
미러(40b)는, 상술한 것처럼, 광원(33) 및 광 검출기(34)와 광학적으로 접속되어 있다. 상세하게는, 미러(40b)는 광원(33)으로부터 출력된 광을 반사하여 광 주사부인 한 쌍의 갈바노 미러(44a, 44b)를 향해서 도광한다. 그것과 함께, 미러(40b)는 반도체 디바이스(D)로부터의 반사광을 한 쌍의 갈바노 미러(44a, 44b)를 경유하여 받고, 그 반사광을 가변 동공(43), 1/4 파장판(42), PBS(41), 콜리메이터 렌즈(39b), 광 파이버(38b)를 경유하여 광 검출기(34)에 입사시킨다. 덧붙여, 본 실시 형태에서는 도광 소자로서 미러를 이용하고 있지만, 광원(33) 및/또는 광 검출기(34)와 한 쌍의 갈바노 미러(44a, 44b)의 사이에서 도광 가능한 광학 소자이면 광 파이버 등을 이용해도 된다.
한 쌍의 갈바노 미러(44a, 44b)는, 미러(40b)를 통해서, 광원(33) 및 광 검출기(34)와 광학적으로 접속 가능하게 구성됨과 아울러, 동공 릴레이 렌즈(45)를 통해서 외부 광학계(37)와 광학적으로 접속되어 있다. 즉, 한 쌍의 갈바노 미러(44a, 44b)는 미러(40b)의 광원(33)으로부터의 광의 반사 방향으로 배치되어, 그 광을 2차원적으로 주사시키면서 반사시킬 수 있는 광 주사부이며, 예를 들면, 소정 축을 중심으로 하여 편향각을 변경 가능한 갈바노 미러를 2개 조합한 구성을 가진다. 이 한 쌍의 갈바노 미러(44a, 44b)는 반도체 디바이스(D)에 조사되는 광을 반도체 디바이스상에서 2차원적으로 주사할 수 있다. 이에 더하여, 한 쌍의 갈바노 미러(44a, 44b)는 반도체 디바이스(D)의 소정점에 있어서의 반사광 혹은 발광을, 2차원적으로 위치 선택하면서 미러(40b) 또는 콜리메이터 렌즈(39c)의 소정 위치를 향해서 도광시킬 수도 있다. 여기서, 한 쌍의 갈바노 미러(44a, 44b)를 정지시킨 상태에서, 별개로 준비한 광원을 한쪽의 미러에서 반사시킴으로써, 반도체 디바이스(D)를 2차원적으로 조명하도록 구성되어도 된다. 한 쌍의 갈바노 미러(44a, 44b)의 편향각은, 계산기(21)의 제어부(21a)에 의해서 제어 가능하게 구성되어 있다.
콜리메이터 렌즈(39c)는 한 쌍의 갈바노 미러(44a, 44b)와 광학적으로 접속 가능한 케이스(32) 상의 위치에 마련된 장착부(제1 장착부)(46)에 의해서, 케이스(32)의 내부에 유지되어 있다. 이 장착부(46)는 통 모양 부재를 이루고, 콜리메이터 렌즈 등의 광학 소자를 케이스(32)의 내부에 장착하기 위한 부위이다. 그리고 광 파이버(38c)의 타단은, 장착부(46)의 내부에 있어서, 콜리메이터 렌즈(39c)에 광학적으로 접속된다.
외부 광학계(37)는 미러(47a, 47b, 47c), 동공 릴레이 렌즈(48), 대물 렌즈 유닛(49)을 포함하고 있다. 이 외부 광학계(37)는 광원(33)으로부터의 광을 도광 하여 반도체 디바이스(D)에 입사시킴과 아울러, 반도체 디바이스(D)에 있어서 생긴 반사광 및 발광을 도광하여 내부 광학계(36)에 입사시킨다. 즉, 내부 광학계(36)로부터 입사된 광원(33)으로부터의 광은, 미러(47a)에서 반사된 후에 동공 릴레이 렌즈(48)를 투과하여, 미러(47b, 47c)에서 차례로 반사된 후에 대물 렌즈 유닛(49)을 통과하여 반도체 디바이스(D)에 조사된다. 한편, 반도체 디바이스(D)에 있어서의 반사광 혹은 발광은, 대물 렌즈 유닛(49)을 통과한 후에 미러(47c, 47b)에 의해서 차례로 반사되어, 동공 릴레이 렌즈(48)를 투과하고 나서 미러(47a)에 의해서 반사됨으로써, 내부 광학계(36)에 입사된다. 여기서, 대물 렌즈 유닛(49)은 상이한 배율의 복수의 대물 렌즈를 가지고, 터릿에 의해서 전환되도록 구성되어도 된다.
상술한 것 같은 구성의 광학 장치(31A)는, 계산기(21)에 의해서 반도체 디바이스(D)와 광학적으로 접속되는 광로를 전환하도록 제어 가능하게 구성되어 있다. 즉, 계산기(21)는 기능적 구성요소로서, 제어부(21a)를 가지고 있다.
계산기(21)의 제어부(21a)는, 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 제어함으로써, 반도체 디바이스(D)와 광학적으로 접속되는 광로를, 외부 광학계(37)와 한 쌍의 갈바노 미러(44a, 44b) 및 미러(40b)를 경유하는 내부 광학계(36)를 포함하는 제1 광로 L1(도 2)과, 외부 광학계(37)와 한 쌍의 갈바노 미러(44a, 44b) 및 장착부(46) 내의 콜리메이터 렌즈(39c)를 경유하는 내부 광학계(36)를 포함하는 제2 광로 L2(도 3)의 사이에서 전환하도록, 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 제어한다. 구체적으로는, 제어부(21a)는 유저로부터 입력부(23)를 통해서 반사광의 검사의 실행이 지시된 경우에는, 제1 광로 L1로 전환하고, 유저로부터 입력부(23)를 통해서 발광의 검사의 실행이 지시된 경우에는, 제2 광로 L2로 전환한다. 그것과 동시에, 제어부(21a)는 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 소정 각도 범위 내에서 차례로 변경함으로써, 반도체 디바이스(D)에 조사되는 광을 반도체 디바이스(D)상에서 2차원적으로 주사하도록 제어함과 아울러, 반도체 디바이스(D)의 소정점에 있어서의 반사광 혹은 발광을, 2차원적으로 주사시키면서 위치 선택하여 도광시키도록 제어한다.
도 4에는, 계산기(21)의 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 편향각의 변경 범위의 일례를 나타내고 있다. 도 4의 그래프에 있어서, 가로축 H는 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 일 방향의 편향각을 나타내고, 세로축 V는 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 일 방향과 수직인 타 방향의 편향각을 나타내고 있다. 본 실시 형태에서는, 일 방향은 수평 방향이고, 타 방향은 연직(鉛直) 방향이다. 제어부(21a)는 반사광의 검사의 실행이 지시된 경우에는, 미리 설정된 편향각의 오프셋값 (H, V)=(H1, V1)에 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 설정하고, 그 오프셋값 (H1, V1)를 중심으로 한 일 방향 및 타 방향의 소정 각도의 범위 (H1±ΔH1, V1±ΔV1)의 각도 범위 W1 내에서, 편향각을 차례로 변경하도록 제어한다. 또, 제어부(21a)는 발광의 검사의 실행이 지시된 경우에는, 미리 설정된 편향각의 오프셋값 (H, V)=(H2, V2)에 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 설정하고, 그 오프셋값 (H2, V2)를 중심으로 한 일 방향 및 타 방향의 소정 각도의 범위 (H2±ΔH2, V2±ΔV2)의 각도 범위 W2 내에서, 편향각을 차례로 변경하도록 제어한다. 여기서, 제어부(21a)는 제1 광로 L1로 전환했을 때의 편향각의 범위 W1과, 제2 광로 L2로 전환했을 때의 편향각의 범위 W2가 중복되지 않도록 제어한다.
계산기(21)는 광 검출기(34, 35)로부터 입력된 검출 신호를 기초로, 패턴 화상 또는 발광 화상(해석 화상)을 생성하는 기능도 가진다. 즉, 계산기(21)는 제어부(21a)의 제어에 의해서 광원(33)으로부터의 광을 반도체 디바이스(D)상에서 주사하면서 얻어진 검출 신호를 기초로, 반도체 디바이스(D)의 2차원 위치 마다의 반사광의 강도를 나타내는 패턴 화상을 생성한다. 마찬가지로, 계산기(21)는 제어부(21a)의 제어에 의해서 반도체 디바이스(D)상에서 관찰 위치를 주사하면서 얻어진 검출 신호를 기초로, 반도체 디바이스(D)의 2차원 위치 마다의 발광의 강도를 나타내는 발광 화상을 생성한다. 추가로, 계산기(21)는 패턴 화상과 발광 화상을 중첩시킨 중첩 화상을 해석 화상으로서 생성하여, 생성한 해석 화상을 표시부(22)에 출력한다.
이상 설명한 검사 시스템(1)에 의하면, 반도체 디바이스(D)와 광학적으로 접속되는 광로를 제1 광로 L1와 제2 광로 L2의 사이에서 전환하도록 한 쌍의 갈바노 미러(44a, 44b)의 편향각이 제어된다. 이것에 의해, 광원(33), 광 검출기(34), 및 미러(40b)를 이용한 반도체 디바이스(D)의 반사광의 측정과, 장착부(46)에 장착되는 광 검출기(35)를 이용한 반도체 디바이스(D)의 발광의 검사를 전환하여 실행 가능하게 된다. 이 때, 제1 광로 L1로 전환했을 때의 갈바노 미러(44a, 44b)의 편향각과, 제2 광로 L2로 전환했을 때의 갈바노 미러(44a, 44b)의 편향각이 중복되지 않도록 제어되므로, 각 측정계의 광학계를 독립하여 최적인 상태로 설정할 수 있는 결과, 각 검사계에 있어서의 광로의 공간적 정밀도를 향상시킬 수 있다. 그 결과, 반도체 디바이스(D)를 고정밀도로 검사할 수 있다.
또, 광학 장치(31A)에 있어서는, 광 검출기(35)가 장착부(46)에 장착됨으로써 제2 광로 L2를 경유하여 반도체 디바이스(D)의 발광을 검출 가능하게 되어 있다. 이 경우, 반도체 디바이스(D)와 광학적으로 접속되는 광로가 제2 광로 L2로 전환되었을 때, 광 검출기(35)를 이용하여 반도체 디바이스로부터의 발광을 측정할 수 있다. 추가로, 장착부(46)를 구비함으로써 광 검출기(35)를 다른 광학 소자로 용이하게 치환할 수 있어, 최적인 검사를 실시할 수 있다.
[제2 실시 형태]
도 5에는 제2 실시 형태에 따른 광학 장치(31B)의 구성을 나타내고 있다. 이 광학 장치(31B)는 광원(33) 및 광 검출기(34, 35)에 더하여, 광원(133)을 구비하는 점이 제1 실시 형태와 상위하다.
즉, 광학 장치(31B)는 당해 고장 지점을 나타내는 마킹을 행하기 위한 레이저광을 조사하는 광원(제3 광원)(133)을 추가로 구비한다. 이 광원(133)은 한 쌍의 갈바노 미러(44a, 44b)와 광학적으로 접속 가능한 케이스(32) 상의 위치에 마련된 장착부(제3 장착부)(146)에 의해서 유지된 콜리메이터 렌즈(39d) 및 광 파이버(38d)를 경유하여, 내부 광학계(36)와 광학적으로 접속된다. 상세하게는, 이 장착부(146)는 통 모양 부재를 이루고, 콜리메이터 렌즈 등의 광학 소자를, 한 쌍의 갈바노 미러(44a, 44b)와 다이클로익 미러(140b)를 잇는 연장선 상의 케이스(32)의 내부에 장착하기 위한 부위이다. 추가로, 광학 장치(31B)는 미러(40b)를 대신하여 도광 소자로서 다이클로익 미러(140b)를 구비하고, 광원(133)은 다이클로익 미러(140b)와 광학적으로 접속되어 있다. 이 다이클로익 미러(140b)는 광원(33)으로부터의 광을 한 쌍의 갈바노 미러(44a, 44b)를 향해서 반사하고, 한 쌍의 갈바노 미러(44a, 44b)로부터 입사된 반도체 디바이스(D)의 반사광을 광 검출기(34)를 향해서 반사함과 아울러, 광원(133)으로부터의 레이저광을 한 쌍의 갈바노 미러(44a, 44b)를 향해서 투과시킨다.
이 광학 장치(31B)를 구비하는 검사 시스템(1)에 있어서, 마킹의 처리가 실행될 때에는, 계산기(21)의 제어부(21a)가, 반도체 디바이스(D)와 광학적으로 접속되는 광로를, 외부 광학계(37)와 한 쌍의 갈바노 미러(44a, 44b) 및 다이클로익 미러(140b)를 경유하는 내부 광학계(36)를 포함하는 광로 L3으로 전환하도록, 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 제어한다. 구체적으로는, 제어부(21a)는 유저로부터 입력부(23)를 통해서 마킹 처리의 실행이 지시된 경우에는, 광로 L3으로 전환한다. 이 때에는, 미리, 표시부(22)에 표시된 해석 화상을 기초로 유저에 의해서 고장 지점의 위치가 특정되고, 고장 지점을 나타내는 정보가 입력부(23)를 이용하여 입력되고 있다. 제어부(21a)는 입력부(23)로부터 입력된 고장 지점을 나타내는 정보를 기초로, 그 고장 지점에 대응하는 편향각이 되도록 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 제어한다. 이것에 의해, 반도체 디바이스(D)의 고장 지점에 상당하는 위치에 레이저 마킹이 행해진다.
상기와 같은 제2 실시 형태에 의해서도, 각 측정계의 광학계를 독립하여 최적인 상태로 설정할 수 있는 결과, 각 검사계에 있어서의 광로의 공간적 정밀도를 향상시킬 수 있다. 그 결과, 반도체 디바이스(D)를 고정밀도로 검사할 수 있다.
덧붙여, 제2 실시 형태의 변형예로서, 광원(133)으로서 실리콘의 밴드 갭 보다도 에너지가 낮은 1064nm의 파장을 가지는 레이저광이나, 실리콘의 밴드 갭 보다도 에너지가 높은 1300nm의 파장을 가지는 레이저광을 출력하는 레이저 광원을 이용함으로써, 반도체 디바이스(D)의 고장 해석을 행해도 된다. 이러한 레이저 광원을 이용함으로써, 반도체 디바이스(D)로부터 출력되는 전류 또는 전압으로부터 고장 해석을 행할 수 있다.
[제3 실시 형태]
도 6에는 제3 실시 형태에 따른 광학 장치(31C)의 구성을 나타내고 있다. 이 광학 장치(31C)는 광원이 2개의 미러(40a, 40b) 사이의 광로에 광학적으로 접속되어 있다는 점이 제2 실시 형태와 상위하다.
구체적으로는, 광학 장치(31C)는 내부 광학계(36)로서, 미러(40a)와 PBS(41)의 사이에 배치된 다이클로익 미러(240)를 가지고, 광원(133)은 다이클로익 미러(240)와 콜리메이터 렌즈(39d) 및 광 파이버(38d)를 통해서 광학적으로 접속되어 있다.
이러한 구성에 있어서는, 광원(133)으로부터 출력된 광은, 제1 광로 L1을 경유하여 반도체 디바이스(D)에 조사할 수 있다. 광원(133)으로서, 다양한 종류의 광원을 이용함으로써, 마킹의 처리를 행해도 된다. 또, 광원(133)으로서, 광원(33)과 상이한 파장의 광원을 조합함으로써, 다양한 파장의 광을 반도체 디바이스(D)에 조사하면서 반사광의 관찰 혹은 고장 해석을 행해도 된다.
[제4 실시 형태]
도 7에는 제4 실시 형태에 따른 광학 장치(31D)의 구성을 나타내고 있다. 이 광학 장치(31D)는 반도체 디바이스(D)와 광학적으로 접속 가능한 광로를, 제1 광로 L1 및 제2 광로 L2에 더하여, 제3 광로 L4로 전환 가능한 구성을 가지고 있다.
구체적으로는, 광학 장치(31D)는 반도체 디바이스(D)의 발광을 검사하기 위한 광 검출기(335)를 추가로 구비한다. 이 광 검출기(335)는 한 쌍의 갈바노 미러(44a, 44b)와 광학적으로 접속 가능한 케이스(32) 상의 위치에 마련된 장착부(제2 장착부)(346)에 의해서 유지된 콜리메이터 렌즈(39e) 및 광 파이버(38e)를 경유하여, 내부 광학계(36)와 광학적으로 접속된다. 상세하게는, 이 장착부(346)는 통 모양 부재를 이루어, 콜리메이터 렌즈 등의 광학 소자를 케이스(32)의 내부에 장착하기 위한 부위이다.
이 광학 장치(31D)를 구비하는 검사 시스템(1)에 있어서, 광 검출기(335)를 이용한 발광의 검사 처리가 실행될 때에는, 계산기(21)의 제어부(21a)가, 반도체 디바이스(D)와 광학적으로 접속되는 광로를, 외부 광학계(37)와 한 쌍의 갈바노 미러(44a, 44b) 및 장착부(346) 내의 콜리메이터 렌즈(39e)를 경유하는 내부 광학계(36)를 포함하는 제3 광로 L4로 전환하도록, 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 제어한다. 구체적으로는, 제어부(21a)는 유저로부터 입력부(23)를 통해서 발광 검사 처리의 실행이 지시된 경우에는, 광로 L4로 전환한다.
도 8에는, 계산기(21)의 제어부(21a)에 의해서 제어된 한 쌍의 갈바노 미러(44a, 44b)의 편향각의 변경 범위의 일례를 나타내고 있다. 본 실시 형태의 제어부(21a)는, 광 검출기(335)를 이용한 발광 검사의 실행이 지시된 경우에는, 미리 설정된 편향각의 오프셋값 (H, V)=(H4, V4)에 한 쌍의 갈바노 미러(44a, 44b)의 편향각을 설정하고, 그 오프셋값 (H4, V4)를 중심으로 한 일 방향 및 타 방향의 소정 각도의 범위 (H4±ΔH4, V4±ΔV4)의 각도 범위 W4 내에서, 편향각을 차례로 변경하도록 제어한다. 여기서, 제어부(21a)는 제1 광로 L1로 전환했을 때의 편향각의 범위 W1과, 제2 광로 L2로 전환했을 때의 편향각의 범위 W2와, 제3 광로 L4로 전환했을 때의 편향각의 범위 W4가 중복되지 않도록 제어한다.
상기와 같은 제4 실시 형태에 의해서도, 각 측정계의 광학계를 독립하여 최적인 상태로 설정할 수 있는 결과, 각 검사계에 있어서의 광로의 공간적 정밀도를 향상시킬 수 있다. 그 결과, 반도체 디바이스(D)를 고정밀도로 검사할 수 있다. 덧붙여, 본 실시 형태에서는, 도 9에 나타내는 것처럼, 장착부(346)에는, 광 검출기(335)를 대신하여, 반도체 디바이스(D)의 조명, 마킹, 가열, 혹은 광 기전류의 발생을 위한 광원(333)이 장착되어도 된다.
덧붙여, 실시 형태는 전술한 실시 형태로 한정되는 것은 아니다.
예를 들면, 제1 실시 형태에 있어서 광 검출기(35)가 콜리메이터 렌즈 및 광 파이버를 경유하여 갈바노 미러(44a, 44b)에 광학적으로 접속되어 있었지만, 도 10에 나타내는 변형예에 따른 광학 장치(31F)와 같이, 광 검출기(35)가 갈바노 미러(44a, 44b)에 광학적으로 직접 접속되어도 된다.
또, 도 11에 나타내는 변형예에 따른 광학 장치(31G)와 같이, 광 검출기(35)대신에 장착부(46)에 반도체 디바이스(D)에 조사하는 광을 발생시키는 광원(433)이 장착되어도 된다. 이 때, 광원(433)은 콜리메이터 렌즈 및 광 파이버를 경유하여 갈바노 미러(44a, 44b)에 광학적으로 접속되어도 되고, 갈바노 미러(44a, 44b)에 광학적으로 직접 접속되어도 된다.
또, 도 12에 나타내는 변형예에 따른 광학 장치(31H)와 같이, 광원(233)과 광 검출기(334)가 광학적으로 접속된 광로 분할 소자(50)가 장착부(46)에 장착되어 구성되어도 된다. 광원(233)은, 예를 들면 LED(Light Emitting Diode), SLD(Super Luminescent Diode) 광원 등의 인코히렌트 광원 등, 또는 레이저 등의 코히런트 광원 등이다. 광 검출기(334)는, 예를 들면 광 전자 증배관, PD(Photodiode), APD(Avalanche Photodiode) 등의 수광 소자이다. 광로 분할 소자(50)는 예를 들면 광 써큐레이터이다. 이 경우는, 광원(233)으로부터 반도체 디바이스(D)에 대해서 제2 광로 L5를 경유하여 광을 조사했을 때, 반사되어 제2 광로 L5를 경유하여 되돌아오는 광을 광 검출기(334)로 도광하여 검출할 수 있다. 이 경우, 편광 소자(51)로서 1/2 파장판을 광로 L5 상에 배치하고, 임의의 각도로 회전시킴으로써, 임의의 직선 편광이 된 광이 반도체 디바이스(D)에 조사되도록 해도 된다. 또, 광로 분할 소자(50)로서 편파 유지 광 섬유 커플러를 이용하고, 편광 소자(51)로서 1/4 파장판을 광로 L5 상에 배치시켜도 된다. 이 경우, 광원(233)으로부터 출력된 광을 원 편광으로서 반도체 디바이스(D)에 조사하고, 반도체 디바이스(D)에서 반사되어 되돌아온 광을 광 검출기(334)로 도광시켜 검출할 수 있다.
또, 도 13에 나타내는 변형예에 따른 광학 장치(31I)와 같은 구성이어도 된다. 즉, 본 변형예는, 상술한 실시 형태와는 달리, 도광 소자(40b)와 광학적으로 접속되어 있던 광 검출기(34)를 가지지 않고, 제3 실시 형태와 같이 복수의 광원(광원(33) 및 광원(133))을 구비하고, 광원(233)과 광 검출기(334)가 광학적으로 접속된 광로 분할 소자(50)를 이용하여, 장착부(46)에 광원(233)과 광 검출기(334)가 장착되도록 구성되어도 된다. 이 경우, 광원(233)으로부터 반도체 디바이스(D)에 조사한 광의 반사광을 광 검출기(334)로 검출하여 패턴 이미지를 생성하거나, 광원(33) 및 광원(133)으로부터 서로 파장이 상이한 광을 생성하여 제1 광로 L6을 경유하여 반도체 디바이스(D)에 조사함으로써 고장 해석을 행하거나 할 수 있다.
상기 형태의 반도체 검사 장치에 의하면, 반도체 디바이스와 광학적으로 접속되는 광로를 제1 광로와 제2 광로의 사이에서 전환하도록 한 쌍의 갈바노 미러의 편향각이 제어된다. 이것에 의해, 제1 광원, 및 도광 소자를 이용한 반도체 디바이스의 측정과, 제1 장착부에 장착되는 광학 소자를 이용한 반도체 디바이스의 검사를 전환하여 실행 가능하게 된다. 이 때, 제1 광로로 전환했을 때의 갈바노 미러의 편향각과, 제2 광로로 전환했을 때의 갈바노 미러의 편향각이 중복되지 않도록 제어되므로, 각 측정계의 광학계를 독립하여 최적인 상태로 설정할 수 있는 결과, 각 검사계에 있어서의 광로의 공간적 정밀도를 향상시킬 수 있다. 그 결과, 반도체 디바이스를 고정밀도로 검사할 수 있다.
상기 형태의 반도체 검사 장치에 있어서는, 반도체 디바이스로부터의 광을 검출하는 제1 광 검출기를 추가로 구비하고, 도광 소자는 제1 광 검출기와 광학적으로 접속되어 있어도 된다. 이 경우, 제1 광원, 제1 광 검출기, 및 도광 소자를 이용한 반도체 디바이스의 광의 측정과, 제1 장착부에 장착되는 광학 소자를 이용한 반도체 디바이스의 검사를 전환하여 실행 가능하게 된다.
또, 반도체 디바이스로부터의 광을 검출하는 제2 광 검출기를 추가로 구비하고, 제2 광 검출기는 제1 장착부에 장착됨으로써, 제2 광로를 경유하여 광을 검출 가능하게 되어 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제2 광로로 전환되었을 때, 제2 광 검출기를 이용하여 반도체 디바이스로부터의 광을 측정할 수 있다.
또, 제2 광 검출기는 제1 장착부에 콜리메이터 렌즈 및 광 파이버를 매개로 하여 장착되어 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제2 광로로 전환되었을 때, 콜리메이터 렌즈 및 광 파이버를 통해서 제2 광 검출기에 의해서 반도체 디바이스로부터의 광을 측정할 수 있다.
추가로, 반도체 디바이스에 조사하는 광을 발생시키는 제2 광원을 추가로 구비하고, 제2 광원은 제1 장착부에 장착됨으로써, 제2 광로를 경유하여 광을 조사 가능하게 되어 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제2 광로로 전환되었을 때, 제2 광원을 이용하여 반도체 디바이스에 광을 조사하여 반도체 디바이스를 검사할 수 있다.
또 추가로, 제2 광원은 제1 장착부에 콜리메이터 렌즈 및 광 파이버를 매개로 하여 장착되어 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제2 광로로 전환되었을 때, 콜리메이터 렌즈 및 광 파이버를 통해서 제2 광원을 이용하여 반도체 디바이스에 광을 조사하여 반도체 디바이스를 검사할 수 있다.
또, 반도체 디바이스에 조사하는 광을 발생시키는 제2 광원과, 반도체 디바이스로부터의 광을 검출하는 제2 광 검출기와, 제2 광원과 제2 광 검출기와 광학적으로 접속된 광로 분할 소자를 추가로 구비하고, 광로 분할 소자가 제1 장착부에 장착됨으로써, 제2 광로를 경유하여 광을 조사 및/또는 검출 가능하게 되어 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제2 광로로 전환되었을 때, 제2 광원을 이용하여 반도체 디바이스에 광을 조사하면서 반도체 디바이스로부터의 광을 측정할 수 있다.
추가로 또, 케이스는 한 쌍의 갈바노 미러와 광학적으로 접속 가능한 위치에 마련된 광학 소자를 장착하기 위한 제2 장착부를 추가로 가지고, 제어부는 제1 광로와, 제2 광로와, 한 쌍의 갈바노 미러 및 제2 장착부를 통과하는 제3 광로의 사이에서 전환하도록 편향각을 제어하고, 또한 제1 광로로 전환했을 때의 편향각과, 제2 광로로 전환했을 때의 편향각과, 제3 광로로 전환했을 때의 편향각이 중복되지 않도록, 편향각을 제어하는 것이도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제3 광로로 전환됨으로써, 제2 장착부에 장착되는 광학 소자를 이용한 반도체 디바이스의 검사를 전환하여 실행 가능하게 된다. 이 때, 제1 광로로 전환했을 때의 갈바노 미러의 편향각과, 제2 광로로 전환했을 때의 갈바노 미러의 편향각과, 제3 광로로 전환했을 때의 갈바노 미러의 편향각이 중복되지 않도록 제어되므로, 각 검사계의 광학계를 독립하여 최적인 상태로 설정할 수 있는 결과, 각 검사계에 있어서의 광로의 공간적 정밀도를 향상시킬 수 있다. 그 결과, 반도체 디바이스를 고정밀도로 검사할 수 있다.
또, 도광 소자는 미러여도 된다. 추가로, 도광 소자로서의 미러는, 다이클로익 미러이고, 케이스는 한 쌍의 갈바노 미러와 다이클로익 미러를 잇는 연장선 상에 광학 소자를 장착하기 위한 제3 장착부를 추가로 가지고 있어도 된다. 이 경우, 반도체 디바이스와 광학적으로 접속되는 광로가 제1 광로로 전환되었을 때, 제3 장착부에 장착되는 광학 소자를 이용한 반도체 디바이스의 검사가 가능하게 된다.
추가로, 도광 소자와 광학적으로 접속된 제3 광원을 추가로 구비하고 있어도 된다. 이렇게 하면, 반도체 디바이스와 광학적으로 접속되는 광로가 제1 광로로 전환되었을 때, 제3 광원을 이용하여 반도체 디바이스에 광을 조사하면서 반도체 디바이스의 광의 측정이 가능하게 된다.
또 추가로, 제2 광 검출기는 초전도 단일 광자 검출기여도 된다.
실시 형태는 반도체 검사 장치를 사용 용도로 하여, 복수의 광학 소자에 있어서의 광로의 공간적 정밀도를 향상시킴으로써 반도체 디바이스를 고정밀도로 검사할 수 있는 것이다.
1…검사 시스템(반도체 검사 장치) 21…계산기
21a…제어부 31A~31G…광학 장치
32…케이스 33…(제1) 광원
34…(제1) 광 검출기 35…(제2) 광 검출기
38a~38e…광 파이버 39a~39e…콜리메이터 렌즈
40b…도광 소자(미러) 44a, 44b…한 쌍의 갈바노 미러
46…(제1) 장착부 50…광로 분할 소자
133…(제3) 광원 140b…다이클로익 미러
146…(제3) 장착부 240…다이클로익 미러
333…(제2) 광원 346…(제2) 장착부
D…반도체 디바이스 L1…(제1) 광로
L2…(제2) 광로 L4…(제3) 광로

Claims (16)

  1. 반도체 디바이스를 검사하는 반도체 검사 장치로서,
    상기 반도체 디바이스에 조사하는 광을 발생시키는 제1 광원과,
    상기 제1 광원과 광학적으로 접속된 미러와,
    상기 제1 광원과 상기 미러를 통해서 광학적으로 접속 가능한 위치에 마련된 한 쌍의 갈바노 미러와,
    상기 미러와 광학적으로 접속되고 상기 반도체 디바이스로부터의 광을 검출하는 제1 광 검출기와,
    상기 제1 광원으로부터 출력된 광을 투과시키고, 상기 반도체 디바이스로부터의 상기 한 쌍의 갈바노 미러를 통한 광을 상기 제1 광 검출기를 향하여 반사하는 편광 빔 스플리터와,
    상기 한 쌍의 갈바노 미러와 광학적으로 접속 가능한 위치에 마련된 광학 소자를 장착하기 위한 제1 장착부와,
    상기 한 쌍의 갈바노 미러의 편향각을 제어하는 제어부를 구비하고,
    상기 제어부는, 상기 반도체 디바이스와 광학적으로 접속되는 광로를, 상기 한 쌍의 갈바노 미러 및 상기 미러를 통과하는 제1 광로와, 상기 한 쌍의 갈바노 미러 및 상기 제1 장착부를 통과하는 제2 광로의 사이에서 전환하도록 상기 편향각을 제어하고, 또한
    상기 제1 광로로 전환했을 때의 상기 편향각과, 상기 제2 광로로 전환했을 때의 상기 편향각이 중복되지 않도록, 상기 편향각을 제어하는,
    반도체 검사 장치.
  2. 청구항 1에 있어서,
    상기 반도체 디바이스에 조사하는 광을 발생시키는 제2 광원을 추가로 구비하고,
    상기 제2 광원은 상기 제1 장착부에 장착됨으로써, 상기 제2 광로를 경유하여 상기 광을 조사 가능하게 되어 있는,
    반도체 검사 장치.
  3. 청구항 2에 있어서,
    상기 제2 광원은 상기 제1 장착부에 콜리메이터 렌즈 및 광 파이버를 매개로 하여 장착되어 있는,
    반도체 검사 장치.
  4. 청구항 2 또는 청구항 3에 있어서,
    상기 제2 광원은 고장 지점을 나타내는 마킹을 행하기 위한 레이저광을 조사하는 광원인,
    반도체 검사 장치.
  5. 청구항 2 또는 청구항 3에 있어서,
    상기 제2 광원은 1300nm의 파장을 가지는 레이저광을 출력하는 레이저 광원인,
    반도체 검사 장치.
  6. 청구항 1 또는 청구항 2에 있어서,
    상기 반도체 디바이스로부터의 광을 검출하는 제2 광 검출기를 추가로 구비하고,
    상기 제2 광 검출기는 상기 제1 장착부에 장착됨으로써, 상기 제2 광로를 경유하여 상기 광을 검출 가능하게 되어 있는,
    반도체 검사 장치.
  7. 청구항 6에 있어서,
    상기 제2 광 검출기는 상기 제1 장착부에 콜리메이터 렌즈 및 광 파이버를 매개로 하여 장착되어 있는,
    반도체 검사 장치.
  8. 청구항 6에 있어서,
    상기 제2 광 검출기는 초전도 단일 광자 검출기인,
    반도체 검사 장치.
  9. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 한 쌍의 갈바노 미러와 광학적으로 접속 가능한 위치에 마련된 광학 소자를 장착하기 위한 제2 장착부를 추가로 가지고,
    상기 제어부는 상기 제1 광로와, 상기 제2 광로와, 상기 한 쌍의 갈바노 미러 및 상기 제2 장착부를 통과하는 제3 광로의 사이에서 전환하도록 상기 편향각을 제어하고, 또한
    상기 제1 광로로 전환했을 때의 상기 편향각과, 상기 제2 광로로 전환했을 때의 상기 편향각과, 상기 제3 광로로 전환했을 때의 상기 편향각이 중복되지 않도록, 상기 편향각을 제어하는,
    반도체 검사 장치.
  10. 청구항 6에 있어서,
    상기 한 쌍의 갈바노 미러와 광학적으로 접속 가능한 위치에 마련된 광학 소자를 장착하기 위한 제2 장착부를 추가로 가지고,
    상기 제어부는 상기 제1 광로와, 상기 제2 광로와, 상기 한 쌍의 갈바노 미러 및 상기 제2 장착부를 통과하는 제3 광로의 사이에서 전환하도록 상기 편향각을 제어하고, 또한
    상기 제1 광로로 전환했을 때의 상기 편향각과, 상기 제2 광로로 전환했을 때의 상기 편향각과, 상기 제3 광로로 전환했을 때의 상기 편향각이 중복되지 않도록, 상기 편향각을 제어하는,
    반도체 검사 장치.
  11. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 미러와 광학적으로 접속된 제3 광원을 추가로 구비하는,
    반도체 검사 장치.
  12. 청구항 6에 있어서,
    상기 미러와 광학적으로 접속된 제3 광원을 추가로 구비하는,
    반도체 검사 장치.
  13. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 미러는 다이클로익 미러이고,
    상기 한 쌍의 갈바노 미러와 상기 다이클로익 미러를 잇는 연장선 상에 광학 소자를 장착하기 위한 제3 장착부를 추가로 가지는,
    반도체 검사 장치.
  14. 청구항 6에 있어서,
    상기 미러는 다이클로익 미러이고,
    상기 한 쌍의 갈바노 미러와 상기 다이클로익 미러를 잇는 연장선 상에 광학 소자를 장착하기 위한 제3 장착부를 추가로 가지는,
    반도체 검사 장치.
  15. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 제1 광 검출기는 PD(Photodiode) 또는 APD(Avalanche Photodiode)인,
    반도체 검사 장치.
  16. 청구항 6에 있어서,
    상기 제1 광 검출기는 PD(Photodiode) 또는 APD(Avalanche Photodiode)인,
    반도체 검사 장치.
KR1020227036977A 2017-06-02 2018-03-07 반도체 검사 장치 KR102562196B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2017-109918 2017-06-02
JP2017109918A JP6419893B1 (ja) 2017-06-02 2017-06-02 半導体検査装置
KR1020197030977A KR102459819B1 (ko) 2017-06-02 2018-03-07 반도체 검사 장치
PCT/JP2018/008830 WO2018220931A1 (ja) 2017-06-02 2018-03-07 半導体検査装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020197030977A Division KR102459819B1 (ko) 2017-06-02 2018-03-07 반도체 검사 장치

Publications (2)

Publication Number Publication Date
KR20220150993A true KR20220150993A (ko) 2022-11-11
KR102562196B1 KR102562196B1 (ko) 2023-08-02

Family

ID=64098718

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227036977A KR102562196B1 (ko) 2017-06-02 2018-03-07 반도체 검사 장치
KR1020197030977A KR102459819B1 (ko) 2017-06-02 2018-03-07 반도체 검사 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197030977A KR102459819B1 (ko) 2017-06-02 2018-03-07 반도체 검사 장치

Country Status (8)

Country Link
US (2) US11209476B2 (ko)
EP (1) EP3633355A4 (ko)
JP (1) JP6419893B1 (ko)
KR (2) KR102562196B1 (ko)
CN (2) CN110691968B (ko)
SG (1) SG11201909742XA (ko)
TW (2) TWI831288B (ko)
WO (1) WO2018220931A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6820184B2 (ja) * 2016-10-26 2021-01-27 浜松ホトニクス株式会社 半導体デバイス検査方法及び半導体デバイス検査装置
US11536792B2 (en) * 2020-04-30 2022-12-27 Applied Materials Israel Ltd. Test of an examination tool
JP7306355B2 (ja) * 2020-09-23 2023-07-11 トヨタ自動車株式会社 変換アダプタ
CN112485271A (zh) * 2020-12-04 2021-03-12 余荣平 一种pcb板检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118778A (ja) * 1996-10-16 1998-05-12 Keyence Corp レーザマーキング装置
WO2000009993A1 (fr) * 1998-08-10 2000-02-24 Mitsubishi Denki Kabushiki Kaisha Dispositif de verification de cartes a circuit imprime
JP2008188638A (ja) * 2007-02-05 2008-08-21 Sony Corp 欠陥修正装置、配線基板の製造方法、ディスプレイ装置の製造方法
WO2009011441A1 (ja) * 2007-07-19 2009-01-22 Nikon Corporation 走査型共焦点顕微鏡
WO2013172887A1 (en) * 2012-05-15 2013-11-21 The Boeing Company Contamination identification system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580497A (ja) * 1991-09-20 1993-04-02 Canon Inc 面状態検査装置
JPH05129399A (ja) * 1991-11-01 1993-05-25 Toshiba Corp 表面付着粒子検出装置
US7952374B2 (en) 2008-06-02 2011-05-31 Quantum Focus Instruments Corporation Transient emission scanning microscopy
JP2009295414A (ja) 2008-06-05 2009-12-17 Panasonic Corp 誘導加熱調理器
US10520721B2 (en) * 2013-03-15 2019-12-31 The Brain Window, Inc. Optical beam scanning system having a synthetic center of beam rotation
CN204054955U (zh) * 2014-05-08 2014-12-31 佛山市联动科技实业有限公司 带检测的激光打标机
JP6534854B2 (ja) * 2015-04-27 2019-06-26 オリンパス株式会社 レーザ走査型顕微鏡
CN106405826B (zh) 2015-07-29 2019-04-19 大族激光科技产业集团股份有限公司 一种双光路成像的振镜扫描系统及扫描方法
JP2017129650A (ja) * 2016-01-19 2017-07-27 株式会社ディスコ 走査用ミラー
US10841548B2 (en) * 2016-03-01 2020-11-17 Funai Electric Co., Ltd. Oscillating mirror element and projector
US10310058B1 (en) * 2017-11-22 2019-06-04 Luminar Technologies, Inc. Concurrent scan of multiple pixels in a lidar system equipped with a polygon mirror
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10118778A (ja) * 1996-10-16 1998-05-12 Keyence Corp レーザマーキング装置
WO2000009993A1 (fr) * 1998-08-10 2000-02-24 Mitsubishi Denki Kabushiki Kaisha Dispositif de verification de cartes a circuit imprime
JP2008188638A (ja) * 2007-02-05 2008-08-21 Sony Corp 欠陥修正装置、配線基板の製造方法、ディスプレイ装置の製造方法
WO2009011441A1 (ja) * 2007-07-19 2009-01-22 Nikon Corporation 走査型共焦点顕微鏡
WO2013172887A1 (en) * 2012-05-15 2013-11-21 The Boeing Company Contamination identification system

Also Published As

Publication number Publication date
EP3633355A4 (en) 2021-03-31
US11209476B2 (en) 2021-12-28
SG11201909742XA (en) 2019-11-28
TW202242395A (zh) 2022-11-01
TWI831288B (zh) 2024-02-01
TWI769229B (zh) 2022-07-01
CN110691968A (zh) 2020-01-14
JP2018205083A (ja) 2018-12-27
US20220050137A1 (en) 2022-02-17
WO2018220931A1 (ja) 2018-12-06
KR102562196B1 (ko) 2023-08-02
US20200110129A1 (en) 2020-04-09
CN110691968B (zh) 2022-08-26
TW201903394A (zh) 2019-01-16
CN115326827A (zh) 2022-11-11
US11714120B2 (en) 2023-08-01
KR20200013639A (ko) 2020-02-07
KR102459819B1 (ko) 2022-10-27
JP6419893B1 (ja) 2018-11-07
EP3633355A1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
KR102562196B1 (ko) 반도체 검사 장치
US11402200B2 (en) Measuring device, observing device and measuring method
JP6581081B2 (ja) 検査装置及び磁気光学結晶の配置方法
US11967061B2 (en) Semiconductor apparatus examination method and semiconductor apparatus examination apparatus
US10591427B2 (en) Analysis system and analysis method
JP6909195B2 (ja) 半導体検査装置
US20210333207A1 (en) Optical measurement device

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right