KR20220143130A - Csi 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법 - Google Patents

Csi 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법 Download PDF

Info

Publication number
KR20220143130A
KR20220143130A KR1020227033310A KR20227033310A KR20220143130A KR 20220143130 A KR20220143130 A KR 20220143130A KR 1020227033310 A KR1020227033310 A KR 1020227033310A KR 20227033310 A KR20227033310 A KR 20227033310A KR 20220143130 A KR20220143130 A KR 20220143130A
Authority
KR
South Korea
Prior art keywords
signal
channel
function
transmitted
computer
Prior art date
Application number
KR1020227033310A
Other languages
English (en)
Inventor
곤잘레스 데이비드 곤잘레스
안드레아스 앙드레
오스발도 곤사
히로키 이이모리
데 아브레유 쥬세페 타듀 프레이타스
라즈반-안드레이 스토이카
Original Assignee
콘티넨탈 오토모티브 테크놀로지스 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 콘티넨탈 오토모티브 테크놀로지스 게엠베하 filed Critical 콘티넨탈 오토모티브 테크놀로지스 게엠베하
Publication of KR20220143130A publication Critical patent/KR20220143130A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/18Monitoring during normal operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0039Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

복소수 계수들의 채널 행렬에 의해 특성화되는 CSI 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 컴퓨터 구현 복구 방법으로서, 방법은 신호 검출기에 의해 채널로부터 신호를 수신하는 단계, 수신기에서 CSI 오류 파라미터(τ)를 추정하는 단계, 잡음 전력 추정기에 의해 잡음 전력을 추정하는 단계, 송신된 심볼을 추정하는 디코더로 검출된 신호 및 CSI 오류 파라미터(τ) 및 잡음 전력 추정치를 보내는 단계를 포함하며, 디코더의 추정이 아마도 송신되었을 수 있는 심볼을 생성하며, 상기 심볼은 디맵퍼로 보내지며, 디맵퍼는 추정된 송신 신호 및 상응하는 추정된 심볼에 상응하는 비트 추정치들을 추가 처리를 위해 마이크로프로세서로 출력한다.

Description

CSI 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법
본 발명은 비이상적인 채널 상태 정보라 가정하고 잡음이 있는 환경에서 이산 디지털 신호화 알파벳(예를 들어, 성상)으로부터 샘플링되는 심볼을 추정하는 문제를 다루는 과부하된 시나리오에서의 디지털 무선 시스템의 분야에 관한 것이다.
Shannon이 샤논 웨버 통신 모델을 개발했던 때부터, 이산 알파벳들(예를 들어, 성상, 인덱스, 코드북)로 정보성 비트를 임베딩하는 것은 실현 가능한 신호 처리 시스템의 필수적인 특징이었다. 높은 데이터 속도에 대한 언제나 더 많은 수요에 응하여 그리고 (송수신기가 더 많은 수의 안테나를 채용하는) 더 높은 주파수 대역에서 무선 시스템을 작동시키는 경향 때문에, 그러한 이산 알파벳 시스템은 빠르게 확장되고 있어, 다차원적인 이산 신호 검출 문제를 과거 어느 때보다 더 유의미하게 한다. 더욱이, 최근에 보여지는 무선으로 연결되는 통신 디바이스의 수의 빠른 성장은 장래의 무선 시스템의 수신기가 결정되지 않은 시스템 조건을 처리할 수 있을 필요성을 시사한다.
"리소스 과부하" 또는 "과부하된 통신 채널"이란 표현들은 전형적으로 수명의 사용자, 또는 수(NT)가 수신기(R)의 수(NR)보다 더 많은 송신기(T)에 의해 동시에 사용되는 통신 채널을 지칭한다. 수신기측에서, 다수의 송신되는 신호는 하나의 중첩된 신호로서 나타날 것이다. 채널은 심볼들의 중첩을 송신함으로써 "통상적인" 직교 송신 방식으로 이용 가능한 채널 리소스들을 넘어서는 단일 송신기에 의해 과부하될 수도 있다. 따라서, "과부하"는 단일 송신기가 채널에 배타적으로 액세스하는 방식들과 비교해 볼 때 직교 송신 방식들에서 찾을 수 있는 바와 같이, 예를 들어 일정 시간 슬롯 등 동안 일어난다. 과부하된 채널들은, 예를 들어 비직교 다중 액세스(NOMA) 및 결정되지 않은 다중 입력 다중 출력(MIMO) 채널들을 이용하는 무선 통신 시스템들에서 발견될 수 있다.
C. Qian, J. Wu, Y. R. Zheng, and Z. Wang in "결정되지 않은 다중 입력 다중 출력 시스템들에 대한 2단계 리스트 스피어 디코딩(Two-stage list sphere decoding for under-determined multiple-input multiple-output systems)", IEEE Transactions on Wireless Communication, vol. 12, no. 12, pp. 6476-6487, 2013; N개의 송신 안테나 및 M<;N개의 수신 안테나를 채용하는 결정되지 않은 다중 입력 다중 출력(UD-MIMO) 시스템들에 대한 2단계 리스트 스피어 디코딩(LSD) 알고리즘이 제안된다. 2단계 LSD 알고리즘은 N개의 검출층을 2개의 그룹으로 분할함으로써 UD-MIMO 시스템들의 고유 구조를 활용한다. 그룹 1은 대칭적 MIMO 시스템과 유사한 구조를 갖는 층 1 내지 층 M을 포함하는 반면에; 그룹 2는 채널 그램 행렬의 랭크 부족에 기여하는 층 M+1 내지 층 N을 포함한다. 트리 탐색 알고리즘들은 그룹들 둘 다에 이용되지만, 상이한 탐색 반경들을 갖는다. 수신된 신호들의 통계학적 특성들에 기반하여 그룹 2의 트리 탐색 반경을 순응적으로 조정하는 새로운 방법이 제안된다. 순응적 트리 탐색의 채용은 계산 복잡성을 상당히 감소시킬 수 있다. 랭크 부족 문제를 방지하는 변경된 채널 그램 행렬을 또한 제안하고, 이는 일반화된 스피어 디코딩(GSD) 알고리즘에 이용되는 일반화된 그램 행렬보다 더 양호한 성능을 제공한다. 시뮬레이션 결과들은 제안된 2단계 LSD 알고리즘이 비트 오류율(BER) 성능의 0.1 ㏈ 미만의 저하로 1 내지 2 자릿수만큼 복잡성을 감소시킬 수 있다는 것을 나타낸다. 이러한 참조는 본 출원의 본 설명에서의 참조 [1]로서 이용될 것이다.
R. Hayakawa, K. Hayashi, and M. Kaneko in "슬랩 디코딩 및 래티스 감소를 갖는 과부하된 MIMO 신호 검출 방식(An overloaded MIMO signal detection scheme with slab decoding and lattice reduction)", Proceedings APCC, Kyoto, Japan, Oct. 2015, pp. 1-5는 과부하된 MIMO(다중 입력 다중 출력) 시스템들에 대한 감소된 복잡성 신호 검출 방식을 제안한다. 제안된 방식은 첫째로 수신 안테나의 수와 동일한 수의 신호 요소를 포함하는 사후 선출 벡터, 및 나머지 요소들을 포함하는 사전 선출 벡터인, 2개의 부분으로 송신된 신호들을 분할한다. 둘째로, 제안된 방식은 사전 선출 벡터의 해결책 후보들을 감소시키기 위해 슬랩 디코딩을 이용하고 래티스 감소 보조 MMSE(최소 평균 제곱 오차)-SIC(연속 간섭 소거) 검출에 의해 각각의 사전 선출 벡터 후보에 대한 사후 선출 벡터들을 결정한다. 시뮬레이션 결과들은 제안된 방식이, 필요한 계산 복잡성을 대폭 감소시키면서 최적의 ML(최대 가능성) 검출과 거의 동일한 성능을 달성할 수 있는 것을 나타낸다. 이러한 참조는 본 출원의 본 설명에서의 참조 [2]로서 이용될 것이다.
T. Datta, N. Srinidhi, A. Chockalingam, and B. S. Rajan, "결정되지 않은 거대 MIMO 시스템들에의 낮은 복잡성 근접 최적 신호 검출(Low complexity near-optimal signal detection in underdetermined large MIMO system)", in Proc. NCC, Feb. 2012, pp. 1-5는 nt × nr개의 결정되지 않은 MIMO(UD-MIMO) 시스템에서의 고려된 신호 검출이며, 여기서, i) nt > nr이며, 여기서, 과부하 인자 α = nt이며, nr > 1이고, ii) nt개의 심볼이 공간적 다중화를 통한 채널 사용마다 송신되고, iii) nt, nr은 크다(수십의 범위이다). 반응적 타부 탐색에 기반하는 낮은 복잡성 검출 알고리즘이 고려된다. 낮은 복잡성으로 거대 UD-MIMO 시스템들에서 근접 최적 성능을 제공하는 가변 임계 기반 중단 기준이 제안된다. 거대 UD-MIMO 시스템들의 최대 가능성(ML) 비트 오류 성능 상의 하부 경계가 또한 비교를 위해 얻어진다. 4-QAM(32 bps/㎐)을 갖는 16 × 8 V-BLAST UD-MIMO 시스템에서 10-2의 코딩되지 않은 BER에서의 0.6 ㏈ 내의 ML 하부 경계에 근접한 BER 성능을 달성하는 제안된 알고리즘이 나타내어진다. 4-QAM/16-QAM을 갖는 32 × 16, 32 × 24 V-BLAST UD-MIMO에 대해 유사한 근접 ML 성능 결과들이 또한 나타내어진다. UD-MIMO에 대한 제안된 알고리즘과 λ 일반화 스피어 디코더(λ-GSD) 알고리즘 사이의 성능 및 복잡성 비교는 제안된 알고리즘이 상당히 더 적은 복잡성으로이지만 λ-GSD의 거의 동일한 성능을 달성하는 것을 나타낸다. 이러한 참조는 본 출원의 본 설명에서의 참조 [3]으로서 이용될 것이다.
Y. Fadlallah, A. A
Figure pct00001
ssa-El-Bey, K. Amis, D. Pastor and R. Pyndiah, "희소 분해를 이용한 MIMO 송신의 새로운 반복 검출기(New Iterative Detector of MIMO Transmission Using Sparse Decomposition)", IEEE Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3458―3464, Aug. 2015는 대규모 다중 입력-다중 출력(MIMO) 시스템들에서의 디코딩의 문제를 다룬다. 이러한 경우에, 최적의 최대 가능성(ML) 검출기는 신호 및 성상 치수들이 갖는 복잡성의 기하 급수적 증가로 인해 비실용적이게 된다. 이러한 문서는 허용할 수 있는 복잡성 정도를 갖는 반복 디코딩 전략을 도입시킨다. 유한 성상을 갖는 MIMO 시스템을 고려하고 이것을 희소 신호 소스들을 갖는 시스템으로 모델링한다. 디코딩된 신호의 일정한 1-기준을 보존하면서, 수신된 신호와의 유클리드 거리를 최소화하는 ML 완화 검출기를 제안한다. 검출 문제가 다항 시간에서 해결 가능한 볼록 최적화 문제와 동등하다는 것이 또한 나타내어진다. 이러한 참조는 본 출원의 본 설명에서의 참조 [4]로서 이용될 것이다.
T. Wo and P. A. Hoeher, "심하게 지연 확산된 MIMO 채널들에 대한 단순한 반복 가우시안 검출기(A simple iterative gaussian detector for severely delay-spread MIMO channels)", in Proc. IEEE ICC, Glasgow, UK, 2007은 이러한 문서에서, 극심한 지연 확산을 갖는 다중 입력 다중 출력(MIMO) 채널들에 대한 낮은 복잡성 고성능 검출 알고리즘이 제안되는 것을 설명한다. 이러한 알고리즘은 독립 근사치뿐만 아니라 가우시안 근사치를 적용시키는 인수 그래프들을 통한 반복 데이터 검출을 수행한다. 이러한 알고리즘이 극심한 지연 확산을 갖는 코딩된 MIMO 시스템들에 대한 근접 최적 BER 성능을 달성한다는 것이 나타내어진다. 이러한 알고리즘의 계산 복잡성은 다수의 송신 안테나, 다수의 수신 안테나, 그리고 다수의 비제로 채널 계수에서 엄격하게 선형이다. 이러한 참조는 본 출원의 본 설명에서의 참조 [5]로서 이용될 것이다.
A. A
Figure pct00002
ssa-El-Bey, D. Pastor, S. M. A. Sba
Figure pct00003
, and Y. Fadlallah, "결정되지 않은 선형 시스템들에 대한 한정 알파벳 해결책들의 희소성 기반 복원(Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems)", IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 2008-2018, Apr. 2015는 결정되지 않은 측정치들(y = Af, 여기서, A는 주어진 (무작위) n × N 행렬임)로부터 결정론적인 한정 알파벳 벡터(f)를 추정하는 문제가 설명되는 것을 기술한다. 1-기준 최소화를 통한 한정 알파벳 신호들의 복원에 대해 2가지의 볼록 최적화 방법이 도입된다. 제1 방법은 정규화에 기반한다. 제2 접근법에서, 문제는 적절한 희소 변환 이후의 희소 신호들의 복원으로서 공식화된다. 정규화 기반 방법은 변환 기반 방법보다 덜 복잡하다. 알파벳 크기(p)가 2이고 (n, N)이 비례해서 성장할 때, 신호가 높은 확률로 복원될 조건들은 2가지의 방법에 대해 동일하다. p > 2일 때, 변환 기반 방법의 작용이 확립된다. 이러한 참조는 본 출원의 본 설명에서의 참조 [6]으로서 이용될 것이다.
M. Nagahara, "절댓값들의 합에 의한 이산 신호 복구(Discrete signal reconstruction by sum of absolute values)", IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1575-1579, Oct. 2015; 불완전한 선형 측정치들로부터 한정 알파벳의 값들을 취하는 알려지지 않은 이산 신호를 복구하는 문제를 고려한다. 이러한 문제의 어려움은 복구의 계산 복잡성이 그대로 기하 급수적이라는 것이다. 이러한 어려움을 극복하기 위해, 압축 감지의 발상을 확장시키고, 가중화된 절댓값들의 합을 최소화함으로써 문제를 해결하는 것을 제안한다. 알파벳 상에서 한정되는 확률 분포가 인지된다고 가정하고, 선형 프로그래밍으로서 복구 문제를 공식화한다. 예들은 제안된 방법이 효과적이라는 것을 예시하는 것으로 나타내어진다. 이러한 참조는 본 출원의 본 설명에서의 참조 [7]로서 이용될 것이다.
R. Hayakawa and K. Hayashi, "거대 과부하된 MIMO 시스템들에 대한 볼록 최적화 기반 신호 검출(Convex optimization-based signal detection for massive overloaded MIMO systems)", IEEE Trans. Wireless Commun., vol. 16, no. 11, pp. 7080-7091, Nov. 2017은 수신 안테나의 수가 송신된 스트림의 수 미만인 거대 다중 입력 다중 출력(MIMO) 시스템들에 대한 신호 검출 방식들을 제안한다. 실질적인 기저 대역 디지털 변조를 가정하고, 송신된 심볼들의 불연속을 이용하여, 절댓값의 합(SOAV) 최적화라 일컬어지는 볼록 최적화 문제로서 신호 검출 문제를 공식화하였다. 더욱이, SOAV 최적화를 가중화된 SOAV(W-SOAV) 최적화로 확장시키고 목적 함수에서의 가중치들을 업데이트하는 것으로 W-SOAV 최적화를 해결하는 반복 접근법을 제안한다. 더욱이 코딩된 MIMO 시스템들의 경우, 송신된 심볼들의 로그 우도율들(LLRs)이 MIMO 검출기와 채널 디코더 사이에서 반복하여 업데이트되는 공동 검출 및 디코딩 방식을 또한 제안한다. 게다가, W-SOAV 최적화로 얻어지는 추정 오류의 크기의 상부 경계에 관하여 이론적 성능 분석이 제공된다. 시뮬레이션 결과들은 제안된 방식의 비트 오류율(BER) 성능이, 특히 대규모 과부하된 MIMO 시스템들에서 통상적 방식들의 비트 오류율(BER) 성능보다 더 양호하다는 것을 나타낸다. 이러한 참조는 본 출원의 본 설명에서의 참조 [8]로서 이용될 것이다.
R. Hayakawa and K. Hayashi, "희소 정규화기들로의 볼록 최적화를 통한 복소수 이산값 벡터의 복구(Reconstruction of complex discrete-valued vector via convex optimization with sparse regularizers)", IEEE Access, vol. 6, pp. 66 499-66 512, Oct. 2018은 수신 안테나의 수가 송신된 스트림의 수 미만인 거대 다중 입력 다중 출력(MIMO) 시스템들에 대한 신호 검출 방식들을 제안한다. 실질적인 기저 대역 디지털 변조를 가정하고, 송신된 심볼들의 불연속을 이용하여, 절댓값의 합(SOAV) 최적화라 일컬어지는 볼록 최적화 문제로서 신호 검출 문제가 공식화된다. 더욱이, SOAV 최적화를 가중화된 SOAV(W-SOAV) 최적화로 확장시키고 목적 함수에서의 가중치들을 업데이트하는 것으로 W-SOAV 최적화를 해결하는 반복 접근법을 제안한다. 더욱이 코딩된 MIMO 시스템들의 경우, 송신된 심볼들의 로그 우도율들이 MIMO 검출기와 채널 디코더 사이에서 반복하여 업데이트되는 공동 검출 및 디코딩 방식이 제안된다. 게다가, W-SOAV 최적화로 얻어지는 추정 오류의 크기의 상부 경계에 관하여 이론적 성능 분석이 제공된다. 이러한 참조는 본 출원의 본 설명에서의 참조 [9]로서 이용될 것이다.
Z. Hajji, A. Aissa-El-Bey, and K. A. Cavalec, "대규모 MIMO 시스템들에 대한 한정 알파벳 신호들의 단순성 기반 복원(Simplicity-based recovery of finite-alphabet signals for large-scale MIMO systems)", Digital Signal Process., vol. 80, pp. 70-82, 2018; 이러한 문서에서, 결정되고 결정되지 않은 대규모 시스템들 둘 다에서의 한정 알파벳 소스 분리의 문제가 고려된다. 우선, 잡음 없는 경우를 다루고 박스 제약들과 결합되는 l1-최소화에 기반하는 선형 기준을 제안한다. 성공적인 복원을 보장하는 시스템 조건들을 또한 조사한다. 다음에, 잡음이 있는 거대 MIMO 송신에 대한 접근법을 적용시키고 2차 기준 기반 검출기를 제안한다. 시뮬레이션 결과들은 다양한 QAM 변조 및 MIMO 구성에 대한 제안된 검출 방법들의 효율을 나타낸다. 성상 크기가 증가할 때, 계산 복잡성에서 어떤 변화도 없다는 점을 언급한다. 더욱이, 제안된 방법은 종래의 최소 평균 제곱 오차(MMSE) 기반 검출 알고리즘들을 능가한다. 이러한 참조는 본 출원의 본 설명에서의 참조 [10]으로서 이용될 것이다.
H. Iimori, G. Abreu, D. Gonzal
Figure pct00004
z G., and O. Gonsa, "혼합-기준 이산 벡터 디코딩을 통한 거대 과부하된 무선 시스템들에서의 공동 검출(Joint detection in massive overloaded wireless systems via mixed-norm discrete vector decoding)", in Proc. Asilomar CSSC, Pacific Grove, USA, 2019는 최대 가능성(ML) 검출의 불연속이 분획 프로그래밍(FP)을 통하여 이후에 볼록화되는 연속적인 l0-기준 제약으로 변환되는 비직교 다중 액세스(NOMA) 및 결정되지 않은 다중 입력 다중 출력(MIMO)과 같은 과부하된 무선 시스템들에 대한 새로운 `l0-기준 기반 다차원 신호 검출 방식을 제안한다. 결과적으로, 제안된 신호 검출 알고리즘은 비용의 부분에서 가중치 파라미터들을 적절하게 조정함으로써 비트 오류율(BER)의 면에서 ML과 같은 성능을 달성할 가능성을 보유한다. SotA를 능가하는 제안된 방법의 능력, 그리고 가중치 파라미터들의 최적화를 통한 ML과 같은 성능 쪽으로의 추가 개선의 가능성들 둘 다의 면에서 제안된 방법의 효과성을 예시하는 최근 기술(SotA) 대안들과의 시뮬레이션 비교들이 주어진다. 이러한 참조는 본 출원의 본 설명에서의 참조 [11]로서 이용될 것이다.
H. Iimori, R.-A. Stoica, G. T. F. de Abreu, D. Gonzal
Figure pct00005
z G., A. Andrae, and O. Gonsa, "과부하된 MIMO 시스템들에 대한 불연속 인지 수신기들(Discreteness-aware receivers for overloaded MIMO systems)", CoRR, vol. abs/2001.07560, 2020. [Online]. Available: https://arxiv.org/abs/2001.07560은 수신기에서의 통상적인 완전한 채널 상태 정보(CSI) 가정 시에 설계되는 대규모이고 과부하된 다차원 무선 통신 시스템들의 심볼 검출에 적절한 3개의 고성능 수신기를 설명한다. 이러한 통상적 가정을 이용하여, 상이한 성능 복잡성 트레이드오프를 제공하도록 3가지의 별개의 방식으로 l0-기준이 l1-기준으로 완화되지 않는 2차 변환(QT)으로 지칭되는 최근에 제안된 분획 프로그래밍(FP) 기법을 이용하여 이후에 변환되는 `0-기준 기반 최적화 문제에 관하여 최대 가능성(ML) 검출 문제가 우선 공식화된다. 불연속 인지 페널티 부과 제로 강제(DAPZF) 수신기가 더빙된 제1 알고리즘은, 계산 복잡성을 최소화하면서 최근 기술들(SotAs)을 능가하는 것을 목적으로 한다. 불연속 인지 확률론적 소프트 양자화 검출기(DAPSD)로 지칭되는 제2 해결책은 소프트 양자화 방법을 통하여 복원 성능을 개선하도록 설계되고, 수치적 시뮬레이션들을 통하여 찾게 되어 3개 중 가장 양호한 성능을 달성한다. 마지막으로, 불연속 인지 일반화된 고유치 검출기(DAGED)로 명명된 제3 방식은 다른 방식들과 비교하여 성능과 복잡성 사이의 트레이드오프를 제공할 뿐만 아니라, 최적화된 오프라인이도록 페널티화 파라미터를 요구하지 않음으로써 다른 방식들과 다르기도 하다. 시뮬레이션 결과들은 상당히 더 낮은 복잡성을 나타내는 DAPZF로 모든 3가지의 방법이 최근 기술 수신기들을 능가한다는 것을 입증한다. 이러한 참조는 본 출원의 본 설명에서의 참조 [12]로서 이용될 것이다.
Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511804441은 강의 서적으로서 볼록 최적화에 대한 이론적 근거를 설명한다. 이러한 참조는 본 출원의 본 설명에서의 참조 [13]으로서 이용될 것이다.
K. Shen and W. Yu in "통신 시스템들에 대한 분획 프로그래밍 - 파트 I: 전력 제어 및 빔 형성(Fractional programming for communication systems - Part I: Power control and beamforming)", IEEE Trans. Signal Process., vol. 66, no. 10, pp. 2616-2630, May 2018은 통신 시스템들의 설계 및 최적화에서의 FP의 사용을 분석한다. 이러한 문서의 파트 I은 FP 이론 및 연이은 문제들을 해결하는 것에 중점을 둔다. 주요 이론적인 기여는 주로 단일 비율 또는 최대 대 최소 비율 경우만을 다룰 수 있는 통상적 FP 기법들과 대조적으로 다중 비율 오목 내지 볼록 FP 문제를 다루는 새로운 2차 변환 기법이다. 시스템 레벨 설계가 흔히 다중 신호 대 간섭 더하기 잡음비 항들을 수반하므로, 다중 비율 FP 문제들은 통신 네트워크들의 최적화에 중요하다. 이러한 문서는, 특히 전력 제어, 빔 형성 및 에너지 효율 최대화에 대한 통신 시스템 설계에서의 연이은 문제들을 해결하는 것에 대한 FP의 적용들을 고려한다. 이러한 적용 경우들은 제안된 2차 변환이 볼록 문제들의 시퀀스로서 본래의 비볼록 문제를 재구성함으로써 비율들을 수반하는 최적화를 크게 용이하게 할 수 있다는 것을 예시한다. 이러한 FP 기반 문제 재공식화는 정류점으로의 입증 가능한 수렴을 갖는 효율적인 반복 최적화 알고리즘을 야기한다. 이러한 참조는 본 출원의 본 설명에서의 참조 [14]로서 이용될 것이다.
Kai-Kit Wong, Member and Arogyaswami Paulraj in "과부하된 MIMO 안테나 시스템들에 대한 효율적인 고성능 디코딩(Efficient High-Performance Decoding for Overloaded MIMO Antenna Systems)" IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, MAY 2007은 전방향 오류 정정 코드들(예를 들어, 시공간 터보 코드들)을 달성하는 능력의 실질적인 난제가 상기 코드들의 최적의 공동 최대 가능성(ML) 디코딩에 의해 연관된 엄청난 복잡성을 극복하는 것이라는 것을 기술한다. 이러한 이유로, 감당할 수 있는 복잡성으로 최적의 ML 디코딩 성능에 접근하도록 반복 소프트 디코딩이 연구되었다. 다중 입력 다중 출력(MIMO) 채널들에서, 신중한 디코딩 전략은: 1) 스피어 디코딩의 리스트 버전 또는 이의 변형예들을 이용하여 소프트 비트들을 추정하고, 2) 반복 소프트 디코딩을 통해 소프트 비트들을 업데이트하는 2개의 단계로 구성된다. MIMO 디코더는, 반복 소프트 디코딩이 수행되기 전에 제1 단계에서 신뢰 가능한 소프트 비트 추정치들을 생성하는 데 필요하다. 이러한 문서에서, 수신 안테나의 수가 공간 도메인에서 다중화되는 신호의 수 미만인 과부하된(또는 비대한) MIMO 안테나 시스템들에 중점이 두어진다. 이러한 시나리오에서, 본래의 형태의 스피어 디코딩은 본질적으로 적용 가능하지 않고 본 목적은 과부하된 검출에 대응하도록 스피어 디코딩을 기하학적으로 일반화하는 것이다. 제안되는 이른바 슬랩 스피어 디코딩(SSD)은, 복잡성을 크게 감소시키면서 정확한 ML 하드 검출을 얻는 것을 보장한다. SSD의 리스트 버전과 함께, 이러한 문서는 기대되는 성능을 위해 반복 소프트 디코딩에 대한 입력들로서 감당할 수 있는 복잡성으로의 신뢰 가능한 소프트 비트 추정치들을 보장할 수 있는 효율적인 MIMO 소프트 디코더를 제안한다. 이러한 참조는 본 출원의 본 설명에서의 참조 [15]로서 이용될 것이다.
G.D. Golden, C.J. Foschini, R.A. Valenzuela and P.W. Wolniansky in "V-BLAST 시공간 통신 아키텍처를 이용한 검출 알고리즘 및 초기 실험실 결과들(Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture)" ELECTRONICS LETTERS 7th January 7999 Vol. 35 No. I; 수직 BLAST(Bell 실험실 계층화 시공간) 무선 통신 아키텍처의 신호 검출 알고리즘을 설명한다. 이러한 공동 시공간 접근법을 이용하여, 20 내지 4O 비트/초/㎐의 범위의 스펙트럼 효율들이 실내 페이딩 속도들로의 수평 페이딩 조건들 하에서 실험실에서 입증되었다. 최근의 정보 이론 연구는, 다중 경로가 적절하게 활용되면, 강렬한 산란 무선 채널이 막대한 이론적 능력들이 가능하다는 것을 나타내었다. D-BLAST로서 현재 알려져 있는 Foschini에 의해 제안된 사선으로 계층화되는 시공간 아키텍처는, 송신기 및 수신기 둘 다에서의 다중 요소 안테나 어레이들, 그리고 코드 블록들이 시공간에서 사선들에 걸쳐 산재되는 정연한 사선으로 계층화되는 코딩 구조를 이용한다. 독립된 레일리 산란 환경에서, 이러한 처리 구조는 송신 안테나의 수로 선형으로 성장되는 이론적 속도들로 이어지며, 이러한 속도들은 샤논 능력의 90%에 접근한다. 그러나, 사선 접근법은 초기 구현을 부적절하게 하는 특정 구현 복잡성을 겪는다. 실험실에서 실시간으로 구현되었던 수직 BLAST 또는 V-BLAST로서 알려져 있는 BLAST 검출 알고리즘의 단순화된 버전을 설명한다. 본 실험실 프로토타입을 이용하여, 실내 느린 페이딩 환경에서 40 비트/초/㎐만큼 높은 스펙트럼 효율들을 입증하였다. 이러한 참조는 본 출원의 본 설명에서의 참조 [16]으로서 이용될 것이다.
도 1 및 도 2는 직교 다중 액세스 및 비직교 다중 액세스의 기본 특성들을 각각 도시한다. 도 1은, 예를 들어 무선 통신 시스템에서 공유된 송신 매체의 채널들에 대한 송신 리소스들의 순서화된 액세스의 하나의 예시적인 실시예를 도시한다. 이용 가능한 주파수 대역은 수개의 채널로 분할된다. 단일 채널 또는 인접하거나 인접하지 않은 채널들의 조합은 한 번에 임의의 하나의 송신기에 의해 사용될 수 있다. 상이한 해싱 패턴들로 나타내어지는 상이한 송신기들은 이산 시간 슬롯들에서 또는 수개의 이후의 시간 슬롯들에서 송신할 수 있고, 이들이 각각의 송신을 위해 송신하는 채널들 또는 채널들의 조합을 변경할 수 있다. 도 1에 도시된 바와 같이, 임의의 송신기가 더 오랜 주기를 통해 하나의 채널 리소스를 사용할 수 있는 반면에, 다른 송신기가 동시에 2개 이상의 채널 리소스를 사용할 수 있고, 또 다른 송신기가 더 오랜 기간을 통해 2개 이상의 채널 리소스를 사용하여 둘 다일 수 있다는 점을 주목해야 한다. 어떠한 경우에도, 하나만의 송신기가 한 번에 임의의 채널 리소스 또는 이들의 조합을 이용하고, 각각의 송신기로부터 신호들을 검출하고 디코딩하는 것이 비교적 용이하다.
도 2a는 도 1에 도시된 것과 동일한 주파수 대역을 도시하지만, 송신기로의 하나 이상의 개별 채널의 임시 배타적인 할당이 항상 있지는 않을 수 있다. 오히려, 주파수 대역의 적어도 일부가 복수의 송신기에 의해 동시에 사용될 수 있고, 개별 송신기들로부터 신호들을 검출하고 디코딩하는 것이 훨씬 더 어렵다. 이는 상이한 해싱의 박스들로 나타내어진다. 좌측에서 시작해서, 처음에 3개의 송신기가 직교 방식으로 임시 배타적인 채널 리소스들을 사용하지만, 다음 시기에서, 2개의 송신기가 부분적으로 중첩되는 채널들에서 송신한다. 수평 해싱 패턴으로 나타내어지는 송신기는 도면의 하단에 도시된 채널에 배타적으로 액세스하는 반면에, 이러한 송신기에 의해 사용되는 다음 3개의 채널은 파선 타원형의 사선 해싱 패턴으로 나타내어지는 다른 송신기에 의해 또한 사용된다. 중첩이 사선으로 교차된 해싱 패턴으로 나타내어진다. 2개의 송신기 각각이 2개의 채널 리소스를 배타적으로 사용하는 반면에, 둘 다가 제3의 채널 리소스를 공유하는 유사한 상황이 그 다음의 시기에서 일어난다. 일부 또는 모든 채널 리소스를 2개 초과의 송신기가 적어도 임시로 공유할 수 있다는 점이 주목되어야 한다. 이러한 상황들은 부분적 과부하, 또는 부분적 NOMA라 일컬어질 수 있다. 상이한 표현으로, 도 2b는 도 2와 동일한 주파수 대역을 도시한다. 송신기에 대한 하나 이상의 개별 채널의 어떤 분명한 임시 배타적인 할당도 없고, 주파수 대역의 적어도 일부가 복수의 송신기에 의해 적어도 임시로 동시에 사용되므로, 개별 송신기들로부터 신호들을 검출하고 디코딩하는 것의 어려움이 임의의 단일 송신기를 식별하는 것을 가능하게 하지 않는 회색 채움 패턴으로 나타내어진다.
다차원 이산 신호 검출 문제들이 오디오 및 비디오 시스템, 통신 시스템, 제어 시스템 등을 포함하는 신호 처리와 관련되는 현대 전기 공학 기술의 다양한 영역에서 또한 발생한다. 일반적으로, 목적은 무작위이더라도(인지되지 않더라도), 수신기에 인지되는 체계적인 모델(코딩 북, 성상 등)에 따라 소스들로부터 생성되는 정보성 양들(심볼들)을 무작위 왜곡, 잡음 및 간섭을 겪게 되는 신호의 제한된 수의 관측되는 측정치 중에서 추출하는 것이다.
그러한 거대하고 가능하게는 결정되지 않은 시스템들의 주된 문제들 중 하나는 성능 복잡성 트레이드오프이다. 실제로 한편으로는, ML 수신기, 및 스피어 디코더들과 같은 ML 수신기의 종래의 근접 최적 대안들 [1,2]은 입력 변수의 수 및 소스의 성상의 기수로 기하 급수적으로 성장되어, 문제의 결합 공식화들을 비교적 작은 설정들에 대해서도 다루기 어려워지게 하는 금제의 계산 복잡성을 겪는다. 다른 한편으로는, 통상적인 낮은 복잡성 선형 추정기들(즉, 제로 강제(ZF) 및 최소 평균 제곱 오차(MMSE))은 결정되지 않은 경우들에서 극심한 비트 오류율(BER) 성능 저하와 연관된다. 수개의 낮은 복잡성 대응물이 지난 [3 내지 5]에 제안되었지만, 비교적 높은 계산 복잡성으로 인한 측정 가능성 또는 적당한 검출 능력으로 인한 성능에 대한 이들의 한계들을 찾을 수 있다.
최근에, 다차원 이산 신호 검출의 맥락에서, [6, 7]에 의해 제안된 다항 시간에서 해결 가능한 새로운 한정 알파벳 신호 정규화 기법으로 이어지는 압축 감지(CS) 방법들의 도입의 덕분으로 이러한 영역에서 많은 진전이 이루어졌다. 자세히 설명하면, 불연속 인지로 지칭되는 이러한 새로운 개념의 핵심 발상은 볼록함을 유지하므로 최적의 해결책들이 효율적으로 얻어지는 것을 가능하게 하도록 탐색 공간의 연속성을 유지하면서 CS 방법들 중에서 최근에 출현하였던 기법들을 이용하여 그럴듯한 신호들의 탐색을 이산 성상 세트 쪽으로 편향시키는 것이다.
이러한 맥락으로, 불연속 인지 수신기 설계들이 수개의 최근의 논문에서 추구되었다. [6, 7]에서 예를 들어, 심하게 과부하된 거대 시스템들에서도 이산 신호 복원의 실행 가능성을 입증하는 무잡음의 결정되지 않은 선형 시스템들에 대한 새로운 희소성 기반 복원 방법들이 제안되었다.
수신기에서의 디코딩 성능에 대한 잡음의 영향을 고려하기 위해, [8 내지 10]은 통상적 선형 ZF 및 MMSE 추정기들뿐만 아니라 그래프 기반 반복 가우시안 검출기(GIGD) [5], 쿼드 민(Quad-min) [4] 및 강화된 반응적 타부 탐색(ERTS) [3]을 포함하는 이전 최근 기술들(SotAs)도 상당히 능가하는 것으로 나타내어졌던 복소수 희소 정규화기들의 합(SCSR) 및 단순함 기반 복원(SBR)이 각각 절댓값의 합(SOAV)으로서 더빙되는 새로운 불연속 인지 수신기들을 개발하였다. 그러나, 후자 접근법들은 검출 성능을 개선할 가능성을 나타내는 입력 신호의 불연속을 캡처하기 위해 본래의 불연속 인지 수신기에서 나타나게 되는 l0-기준 비볼록 함수를 대체하는 데 널리 알려져 있는 l1-기준 근사치에 의존하였다.
이러한 난제를 다루기 위해, [11, 12]의 저자들은 제안된 방법들이 다른 SotA들(즉, SOAV, SCSR 및 SBR)을 능가할 뿐만 아니라 이론적 성능 경계에 접근하기도 한다는 것을 입증하였던 통상적 볼록 헐 완화에 의지하지 않고 새로운 타입의 불연속 인지 수신기들을 개발하였다. 이들의 핵심 구성 요소들은 2요소로 된: 볼록 문제들의 시퀀스로 다루기 어려운 l0-기준 최소화를 구성하여, 근사치 갭을 타이트하게 하는 적응 가능한 l0-기준 근사치 및 분획 프로그래밍(FP)이다.
불연속 인지 페널티 부과 제로 강제(DAPZF)로 지칭되는 새로운 불연속 인지 수신기가 다른 SotA 불연속 인지 검출기들, 즉, 앞서 언급된 SOAV, SCSR 및 SBR을 상당히 능가하였던 것이 [12]에 나타내어졌으며, 이는 DAPZF가 (도 4에 나타내어짐에 따라) 더 양호한 성능을 야기하는 신고안품이라는 것을 나타내지만, 이상적인/완전한 채널 상태 정보(CSI) 인지가 수신기에서 이용 가능하다는 것을 또한 가정하였다. 그러나, 다차원 무선 시스템들에 대한 신호 검출 알고리즘들의 성능은 실제로 이러한 불가피한 오류들에 의해 제한된다.
그러므로, 그러한 불완전성은 연관된 원하지 않는 영향들을 억제하기 위해 모델링되고 신호 검출 알고리즘들의 설계에 포함될 필요가 있다. 대체로 아는 한은, 수렴의 면에서 채널 구조체로부터 독립될 뿐만 아니라, 신호 복구 절차에서 CSI 불완전성을 충분히 고려하고 있기도 하는 불연속 인지 다차원 신호 검출 메커니즘이 아직 제안되지 않았다.
따라서, 본 발명은, 즉 특히 과부하된 통신 채널들에서의 잡음이 있는 환경들 및 CSI 오류들의 존재 하에서 송신 이산 심볼 벡터들을 추정하는 방법을 제공하는 디지털 신호 복원에서의 CSI 불확실성 문제를 다룬다.
디지털 통신들에 사용되는 심볼들이 궁극적으로 아날로그, 즉 연속적인 도메인에서의 아날로그 신호들로서 송신되고, 감쇠, 상호 변조, 왜곡 및 모든 유형의 오류들이 송신기로부터 아날로그 통신 채널을 통해 수신기로의 신호들의 경로에서 신호들을 불가피하게 변경하고 있으므로, 수신기에서의 송신된 심볼의 "검출"은 이용되는 방법과 관계 없이 맨 먼저 송신된 신호의 "추정치"가 남아 있다는 점을 본 발명은 인지하였다. 신호들은 대부분의 경우에서, 신호 진폭 및 신호 위상에 의해, 특히 송신된 신호의 벡터의 추정치에 나타내어진다. 그러나 본 명세서의 맥락에서, "검출하는" 및 "추정하는"이란 용어들은, 이들 사이의 구별이 각각의 맥락에 의해 나타내어지지 않는다면 상호 교환 가능하게 사용된다. 추정된 송신된 신호들이 결정되면, 이는 추정된 송신된 심볼로 변환되고, 추정된 송신된 심볼을 송신된 데이터 비트들로 맵핑하는 디코더에 궁극적으로 제공된다.
이하의 본 발명에서 언급되는 모든 특허 출원 및 특허는 그 전체가 참조로 본원에 포함된다:
"과부하된 통신 채널에서 송신 심볼 벡터들을 추정하는 방법(Method of estimating transmit Symbol Vectors in an overloaded Communication Channel)"이란 명칭을 갖는 PCT/EP2019/079532.
"거대 다차원 무선 시스템들에 대한 무선 X2X 액세스 및 수신기들에 대한 방법(Method for Wireless X2X Access and Receivers for Large Multidimensional Wireless Systems)"이란 명칭을 갖는 PCT/EP2020/082987.
이하의 것을 포함하는 본원에 개시되는 모든 공개는 그 전체가 참조로 포함된다:
참조 [11]로서의 H. Iimori, G. Abreu, D. Gonzal
Figure pct00006
z G., and O. Gonsa, "혼합-기준 이산 벡터 디코딩을 통한 거대 과부하된 무선 시스템들에서의 공동 검출(Joint detection in massive overloaded wireless systems via mixed-norm discrete vector decoding)", in Proc. Asilomar CSSC, Pacific Grove, USA
참조 [12]로서의 H. Iimori, R.-A. Stoica, G. T. F. de Abreu, D. Gonzal
Figure pct00007
z G., A. Andrae, and O. Gonsa, "과부하된 MIMO 시스템들에 대한 불연속 인지 수신기들(Discreteness-aware receivers for overloaded MIMO systems)", CoRR, vol. abs/2001.07560, 2020
De Mi, Mehrdad Dianati, Lei Zhang, Sami Muhaidat, and Rahim Tafazolli "불완전한 채널 상호 작용 및 채널 추정 오류를 갖는 거대 MIMO 성능(Massive MIMO Performance With Imperfect Channel Reciprocity and Channel Estimation Error)" IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 9, SEPTEMBER 2017. 이러한 문서는 채널 추정 및 상호 작용 오류를 갖는 TDD 시스템에서의 SINR을 추정하는 방법을 설명한다. 한 번 더, 신호의 전력이 인지된다면(파일럿들), 채널 추정 오류로 인한 SINR의 증가가 측정될 있다.
Hwanjin Kim and Junil Choi "1 비트 ADC들로의 공간적으로/시간적으로 상관된 거대 MIMO 시스템들에 대한 채널 추정(Channel Estimation for Spatially/Temporally Correlated Massive MIMO Systems with One-Bit ADCs)" arXiv:1910.13243 9 Dec 2019, Available 1910.13243.pdf (arxiv.org). 이러한 문서는 리소스 제약된 시스템들(1 비트 ADC)의 맥락에서 이를 하는 방법을 설명한다.
Mahdi Barzegar Khalilsarai, Saeid Haghighatshoar, Xinping Yi, and Giuseppe Caire "UL/DL 채널 공분산 외삽법 및 능동 채널 희소화를 통한 FDD 거대 MIMO(FDD Massive MIMO via UL/DL Channel Covariance Extrapolation and Active Channel Sparsification)" arXiv:1803.05754v2 [cs.IT] 24 Aug 2018; Available1803.05754.pdf (arxiv.org).
G. E. Prescott, J. L. Hammond and D. R. Hertling, "디지털 통신 채널에서의 송신 왜곡의 순응적 추정(Adaptive estimation of transmission distortion in a digital communications channel)", in IEEE Transactions on Communications, vol. 36, no. 9, pp. 1070-1073, Sept. 1988, doi: 10.1109/26.7519.
본 명세서 및 청구항들의 맥락에서, 통신 채널은 복소수 계수들의 세트 또는 행렬에 의해 특성화된다. 채널 행렬은 대문자 H에 의해 지칭될 수도 있다. 통신 채널은 임의의 적절한 매체, 예를 들어 전자기, 음향 및/또는 광파들을 전하는 매체로 확립될 수 있다. 채널 특성들이 인지되고 각각의 심볼 송신 주기/시간 동안 일정하며, 즉 채널 특성들이 시간이 지남에 따라 달라질 수 있지만, 각각의 심볼의 송신은 일정한 채널을 겪는다는 점이 가정된다.
"심볼"이라는 표현은 심볼들의 성상(C)을 형성하는 이산 심볼들(ci)의 세트의 일원 또는 보다 통속적으로, 송신을 구성하는 데 이용되는 알파벳을 지칭한다. 심볼은 하나 이상의 비트의 데이터를 나타내고 성상(C)을 이용하여 시스템에서 한 번에 송신될 수 있는 최소량의 정보를 나타낸다. 송신 채널에서, 심볼은 아날로그 상태들의 조합, 예를 들어 반송파의 진폭 및 위상에 의해 나타내어질 수 있다. 진폭 및 위상은, 예를 들어 복소수, 또는 데카르트 공간에서 가로 좌표에 걸친 세로 좌표값들로 지칭될 수 있고 벡터로서 취급될 수 있다. 심볼의 벡터는 소문자 s에 의해 본원에 언급된다. 각각의 송신기는 데이터를 송신하는 데 동일한 성상(C)을 이용할 수 있다. 그러나, 송신기들이 상이한 성상들을 이용하는 것이 마찬가지로 가능하다. 수신기가 각각의 송신기에서 사용되는 성상들에 대한 인지를 갖는다는 점이 가정된다.
볼록 함수는 함수 상의 임의의 2개의 지점이 함수 그 자체 위에 전부 그대로 있는 직선에 의해 연결될 수 있는 함수 [13]이다. 볼록 도메인은 임의의 차원수를 가질 수 있고, 4초과 차원 도메인에서의 직선의 발상이 시각화하기 어려울 수 있다는 점을 발명자들은 인지한다.
"성분(component)" 또는 "요소(element)"라는 용어들은, 특히 벡터들을 언급할 때 이하의 명세서 전체에 걸쳐 동의어로 사용될 수 있다.
모든 앞선 것이 동기가 되어, 잡음 영향을 본 발명의 검출 방식의 신호 검출 절차로 완전히 포함시키므로, 이산 신호 검출 성능의 면에서 앞서 언급한 SotA들을 능가하는 본 발명의 검출 방식의 이론적 기반을 제공한다.
이하의 것으로서 모델링될 수 있는 채널 추정 오류를 갖는 결정된 시나리오들 하에서의(가능하게는 아래에서의) 디바이스 대 디바이스 반이중 통신 링크를 고려하며,
Figure pct00008
(1)
여기서, Nt 및 Nr는 각각 입력 및 출력 신호들의 치수들이어서, 시스템의 과부하 비율이
Figure pct00009
에 의해 주어지고 τ은 CSI 추정 정확성을 나타낸다.
식 (1)에 의해 설명되는 모델들의 융통성을 주목하며, 이는 가우스 마르코프 불확실성 파라미터(τ)에 의해 다양한 레벨의 채널 추정 불완전성이 고려되는 것을 가능하게 한다. 특히, τ = 0은 완전한 CSI 가정을 시사하는 반면에, τ = 1은 어떤 CSI도 노드들에서 이용 가능하지 않다는 것을 나타낸다.
앞선 것에서,
Figure pct00010
는 송수신기와 수신기 사이의 실제 채널 행렬이고,
Figure pct00011
는 상응하는 채널 추정치를 나타내고,
Figure pct00012
는 연관된 채널 추정치 오류 행렬이고, 기수(2b)의 동일한 성상 세트 C={c1,c2b}로부터 샘플링되는 요소들로 구성되는 정규화된 입력 심볼 벡터를
Figure pct00013
으로서 설명하여, 여기서, b는 심볼 당 비트의 수를 나타내고, 마지막으로
Figure pct00014
은 제로 평균 및 공분산 행렬(
Figure pct00015
) (여기서, ρ는 기본 신호 대 잡음비(SNR)임)을 갖는 독립되고 동일하게 분포된 (i.i.d.) 원형 대칭적 복소수 AWGN 벡터를 나타낸다. SNR은 잡음에 대하여 원하는/송신되는 신호의 전력비를 나타낸다.
이는 스케일링 항
Figure pct00016
에 의해 수신된 신호를 정규화하는 것이 편리한 것을 입증할 것이며, 즉,
Figure pct00017
(2)
이로부터, 고정된 채널에 대한
Figure pct00018
의 공분산은 이하로서 기록될 수 있으며,
Figure pct00019
(3)
여기서, 이하로서 표현되는 종래의 Jakes 공간적 상관 관계로서 모델링될 채널을 가정하며,
Figure pct00020
(4)
여기서,
Figure pct00021
Figure pct00022
는 공간적 상관 관계 시그니처들이고 Hi.i.d는 작은 페이딩 영향들을 캡처하는 비상관된 i.i.d. 가우시안 행렬을 나타낸다.
식 (4)가 광범위한 채널 행렬들을 표현할 수 있다는 점은 주목한다. 예를 들어, 폭넓게 분포된 업링크 사용자들을 갖는 업링크 시나리오들은 앞선 것의 특수한 경우로서 볼 수 있으며, 송신기에서의 공간적 시그니처 행렬은 단위 행렬(즉,
Figure pct00023
)로 감소되는 데 반해, 비상관된 채널의 경우에,
Figure pct00024
Figure pct00025
이다.
앞선 것을 고려해 볼 때, 상응하는 ML 검출이 이하와 같이 손쉽게 표현될 수 있으며,
Figure pct00026
(5)
이는 이하로서 동등하게 재기록될 수 있다.
Figure pct00027
(6)
통상적인 검출기들에서, ML 검출이 수신된 신호(
Figure pct00028
)에 대한 송신 신호 벡터를 추정하는 데 이용될 수 있다. ML 검출은 수신된 신호 벡터(
Figure pct00029
)와 성상(C)의 심볼들(ci)의 모든 가능한 심볼 벡터(x) 사이의 거리들을 결정하는 것을 필요로 한다. 송신기(T)의 수(N t ) 및 성상(C)의 기수로 계산의 횟수가 기하 급수적으로 증가한다.
우선, 해결책 xC이면 그리고 이어야만, 식 (6)에서의 정규화 제약이 만족된다는 점을 인지해야 한다. 그러나, 제약이 x에서 C의 요소들의 모든 별개의 조합을 테스트함으로써만 검증될 수 있으므로, 제약은 공통 원소를 갖지 않아, 현실적인 거대 무선 시스템들에서 문제를 다루기 어렵게 한다. 이러한 문제를 피하기 위해, [10], [8], [9], [12] 각각에서 SBR, SOAV, SCSR 및 DAPZF를 포함하는 최근 기술 수신기들은 기본적으로 식 (6)의 이하의 정규화된 대안을 목적으로 하며,
Figure pct00030
, (7)
일부 페널티 파라미터의 경우, λ ≥ 0이다.
후자 공식화들은 이들의 핵심에서, [8]에 제안된 SOAV MIMO 디코더 및 [9]의 SCSR 방식이 볼록
Figure pct00031
-기준으로의
Figure pct00032
-기준의 다소 종래의 대체를 갖는 식들 (7)에 대한 단지 볼록화 대안들이라는 것을 자세히 설명한다. [6 내지 12]에 제안된 불연속 인지 최근 기술 검출 알고리즘들은 결정된 시나리오들에서뿐만 아니라 일부가 절대 성능 하부 경계에 타이트하게 접근하는 심하게 결정되지 않은 시나리오들에서도 통상적 선형 추정기들(즉, 제로 강제(ZF) 및 최소 평균 제곱 오차(MMSE))을 상당히 능가하였다. 최적화 기반 접근법들의 주요 이점들 중 하나가 메시지 통과 기반 대응물들과 달리 채널 행렬들의 타입에 관계 없이 이의 최적 수렴 보장이라는 점을 주목해야 한다.
앞선 것을 무시하고, 최적화 기반 접근법들이 통상적 ZF 추정 프로세스와 MMSE 추정 프로세스 사이의 비교의 맥락에서 불연속 인지를 갖는 ZF와 같은 해결책들로 분류될 수 있다는 것을 나타내는 식 (7)에 나타내어진 바와 같은 가능한 왜곡의 영향들(즉, CSI 불완전성 및 AWGN 잡음)을 최적화 기반 접근법들 중 어떤 것도 충분히 고려하지 않았으며, 이는 CSI 오류들에 의해 야기되는 간섭이 이의 문제 공식화에 아직 충분히 고려되지 않았다는 것을 또한 시사한다.
이러한 문제를 다루기 위해, 최근 기술 DAPZF [12]의 일반화로서 보여질 수 있는 일반화된 최소 제곱 프레임워크를 도입시킴으로써 새로운 검출 알고리즘의 검출 절차에서 잡음 및 CSI 불완전성 영향들 둘 다를 충분히 고려하는 새로운 검출 알고리즘을 이로써 제안한다.
이러한 목적으로, 유효 잡음(
Figure pct00033
)의 등분산성 및 일련 비상관성이 가정되는 [6 내지 12]에 고려된 접근법들을 포함하는 평범한 최소 제곱 접근법들과 달리, 이하에 의해 주어지는 불연속 인지
Figure pct00034
-기준 정규화기로의 일반화된 최소 제곱 회귀 문제를 고려하며,
Figure pct00035
(8)
이는, 이산 실현 가능 지점들 [14, 15]의 일원이 되도록 해결책들을 강제하면서 출력 벡터와 입력 벡터 사이의 마할라노비스 거리를 최소화한다.
오류 공분산 행렬(
Figure pct00036
)이 상관되고 비상관된 행렬들로 분해될 수 있다는 사실에 의해 고무되어, 식 (8)을 이하로서 재공식화하며,
Figure pct00037
(9)
여기서, 이하이다.
Figure pct00038
(10)
식 9의 목적은 채널 추정 오류로 인한 보정 상관 관계에 있다.
식 9의 이러한 변형에서, 제1 항은 채널 상관 관계로서 반영되는 채널 추정 오류의 영향을 보정하도록 변경되었고 제2 항은 채널 추정 오류들의 결과로서 뒤따르는 유효 잡음의 추가적 증폭을 피하도록 변경되었다.
채널 추정 오류들에 의해 생성되는 채널 상관 관계 및 잡음 증가의 영향을, 특히 상기 영향이 클 때 직접 최소화하므로, 성상에 속하도록 해결책을 또한 강제하면서, 잡음 및 채널 추정 오류들에 대한 강건성을 생성하는 s를 선택하였다.
식 (9)에 주어진 ML과 같은 공식화에서의
Figure pct00039
-기준의 다루기 어려운 비볼록함을 다루기 위해, 이하의 순응적
Figure pct00040
-기준 근사치를 도입하며,
Figure pct00041
, (11)
여기서, x는 길이 N의 임의적인 희소 벡터를 나타내고 및 α > 0은 자유 선택 파라미터이며, 이의 규모가 근사치의 타이트함을 제어한다.
(5)를 (9)로 치환하고 분획 프로그래밍 볼록화 기법을 적용시켜, 이하를 얻으며,
Figure pct00042
(12)
여기서,
Figure pct00043
이며, 여기서 wi,j는 sj
Figure pct00044
Figure pct00045
와 일치할 확률에 상응하는 가능성 추정치를 나타낸다.
식 (12)가 임의의 제약 없는 미분 가능한 볼록 2차 최소화 문제이어서, 식 (11)의 최소화자의 폐쇄 형태 식의 존재를 시사한다는 점을 주목할 수 있다. 그러한 목적으로, 식 (12)는 이하로서 간결하게 재기록될 수 있으며,
Figure pct00046
(13)
이는 손쉽게 이하를 가져온다.
Figure pct00047
(14)
따라서, 복소수 계수들의 채널 행렬(
Figure pct00048
)에 의해 특성화되는 과부하된 통신 채널에서 송신되는 송신 심볼 벡터들을 추정하는 본 발명에 따른 컴퓨터 구현 방법은 수신기(R)에서, 수신된 신호 벡터(
Figure pct00049
)에 의해 나타내어지는 신호를 수신하는 단계를 포함한다. 수신된 신호 벡터(
Figure pct00050
)는 하나 이상의 송신기(T)로부터 송신되는 심볼들(ci)의 성상(C) 더하기 채널에 의해 추가되는 임의의 왜곡 및 잡음으로부터 선택되는 송신된 심볼 벡터들(s)을 나타내는 신호들의 중첩에 상응한다.
하나 초과의 송신기의 경우에, 송신기들(T)은 시간적으로 동기화되며, 즉 송신기들(T)과 수신기(R) 사이의 공통 시간 기반이 가정되어, 수신기(R)는 상이한 송신기들(T)로부터 심볼들의 송신들을 실질적으로 동시에, 예를 들어 미리 정해진 시간 윈도우 내에서 수신한다. 심볼들이 동시에 또는 미리 정해진 시간 윈도우 내에서 수신되는 것은, 송신기(T)가 심볼들의 시퀀스를 하나씩 송신한다면, 이후의 심볼들이 수신되기 전에, 모든 시간적으로 동기화된 송신된 심볼이 수신기(R)에서 수신되는 것을 의미한다. 이는, 송신기들(T)이 송신기들(T)의 송신의 시작 시간을 조정하여, 송신기(T)와 수신기(R) 사이의 거리에 의존하는 전파 지연이 보정되는 설정들을 포함할 수 있다. 이는 이후의 심볼들을 송신하는 것 사이에 시간 갭이 제공되는 것을 포함할 수도 있다.
방법은 [6 내지 12]를 포함하는 다른 SotA 불연속 인지 수신기들과 달리 잡음 인지를 신호 검출 프로세스로 포함시키면서, 정규화기에 의해 이산 성상 지점들 쪽으로 강하게 편향되는 수신된 신호 벡터(y) 및 성상(C)의 모든 심볼(ci)에 대한 송신 심볼 벡터들(s)의 성분들을 적어도 포함하는 볼록 탐색 공간(즉, 식 (4)의 제3 항)을 한정하는 단계를 더 포함한다.
제공되는 발명의 이러한 잡음 및 CSI 불완전성 인지 특징은 잡음 증폭 및 CSI 오류들이 충분히 억제될 수 있도록 다른 정규화 항을 도입시키고 일반화된 최소 제곱 프레임워크를 활용함으로써 도달되는 다른 SotA들을 능가하는 핵심 이점이며, 이는 최근 기술 DAPZF의 일반화로서 제공되는 발명을 야기한다.
통신 시스템의 수신기는 프로세서, 휘발성 및/또는 비휘발성 메모리, 및 통신 채널에서의 신호를 수신하도록 구성되는 적어도 하나의 인터페이스를 갖는다. 비휘발성 메모리는 마이크로프로세서에 의해 실행될 때, 본 발명에 따른 방법의 하나 이상의 실시예를 구현하도록 수신기를 구성하는 컴퓨터 프로그램 명령어들을 저장할 수 있다. 휘발성 메모리는 작동하는 동안 파라미터들 및 다른 데이터를 저장할 수 있다. 프로세서는 제어기, 마이크로제어기, 마이크로프로세서, 마이크로컴퓨터 등 중 하나로 일컬어질 수 있다. 그리고, 프로세서는 하드웨어, 펌웨어, 소프트웨어 및/또는 이들의 임의의 조합들을 이용하여 구현될 수 있다. 하드웨어에 의한 구현에서, 프로세서는 ASIC(주문형 반도체), DSP(디지털 신호 프로세서), DSPD(디지털 신호 처리 디바이스), PLD(프로그램 가능 로직 디바이스), FPGA(필드 프로그램 가능 게이트 어레이) 등으로서 본 발명을 구현하도록 구성되는 디바이스가 구비될 수 있다.
한편, 펌웨어 또는 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 것의 경우에, 펌웨어 또는 소프트웨어는 본 발명의 상술한 함수들 또는 연산들을 수행하기 위한 모듈들, 절차들 및/또는 기능들을 포함하도록 구성될 수 있다. 그리고, 본 발명을 구현하도록 구성되는 펌웨어 또는 소프트웨어는 프로세서에 로딩되거나 프로세서에 의해 구동되는 메모리에 저장된다.
개시된 방법들을 도시하는 흐름도들은 컴퓨터 소프트웨어 명령어들 또는 명령어들의 그룹들을 나타낼 수 있는 "처리 블록들" 또는 "단계들"을 포함한다. 대안적으로, 처리 블록들 또는 단계들은 개시된 방법들을 수행하도록 소프트웨어 명령어들로 프로그래밍되는 디지털 신호 프로세서(DSP), 필드 프로그램 가능 게이트 어레이(FPGA), 주문형 반도체(ASIC), 또는 그래픽 처리 장치(GPU) 또는 컴퓨터 처리 유닛(CPU)과 같은 기능적으로 동등한 회로들에 의해 수행되는 단계들을 나타낼 수 있다. 본원에 달리 지시되지 않는다면, 설명하는 단계들의 특정 시퀀스가 단지 예시적이고 달리 될 수 있다는 점이 당업자에 의해 이해될 것이다. 달리 진술되지 않는다면, 본원에 설명하는 단계들은 순서화되지 않으며, 단계들이 임의의 편리하거나 바람직한 순서로 수행될 수 있다는 것을 의미한다.
본 발명을 도면들을 참조하여 추가로 설명할 것이다.
도 1은 공유 매체에 대한 직교 다중 액세스의 단순화된 개략 표현을 도시한다.
도 2는 공유 매체에 대한 비직교 다중 액세스의 단순화된 개략 표현을 도시한다.
도 3은 잡음이 있는 통신 채널을 통해 통신하는 송신기 및 수신기의 예시적인 일반화된 블록도를 도시한다.
도 4는 제안된 해결책 및 종래 기술 방식들의 성능 비교이다.
도 1 및 도 2는 앞서 추가로 논의되었고 여기서 다시 논의되지 않는다.
도 3은 통신 채널(208)을 통해 통신하는 송신기(T) 및 수신기(R)의 예시적인 일반화된 블록도를 도시한다. 송신기(T)는 무엇보다도 송신되게 될 디지털 데이터의 소스(202)를 포함할 수 있다. 소스(202)는 인코더(204)에 디지털 데이터의 비트들을 제공하며, 인코더(204)는 심볼들로 인코딩된 데이터 비트들을 변조기(206)로 보낸다. 변조기(206)는, 예를 들어 하나 이상의 안테나 또는 임의의 다른 유형의 신호 방사체(미도시)를 통하여 통신 채널(208)로 변조된 데이터를 송신한다. 변조는, 예를 들어 송신될 심볼들이 송신되는 신호의 진폭 및 위상에 의해 나타내어지는 직교 진폭 변조(QAM)일 수 있다.
채널(208)은 무선 채널일 수 있다. 그러나, 일반화된 블록도는 유선 또는 무선의 임의의 타입의 채널에 유효하다. 본 발명의 맥락에서, 매체는 공유되는 매체이며, 즉 다수의 송신기 및 수신기가 동일한 매체에 액세스하고, 보다 상세하게는, 채널이 다수의 송신기 및 수신기에 의해 공유된다.
수신기(R)는, 예를 들어 하나 이상의 안테나 또는 임의의 다른 유형의 신호 수신기(미도시)를 통하여 통신 채널(208)을 통해 신호를 수신한다. 통신 채널(208)은 잡음을 송신된 신호로 도입시켰을 수 있고, 신호의 진폭 및 위상은 채널에 의해 왜곡되었을 수 있다. 왜곡은, 예를 들어 통신 채널을 통해 송신되는 알려진 특성들을 갖는 파일럿 심볼들을 분석하는 것을 통해 얻어질 수 있는 채널 특성들에 기반하여 제어되는 수신기(미도시)에서 제공되는 등화기에 의해 보정될 수 있다. 마찬가지로, 잡음이 수신기(미도시)에서의 필터에 의해 감소되거나 제거될 수 있다.
신호 검출기(212)는 채널로부터 신호를 수신하고 이전 송신들을 통해 누적되는 일련의 수신된 신호들로부터 CSI 오류 파라미터(τ)를 추정하려 시도한다. 신호 검출기(212)는 추정된 신호를 추정된 심볼로 디코딩하는 디코더(214)로 추정된 신호를 보낸다. 디코딩이 아마도 송신되었을 수 있는 심볼을 생성하면, 상기 심볼은 디맵퍼(216)로 보내지며, 디맵퍼(216)는 추정된 송신 신호 및 상응하는 추정된 심볼에 상응하는 비트 추정치들을, 예를 들어 추가 처리를 위해 마이크로프로세서(218)로 출력한다.
신호 검출기(210)는 채널로부터 신호를 수신하고 수신된 신호로부터, 어느 신호가 채널로 송신되었는지를 추정하려 시도한다. 신호 검출기(210)는 추정된 신호를 추정된 심볼로 디코딩하는 디코더(212)로 추정된 신호를 보낸다. 디코딩이 아마도 송신되었을 수 있는 심볼을 생성하면, 상기 심볼은 디맵퍼(214)로 보내지며, 디맵퍼(216)는 추정된 송신 신호 및 상응하는 추정된 심볼에 상응하는 비트 추정치들을, 예를 들어 추가 처리를 위해 마이크로프로세서(216)로 출력한다. 그렇지 않으면, 디코딩이 송신되었을 것 같은 심볼을 생성하지 않으면, 추정된 신호를 있음직한 심볼로 디코딩하는 성공하지 못한 시도는 상이한 파라미터들로 신호 추정을 반복하기 위해 신호 검출기로 피드백된다. 송신기의 변조기에서의 그리고 수신기에서의 복조기의 데이터의 처리는 서로 상보적이다.
도 3의 송신기(T) 및 수신기(R)가 일반적으로 알려져 있는 것으로 나타나지만, 수신기(R), 그리고 보다 상세하게는 본 발명에 따른 수신기의 신호 검출기(210) 및 디코더(212)는 후술하는 본 발명의 방법을 수행하도록 구성되므로 알려져 있는 신호 검출기들과 상이하게 작동한다.
도 4는 최근 기술 수신기들과 비교되는 성능 평가를 기술한다. 이는 최근 기술 신호 복원 방법들과 비교되는 제안된 방법의 코딩되지 않은 BER 성능 평가를 나타낸다.
도 4로부터 알 수 있는 바와 같이, 제안된 방식은 CSI 추정 오류가 허용할 수 있는 경우들(Τ2 < 13 ㏈)에서 기존 방법들에 대하여 신뢰성(BER)의 면에서 상당한 이득(하나 초과의 자릿수)을 제공한다. 상기 도면에서, 편의를 위해 이산 인지(DA 이득)로 인한 것 및 장애 인지(IA)로 인해 얻어지는 부가적인 것의 면에서 총 이득이 분석되었다.
5G 및 5G 이후를 실현하기 위해, 거대 다중 입력 다중 출력(MIMO), 협력 MIMO, 밀리미터파(mmWave) 통신, NOMA, 디바이스 대 디바이스(D2D), 근접 서비스(ProSe), 모바일 중계기, 공중 중계기, 소프트웨어 정의 네트워킹, 포그 컴퓨팅 및 분산형 인공 지능(AI)을 포함하는 다양한 기술이 제안된다. 이러한 제안된 방법의 도움으로, 방대한 수의 사용자 디바이스의 레이턴시를 감소시키고, 커버리지를 확장시키고, 다목적성을 강화시키고, 계산 리소스들을 활용하기 위해 네트워크측에 많은 인프라 구조체 기능이 후원될 수 있다. 모바일 에지 컴퓨팅(MEC)은 모바일 디바이스들로부터 오프로딩되는 계산적으로 집중적인 작업들을 지체 없이 처리하므로, 엔드 투 엔드 레이턴시를 감소시킬 수 있다. 에지 컴퓨팅 모듈들은 송수신기 기지국, 중계기 또는 사용자 장비에 있을 수 있다.
본원에 개시되는 양태들은 무선 표준들에 폭넓게 적용 가능하고, 셀룰러, 모바일 광대역, 차량 관련 애드 혹 네트워크, 고정형 광대역, 사물 인터넷(IoT), 피어 투 피어 네트워크, 메시 네트워크, 무선 개인 영역 네트워크(WPAN), 무선 로컬 영역 네트워크(WLAN), 무선 센서 네트워크, 공중 네트워크, 위성 네트워크, 네트워크 패브릭, 소프트웨어 정의 네트워크(SDN) 및 하이브리드 네트워크를 포함하는(그러나 이에 제한되지 않는) 본원에 개시되는 사례군들을 이용한다.

Claims (11)

  1. 복소수 계수들의 채널 행렬에 의해 특성화되는 CSI 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 컴퓨터 구현 복구 방법으로서,
    - 신호 검출기(212)에 의해 채널(208)로부터 신호를 수신하는 단계;
    - 수신기에서 CSI 오류 파라미터(τ)를 추정하는 단계;
    - 잡음 전력 추정기(210)에 의해 잡음 전력을 추정하는 단계;
    - 송신된 심볼(s)을 추정하는 디코더(214)로 검출된 신호 및 CSI 오류 파라미터(τ) 및 잡음 전력 추정치를 보내는 단계
    를 포함하되, 상기 디코더(214)의 추정이 아마도 송신되었을 수 있는 심볼을 생성하며, 상기 심볼은 디맵퍼(216)로 보내지며, 디맵퍼(216)는 추정된 송신 신호 및 상응하는 추정된 심볼에 상응하는 비트 추정치들을 추가 처리를 위해 마이크로프로세서(218)로 출력하는, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  2. 제1항에 있어서,
    채널 추정 오류에 대한 채널 상관 관계가 가정되고 상기 CSI 오류 파라미터(τ)는 이러한 상관 관계를 캡처하는 공분산 행렬 내에 포함되는, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  3. 제1항 또는 제2항에 있어서,
    채널 추정 오류의 영향을 최소화하는 것이 디코더(214)에 의해 이용되는 목적 함수 내에서 잡음 증가 및 상기 채널 상관 관계의 보정에 의해 행해지는, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    이하의 송신 신호(s)를 추정하는 데 사용되는 제1 함수(EQ), 제2 함수(EQ), 제3 함수(EQ)를 통한 최소화 공식화로 채널 추정 오류의 영향을 최소화하는, 이산 디지털 신호의 컴퓨터 구현 복구 방법:
    Figure pct00051
    .
  5. 제4항에 있어서,
    분획 프로그래밍 알고리즘은 상기 제1 함수의 전역 최소값 미만인 상기 제3 함수의 값을 구하는 것을 목표로 하는, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  6. 제4항에 있어서,
    상기 제1 함수는 채널 상관 관계 영향을 포함하는 수신된 신호의 벡터를 중심으로 이루어지는 유클리드 거리 함수인, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  7. 제4항에 있어서,
    상기 제2 함수는 추정된 잡음 전력 및 채널 추정 오류 파라미터에 의해 스케일링되는 송신 신호 전력의 곱인, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  8. 제4항에 있어서,
    상기 제3 함수는
    Figure pct00052
    -기준에 기반하거나 이것을 타이트하게 근사화하는 함수인, 이산 디지털 신호의 컴퓨터 구현 복구 방법.
  9. 프로세서, 휘발성 및/또는 비휘발성 메모리, 통신 채널(208)에서의 신호를 수신하도록 구성되는 적어도 하나의 인터페이스를 갖는 통신 시스템의 수신기(R)로서,
    상기 비휘발성 메모리는 마이크로프로세서에 의해 실행될 때, 제1항 내지 제4항 중 한 항 이상의 방법을 구현하도록 수신기를 구성하는 컴퓨터 프로그램 명령어들을 저장하는 것인, 수신기.
  10. 컴퓨터 상에서 실행될 때, 제1항 내지 제8항 중 어느 한 항의 방법을 상기 컴퓨터가 수행하게 하는 컴퓨터 실행 가능 명령어들을 포함하는 컴퓨터 프로그램 제품.
  11. 제10항의 컴퓨터 프로그램 제품을 저장하고/하거나 송신하는 컴퓨터 판독 가능 매체.
KR1020227033310A 2020-04-03 2021-04-01 Csi 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법 KR20220143130A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102020204396.5 2020-04-03
DE102020204396 2020-04-03
DE102020204395.7 2020-04-03
DE102020204397.3 2020-04-03
DE102020204397 2020-04-03
DE102020204395 2020-04-03
PCT/EP2021/058578 WO2021198404A1 (en) 2020-04-03 2021-04-01 Estimation method of discrete digital signals in noisy overloaded wireless communication systems with csi errors

Publications (1)

Publication Number Publication Date
KR20220143130A true KR20220143130A (ko) 2022-10-24

Family

ID=75396770

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020227033312A KR20220145389A (ko) 2020-04-03 2021-04-01 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 복구 방법
KR1020227033311A KR20220143131A (ko) 2020-04-03 2021-04-01 하드웨어 장애가 있을 때에 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호 복원 방법
KR1020227033310A KR20220143130A (ko) 2020-04-03 2021-04-01 Csi 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020227033312A KR20220145389A (ko) 2020-04-03 2021-04-01 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 복구 방법
KR1020227033311A KR20220143131A (ko) 2020-04-03 2021-04-01 하드웨어 장애가 있을 때에 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호 복원 방법

Country Status (7)

Country Link
US (3) US20230198811A1 (ko)
EP (3) EP4128599A1 (ko)
JP (3) JP2023520245A (ko)
KR (3) KR20220145389A (ko)
CN (3) CN115336209B (ko)
DE (3) DE112021000825T5 (ko)
WO (3) WO2021198404A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021083495A1 (en) 2019-10-29 2021-05-06 Continental Automotive Gmbh Method of estimating transmit symbol vectors in an overloaded communication channel
KR20220145389A (ko) * 2020-04-03 2022-10-28 콘티넨탈 오토모티브 테크놀로지스 게엠베하 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 복구 방법
WO2023117646A1 (en) 2021-12-23 2023-06-29 Continental Automotive Technologies GmbH Method and system to optimize the hyper-parameters of discrete digital signal recovery for data processing systems
CN114828151A (zh) * 2022-05-17 2022-07-29 南京航空航天大学 一种硬件损伤下star-ris辅助noma系统的中断概率和遍历容量性能分析方法
US20240154127A1 (en) 2022-11-03 2024-05-09 Lg Energy Solution, Ltd. Positive Electrode and Lithium Secondary Battery Manufactured Using the Same

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925301B2 (en) * 2002-08-19 2005-08-02 Tektronix, Inc. Remote estimation of amplifier functionality
US10277290B2 (en) * 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US9312929B2 (en) * 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) * 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
JP4604800B2 (ja) * 2005-04-01 2011-01-05 ソニー株式会社 無線通信装置及び無線通信方法
US7751506B2 (en) * 2005-12-01 2010-07-06 Samsung Electronics Co., Ltd. Method for the soft bit metric calculation with linear MIMO detection for LDPC codes
KR100948548B1 (ko) 2006-05-24 2010-03-19 삼성전자주식회사 광대역 무선접속 통신시스템에서 상향링크 전력 제어 장치및 방법
US7751463B2 (en) 2006-12-05 2010-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for suppressing interference based on channelization code power estimation with bias removal
KR100930524B1 (ko) * 2007-01-09 2009-12-09 삼성전자주식회사 다중 안테나 중계 방식의 무선통신 시스템에서 협력 전송을수행하기 위한 장치 및 방법
US20080279298A1 (en) * 2007-05-10 2008-11-13 Comsys Communication & Signal Processing Ltd. Multiple-input multiple-output (mimo) detector incorporating efficient signal point search
US7555064B2 (en) * 2007-08-27 2009-06-30 Harris Corporation System and method for estimating noise power level in a multi-signal communications channel
CN101132388B (zh) * 2007-09-18 2013-01-09 沖电气(新加坡)技术中心 利用信道状态信息辅助接收编码信号的接收方法及装置
US8781011B2 (en) * 2008-02-25 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Receiver parametric covariance estimation for precoded MIMO transmissions
KR101132884B1 (ko) * 2009-02-04 2012-04-03 엘에스산전 주식회사 전원 안정화 회로망에서의 노이즈 측정 시스템, 이에 적용되는 가변 필터 및, 전원 안정화 회로망에서의 노이즈 측정 방법
WO2010125760A1 (ja) 2009-04-27 2010-11-04 シャープ株式会社 干渉抑圧無線通信システムおよび干渉抑圧無線通信装置
DE102009043746A1 (de) 2009-09-30 2011-03-31 Carl Zeiss Microimaging Gmbh Verfahren zum Erzeugen von Bildern mit erweitertem Dynamikumfang und optisches Gerät zur Durchführung eines solchen Verfahrens, insbesondere Laser-Scanning-Mikroskop
US20120045024A1 (en) 2010-02-24 2012-02-23 Qualcomm Incorporated Methods and apparatus for iterative decoding in multiple-input-multiple-output (mimo) communication systems
US8331506B2 (en) * 2010-03-12 2012-12-11 Telefonaktiebolaget L M Ericsson (Publ) Frequency-dependent IQ imbalance estimation
US8699592B1 (en) 2010-06-11 2014-04-15 Marvell International Ltd. Systems and methods for estimating decoder noise power in OFDM systems
EP2418896B1 (en) * 2010-08-09 2013-03-13 Alcatel Lucent Transmission power control in a multi-carrier wireless communication system
TWI422182B (zh) 2010-12-30 2014-01-01 Univ Nat Chiao Tung 基於幾何方法欠定多輸入多輸出系統之高效率解碼器及其解碼方法
CN102176287B (zh) 2011-02-28 2013-11-20 无锡中星微电子有限公司 一种交通信号灯识别系统和方法
US9344303B1 (en) * 2012-01-04 2016-05-17 Marvell International Ltd. Adaptive signal covariance estimation for MMSE equalization
EP2658134A1 (en) 2012-04-26 2013-10-30 Harman Becker Automotive Systems GmbH Multi-antenna system
US9329948B2 (en) * 2012-09-15 2016-05-03 Seagate Technology Llc Measuring cell damage for wear leveling in a non-volatile memory
US10270642B2 (en) * 2012-12-05 2019-04-23 Origin Wireless, Inc. Method, apparatus, and system for object tracking and navigation
US9459296B2 (en) 2012-10-19 2016-10-04 Microchip Technology Germany Gmbh Ii & Co. Kg Electrode design for electric field measurement system
US9112744B1 (en) * 2012-10-31 2015-08-18 Marvell International Ltd. Noise whitening in a WLAN receiver
EP2830271B1 (en) * 2013-07-23 2018-06-27 ST-Ericsson SA Low complexity maximum-likelihood-based method for estimating emitted symbols in a sm-mimo receiver
JP2015056690A (ja) 2013-09-10 2015-03-23 シャープ株式会社 端末装置および受信装置
EP2871789B1 (en) * 2013-11-12 2017-01-04 Huawei Technologies Co., Ltd. Method for estimating covariance matrices and use thereof
US9942013B2 (en) 2014-05-07 2018-04-10 Qualcomm Incorporated Non-orthogonal multiple access and interference cancellation
US10489527B2 (en) * 2014-06-03 2019-11-26 Dan Gordon Method and apparatus for constructing and using absorbing boundary conditions in numerical computations of physical applications
DE102014008347B4 (de) 2014-06-05 2021-01-28 Apple Inc. Verfahren und vorrichtung zur kanalschätzung und ofdm-empfänger
CN104796239B (zh) * 2015-01-30 2019-03-19 苏州恩巨网络有限公司 一种mimo无线通信系统及信号检测装置和方法
US9843417B2 (en) * 2015-02-11 2017-12-12 Wisconsin Alumni Research Foundation Differential MIMO transceiver
CN104601213B (zh) * 2015-02-12 2018-01-30 郑州大学 Mu‑miso无线携能通信系统的鲁棒构造方法
KR102534065B1 (ko) 2015-05-14 2023-05-19 샤프 가부시키가이샤 기지국 장치 및 단말 장치
US9686069B2 (en) * 2015-05-22 2017-06-20 ZTE Canada Inc. Adaptive MIMO signal demodulation using determinant of covariance matrix
CN106411796B (zh) 2015-07-31 2019-07-05 电信科学技术研究院 一种非正交多址接入中多终端信号检测方法及基站
CN106454922B (zh) 2015-08-10 2018-11-02 电信科学技术研究院 一种非正交多址接入系统中的上行检测方法及装置
EP3147896B1 (en) 2015-09-25 2023-05-31 Harman Becker Automotive Systems GmbH Active road noise control system with overload detection of primary sense signal
US10548115B2 (en) 2015-09-30 2020-01-28 Lg Electronics Inc. Method for transmitting and receiving signals on basis of non-orthogonal multiple access scheme, and apparatus therefor
WO2017057655A1 (ja) * 2015-10-02 2017-04-06 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US9959158B2 (en) * 2015-10-13 2018-05-01 Honeywell International Inc. Methods and apparatus for the creation and use of reusable fault model components in fault modeling and complex system prognostics
CN106656406B (zh) 2015-10-29 2019-07-19 电信科学技术研究院 一种非正交多址接入中信号检测方法及装置
US20170289920A1 (en) 2016-03-29 2017-10-05 Futurewei Technologies, Inc. Method and Apparatus for Resource and Power Allocation in Non-Orthogonal Uplink Transmissions
US10912117B2 (en) 2016-05-23 2021-02-02 Lg Electronics Inc. Method and apparatus for competition-based transmitting of uplink data in wireless communication system to which non-orthogonal multiple access scheme is applied
US9853667B2 (en) * 2016-05-25 2017-12-26 Apple Inc. Noise and interference estimation for colliding neighbor reference signals
WO2018028800A1 (en) * 2016-08-12 2018-02-15 Huawei Technologies Co., Ltd. Superposition coding of pdsch and pdcch
US10700824B2 (en) 2016-08-12 2020-06-30 Lenovo Innovations Limited (Hong Kong) Non-orthogonal communication
US10355726B2 (en) 2016-09-29 2019-07-16 University Of Massachusetts Wideband receiver architecture tolerant to in-band interference
US10484226B2 (en) * 2016-12-12 2019-11-19 Khalifa University of Science and Technology OFDM communication system with enhanced channel estimation and data detection techniques
CN106712903B (zh) 2016-12-21 2019-08-27 重庆邮电大学 一种低复杂度mimo fbmc-oqam系统信号检测方法
CN106817334B (zh) * 2017-01-16 2020-03-13 青岛大学 一种缓解观测干扰的多载波非线性削波失真压缩感知估计方法
KR102639615B1 (ko) 2017-02-07 2024-02-22 삼성전자주식회사 무선 통신 시스템에서 다중 접속을 지원하기 위한 장치 및 방법
WO2018166606A1 (en) * 2017-03-16 2018-09-20 Huawei Technologies Co., Ltd. Determination of hardware impairment parameters for downlink channel state information estimation
US10560169B2 (en) * 2017-03-24 2020-02-11 Mediatek Inc. CSI acquisition with channel reciprocity in mobile communications
US20180323846A1 (en) * 2017-05-05 2018-11-08 Mediatek Inc. Methods and apparatus for acquiring channel state information with channel reciprocity
US10700912B2 (en) 2017-05-19 2020-06-30 Huawei Technologies Co., Ltd. Method and system for non-orthogonal multiple access communication
KR101918584B1 (ko) * 2017-08-04 2018-11-14 한국항공대학교산학협력단 다중 안테나 시스템에서의 극 부호를 이용한 심볼 검파 및 채널 디코딩의 복합 처리 방법 및 그를 이용한 수신기
CN108173575B (zh) * 2017-08-28 2021-04-30 同济大学 多输入多输出中继天线设计方法
CN107483376A (zh) * 2017-09-07 2017-12-15 西安电子科技大学 一种用于mimo‑ofdm系统的信号检测方法
CN107566059B (zh) * 2017-10-10 2020-08-14 广州供电局有限公司 无线信道误差检定的方法及装置
US10992358B2 (en) * 2017-11-13 2021-04-27 Apple Inc. Signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul
US20190199383A1 (en) * 2017-12-22 2019-06-27 University Of South Florida Network-aware adjacent channel interference rejection and out of band emission suppression
CN109474388B (zh) 2018-12-28 2021-07-30 重庆邮电大学 基于改进梯度投影法的低复杂度mimo-noma系统信号检测方法
CN110071748B (zh) * 2019-04-30 2020-07-28 西安交通大学 一种多发单收系统的人工噪声功率分配方法
CN110417515B (zh) * 2019-08-16 2020-12-15 江南大学 一种基于离散迭代估计的大规模mimo信号检测方法
WO2021083495A1 (en) 2019-10-29 2021-05-06 Continental Automotive Gmbh Method of estimating transmit symbol vectors in an overloaded communication channel
EP4062611A1 (en) 2019-11-22 2022-09-28 Continental Automotive Technologies GmbH Method for wireless x2x access and receivers for large multidimensional wireless systems
US11121816B2 (en) * 2019-12-04 2021-09-14 Mitsubishi Electric Research Laboratories, Inc. Symbol detection of massive MIMO systems with unknown symbol-dependent transmit-side impairments
KR20220145389A (ko) 2020-04-03 2022-10-28 콘티넨탈 오토모티브 테크놀로지스 게엠베하 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 복구 방법

Also Published As

Publication number Publication date
EP4128599A1 (en) 2023-02-08
WO2021198407A1 (en) 2021-10-07
JP2023520538A (ja) 2023-05-17
EP4128598A1 (en) 2023-02-08
CN115336209A (zh) 2022-11-11
US11996899B2 (en) 2024-05-28
KR20220143131A (ko) 2022-10-24
JP2023520539A (ja) 2023-05-17
WO2021198406A1 (en) 2021-10-07
CN115336208A (zh) 2022-11-11
CN115362645B (zh) 2024-07-05
KR20220145389A (ko) 2022-10-28
CN115336209B (zh) 2024-06-25
DE112021000825T5 (de) 2022-12-15
DE112021000831T5 (de) 2022-12-01
WO2021198404A1 (en) 2021-10-07
CN115336208B (zh) 2024-06-21
JP2023520245A (ja) 2023-05-16
US20230171023A1 (en) 2023-06-01
US20230198811A1 (en) 2023-06-22
CN115362645A (zh) 2022-11-18
EP4128600A1 (en) 2023-02-08
DE112021000830T5 (de) 2022-12-01
US20230144250A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
KR20220143130A (ko) Csi 오류를 갖는 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 추정 방법
KR100842569B1 (ko) 다중 입출력 통신시스템에서 신호 수신 방법 및 장치
CN107070525B (zh) 参数化顺序解码
KR102598094B1 (ko) 무선 통신 시스템에서 신호를 수신하기 위한 장치 및 방법
US10693701B2 (en) Receiver, a plurality of transmitters, a method of receiving user data from multiple transmitters, and a method of transmitting user data
Kim et al. Supervised-learning for multi-hop MU-MIMO communications with one-bit transceivers
US8520759B2 (en) Apparatus and method for detecting signal based on lattice reduction to support different coding scheme for each stream in multiple input multiple output wireless communication system
CN114830607B (zh) 用于大型多维无线系统的无线x2x接入方法和接收器
CN108365916B (zh) 子块解码数据信号的方法和设备
Gokceoglu et al. Waveform design for massive MISO downlink with energy-efficient receivers adopting 1-bit ADCs
Watabe et al. Superposed 16-qam signal detection using gabp in a massive mimo system
KR101100116B1 (ko) 송신 안테나 개수를 이용하여 프리코딩을 수행하는 개루프 통신 시스템의 송신 장치 및 방법
Gemeda et al. Design of Deep Learning-based One-bit Transceiver with Oversampling and Faster-Than-Nyquist (FTN) Signaling
Chiu et al. Transmit beamforming with analog channel state information feedback
Kim AI-Enabled Physical Layer
RU2775837C2 (ru) Упрощенное обнаружение пространственной модуляции и пространственно-временного блочного кодирования с выбором антенн
AU2020369979B2 (en) M-MIMO receiver
Kumar Intelligent Channel Estimation and Sensing in Next-Generation Wireless Networks
Villena-Rodriguez et al. Aging-Resistant Wideband Precoding in 5G and Beyond Using 3D Convolutional Neural Networks
Susandhika et al. A Universal Approximation-Centered Deep Learning Framework for the Massive 5G MIMO-OFDM Channel Estimation
Lin et al. Information Theory in Centralized Wireless Network
Sarr et al. Cooperative Closed‐Loop Coded‐MIMO Transmissions for Smart Grid Wireless Applications
Guo Making Wireless Communication More Efficient
Di Renna et al. Study of Activity-Aware Multiple Feedback Successive Interference Cancellation for Massive Machine-Type Communications

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal