CN115362645A - 具有csi误差的有噪过载无线通信系统中离散数字信号的估计方法 - Google Patents
具有csi误差的有噪过载无线通信系统中离散数字信号的估计方法 Download PDFInfo
- Publication number
- CN115362645A CN115362645A CN202180025534.8A CN202180025534A CN115362645A CN 115362645 A CN115362645 A CN 115362645A CN 202180025534 A CN202180025534 A CN 202180025534A CN 115362645 A CN115362645 A CN 115362645A
- Authority
- CN
- China
- Prior art keywords
- channel
- signal
- function
- receiver
- transmitted
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 238000004891 communication Methods 0.000 title claims abstract description 46
- 239000011159 matrix material Substances 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 16
- 239000013598 vector Substances 0.000 claims description 33
- 238000004422 calculation algorithm Methods 0.000 claims description 27
- 230000006870 function Effects 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 10
- 238000004590 computer program Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 description 53
- 238000005457 optimization Methods 0.000 description 26
- 238000007476 Maximum Likelihood Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 18
- 238000011084 recovery Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 10
- 230000000875 corresponding effect Effects 0.000 description 10
- 230000008447 perception Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 101150071456 CSI2 gene Proteins 0.000 description 1
- 241001105470 Valenzuela Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/15—Performance testing
- H04B17/18—Monitoring during normal operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/021—Estimation of channel covariance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/10—Means associated with receiver for limiting or suppressing noise or interference
- H04B1/12—Neutralising, balancing, or compensation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/12—Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/10—Monitoring; Testing of transmitters
- H04B17/11—Monitoring; Testing of transmitters for calibration
- H04B17/13—Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/0001—Systems modifying transmission characteristics according to link quality, e.g. power backoff
- H04L1/0036—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
- H04L1/0039—Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种具有CSI误差的有噪过载无线通信系统中的离散数字信号的计算机实施的重构方法,该有噪过载无线通信系统通过具有复系数的信道矩阵来表征,该方法包括:由信号检测器接收来自信道的信号;在接收器处估计CSI误差参数τ;由噪声功率估计器估计噪声功率;将检测到的信号以及该CSI误差参数τ和噪声功率估计转发到估计所发射符号的解码器,其中,该解码器的估计产生可能已经被发射的符号,该符号被转发到解映射器,该解映射器将与估计的发射信号和对应的估计符号相对应的位估计输出到微处理器以进行进一步的处理。
Description
技术领域
本发明涉及过载场景中的数字无线系统领域,解决了在假设非理想信道状态信息的有噪环境中估计从离散数字信令字母表(例如,星座)采样的符号的问题。
背景技术
自从香农开发了香农-韦弗通信模型以来,将信息性比特嵌入离散字母表(例如,星座、索引、码本)中一直是可行信号处理系统不可或缺的特征。为响应对高数据速率的日益增长的需求,并且由于无线系统在更高频段运行的趋势(为此收发器使用更多天线),这种离散字母表系统正在迅速扩大规模,使大维度的离散信号检测问题比以往任何时候都更有意义。此外,最近看到的无线连接通信设备数量的快速增长意味着未来无线系统的接收器必须能够处理欠定的系统条件。
表述“资源过载”或“过载通信信道”通常是指由若干用户或发射器(T)并发使用的通信信道,这些发射器的数量NT大于接收器(R)的数量NR。在接收器侧,多个所发射信号将作为一个叠加的信号出现。信道还可能因单个发射器发射了符号叠加并且由此超出“传统”正交发射方案中可用的信道资源而过载。因此,“过载”是与如在正交发射方案中发现的单个发射器例如在时隙等期间对信道进行排他性访问的方案相比来说而发生的。例如,在使用非正交多址接入(NOMA)和欠定多输入多输出(MIMO)信道的无线通信系统中可能会发现过载信道。
C.Qian、J.Wu、Y.R.Zheng和Z.Wang在2013年IEEE无线通信汇刊,第12卷,第12期,第6476-6487页中的“Two-stage list sphere decoding for under-determinedmultiple-input multiple-output systems[欠定多输入多输出系统的两级列表球形解码]”为采用N个发射天线和M<N个接收天线的欠定多输入多输出(UD-MIMO)系统提出了两级列表球形解码(LSD)算法。两级LSD算法通过将N个检测层分为两组来利用UD-MIMO系统的独特结构。第1组包含第1层到第M层,其结构与对称MIMO系统相似;而第2组包含第M+1层到第N层,其会导致信道格拉姆矩阵的秩不足。这两个组都使用树搜索算法,但搜索半径不同。提出了一种基于接收到的信号的统计特性来自适应调整第2组的树搜索半径的新方法。采用自适应树搜索可以显著降低计算复杂度。我们还提出了一种改进的信道格拉姆矩阵来解决秩不足问题,它提供了比广义球形解码(GSD)算法中使用的广义格拉姆矩阵更好的性能。模拟结果表明,所提出的两级LSD算法可以将复杂度降低一到两个数量级,而误码率(BER)性能下降小于0.1dB。在本申请的描述中,该参考文献将用作参考文献[1]。
R.Hayakawa、K.Hayashi和M.Kaneko在2015年10月APCC会议录,日本京都,第1-5页中的“An overloaded MIMO signal detection scheme with slab decoding andlattice reduction[采用板解码和格基约减的过载MIMO信号检测方案]”针对过载MIMO(多输入多输出)系统提出了一种降低复杂度的信号检测方案。所提出的方案首先将发射信号分为两部分,即,包含与接收天线相同数量的信号元素的投票后向量以及包含剩余元素的投票前向量。其次,它使用板解码来减少投票前向量的候选解,并通过格基约减辅助MMSE(最小均方误差)-SIC(串行干扰消除)检测来针对每个投票前向量候选确定投票后向量。模拟结果表明,所提出的方案可以实现与最优ML(最大似然)检测几乎相同的性能,同时大大降低了所需的计算复杂度。在本申请的描述中,该参考文献将用作参考文献[2]。
T.Datta、N.Srinidhi、A.Chockalingam和B.S.Rajan在2012年2月NCC会议录第1-5页中的“Low complexity near-optimal signal detection in underdetermined largeMIMO systems[欠定大型MIMO系统中的低复杂度接近最优信号检测]”考虑了在nt×nr的欠定MIMO(UD-MIMO)系统中进行信号检测,其中,i)nt>nr并且过载因子α=nt nr>1,ii)通过空间复用每信道使用发射nt个符号,并且iii)nt、nr都很大(在几十范围内)。考虑了一种基于主动禁忌搜索的低复杂度检测算法。提出了一种基于可变阈值的停止标准,该停止标准以低复杂度在大型UD-MIMO系统中提供近乎最优的性能。还获得了大型UD-MIMO系统的最大似然(ML)误码性能的下限,以进行比较。所提出的算法被示出为在具有4-QAM(32bps/Hz)的16×8V-BLAST UD-MIMO系统中以10-2的未编码BER实现接近在0.6dB内的ML下限的BER性能。对于具有4-QAM/16-QAM的32×16、32×24V-BLAST UD-MIMO,也示出了类似的接近ML的性能结果。所提出的算法与用于UD-MIMO的λ-广义球形解码器(λ-GSD)算法之间的性能和复杂度比较表明了所提出的算法实现了与λ-GSD几乎相同的性能,但复杂度显著降低。在本申请的描述中,该参考文献将用作参考文献[3]。
Y.Fadlallah、A.-El-Bey、K.Amis、D.Pastor和R.Pyndiah在2015年8月IEEE车辆技术汇刊,第64卷,第8期,第3458-3464页中的“New Iterative Detector of MIMOTransmission Using Sparse Decomposition[使用稀疏分解的MIMO传输的新迭代检测器]”解决了大规模多输入多输出(MIMO)系统中的解码问题。在这种情况下,由于复杂度随信号和星座维度呈指数增长,最优最大似然(ML)检测器变得不切实际。该论文介绍了具有可容忍复杂度数量级的迭代解码策略。其考虑了具有有限星座的MIMO系统,并将该MIMO系统建模为具有稀疏信号源的系统。其提出了一种ML松弛检测器,它可以最小化与接收到的信号的欧几里得距离,同时保持解码信号的恒定1-范数。其还示出了检测问题等价于凸优化问题,可在多项式时间内求解。在本申请的描述中,该参考文献将用作参考文献[4]。
T.Wo和P.A.Hoeher在2007年英国格拉斯哥IEEE ICC会议录中的“A simpleiterative gaussian detector for severely delay-spread MIMO channels[用于严重延迟扩展MIMO信道的简单迭代高斯检测器]”,在该论文中描述了一种用于具有严重延迟扩展的多输入多输出(MIMO)信道的低复杂度高性能检测算法。该算法对应用独立近似和高斯近似的因子图执行迭代数据检测。结果表明,对于具有严重延迟扩展的编码MIMO系统,该算法实现了接近最优的BER性能。该算法的计算复杂度在发射天线的数量、接收天线的数量和非零信道系数的数量上是严格线性的。在本申请的描述中,该参考文献将用作参考文献[5]。
A.-El-Bey、D.Pastor、S.M.A.和Y.Fadlallah在2015年4月IEEE信息理论汇刊,第61卷,第4期,第2008-2018页中的“Sparsity-based recovery of finitealphabet solutions to underdetermined linear systems[欠定线性系统有限字母表解的基于稀疏性的恢复]”描述了从欠定测量值y=A f估计确定性有限字母表向量f的问题,其中,A是给定的(随机)n×N矩阵。引入了两种凸优化方法,用于经由1-范数最小化来恢复有限字母表信号。第一种方法基于正则化。在第二种方法中,问题被表述为在适当的稀疏变换之后恢复稀疏信号。基于正则化的方法没有基于变换的方法复杂。当字母表大小p等于2并且(n,N)按比例增长时,对于这两种方法而言,以高概率恢复信号的条件是相同的。当p>2时,建立了基于变换的方法的行为。在本申请的描述中,该参考文献将用作参考文献[6]。
M.Nagahara在2015年10月IEEE信号处理快报,第22卷,第10期,第1575-1579页中的“Discrete signal reconstruction by sum of absolute values[通过绝对值和进行离散信号重构]”,被认为是从不完整的线性测量中重构在有限字母表中取值的未知离散信号的问题。这个问题的难点在于重构的计算复杂度是指数级的。为了克服这个困难,其扩展了压缩感测的思想,并提出通过使加权绝对值和最小化来求解这个问题。假设在字母表上定义的概率分布是已知的,并将重构问题表述为线性规划。举例说明了所提出的方法是有效的。在本申请的描述中,该参考文献将用作参考文献[7]。
R.Hayakawa和K.Hayashi在2017年11月IEEE无线通信汇刊,第16卷,第11期,第7080-7091页中的“Convex optimization-based signal detection for massiveoverloaded MIMO systems[大规模过载MIMO系统的基于凸优化的信号检测]”提出了用于大规模多输入多输出(MIMO)系统的信号检测方案,其中,接收天线的数量少于发射流的数量。假设实际基带数字调制,并利用所发射符号的离散性,将信号检测问题表述为凸优化问题,称为绝对值和(SOAV)优化。此外,我们将SOAV优化扩展到加权SOAV(W-SOAV)优化,并提出了一种通过更新目标函数中的权重来求解W-SOAV优化的迭代方法。此外,对于编码MIMO系统,我们还提出了一种联合检测和解码方案,其中,所发射符号的对数似然比(LLR)在MIMO检测器与信道解码器之间迭代更新。另外,在通过W-SOAV优化获得的估计误差大小的上限方面,提供了理论性能分析。模拟结果表明,所提出的方案的误码率(BER)性能优于传统方案,尤其是在大规模过载MIMO系统中。在本申请的描述中,该参考文献将用作参考文献[8]。
R.Hayakawa和K.Hayashi在2018年10月IEEE存取,第6卷,第66 499-66 512页中的“Reconstruction of complex discrete-valued vector via convex optimizationwith sparse regularizers[使用稀疏正则化器经由凸优化重构复数离散值向量]”提出了用于大规模多输入多输出(MIMO)系统的信号检测方案,其中,接收天线的数量少于发射流的数量。假设实际基带数字调制,并利用所发射符号的离散性,信号检测问题被表述为凸优化问题,称为绝对值和(SOAV)优化。此外,将SOAV优化扩展到加权SOAV(W-SOAV)优化,并提出了一种通过更新目标函数中的权重来求解W-SOAV优化的迭代方法。此外,对于编码MIMO系统,提出了一种联合检测和解码方案,其中,所发射符号的对数似然比在MIMO检测器与信道解码器之间迭代更新。另外,在通过W-SOAV优化获得的估计误差大小的上限方面,提供了理论性能分析。在本申请的描述中,该参考文献将用作参考文献[9]。
Z.Hajji、A.Aissa-El-Bey和K.A.Cavalec在2018年数字信号处理,第80卷,第70-82页的“Simplicity-based recovery of finite-alphabet signals for large-scaleMIMO systems[大规模MIMO系统的有限字母表信号的基于简单性的恢复]”,在该论文中,考虑了确定和欠定的大规模系统中的有限字母表源分离问题。首先,我们解决了无噪声的情况,我们提出了基于与框约束相结合的l1-最小化的线性标准。我们还研究了确保成功恢复的系统条件。接下来,我们将该方法应用于有噪的大规模MIMO传输,并提出了一种基于二次准则的检测器。模拟结果示出了针对各种QAM调制和MIMO配置提出的检测方法的效率。我们提到,当星座大小增加时,计算复杂度没有变化。此外,所提出的方法优于经典的基于最小均方误差(MMSE)的检测算法。在本申请的描述中,该参考文献将用作参考文献[10]。
H.Iimori、G.Abreu、D.Gonzaléz G.和O.Gonsa在2019年美国帕西菲克格罗夫Asilomar CSSC会议录的“Joint detection in massive overloaded wireless systemsvia mixed-norm discrete vector decoding[经由混合范数离散向量解码在大规模过载无线系统中进行联合检测]”提出了用于比如非正交多址(NOMA)和欠定多输入多输出(MIMO)等过载无线系统的新颖的基于`l0-范数的多维信号检测方案,其中,最大似然(ML)检测的离散性被变换为连续的l0-范数约束,随后经由分式规划(FP)进行凸化。因此,所提出的信号检测算法有可能通过适当调整权重参数实现在误码率(BER)方面类似ML的性能,而成本却很低。给出了与最先进的(SotA)替代方案的模拟比较,说明了所提出方法的有效性,无论是在其优于SotA的能力方面,还是经由权重参数的优化进一步改进类似ML的性能的可能性方面。在本申请的描述中,该参考文献将用作参考文献[11]。
H.Iimori、R.-A.Stoica、G.T.F.de Abreu、D.Gonzaléz G.、A.Andrae和O.Gonsa的“Discreteness-aware receivers for overloaded MIMO systems[过载MIMO系统的离散性感知接收器]”,CoRR,第abs/2001.07560卷,2020年。[在线]。可在https://arxiv.org/ abs/2001.07560获得,描述了适用于大规模和过载多维无线通信系统的符号检测的三个高性能接收器,它们是根据接收器处的通常完美信道状态信息(CSI)假设设计的。使用这个常见假设,最大似然(ML)检测问题首先根据基于`0-范数的优化问题来表述,随后使用最近提出的称为二次变换(QT)的分式规划(FP)技术以三种不同的方式进行变换以便提供不同的性能-复杂度折衷,其中,l0-范数不松弛为l1-范数。第一种算法被称为离散性感知惩罚迫零(DAPZF)接收器,旨在超越最先进的方案(SotA),同时最小化计算复杂度。第二种解决方案称为离散性感知概率软量化检测器(DAPSD),被设计为经由软量化方法提高恢复性能,并经由数值模拟发现其在这三者中实现了最优性能。最后,第三种方案称为离散性感知广义特征值检测器(DAGED),与其他方案相比,它不仅提供了性能与复杂度之间的折衷,而且与它们的不同之处在于不需要对惩罚参数进行离线优化。模拟结果表明,所有三种方法都优于最先进的接收器,而DAPZF的复杂度显著降低。在本申请的描述中,该参考文献将用作参考文献[12]。
Boyd,S.和Vandenberghe,L.(2004).Convex Optimization[凸优化].剑桥:剑桥大学出版社.doi:10.1017/CBO9780511804441作为一本讲义描述了凸优化的理论基础。在本申请的描述中,该参考文献将用作参考文献[13]。
K.Shen和W.Yu在2018年5月IEEE信号处理汇刊,第66卷,第10期,第2616-2630页中的“Fractional programming for communication systems-Part I:Power control andbeamforming[通信系统的分式规划——第一部分:功率控制和波束成形]”探讨了在通信系统的设计和优化中使用FP。该论文的第一部分侧重于FP理论和求解连续问题。主要的理论贡献是一种新颖的二次变换技术,用于解决多比率凹凸FP问题——相比之下,传统的FP技术大多只能处理单一比率或最大最小比率的情况。多比率FP问题对于优化通信网络很重要,因为系统级设计通常涉及多个信干噪比项。该论文考虑了将FP应用于求解通信系统设计中的连续问题,特别是用于功率控制、波束成形和能效最大化。这些应用案例表明,通过将原始非凸问题改写为一系列凸问题,所提出的二次变换可以极大地促进涉及比率的优化。这种基于FP的问题的公式改写产生了一种可证明收敛到固定点的高效迭代优化算法。在本申请的描述中,该参考文献将用作参考文献[14]。
Kai-Kit Wong、Member和Arogyaswami Paulraj在2007年5月IEEE无线通信汇刊,第6卷,第5期中的“Efficient High-Performance Decoding for Overloaded MIMOAntenna Systems[过载MIMO天线系统的高效高性能解码]”描述了容量实现的前向纠错码(例如,时空涡轮码)的实际挑战是克服与它们的最优联合最大似然(ML)解码相关联的巨大复杂度。出于这个原因,已经研究了迭代软解码以在可承受的复杂度下接近最优ML解码性能。在多输入多输出(MIMO)信道中,明智的解码策略包括两级:1)使用球形解码的列表版本或其变体来估计软比特,以及2)通过迭代软解码来更新软比特。在执行迭代软解码之前,MIMO解码器需要在第一级产生可靠的软比特估计。在该论文中,重点是过载(或胖)MIMO天线系统,其中接收天线的数量少于空间域中复用的信号数量。在这种场景下,球形解码的原始形式本质上是不适用的,并且我们的目标是在几何上泛化球形解码以应对过载检测。所谓的板球形解码(SSD)提出了保证获得exactML硬检测,同时大大降低了复杂度。利用SSD的列表版本,该论文提出了一种高效的MIMO软解码器,它可以以可承受的复杂度生成可靠的软比特估计作为迭代软解码的输入,以获得有希望的性能。在本申请的描述中,该参考文献将用作参考文献[15]。
G.D.Golden、C.J.Foschini、R.A.Valenzuela和P.W.Wolniansky在电子快报第7刊,1月,7999,第35卷,第I期中的“Detection algorithm and initial laboratoryresults using V-BLAST space-time communication architecture[使用V-BLAST时空通信架构的检测算法和初始实验室结果]”描述了垂直BLAST(贝尔实验室分层时空)无线通信架构的信号检测算法。使用这种联合时空方法,在实验室里已经证明了在平坦的衰减条件下,室内衰减率的频谱效率范围为20-40bit/s/Hz。最近的信息论研究表明,如果多径得到适当的利用,则丰富散射的无线信道能够产生巨大的理论容量。Foschini提出的对角分层时空架构(现在称为D-BLAST)在发射器和接收器上都使用了多元素天线阵列,并且该架构使用了优雅的对角分层编码结构,其中代码块分散在时空的对角线上。在独立的瑞利散射环境中,这种处理结构导致理论速率随发射天线数量线性增长,这些速率接近香农容量的90%。然而,对角线方法存在一定的实施复杂度,这使得它不适合在最初实施。它描述了BLAST检测算法的简化版本,称为垂直BLAST或V-BLAST,其已在实验室中实时实施。使用我们的实验室原型,我们已经在室内慢衰落环境中展示了高达40bit/s/Hz的频谱效率。在本申请的描述中,该参考文献将用作参考文献[16]。
图1和图2分别展示了正交多址和非正交多址的基本性质。图1示出了例如在无线通信系统中发射资源对共享传输介质的信道的有序访问的一个示例性实施例。可用频带被分成几个信道。任何一个发射器每次可以使用单个信道或者连续或非连续信道的组合。由不同哈希图案指示的不同发射器可以在离散时隙中或在几种后续时隙中进行发射,并且可以针对每次发射改变其发射的信道或信道组合。注意,如图1所示,任何发射器可以在较长时段内使用一个信道资源,而另一个发射器可以同时使用两个或更多个信道资源,并且又另一个发射器可以两者兼顾,即在较长时间段内使用两个或更多个信道资源。在任何情况下,每次只有一个发射器使用任何信道资源或其组合,并且对来自每个发射器的信号进行检测和解码是相对容易的。
图2a示出了与图1所示的相同的频带,但是可能并不总有一个或多个单独信道到发射器的临时排他性分配。相反,频带的至少一部分可能被多个发射器同时使用,并且对来自单个发射器的信号进行检测和解码要困难得多。这由不同哈希的框表示。然而,从左边开始,最初三个发射器以正交方式使用临时专用信道资源,下一刻两个发射器在部分重叠的信道中进行发射。由水平哈希图案表示的发射器对附图底部所示的信道进行排他性访问,而该发射器所使用的接下来的三个信道也被另一个发射器使用,由虚线椭圆中的对角哈希图案表示。叠加由对角交叉的哈希图案指示。在之后的时刻发生类似的情况,其中,两个发射器中的每一个排他地使用两个信道资源,同时两者共享第三个信道资源。必须注意,多于两个发射器可以至少临时共享一些或全部信道资源。这些情况可以被称为部分过载或部分NOMA。在不同的表示中,图2b示出了与图2相同的频带。由于没有一个或多个单独信道到一个发射器的明确的临时排他性分配,并且频带的至少一部分至少临时地被多个发射器同时使用,因此通过不允许识别任何单个发射器的灰色填充图案说明了对来自单独发射器的信号进行检测和解码的难度。
多维离散信号检测问题也出现在与信号处理相关的现代电气工程的各个领域,包括音频和视频系统、通信系统、控制系统等。一般而言,目的是从受随机失真、噪声和干扰影响的信号的有限数量的观测测量结果中提取信息性量(符号),尽管这些信息性量是随机的(未知),但却是根据接收器已知的系统模型(编码书、星座等)从源生成的。
此类大型且可能欠定的系统的主要问题之一是性能与复杂度的折衷。事实上,一方面,ML接收器及其经典的近似最优替代方案(如球形解码器[1,2])存在计算复杂度过高的问题,其计算复杂度随着输入变量的数量和源星座的基数呈指数增长,从而导致组合公式甚至对于相对较小的设置也变得很棘手。另一方面,传统的低复杂度线性估计器(即,迫零(ZF)和最小均方误差(MMSE))在欠定情况下与严重的误码率(BER)性能下降相关。尽管过去已经提出了几个低复杂度的对应解决方案[3-5],但是可以发现这些解决方案由于相对较高的计算复杂度而存在可扩展性方面的局限性,或由于中等检测能力而存在性能方面的局限性。
最近,由于引入了压缩感测(CS)方法,该领域取得了很大进展,该压缩感测方法在多维离散信号检测的背景下产生了一种可在多项式时间内求解的新颖的有限字母表信号正则化技术,这是由[6,7]提出的。详细来说,这个新概念(称为离散性感知)的核心思想是使用最近从CS方法中出现的技术将可能信号的搜索偏向于离散星座集,同时保持搜索空间的连续性,以便保持凸性,从而允许高效地获得最优解。
在这种背景下,最近的几篇文章都在追求离散性感知接收器设计。例如,在[6,7]中,提出了无噪声欠定线性系统的新的基于稀疏性的恢复方法,这些方法证明了即使在严重过载的大规模系统中,离散信号恢复也是可行的。
为了考虑噪声对接收器解码性能的影响,[8-10]开发了新颖的离散性感知接收器,分别称为绝对值和(SOAV)、复数稀疏正则化器和(SCSR)和基于简单性的恢复(SBR),它们已被证明不仅显著优于传统的线性ZF和MMSE估计器,而且还优于先前最先进的方案(SotA),包括基于图的迭代高斯检测器(GIGD)[5]、Quad-min[4]和增强的主动禁忌搜索(ERTS)[3]。然而,后面的方法依赖于众所周知的l1-范数近似来替换出现在原始离散性感知接收器中的l0-范数非凸函数以捕获输入信号的离散性,这表明有可能提高检测性能。
为了应对这一挑战,[11,12]的作者开发了一种无需借助通常的凸包松弛的新型离散性感知接收器,这表明所提出的方法不仅优于其他SotA(即,SOAV、SCSR和SBR),而且还接近理论上的性能边界。它们的关键因素有两个部分:可适配的l0-范数近似和分式规划(FP),它们将棘手的l0-范数最小化改写为一系列凸问题,从而缩小了近似差距。
尽管在[12]中已经表明,新的离散性感知接收器(称为离散性感知惩罚迫零(DAPZF))明显优于其他SotA离散性感知检测器,即,上面提到的SOAV、SCSR和SBR,这表明DAPZF是可带来更好的性能(如图4所示)的新颖方法,但是它还假设在接收器处可获得理想/完美的信道状态信息(CSI)知识。然而,多维无线系统的信号检测算法的性能确实受到这些不可避免的误差的限制。
因此,需要对此类缺陷进行建模并将其纳入信号检测算法的设计中,以抑制不希望的相关影响。总而言之,据我们所知,目前尚未提出一种不仅在收敛性方面独立于信道结构而且在信号重构过程中充分考虑了CSI缺陷的离散性感知多维信号检测机制。
因此,本发明解决了数字信号恢复中的CSI不确定性问题,即,提供了一种用于在有噪环境和存在CSI误差的情况下、特别是在过载的通信信道中估计发射离散符号向量的方法。
发明内容
本发明认识到,由于数字通信中使用的符号最终是作为模拟信号在模拟域(即连续域)中发射的,并且衰减、互调、失真和各种误差不可避免地在信号从发射器通过模拟通信信道到接收器的途中修改了这些信号,因此对接收器中所发射符号的“检测”仍然主要是对所发射信号的“估计”(这与所使用的方法无关)。信号在大多数情况下由信号振幅和信号相位表示,具体地是对所发射信号向量进行估计。然而,在本说明书的上下文中,术语“检测”和“估计”可互换使用,除非相应的上下文指出其间的区别。一旦确定了估计的所发射的信号,就将其转换成估计的所发射符号,并最终提供给解码器,该解码器将估计的所发射符号映射到所发射数据位。
本披露中提及的所有专利申请和专利均通过引用以其全文并入本文:
PCT/EP 2019/079532,标题为“Method of estimating transmit SymbolVectors in an overloaded Communication Channel[估计过载通信信道中的发射符号向量的方法]”。
PCT/EP 2020/082987,标题为“Method for Wireless X2X Access andReceivers for Large Multidimensional Wireless Systems[用于大型多维无线系统的无线X2X接入方法和接收器]”。
本文披露的所有出版物均通过引用以其全文并入本文,包括:
H.Iimori、G.Abreu、D.Gonzaléz G.和O.Gonsa在美国帕西菲克格罗夫AsilomarCSSC会议录的“Joint detection in massive overloaded wireless systems viamixed-norm discrete vector decoding[经由混合范数离散向量解码在大规模过载无线系统中进行联合检测]”,作为参考文献[11]
H.Iimori、R.-A.Stoica、G.T.F.de Abreu、D.Gonzaléz G.、A.Andrae和O.Gonsa在2020年CoRR,第abs/2001.07560卷的“Discreteness-aware receivers for overloadedMIMO systems[过载MIMO系统的离散性感知接收器]”,作为参考文献[12]
De Mi、Mehrdad Dianati、Lei Zhang、Sami Muhaidat和Rahim Tafazolli在2017年9月IEEE通信汇刊,第65卷,第9期的“Massive MIMO Performance With ImperfectChannel Reciprocity and Channel Estimation Error[缺陷信道互易性和信道估计误差下的大规模MIMO性能]”。该论文描述了如何在具有信道估计误差和互易性误差的TDD系统中估计SINR。同样,假设信号的功率是已知的(导频),可以测量由于信道估计误差引起的SINR增加。
Hwanjin Kim和Junil Choi2019年12月9日在arXiv:1910.13243,的“ChannelEstimation for Spatially/Temporally Correlated Massive MIMO Systems with One-Bit ADCs[具有单比特ADC的空间/时间相关大规模MIMO系统的信道估计]”,可在1910.13243.pdf(arxiv.org)获得。该论文描述了一种在资源受限系统(单比特ADC)的背景下实现此目的的方法。
Mahdi Barzegar Khalilsarai、Saeid Haghighatshoar、Xinping Yi和GiuseppeCaire在2018年8月24日arXiv:1803.05754v2[cs.IT]中的“FDD Massive MIMO via UL/DLChannel Covariance Extrapolation and Active Channel Sparsification[经由UL/DL信道协方差外推和主动信道稀疏化的FDD大规模MIMO]”;可在1803.05754.pdf(arxiv.org)获得。
G.E.Prescott、J.L.Hammond和D.R.Hertling在1988年9月在IEEE通信汇刊,第36卷,第9期,第1070-1073页,doi:10.1109/26.7519中的“Adaptive estimation oftransmission distortion in a digital communications channel[数字通信信道中传输失真的自适应估计]”。
在本说明书和权利要求的上下文中,通信信道通过具有复系数的集合或矩阵来表征。信道矩阵也可以用大写字母H来表示。通信信道可以建立在任何合适的介质中,例如,承载电磁波、声波和/或光波的介质。假设信道性质是已知的并且在每次符号发射周期/时间期间是恒定的,即,虽然信道性质可能随时间变化,但是每次符号的发射都经历恒定的信道。
表述“符号”是指一组离散符号ci中的一员,这些离散符号形成了符号星座C,或者更通俗地说,形成了用于构成发射的字母表。符号表示一个或多个数据位,并且表示在使用星座C的系统中每次可以传输的最小信息量。在传输信道中,符号可以由模拟状态的组合(例如,载波的振幅以及相位)来表示。振幅和相位可以例如被称为复数或笛卡尔空间中横坐标上的纵坐标值,并且可以被视为向量。符号的向量在本文用小写字母s表示。每个发射器可以使用同一星座C来发射数据。然而,发射器同样可以使用不同的星座。假设接收器知道相应发射器中使用的星座。
凸函数是这样的函数[13],该函数上的任意两点都可以通过一条完全位于函数本身之上的直线连接起来。凸域可以具有任何维度,并且发明人认识到在4维或更多维的域中直线的概念可能难以可视化。
贯穿以下说明书,术语“分量”或“元素”可以作为同义词使用,特别是在提及向量时。
受上述所有启发,我们提供了本发明检测方案的理论基础,该方案将噪声效应完全纳入其信号检测过程,从而在离散信号检测性能方面优于上述SotA。
考虑在(可能在)具有信道估计误差的确定场景下的设备到设备半双工通信链路,其可以被建模为
我们注意到等式(1)描述的模型的灵活性,它允许通过高斯-马尔科夫不确定性参数τ来考虑各种程度的信道估计缺陷。特别是,τ=0意味着完美的CSI假设,而τ=1表示节点上没有可用的CSI。
在上文中,是收发器与接收器之间的实际信道矩阵,表示对应的信道估计,是相关联的信道估计误差矩阵,由从基数的同一星座集2b中采样的元素组成的归一化输入符号向量被描述为其中b表示每个符号的位数,最后,表示具有零均值和协方差矩阵的独立同分布(i.i.d.)圆对称复AWGN向量,其中,(是基本信噪比(SNR)。SNR表示期望/所发射信号相对于噪声的功率比。
其中,我们假设信道被建模为经典的Jakes空间相关性,表示为
我们注意到等式(4)可以表达广泛的信道矩阵。例如,具有广泛分布的上行链路用户的上行链路场景可以看作是上述中的一种特殊情况,其中发射器处的空间特征矩阵被简化为单位矩阵(即,),而在不相关信道的情况下,并且
鉴于上述情况,对应的ML检测可以很容易地表达如下。
其可以相当于被重写为
首先,认识到当且仅当解时,满足等式(6)中的正则化约束。然而,该约束是不连续的,因为它只能通过测试中x元素的所有不同组合来验证,这使得问题在现实的大规模无线系统中变得棘手。为了规避这个问题,对于一些惩罚参数4≥0,包括分别在[10]、[8]、[9]、[12]中的SBR、SOAV、SCSR和DAPZF在内的最先进的接收器从根本上针对等式(6)的以下正则化替代方案
后一公式说明,[8]中提出的SOAV MIMO解码器和[9]中的SCSR方案的核心只不过是通过用凸l0-范数对l1-范数的相当经典的替换来对等式(7)进行凸化处理。[6-12]中提出的最先进的离散性感知检测算法不仅在确定场景中而且在严重欠定的场景中也明显优于传统的线性估计器(即,迫零(ZF)和最小均方误差(MMSE)),其中一些算法紧密接近绝对性能下限。请注意,与基于消息传递的对应方法不同,基于优化的方法的主要优点之一是其不管信道矩阵的类型如何都实现最优收敛保证。
尽管如此,它们都没有充分考虑如等式(7)所示的可能失真(即,CSI缺陷和AWGN噪声)的影响,表明在传统的ZF估计过程与MMSE估计过程之间的比较的背景下,它们可以被归类为具有离散性感知的ZF类解决方案,这也意味着在其问题表述中尚未充分考虑由CSI2误差引起的干扰。
为了解决这个问题,我们特此提出一种新的检测算法,通过引入广义最小二乘框架,在其检测过程中充分考虑噪声和CSI缺陷的影响,这可以看作是对最先进的DAPZF[12]的一般化。
它最小化了输出向量与输入向量之间的马氏距离,同时强制使解成为离散可行点的成员[14,15]。
其中,
EQ9的目的是补偿由于信道估计误差引起的相关性。
在等式9的这个变体中,第1项被修改以补偿被反映为信道相关性的信道估计误差的影响,并且第2项被修改以避免有效噪声的进一步放大,这种放大是信道估计误差的结果。
选择s以直接最小化由信道相关性和信道估计误差造成的噪声增加的影响,特别是当它很大时,从而对噪声和信道估计误差产生鲁棒性,同时也强制使解属于星座。
为了解决等式(9)中给出的类似ML的公式中棘手的l0-范数非凸性问题,我们引入以下自适应l0-范数近似
其中,x表示长度为N的任意稀疏向量,并且α>0是自由选择的参数,其大小控制着近似的紧密度。
将(5)代入(9)并应用分式规划凸化技术,我们得到
以及
人们可能会注意到,等式(12)是没有任何约束的可微凸二次最小化问题,这意味着其最小化器存在封闭形式的表达式。为此,等式(12)可以紧凑地重写为
这很容易得到
因此,根据本发明的估计在通过具有复系数的信道矩阵表征的过载通信信道中发射的发射符号向量的计算机实施的方法包括在接收器R中接收由接收到的信号向量表示的信号。接收到的信号向量对应于表示从自一个或多个发射器T发射的符号s的星座中选择的所发射符号向量ci的信号叠加,加上由信道添加的任何失真和噪声。
在多于一个发射器的情况下,发射器T在时间上是同步的,即在发射器T与接收器R之间假定公共时基,使得接收器R例如在预定时间窗内基本上同时接收来自不同发射器T的符号发射。如果发射器T一个接一个地发射一系列符号,则同时或在预定时间窗内接收符号意味着在接收到后续符号之前在接收器R处接收到所有时间同步的所发射符号。这可以包括发射器T调整其发射开始时间使得依赖于发射器T与接收器R之间的距离的传播延迟得到补偿的设置。这还可以包括在发射后续符号之间提供时间间隙。
该方法进一步包括定义凸搜索空间,该凸搜索空间对于星座y的所有符号s至少包括接收到的信号向量ci的分量和发射符号向量的分量,其通过正则化器(即,等式(4)的第三项)强烈偏向于离散星座点,同时将噪声知识纳入信号检测过程,这与包括[6-12]在内的其他SotA离散性感知接收器不同。
本发明的这种噪声和CSI缺陷感知特征是优于其他SotA的关键优势,这是通过引入另一个正则化项并利用广义最小二乘框架来实现的,这样可以充分抑制噪声放大和CSI误差,这导致本发明成为最先进的DAPZF的一般化。
通信系统的接收器具有处理器、易失性和/或非易失性存储器、以及至少一个适于在通信信道中接收信号的接口。非易失性存储器可以存储计算机程序指令,这些计算机程序指令在由微处理器执行时将接收器配置为实施根据本发明的方法的一个或多个实施例。易失性存储器可以在操作期间存储参数和其他数据。处理器可以被称为以下各项中的一项:控制器、微控制器、微处理器、微型计算机等。并且,处理器可以使用硬件、固件、软件和/或其任何组合来实施。在通过硬件实施时,处理器可以设有被配置为实施本发明的设备,如ASIC(专用集成电路)、DSP(数字信号处理器)、DSPD(数字信号处理设备)、PLD(可编程逻辑设备)、FPGA(现场可编程门阵列)等。
同时,在使用固件或软件实施本发明的实施例的情况下,固件或软件可以被配置为包括用于执行本发明的上文解释的功能或操作的模块、程序和/或功能。并且,被配置为实施本发明的固件或软件被加载到处理器中或保存在存储器中以由处理器驱动。
附图说明
描绘所披露方法的流程图包括可以表示计算机软件指令或指令组的“处理块”或“步骤”。可替代地,处理块或步骤可以表示由功能等效电路执行的步骤,这些功能等效电路比如数字信号处理器(DSP)、现场可编程门阵列(FPGA)、专用集成电路(ASIC)或图形处理单元(GPU)或用软件指令编程以执行所披露的方法的计算机处理单元(CPU)。本领域普通技术人员将理解,除非本文另有说明,否则所描述的特定步骤序列仅是说明性的并且可以改变。除非另有说明,否则本文所述的步骤是无序的,这意味着可以以任何方便或期望的顺序来执行这些步骤。
将参考附图进一步解释本发明,在附图中:
图1示出了对共享介质进行正交多址接入的简化示意性表示,
图2示出了对共享介质进行非正交多址接入的简化示意性表示,
图3示出了通过有噪通信信道进行通信的发射器和接收器的示例性通用框图,
图4性能比较:所提出的解决方案和现有技术方案。
具体实施方式
上文已经进一步讨论了图1和图2,并且此处不再赘述。
图3示出了通过通信信道208进行通信的发射器T和接收器R的示例性通用框图。发射器T尤其可以包括要发射的数字数据源202。源202将数字数据的位提供给编码器204,该编码器将编码成符号的数据位转发到调制器206。调制器206例如经由一个或多个天线或任何其他类型的信号发射器(未示出)将调制后的数据传输到通信信道208中。例如,调制可以是正交振幅调制(QAM),其中,要发射的符号由所发射信号的振幅和相位表示。
信道208可以是无线信道。然而,通用框图对任何类型的有线或无线信道都是有效的。在本发明的上下文中,介质是共享介质,即多个发射器和接收器访问同一介质,并且更具体地,信道由多个发射器和接收器共享。
接收器R通过通信信道208、例如经由一个或多个天线或任何其他类型的信号接收器(未示出)来接收信号。通信信道208可能已经将噪声引入到所发射信号,并且信号的振幅和相位可能已经因信道而失真。失真可以由接收器中设置的均衡器(未示出)来补偿,该均衡器基于信道特性来控制,这些信道特性可以例如通过分析在通信信道上发射的具有已知性质的导频符号来获得。同样,可以通过接收器中的滤波器(未示出)来减少或消除噪声。
信号检测器212接收来自信道的信号,并且210尝试根据在先前传输上累积的一系列接收到的信号来估计CSI误差参数τ。信号检测器212将估计的信号转发到解码器214,该解码器将估计的信号解码成估计的符号。如果解码产生可能已经被发射的符号,则该符号被转发到解映射器216,该解映射器将与估计的发射信号和对应的估计符号相对应的位估计例如输出到微处理器218以进行进一步的处理。
信号检测器210接收来自信道的信号,并试图从接收到的信号中估计哪个信号已经被发射到信道中。信号检测器210将估计的信号转发到解码器212,该解码器将估计的信号解码成估计的符号。如果解码产生可能已经被发射的符号,则该符号被转发到解映射器214,该解映射器将与估计的发射信号和对应的估计符号相对应的位估计例如输出到微处理器216以进行进一步的处理。否则,如果解码没有产生可能已经被发射的符号,则将估计的信号解码成可能的符号的不成功尝试被反馈给信号检测器,以用不同的参数重复信号估计。发射器的调制器中的数据处理和接收器的解调器中的数据处理是互补的。
虽然图3的发射器T和接收器R似乎是众所周知的,但是接收器R、更具体地根据本发明的接收器的信号检测器210和解码器212适于执行下文描述的本发明的方法,并且因此与已知的信号检测器不同地工作。
图4描述了与最先进的接收器相比的性能评估。其示出了所提出方法与最先进的信号恢复方法相比的未编码BER性能评估。
从图4中可以看出,在CSI估计误差可以容忍的情况下(Τ2<13db),所提出的方案在可靠性(BER)方面比现有方法有明显的增益(超过一个数量级)。在图中,为方便起见,已将总增益分解为由于离散感知产生的增益(DA增益)和由于损伤感知(IA)而获得的另一个增益。
为了实现5G和超越5G,提出了各种技术,包括大规模多输入多输出(MIMO)、协作MIMO、毫米波(mmWave)通信、NOMA、设备到设备(D2D)、邻近服务(ProSe)、移动中继、机载中继、软件定义网络、雾计算和分布式人工智能(AI)。借助这种提出的方法,可以将许多基础设施功能推送到网络边缘,以减少延迟、扩大覆盖范围、增强多功能性并利用大量用户设备的计算资源。移动边缘计算(MEC)可以迅速处理从移动设备卸载的计算密集型作业,从而减少端到端延迟。边缘计算模块可以在基站收发台、中继或用户设备中。
本文披露的各方面广泛适用于本文披露的无线标准和用例系列,包括(但不限于)蜂窝、移动宽带、车载自组织网络、固定宽带、物联网(IoT)、对等网络、网状网络、无线个域网(WPAN)、无线局域网(WLAN)、无线传感器网络、机载网络、卫星网络、网络结构、软件定义网络(SDN)和混合网络。
Claims (11)
1.一种具有CSI误差的有噪过载无线通信系统中的离散数字信号的计算机实施的重构方法,该有噪过载无线通信系统通过具有复系数的信道矩阵来表征,该方法包括
-由信号检测器(212)接收来自信道(208)的信号
-在接收器处估计该CSI误差参数τ
-由噪声功率估计器(210)估计噪声功率
-将检测到的信号以及该CSI误差参数τ和噪声功率估计转发到估计(多个)所发射符号的解码器(214),
其中,该解码器(214)的估计产生可能已经被发射的符号,该符号被转发到解映射器(216),该解映射器将与估计的发射信号和对应的估计符号相对应的位估计输出到微处理器(218)以进行进一步的处理。
2.如权利要求1所述的方法,其中,假设信道相关性是信道估计误差,并且CSI误差参数τ包含在捕获该相关性的协方差矩阵中。
3.如权利要求1或2所述的方法,其中,通过在由解码器(214)使用的目标函数内补偿噪声增加和该信道相关性来最小化信道估计误差的影响。
5.如权利要求4所述的方法,其中,该分式规划算法的目的是找到该第三函数的比该第一函数的全局最小值低的值。
6.如权利要求4所述的方法,其中,该第一函数是以接收到的信号的向量为中心的欧几里德距离函数,该向量包括该信道相关性的影响。
7.如权利要求4所述的方法,其中,该第二函数是由该信道估计误差参数缩放的估计噪声功率与发射信号功率的乘积。
8.如权利要求4所述的方法,其中,该第三函数是基于或紧密近似l0-范数的函数。
9.一种通信系统的接收器(R),该接收器具有处理器、易失性和/或非易失性存储器、适于在通信信道(208)中接收信号的至少一个接口,其中,该非易失性存储器存储计算机程序指令,这些计算机程序指令在由微处理器执行时将该接收器配置为实施如权利要求1至4中的一项或多项所述的方法。
10.一种计算机程序产品,包括计算机可执行指令,这些计算机可执行指令当在计算机上执行时使该计算机执行如权利要求1至8中任一项所述的方法。
11.一种计算机可读介质,该计算机可读介质存储和/或传输如权利要求10所述的计算机程序产品。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102020204396.5 | 2020-04-03 | ||
DE102020204396 | 2020-04-03 | ||
DE102020204395.7 | 2020-04-03 | ||
DE102020204397.3 | 2020-04-03 | ||
DE102020204397 | 2020-04-03 | ||
DE102020204395 | 2020-04-03 | ||
PCT/EP2021/058578 WO2021198404A1 (en) | 2020-04-03 | 2021-04-01 | Estimation method of discrete digital signals in noisy overloaded wireless communication systems with csi errors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115362645A true CN115362645A (zh) | 2022-11-18 |
CN115362645B CN115362645B (zh) | 2024-07-05 |
Family
ID=75396770
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180025535.2A Active CN115336209B (zh) | 2020-04-03 | 2021-04-01 | 存在硬件损伤的有噪过载无线通信系统中的离散数字信号恢复方法 |
CN202180025534.8A Active CN115362645B (zh) | 2020-04-03 | 2021-04-01 | 具有csi误差的有噪过载无线通信系统中离散数字信号的估计方法 |
CN202180025498.5A Active CN115336208B (zh) | 2020-04-03 | 2021-04-01 | 有噪过载无线通信系统中离散数字信号的重构方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180025535.2A Active CN115336209B (zh) | 2020-04-03 | 2021-04-01 | 存在硬件损伤的有噪过载无线通信系统中的离散数字信号恢复方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202180025498.5A Active CN115336208B (zh) | 2020-04-03 | 2021-04-01 | 有噪过载无线通信系统中离散数字信号的重构方法 |
Country Status (7)
Country | Link |
---|---|
US (3) | US20230198811A1 (zh) |
EP (3) | EP4128599A1 (zh) |
JP (3) | JP2023520245A (zh) |
KR (3) | KR20220145389A (zh) |
CN (3) | CN115336209B (zh) |
DE (3) | DE112021000825T5 (zh) |
WO (3) | WO2021198404A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230198811A1 (en) * | 2020-04-03 | 2023-06-22 | Continental Automotive Technologies GmbH | Reconstruction method of discrete digital signals in noisy overloaded wireless communication systems |
US12107706B2 (en) | 2019-10-29 | 2024-10-01 | Continental Automotive Gmbh | Method of estimating transmit symbol vectors in an overloaded communication channel |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023117646A1 (en) | 2021-12-23 | 2023-06-29 | Continental Automotive Technologies GmbH | Method and system to optimize the hyper-parameters of discrete digital signal recovery for data processing systems |
CN114828151A (zh) * | 2022-05-17 | 2022-07-29 | 南京航空航天大学 | 一种硬件损伤下star-ris辅助noma系统的中断概率和遍历容量性能分析方法 |
US20240154127A1 (en) | 2022-11-03 | 2024-05-09 | Lg Energy Solution, Ltd. | Positive Electrode and Lithium Secondary Battery Manufactured Using the Same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090074050A1 (en) * | 2007-09-18 | 2009-03-19 | Wipro Techno Centre (Singapore) Pte Ltd | Method and apparatus for receiving coded signals with the aid of channel state information |
US20100194405A1 (en) * | 2009-02-04 | 2010-08-05 | Ls Industrial Systems Co, Ltd. | Noise measurement system in power stabilization network, variable filter applied to the same, and method for measuring noise in power stabilization network |
CN103780293A (zh) * | 2013-11-12 | 2014-05-07 | 华为技术有限公司 | 协方差矩阵估计方法及其使用 |
CN104601213A (zh) * | 2015-02-12 | 2015-05-06 | 郑州大学 | Mu-miso无线携能通信系统的鲁棒构造方法 |
CN105282060A (zh) * | 2014-06-05 | 2016-01-27 | 英特尔Ip公司 | 用于信道估计的方法和设备以及ofdm接收机 |
CN107566059A (zh) * | 2017-10-10 | 2018-01-09 | 广州供电局有限公司 | 无线信道误差检定的方法及装置 |
US20180167175A1 (en) * | 2016-12-12 | 2018-06-14 | Khalifa University of Science, Technology & Research | OFDM Communication System with Enhanced Channel Estimation and Data Detection Techniques |
US20190199384A1 (en) * | 2017-12-22 | 2019-06-27 | University Of South Florida | Network-aware adjacent channel interference rejection and out of band emission suppression |
CN110071748A (zh) * | 2019-04-30 | 2019-07-30 | 西安交通大学 | 一种多发单收系统的人工噪声功率分配方法 |
Family Cites Families (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6925301B2 (en) * | 2002-08-19 | 2005-08-02 | Tektronix, Inc. | Remote estimation of amplifier functionality |
US10277290B2 (en) * | 2004-04-02 | 2019-04-30 | Rearden, Llc | Systems and methods to exploit areas of coherence in wireless systems |
US9312929B2 (en) * | 2004-04-02 | 2016-04-12 | Rearden, Llc | System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS) |
US10425134B2 (en) * | 2004-04-02 | 2019-09-24 | Rearden, Llc | System and methods for planned evolution and obsolescence of multiuser spectrum |
JP4604800B2 (ja) * | 2005-04-01 | 2011-01-05 | ソニー株式会社 | 無線通信装置及び無線通信方法 |
US7751506B2 (en) * | 2005-12-01 | 2010-07-06 | Samsung Electronics Co., Ltd. | Method for the soft bit metric calculation with linear MIMO detection for LDPC codes |
KR100948548B1 (ko) | 2006-05-24 | 2010-03-19 | 삼성전자주식회사 | 광대역 무선접속 통신시스템에서 상향링크 전력 제어 장치및 방법 |
US7751463B2 (en) | 2006-12-05 | 2010-07-06 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for suppressing interference based on channelization code power estimation with bias removal |
KR100930524B1 (ko) * | 2007-01-09 | 2009-12-09 | 삼성전자주식회사 | 다중 안테나 중계 방식의 무선통신 시스템에서 협력 전송을수행하기 위한 장치 및 방법 |
US20080279298A1 (en) * | 2007-05-10 | 2008-11-13 | Comsys Communication & Signal Processing Ltd. | Multiple-input multiple-output (mimo) detector incorporating efficient signal point search |
US7555064B2 (en) * | 2007-08-27 | 2009-06-30 | Harris Corporation | System and method for estimating noise power level in a multi-signal communications channel |
US8781011B2 (en) * | 2008-02-25 | 2014-07-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Receiver parametric covariance estimation for precoded MIMO transmissions |
WO2010125760A1 (ja) | 2009-04-27 | 2010-11-04 | シャープ株式会社 | 干渉抑圧無線通信システムおよび干渉抑圧無線通信装置 |
DE102009043746A1 (de) | 2009-09-30 | 2011-03-31 | Carl Zeiss Microimaging Gmbh | Verfahren zum Erzeugen von Bildern mit erweitertem Dynamikumfang und optisches Gerät zur Durchführung eines solchen Verfahrens, insbesondere Laser-Scanning-Mikroskop |
US20120045024A1 (en) | 2010-02-24 | 2012-02-23 | Qualcomm Incorporated | Methods and apparatus for iterative decoding in multiple-input-multiple-output (mimo) communication systems |
US8331506B2 (en) * | 2010-03-12 | 2012-12-11 | Telefonaktiebolaget L M Ericsson (Publ) | Frequency-dependent IQ imbalance estimation |
US8699592B1 (en) | 2010-06-11 | 2014-04-15 | Marvell International Ltd. | Systems and methods for estimating decoder noise power in OFDM systems |
EP2418896B1 (en) * | 2010-08-09 | 2013-03-13 | Alcatel Lucent | Transmission power control in a multi-carrier wireless communication system |
TWI422182B (zh) | 2010-12-30 | 2014-01-01 | Univ Nat Chiao Tung | 基於幾何方法欠定多輸入多輸出系統之高效率解碼器及其解碼方法 |
CN102176287B (zh) | 2011-02-28 | 2013-11-20 | 无锡中星微电子有限公司 | 一种交通信号灯识别系统和方法 |
US9344303B1 (en) * | 2012-01-04 | 2016-05-17 | Marvell International Ltd. | Adaptive signal covariance estimation for MMSE equalization |
EP2658134A1 (en) | 2012-04-26 | 2013-10-30 | Harman Becker Automotive Systems GmbH | Multi-antenna system |
US9329948B2 (en) * | 2012-09-15 | 2016-05-03 | Seagate Technology Llc | Measuring cell damage for wear leveling in a non-volatile memory |
US10270642B2 (en) * | 2012-12-05 | 2019-04-23 | Origin Wireless, Inc. | Method, apparatus, and system for object tracking and navigation |
US9459296B2 (en) | 2012-10-19 | 2016-10-04 | Microchip Technology Germany Gmbh Ii & Co. Kg | Electrode design for electric field measurement system |
US9112744B1 (en) * | 2012-10-31 | 2015-08-18 | Marvell International Ltd. | Noise whitening in a WLAN receiver |
EP2830271B1 (en) * | 2013-07-23 | 2018-06-27 | ST-Ericsson SA | Low complexity maximum-likelihood-based method for estimating emitted symbols in a sm-mimo receiver |
JP2015056690A (ja) | 2013-09-10 | 2015-03-23 | シャープ株式会社 | 端末装置および受信装置 |
US9942013B2 (en) | 2014-05-07 | 2018-04-10 | Qualcomm Incorporated | Non-orthogonal multiple access and interference cancellation |
US10489527B2 (en) * | 2014-06-03 | 2019-11-26 | Dan Gordon | Method and apparatus for constructing and using absorbing boundary conditions in numerical computations of physical applications |
CN104796239B (zh) * | 2015-01-30 | 2019-03-19 | 苏州恩巨网络有限公司 | 一种mimo无线通信系统及信号检测装置和方法 |
US9843417B2 (en) * | 2015-02-11 | 2017-12-12 | Wisconsin Alumni Research Foundation | Differential MIMO transceiver |
KR102534065B1 (ko) | 2015-05-14 | 2023-05-19 | 샤프 가부시키가이샤 | 기지국 장치 및 단말 장치 |
US9686069B2 (en) * | 2015-05-22 | 2017-06-20 | ZTE Canada Inc. | Adaptive MIMO signal demodulation using determinant of covariance matrix |
CN106411796B (zh) | 2015-07-31 | 2019-07-05 | 电信科学技术研究院 | 一种非正交多址接入中多终端信号检测方法及基站 |
CN106454922B (zh) | 2015-08-10 | 2018-11-02 | 电信科学技术研究院 | 一种非正交多址接入系统中的上行检测方法及装置 |
EP3147896B1 (en) | 2015-09-25 | 2023-05-31 | Harman Becker Automotive Systems GmbH | Active road noise control system with overload detection of primary sense signal |
US10548115B2 (en) | 2015-09-30 | 2020-01-28 | Lg Electronics Inc. | Method for transmitting and receiving signals on basis of non-orthogonal multiple access scheme, and apparatus therefor |
WO2017057655A1 (ja) * | 2015-10-02 | 2017-04-06 | 株式会社Nttドコモ | 無線基地局、ユーザ端末及び無線通信方法 |
US9959158B2 (en) * | 2015-10-13 | 2018-05-01 | Honeywell International Inc. | Methods and apparatus for the creation and use of reusable fault model components in fault modeling and complex system prognostics |
CN106656406B (zh) | 2015-10-29 | 2019-07-19 | 电信科学技术研究院 | 一种非正交多址接入中信号检测方法及装置 |
US20170289920A1 (en) | 2016-03-29 | 2017-10-05 | Futurewei Technologies, Inc. | Method and Apparatus for Resource and Power Allocation in Non-Orthogonal Uplink Transmissions |
US10912117B2 (en) | 2016-05-23 | 2021-02-02 | Lg Electronics Inc. | Method and apparatus for competition-based transmitting of uplink data in wireless communication system to which non-orthogonal multiple access scheme is applied |
US9853667B2 (en) * | 2016-05-25 | 2017-12-26 | Apple Inc. | Noise and interference estimation for colliding neighbor reference signals |
WO2018028800A1 (en) * | 2016-08-12 | 2018-02-15 | Huawei Technologies Co., Ltd. | Superposition coding of pdsch and pdcch |
US10700824B2 (en) | 2016-08-12 | 2020-06-30 | Lenovo Innovations Limited (Hong Kong) | Non-orthogonal communication |
US10355726B2 (en) | 2016-09-29 | 2019-07-16 | University Of Massachusetts | Wideband receiver architecture tolerant to in-band interference |
CN106712903B (zh) | 2016-12-21 | 2019-08-27 | 重庆邮电大学 | 一种低复杂度mimo fbmc-oqam系统信号检测方法 |
CN106817334B (zh) * | 2017-01-16 | 2020-03-13 | 青岛大学 | 一种缓解观测干扰的多载波非线性削波失真压缩感知估计方法 |
KR102639615B1 (ko) | 2017-02-07 | 2024-02-22 | 삼성전자주식회사 | 무선 통신 시스템에서 다중 접속을 지원하기 위한 장치 및 방법 |
WO2018166606A1 (en) * | 2017-03-16 | 2018-09-20 | Huawei Technologies Co., Ltd. | Determination of hardware impairment parameters for downlink channel state information estimation |
US10560169B2 (en) * | 2017-03-24 | 2020-02-11 | Mediatek Inc. | CSI acquisition with channel reciprocity in mobile communications |
US20180323846A1 (en) * | 2017-05-05 | 2018-11-08 | Mediatek Inc. | Methods and apparatus for acquiring channel state information with channel reciprocity |
US10700912B2 (en) | 2017-05-19 | 2020-06-30 | Huawei Technologies Co., Ltd. | Method and system for non-orthogonal multiple access communication |
KR101918584B1 (ko) * | 2017-08-04 | 2018-11-14 | 한국항공대학교산학협력단 | 다중 안테나 시스템에서의 극 부호를 이용한 심볼 검파 및 채널 디코딩의 복합 처리 방법 및 그를 이용한 수신기 |
CN108173575B (zh) * | 2017-08-28 | 2021-04-30 | 同济大学 | 多输入多输出中继天线设计方法 |
CN107483376A (zh) * | 2017-09-07 | 2017-12-15 | 西安电子科技大学 | 一种用于mimo‑ofdm系统的信号检测方法 |
US10992358B2 (en) * | 2017-11-13 | 2021-04-27 | Apple Inc. | Signaling for resource allocation and scheduling in 5G-NR integrated access and backhaul |
CN109474388B (zh) | 2018-12-28 | 2021-07-30 | 重庆邮电大学 | 基于改进梯度投影法的低复杂度mimo-noma系统信号检测方法 |
CN110417515B (zh) * | 2019-08-16 | 2020-12-15 | 江南大学 | 一种基于离散迭代估计的大规模mimo信号检测方法 |
WO2021083495A1 (en) | 2019-10-29 | 2021-05-06 | Continental Automotive Gmbh | Method of estimating transmit symbol vectors in an overloaded communication channel |
EP4062611A1 (en) | 2019-11-22 | 2022-09-28 | Continental Automotive Technologies GmbH | Method for wireless x2x access and receivers for large multidimensional wireless systems |
US11121816B2 (en) * | 2019-12-04 | 2021-09-14 | Mitsubishi Electric Research Laboratories, Inc. | Symbol detection of massive MIMO systems with unknown symbol-dependent transmit-side impairments |
KR20220145389A (ko) | 2020-04-03 | 2022-10-28 | 콘티넨탈 오토모티브 테크놀로지스 게엠베하 | 잡음이 있는 과부하된 무선 통신 시스템에서의 이산 디지털 신호의 복구 방법 |
-
2021
- 2021-04-01 KR KR1020227033312A patent/KR20220145389A/ko not_active Application Discontinuation
- 2021-04-01 DE DE112021000825.0T patent/DE112021000825T5/de active Pending
- 2021-04-01 CN CN202180025535.2A patent/CN115336209B/zh active Active
- 2021-04-01 WO PCT/EP2021/058578 patent/WO2021198404A1/en active Application Filing
- 2021-04-01 JP JP2022560336A patent/JP2023520245A/ja active Pending
- 2021-04-01 EP EP21716690.9A patent/EP4128599A1/en active Pending
- 2021-04-01 KR KR1020227033311A patent/KR20220143131A/ko not_active Application Discontinuation
- 2021-04-01 EP EP21716691.7A patent/EP4128600A1/en active Pending
- 2021-04-01 CN CN202180025534.8A patent/CN115362645B/zh active Active
- 2021-04-01 JP JP2022560345A patent/JP2023520538A/ja active Pending
- 2021-04-01 CN CN202180025498.5A patent/CN115336208B/zh active Active
- 2021-04-01 WO PCT/EP2021/058581 patent/WO2021198406A1/en active Application Filing
- 2021-04-01 KR KR1020227033310A patent/KR20220143130A/ko not_active Application Discontinuation
- 2021-04-01 DE DE112021000830.7T patent/DE112021000830T5/de active Pending
- 2021-04-01 DE DE112021000831.5T patent/DE112021000831T5/de active Pending
- 2021-04-01 US US17/916,672 patent/US20230198811A1/en active Pending
- 2021-04-01 US US17/916,660 patent/US20230171023A1/en active Pending
- 2021-04-01 US US17/916,640 patent/US11996899B2/en active Active
- 2021-04-01 JP JP2022560346A patent/JP2023520539A/ja active Pending
- 2021-04-01 EP EP21716689.1A patent/EP4128598A1/en active Pending
- 2021-04-01 WO PCT/EP2021/058582 patent/WO2021198407A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090074050A1 (en) * | 2007-09-18 | 2009-03-19 | Wipro Techno Centre (Singapore) Pte Ltd | Method and apparatus for receiving coded signals with the aid of channel state information |
US20100194405A1 (en) * | 2009-02-04 | 2010-08-05 | Ls Industrial Systems Co, Ltd. | Noise measurement system in power stabilization network, variable filter applied to the same, and method for measuring noise in power stabilization network |
CN103780293A (zh) * | 2013-11-12 | 2014-05-07 | 华为技术有限公司 | 协方差矩阵估计方法及其使用 |
CN105282060A (zh) * | 2014-06-05 | 2016-01-27 | 英特尔Ip公司 | 用于信道估计的方法和设备以及ofdm接收机 |
CN104601213A (zh) * | 2015-02-12 | 2015-05-06 | 郑州大学 | Mu-miso无线携能通信系统的鲁棒构造方法 |
US20180167175A1 (en) * | 2016-12-12 | 2018-06-14 | Khalifa University of Science, Technology & Research | OFDM Communication System with Enhanced Channel Estimation and Data Detection Techniques |
CN107566059A (zh) * | 2017-10-10 | 2018-01-09 | 广州供电局有限公司 | 无线信道误差检定的方法及装置 |
US20190199384A1 (en) * | 2017-12-22 | 2019-06-27 | University Of South Florida | Network-aware adjacent channel interference rejection and out of band emission suppression |
CN110071748A (zh) * | 2019-04-30 | 2019-07-30 | 西安交通大学 | 一种多发单收系统的人工噪声功率分配方法 |
Non-Patent Citations (5)
Title |
---|
QIAN CHENG等: "Resource Allocation for Device-to-device Aided Cooperative NOMA with Imperfect CSI", 2019 26TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS (ICT), pages 2 * |
QIAN ZHANG等: "Per-Stream MSE Based Linear Transceiver Design for MIMO Interference Channels With CSI Error", IEEE TRANSACTIONS ON COMMUNICATIONS * |
吴军;陈斌;康国良;: "大规模MIMO系统中联合最强用户冲突解决的最大似然信道估计方案", 科技广场, no. 12 * |
吴飞龙;王文杰;刘超文;姚博彬;: "接收空间调制信道容量计算及其鲁棒性设计", 西安交通大学学报, no. 02 * |
陈慕涵;郭佳佳;李潇;金石;: "基于深度学习的大规模MIMO信道状态信息反馈", 物联网学报, no. 01 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12107706B2 (en) | 2019-10-29 | 2024-10-01 | Continental Automotive Gmbh | Method of estimating transmit symbol vectors in an overloaded communication channel |
US20230198811A1 (en) * | 2020-04-03 | 2023-06-22 | Continental Automotive Technologies GmbH | Reconstruction method of discrete digital signals in noisy overloaded wireless communication systems |
US11996899B2 (en) | 2020-04-03 | 2024-05-28 | Continental Automotive Technologies GmbH | Method of discrete digital signal recovery in noisy overloaded wireless communication systems in the presence of hardware impairments |
Also Published As
Publication number | Publication date |
---|---|
EP4128599A1 (en) | 2023-02-08 |
WO2021198407A1 (en) | 2021-10-07 |
JP2023520538A (ja) | 2023-05-17 |
EP4128598A1 (en) | 2023-02-08 |
CN115336209A (zh) | 2022-11-11 |
KR20220143130A (ko) | 2022-10-24 |
US11996899B2 (en) | 2024-05-28 |
KR20220143131A (ko) | 2022-10-24 |
JP2023520539A (ja) | 2023-05-17 |
WO2021198406A1 (en) | 2021-10-07 |
CN115336208A (zh) | 2022-11-11 |
CN115362645B (zh) | 2024-07-05 |
KR20220145389A (ko) | 2022-10-28 |
CN115336209B (zh) | 2024-06-25 |
DE112021000825T5 (de) | 2022-12-15 |
DE112021000831T5 (de) | 2022-12-01 |
WO2021198404A1 (en) | 2021-10-07 |
CN115336208B (zh) | 2024-06-21 |
JP2023520245A (ja) | 2023-05-16 |
US20230171023A1 (en) | 2023-06-01 |
US20230198811A1 (en) | 2023-06-22 |
EP4128600A1 (en) | 2023-02-08 |
DE112021000830T5 (de) | 2022-12-01 |
US20230144250A1 (en) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115362645B (zh) | 具有csi误差的有噪过载无线通信系统中离散数字信号的估计方法 | |
US20060215781A1 (en) | Method for detecting and decoding a signal in a MIMO communication system | |
Awan et al. | Detection for 5G-NOMA: An online adaptive machine learning approach | |
US10693701B2 (en) | Receiver, a plurality of transmitters, a method of receiving user data from multiple transmitters, and a method of transmitting user data | |
JP2023514900A (ja) | ワイヤレス装置での等化及び推定処理 | |
Klimentyev et al. | Detection of SCMA signal with channel estimation error | |
Gokceoglu et al. | Waveform design for massive MISO downlink with energy-efficient receivers adopting 1-bit ADCs | |
WO2023044284A1 (en) | Hybrid wireless processing chains that include deep neural networks and static algorithm modules | |
Ghaffar et al. | Spatial interference cancellation and pairwise error probability analysis | |
Nguyen et al. | Variational Bayes for Joint Channel Estimation and Data Detection in Few-Bit Massive MIMO Systems | |
Ye et al. | Autoencoder-based MIMO Communications with Learnable ADCs | |
Kashif et al. | Shared hybrid ARQ with incremental redundancy (SHARQ IR) in overloaded MIMO systems to support energy-efficient transmissions | |
Chen et al. | Low‐complexity iterative interference cancellation multiuser detection based on channel selection and adaptive transmission | |
Priya et al. | H∞-dCNN: enhancing the SNR using deep learning algorithm in wireless communication system | |
Wang et al. | Comprehensive Study of NOMA Schemes | |
Jiang et al. | Practical analysis of codebook design and frequency offset estimation for virtual‐multiple‐input–multiple‐output systems | |
Gupta et al. | A stacked autoencoder-based decode-and-forward relay networks with I/Q imbalance | |
Kim | AI-Enabled Physical Layer | |
Burr et al. | Evolved Physical Layer | |
Villena-Rodriguez et al. | Aging-Resistant Wideband Precoding in 5G and Beyond Using 3D Convolutional Neural Networks | |
JP3981656B2 (ja) | アレーアンテナの制御方法及び制御装置 | |
Simba et al. | MIMO-NOMA-DAE: A Deep Learning based Downlink MIMO-NOMA Scheme for Low-Power Applications with Imperfect CSI | |
Shanthi et al. | Implementing Interference Minimization Algorithm for Improved Performance in 8× 8 MU-MIMO Systems | |
JP2005252694A (ja) | アレーアンテナの制御方法および制御装置 | |
Gresset et al. | Precoded BICM design for MIMO transmit beamforming and associated low-complexity algebraic receivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |