KR20220132601A - 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물 - Google Patents

톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물 Download PDF

Info

Publication number
KR20220132601A
KR20220132601A KR1020227029360A KR20227029360A KR20220132601A KR 20220132601 A KR20220132601 A KR 20220132601A KR 1020227029360 A KR1020227029360 A KR 1020227029360A KR 20227029360 A KR20227029360 A KR 20227029360A KR 20220132601 A KR20220132601 A KR 20220132601A
Authority
KR
South Korea
Prior art keywords
mmol
methyl
alkyl
alkanediyl
cancer
Prior art date
Application number
KR1020227029360A
Other languages
English (en)
Inventor
얌 비. 포우델
매튜 콕스
리치 헤
아쉬비니쿠마르 브이. 가바이
산지브 강와르
마티아스 브뢰케마
크리스틴 엠. 타비
무루가이아 안다판 무루가이아 수바이아
Original Assignee
브리스톨-마이어스 스큅 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브리스톨-마이어스 스큅 컴퍼니 filed Critical 브리스톨-마이어스 스큅 컴퍼니
Publication of KR20220132601A publication Critical patent/KR20220132601A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53861,4-Oxazines, e.g. morpholine spiro-condensed or forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Abstract

하기 화학식 (I)에 따른 화합물은 톨-유사 수용체 7 (TLR7)의 효능제로서 유용하다. 이러한 화합물은 암 치료, 특히 항암 면역요법제와 조합하여 또는 백신 보조제로서 사용될 수 있다.

Description

톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
관련 출원에 대한 상호 참조
본 출원은 35 U.S.C. §119(e) 하의 2020년 1월 27일에 출원된 미국 가출원 일련 번호 62/966,119의 이익을 청구하고; 그의 개시내용은 본원에 참조로 포함된다.
개시내용의 배경
본 개시내용은 톨-유사 수용체 7 ("TLR7") 효능제 및 그의 접합체, 및 이러한 효능제 및 그의 접합체의 제조 방법 및 용도에 관한 것이다.
톨-유사 수용체 ("TLR")는 특정 클래스의 병원체 내에 보존된 소분자 모티프인 병원체-연관 분자 패턴 ("PAMP")을 인식하는 수용체이다. TLR은 세포의 표면 상에 또는 세포내에 위치될 수 있다. TLR과 동족 PAMP의 결합에 의한 TLR의 활성화는 숙주 내에서 연관된 병원체의 존재- 즉, 감염 -를 신호전달하여, 숙주의 면역계가 감염과 싸우도록 자극한다. 인간은 TLR1, TLR2, TLR3 등으로 명명되는 10종의 TLR을 갖는다.
효능제에 의한 TLR의 활성화는 - TLR7이 가장 많이 연구됨 - 전체적인 면역 반응을 자극함으로써, 실제 병원체 감염 이외의 다양한 상태의 치료에서 백신 및 면역요법제의 작용에 대한 긍정적인 효과를 가질 수 있다. 따라서, 백신 보조제로서의 또는 암 면역요법에서 인핸서로서의 TLR7 효능제의 사용에 상당한 관심이 있다. 예를 들어, 문헌 [Vasilakos and Tomai 2013, Sato-Kaneko et al. 2017, Smits et al. 2008, 및 Ota et al. 2019]을 참조한다.
엔도솜의 막에 위치된 세포내 수용체인 TLR7은 단일-가닥 RNA 바이러스와 연관된 PAMP를 인식한다. 그의 활성화는 제I형 인터페론 예컨대 IFNα 및 IFNβ의 분비를 유도한다 (Lund et al. 2004). TLR7은 2개의 결합 부위를 가지며, 하나는 단일 가닥 RNA 리간드에 대한 것이고 (Berghoefer et al. 2007), 하나는 소분자 예컨대 구아노신에 대한 것이다 (Zhang et al. 2016).
TLR7은 구아노신-유사 합성 효능제 예컨대 1H-이미다조[4,5-c]퀴놀린 스캐폴드에 기반한 이미퀴모드, 레시퀴모드 및 가르디퀴모드에 결합하고, 그에 의해 활성화될 수 있다. 소분자 TLR7 효능제의 검토를 위해, 문헌 [Cortez and Va 2018]을 참조한다.
Figure pct00001
프테리디논 분자 스캐폴드에 기반한 합성 TLR7 효능제는 베사톨리모드에 의해 예시된 바와 같이 공지되어 있다 (Desai et al. 2015).
Figure pct00002
퓨린-유사 스캐폴드에 기반한 다른 합성 TLR7 효능제는 빈번하게 화학식 (A)에 따라 개시된 바 있다:
Figure pct00003
여기서 R, R', 및 R"은 구조적 가변기이고, R"은 전형적으로 비치환되거나 또는 치환된 방향족 또는 헤테로방향족 고리를 함유한다.
퓨린-유사 스캐폴드를 갖는 생물활성 분자 및 상태 예컨대 섬유증, 염증성 장애, 암 또는 병원성 감염을 치료하기 위한 그의 용도에 대한 개시내용은 하기를 포함한다: Akinbobuyi et al. 2015 and 2016; Barberis et al. 2012; Carson et al. 2014; Ding et al. 2016, 2017a, and 2017b; Graupe et al. 2015; Hashimoto et al. 2009; He et al. 2019a and 2019b; Holldack et al. 2012; Isobe et al. 2009a and 2012; Poudel et al. 2019a and 2019b; Pryde 2010; 및 Young et al. 2019.
기 R"는 피리딜일 수 있다: Bonfanti et al. 2015a and 2015b; Halcomb et al. 2015; Hirota et al. 2000; Isobe et al. 2002, 2004, 2006, 2009a, 2009b, 2011, and 2012; Kasibhatla et al. 2007; Koga-Yamakawa et al. 2013; Musmuca et al. 2009; Nakamura 2012; Ogita et al. 2007; 및 Yu et al. 2013.
화학식 (A)의 6,5-융합 고리계 - 이미다졸 5원 고리에 융합된 피리미딘 6원 고리 -가 변형된 것인 관련 분자의 개시내용이 존재한다. (a) 문헌 [Dellaria et al. 2007, Jones et al. 2010 and 2012, 및 Pilatte et al. 2017]은 피리미딘 고리가 피리딘 고리로 대체된 것인 화합물을 개시한다. (b) 문헌 [Chen et al. 2011, Coe et al. 2017, Poudel et al. 2020a and 2020b, 및 Zhang et al. 2018]은 이미다졸 고리가 피라졸 고리로 대체된 것인 화합물을 기재한다. (c) 문헌 [Cortez et al. 2017 and 2018; Li et al. 2018; 및 McGowan et al. 2016a, 2016b, and 2017]은 이미다졸 고리가 피롤 고리로 대체된 것인 화합물을 기재한다.
문헌 [Bonfanti et al. 2015b and 2016 및 Purandare et al. 2019]는 퓨린 모이어티의 2개의 고리가 마크로사이클에 의해 가교된 것인 TLR7 조정제를 개시하고 있다:
TLR7 효능제는 예를 들어 인지질, 폴리(에틸렌 글리콜) ("PEG"), 항체 또는 또 다른 TLR (통상적으로 TLR2)일 수 있는 파트너 분자에 접합될 수 있다. 예시적인 개시내용은 하기를 포함한다: Carson et al. 2013, 2015, and 2016, Chan et al. 2009 and 2011, Cortez et al. 2017, Gadd et al. 2015, Lioux et al. 2016, Maj et al. 2015, Vernejoul et al. 2014, 및 Zurawski et al. 2012. 빈번한 접합 부위는 화학식 (A)의 R" 기이다.
문헌 [Jensen et al. 2015]은 TLR7 효능제의 전달을 위한 양이온성 지질 비히클의 용도를 개시하고 있다.
레시퀴모드를 포함하여, 일부 TLR7 효능제는 이중 TLR7/TLR8 효능제이다. 예를 들어 문헌 [Beesu et al. 2017, Embrechts et al. 2018, Lioux et al. 2016, 및 Vernejoul et al. 2014]을 참조한다.
제1 저자 또는 발명자 및 연도에 따른 본원에 인용된 문헌에 대한 정식 인용은 본 명세서의 말미에 열거되어 있다.
개시내용의 간단한 요약
본 명세서는 TLR7 효능제로서의 활성을 갖는, 1H-피라졸로[4,3d]피리미딘 방향족계를 갖는 화합물에 관한 것이다.
Figure pct00004
한 측면에서, 하기 화학식 (I)에 따른 구조를 갖는 화합물이 제공된다:
Figure pct00005
여기서
W는
Figure pct00006
이고;
각각의 X는 독립적으로 N 또는 CR2이고;
R1은 (C1-C5 알킬),
(C2-C5 알케닐),
(C1-C8 알칸디일)0-1(C3-C6 시클로알킬),
(C2-C8 알칸디일)OH,
(C2-C8 알칸디일)O(C1-C3 알킬),
(C1-C4 알칸디일)0-1(5-6원 헤테로아릴),
(C1-C4 알칸디일)0-1페닐,
(C1-C4 알칸디일)CF3,
(C2-C8 알칸디일)N[C(=O)](C1-C3 알킬),
(C2-C8 알칸디일)0-1(C3-C6 시클로알칸디일)(C3-C6 시클로알킬),
또는
(C2-C8 알칸디일)NRxRy
이고;
각각의 R2는 독립적으로 H, O(C1-C3 알킬), S(C1-C3 알킬), SO2(C1-C3 알킬), C1-C3 알킬, O(C3-C4 시클로알킬), S(C3-C4 시클로알킬), SO2(C3-C4 시클로알킬), C3-C4 시클로알킬, Cl, F, CN; 또는 [C(=O)]0-1NRxRy이고;
R3은 NH[C(=O)]0-1(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), O(C1-C4 알칸디일)0-1(C4-C8 비시클로알킬), 또는
하기 구조를 갖는 모이어티
Figure pct00007
이고;
R4는 NH(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), 또는
하기 구조를 갖는 모이어티
Figure pct00008
이고;
R5는 H, C1-C5 알킬, C2-C5 알케닐, C3-C6 시클로알킬, 할로, O(C1-C5 알킬), (C1-C4 알칸디일)OH, (C1-C4 알칸디일)O(C1-C3 알킬), 페닐, NH(C1-C5 알킬), 5 또는 6원 헤테로아릴,
Figure pct00009
이고;
R6은 (NH)0-1(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), 또는
하기 구조를 갖는 모이어티
Figure pct00010
이고;
Rx 및 Ry는 독립적으로 H 또는 C1-C3 알킬이거나, 또는 Rx 및 Ry는 이들이 결합되어 있는 질소와 조합되어 3- 내지 7-원 헤테로사이클을 형성하고;
n은 1, 2 또는 3이고;
p는 0, 1, 2, 또는 3이고;
여기서 R1, R2, R3, R4, R5, 및 R6에서
알킬, 알케닐, 시클로알킬, 알칸디일, 비시클로알킬, 또는 하기 화학식
Figure pct00011
의 모이어티는
OH, 할로, CN, (C1-C3 알킬), O(C1-C3 알킬), C(=O)(C1-C3 알킬), SO2(C1-C3 알킬), NRxRy, (C1-C4 알칸디일)OH, (C1-C4 알칸디일)O(C1-C3 알킬)로부터 선택된 1개 이상의 치환기로 임의로 치환되고;
알킬, 알케닐, 알칸디일, 시클로알킬, 비시클로알킬, 또는 하기 화학식
Figure pct00012
의 모이어티는 임의로 CH2 기가
O, SO2, CF2, C(=O), NH,
N[C(=O)]0-1(C1-C5 알킬),
N[C(=O)]0-1(C1-C4 알칸디일)CF3,
N[C(=O)]0-1(C2-C4 알칸디일)OH
N(SO2)(C1-C3 알킬),
N(C1-C3 알칸디일)0-1[C(=O)]N(C1-C3 알킬)2,
또는
N[C(=O)]0-1(C1-C4 알칸디일)0-1(C3-C5 시클로알킬)
에 의해 대체될 수 있고;
단, 상기 화학식 (I)의 화합물은
Figure pct00013
Figure pct00014
가 아니다.
본원에 개시된 화합물은 TLR7 효능제로서 활성을 갖고, 일부는 의도된 작용의 표적 조직 또는 기관에 대한 표적화 전달을 위해 항체에 접합될 수 있다. 이들은 또한 PEG화되어 이들의 제약 특성을 조정할 수 있다.
본원에 개시된 화합물 또는 그의 접합체 또는 그의 PEG화 유도체는 면역계의 활성화에 의한 치료에 적용가능한 상태를 앓는 대상체에게 치료 유효량의 이러한 화합물 또는 그의 접합체 또는 그의 PEG화 유도체를 특히 백신 또는 암 면역요법제와 조합하여 투여함으로써, 상기 대상체의 치료에 사용될 수 있다.
화합물
한 측면에서, 본 개시내용의 화합물은 하기 화학식 (Ia)에 따른 것이고, 여기서 R1, R2, R5, 및 W는 화학식 (I)에 대해 정의된 바와 같고:
Figure pct00015
,
R2는 바람직하게는 OMe이다.
또 다른 측면에서, 본 개시내용은 하기 화학식 (Ia)에 따른 구조를 갖는 화합물을 제공한다:
Figure pct00016
여기서
R1
Figure pct00017
이고;
R2는 OMe 또는 OCHF2이고;
R5는 H 또는 Me이고;
W는
Figure pct00018
이다.
또 다른 측면에서, 본 개시내용의 화합물은 화학식 (Ib)에 따른 것이고, 여기서 R1, R2, R3, 및 R5는 화학식 (I)에 대해 정의된 바와 같다:
Figure pct00019
.
또 다른 측면에서, 본 개시내용의 화합물은 화학식 (Ic)에 따른 것이고, 여기서 R1, R2, R4, 및 R5는 화학식 (I)에 대해 정의된 바와 같다:
Figure pct00020
.
또 다른 측면에서, 본 개시내용은 화학식 (Id)에 따른 화합물을 제공하고, 여기서 R1, R2, R3, 및 R5는 화학식 (I)에 대해 정의된 바와 같고, 1개의 X는 N이고 다른 X는 CH이다:
Figure pct00021
.
화학식 (Id)에서, 바람직하게는 R1
Figure pct00022
이고,
R2는 OMe이고, R5는 H이다.
적합한 기 R1의 예는
Figure pct00023
를 포함한다.
한 측면에서, R1
Figure pct00024
로 이루어진 군으로부터 선택된다.
R2는 바람직하게는 OMe, O(시클로프로필) 또는 OCHF2, 보다 바람직하게는 OMe 또는 OCHF2, 특히 바람직하게는 OMe이다.
R5는 바람직하게는 H, CH2OH, 또는 Me, 보다 바람직하게는 H이다.
W가
Figure pct00025
이고 n이 1인 예는
Figure pct00026
를 포함한다.
한 측면에서,
Figure pct00027
Figure pct00028
이다.
W가
Figure pct00029
인 예는
Figure pct00030
를 포함한다.
한 측면에서, W는
Figure pct00031
이고, 바람직하게는 n은 1이다.
한 측면에서, W는
Figure pct00032
이다.
예로서 및 비제한적으로, 비시클로알킬 기는
Figure pct00033
를 포함한다.
예로서 및 비제한적으로, 화학식
Figure pct00034
의 모이어티는
Figure pct00035
를 포함한다.
상기 비시클로알킬의 일부, 하기 화학식의 기 및 모이어티는
Figure pct00036
상기 개시내용의 발명의 내용에 기재된 바와 같이, 임의적인 치환기를 보유하고/거나 임의로 1개 이상의 CH2 기가 O, SO2 등에 의해 대체된다.
본원에 개시된 화합물의 구체적 예는 하기 표 A에 제시된다. 표는 또한 하기 생물학적 활성과 관련된 데이터를 제공한다: 하기 제공된 절차에 따라 결정된, 인간 TLR7 리포터 검정 및/또는 인간 전혈에서의 CD69 유전자의 유도. 가장 우측 칼럼은 분석 데이터 (질량 스펙트럼, HPLC 체류 시간, 및 NMR)를 포함한다. 한 실시양태에서, 본 개시내용의 화합물은 (a) 1,000 nM 미만의 인간 TLR7 (hTLR7) 리포터 검정 EC50 값 및 (b) 1,000 nM 미만의 인간 전혈 (hWB) CD69 유도 EC50 값을 갖는다. (검정이 다수회 수행되는 경우에, 보고된 값은 평균임).
Figure pct00037
Figure pct00038
Figure pct00039
Figure pct00040
Figure pct00041
Figure pct00042
Figure pct00043
Figure pct00044
Figure pct00045
Figure pct00046
Figure pct00047
Figure pct00048
Figure pct00049
Figure pct00050
Figure pct00051
제약 조성물 및 투여
또 다른 측면에서, 제약상 허용되는 담체 또는 부형제와 함께 제제화되는, 본원에 개시된 화합물 또는 그의 접합체를 포함하는 제약 조성물이 제공된다. 이는 1종 이상의 추가의 제약 활성 성분, 예컨대 생물학적 또는 소분자 약물을 임의로 함유할 수 있다. 제약 조성물은 또 다른 치료제, 특히 항암제와의 조합 요법으로 투여될 수 있다.
제약 조성물은 1종 이상의 부형제를 포함할 수 있다. 사용될 수 있는 부형제는 담체, 표면 활성제, 증점제 또는 유화제, 고체 결합제, 분산 또는 현탁 보조제, 가용화제, 착색제, 향미제, 코팅, 붕해제, 윤활제, 감미제, 보존제, 등장화제, 및 그의 조합을 포함한다. 적합한 부형제의 선택 및 용도는 문헌 [Gennaro, ed., Remington: The Science and Practice of Pharmacy, 20th Ed. (Lippincott Williams & Wilkins 2003)]에 교시되어 있다.
바람직하게는, 제약 조성물은 (예를 들어, 주사 또는 주입에 의한) 정맥내, 근육내, 피하, 비경구, 척수 또는 표피 투여에 적합하다. 투여 경로에 따라, 활성 화합물은 이를 불활성화시킬 수 있는 산 및 다른 천연 조건의 작용으로부터 이를 보호하기 위한 물질로 코팅될 수 있다. 어구 "비경구 투여"는 통상적으로 주사에 의한, 경장 및 국소 투여 이외의 다른 투여 방식을 의미하며, 비제한적으로 정맥내, 근육내, 동맥내, 척수강내, 피막내, 안와내, 심장내, 피내, 복강내, 경기관, 피하, 각피하, 관절내, 피막하, 지주막하, 척수내, 경막외 및 흉골내 주사 및 주입을 포함한다. 대안적으로, 제약 조성물은 비-비경구 경로, 예컨대 국소, 표피 또는 점막 투여 경로를 통해, 예를 들어 비강내로, 경구로, 질로, 직장으로, 설하로 또는 국소로 투여될 수 있다.
제약 조성물은 멸균 수용액 또는 분산액 형태일 수 있다. 그들은 또한 마이크로에멀젼, 리포솜, 또는 높은 약물 농도를 달성하기에 적합한 다른 정렬된 구조로 제제화될 수 있다. 조성물은 또한 투여 전에 물 중 재구성을 위해, 동결건조물 형태로 제공될 수 있다.
단일 투여 형태를 제조하기 위해 담체 물질과 조합될 수 있는 활성 성분의 양은 치료될 대상체 및 특정한 투여 방식에 따라 달라질 것이며, 일반적으로 치료 효과를 생성시키는 조성물의 양일 것이다. 일반적으로 100%를 기준으로, 이 양은 제약상 허용되는 담체와 조합된 활성 성분의 약 0.01% 내지 약 99%, 바람직하게는 약 0.1% 내지 약 70%, 가장 바람직하게는 활성 성분의 약 1% 내지 약 30% 범위일 것이다.
투여 요법은 치료 반응을 제공하도록 조정된다. 예를 들어, 단일 볼루스가 투여될 수 있거나, 여러 분할 용량이 시간 경과에 따라 투여될 수 있거나, 또는 용량이 상황의 위급성에 의해 지시된 바와 같이 비례적으로 감소 또는 증가될 수 있다. 투여의 용이성 및 투여량의 균일성을 위해 비경구 조성물을 투여 단위 형태로 제제화하는 것이 특히 유리하다. "투여 단위 형태"는 치료될 대상체에 대한 단일 투여량으로서 적합화된 물리적 이산 단위를 지칭하며; 각각의 단위는 목적하는 치료 반응을 생성시키도록 계산된 미리 결정된 양의 활성 화합물을, 필요한 제약 담체와 함께 함유한다.
투여량은 숙주 체중의 약 0.0001 내지 100 mg/kg, 보다 통상적으로 0.01 내지 5 mg/kg 범위이다. 예를 들어 투여량은 0.3 mg/kg 체중, 1 mg/kg 체중, 3 mg/kg 체중, 5 mg/kg 체중 또는 10 mg/kg 체중 또는 1-10 mg/kg, 또는 대안적으로 0.1 내지 5 mg/kg 범위 내일 수 있다. 예시적인 치료 요법은 1주에 1회, 2주마다 1회, 3주마다 1회, 4주마다 1회, 1개월에 1회, 3개월마다 1회, 또는 3 내지 6개월마다 1회 투여이다. 바람직한 투여 요법은 하기 투여 스케줄 중 하나를 사용하여, 정맥내 투여를 통한 1 mg/kg 체중 또는 3 mg/kg 체중을 포함한다: (i) 6회 투여량에 대해 4주마다, 이어서 3개월마다; (ii) 3주마다; (iii) 3 mg/kg 체중 1회에 이은 3주마다 1 mg/kg 체중. 일부 방법에서, 투여량은 약 1-1000 μg/mL, 및 일부 방법에서는 약 25-300 μg/mL의 혈장 항체 농도가 달성되도록 조정된다.
"치료 유효량"의 본 발명의 화합물은 바람직하게는 질환 증상의 중증도에서의 감소, 질환 무증상 기간의 빈도 및 지속기간에서의 증가, 또는 질환 고통으로 인한 손상 또는 장애의 예방을 생성시킨다. 예를 들어, 종양-보유 대상체의 치료를 위해, "치료 유효량"은 바람직하게는 종양 성장을 비치료 대상체에 비해 적어도 약 20%, 보다 바람직하게는 적어도 약 40%, 보다 더 바람직하게는 적어도 약 60%, 더욱 더 바람직하게는 적어도 약 80% 억제한다. 치료 유효량의 치료 화합물은 전형적으로 인간이지만 또 다른 포유동물일 수 있는 대상체에서 종양 크기를 감소시키거나 또는 증상을 달리 호전시킬 수 있다. 2종 이상의 치료제가 조합 치료로 투여되는 경우에, "치료 유효량"은 개별적으로 각 작용제의 효능이 아닌 조합의 전체로서의 효능을 지칭한다.
제약 조성물은 임플란트, 경피 패치, 및 마이크로캡슐화 전달 시스템을 포함한 제어 또는 지속 방출 제제일 수 있다. 생분해성, 생체적합성 중합체, 예컨대 에틸렌 비닐 아세테이트, 폴리무수물, 폴리글리콜산, 콜라겐, 폴리오르토에스테르, 및 폴리락트산이 사용될 수 있다. 예를 들어, 문헌 [Sustained and Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978]을 참조한다.
치료 조성물은 의료 장치 예컨대 (1) 무바늘 피하 주사 장치; (2) 마이크로-주입 펌프; (3) 경피 장치; (4) 주입 장치; 및 (5) 삼투 장치를 통해 투여될 수 있다.
특정 실시양태에서, 제약 조성물은 생체내에서 적절한 분포가 보장되도록 제제화될 수 있다. 예를 들어, 본 발명의 치료 화합물이 혈액-뇌 장벽을 가로지르는 것을 보장하기 위해, 이들은 리포솜 중에 제제화될 수 있으며, 이는 특이적 세포 또는 기관에 대한 선택적 수송을 증진하기 위한 표적화 모이어티를 추가적으로 포함할 수 있다.
산업상 적용성 및 용도
본원에 개시된 TLR7 효능제 화합물은 TLR7의 활성화에 의해 개선될 수 있는 질환 또는 상태의 치료에 사용될 수 있다.
한 실시양태에서, TLR7 효능제는 면역-종양학 작용제로도 알려져 있는 항암 면역요법제와 조합으로 사용된다. 항암 면역요법제는 신체의 면역계를 자극하여, 특히 T 세포의 활성화를 통해 암 세포를 공격하고 파괴함으로써 작용한다. 면역계는 수많은 체크포인트 (조절) 분자를 가져, 면역계가 적당한 표적 세포를 공격하는 것과 면역계가 건강한 정상 세포를 공격하는 것을 방지하는 것 사이의 균형을 유지하도록 돕는다. 일부는 그의 결속이 T 세포 활성화를 촉진하고, 면역 반응을 증진시키는 것을 의미하는 자극제 (상향-조절자)이다. 다른 것은 그의 결속이 T 세포 활성화를 억제하고, 면역 반응을 감소시키는 것을 의미하는 억제제 (하향-조절자 또는 브레이크)이다. 효능작용 면역요법제의 자극성 체크포인트 분자로의 결합은 후자의 활성화 및 암 세포에 대한 증진된 면역 반응으로 이어질 수 있다. 반대로, 길항작용 면역요법제의 억제 체크포인트 분자로의 결합은 후자에 의한 면역계의 하향-조절을 방지하고, 암 세포에 대한 격렬한 반응을 유지하는 것을 보조할 수 있다. 자극성 체크포인트 분자의 예는 B7-1, B7-2, CD28, 4-1BB (CD137), 4-1BBL, ICOS, CD40, ICOS-L, OX40, OX40L, GITR, GITRL, CD70, CD27, CD40, DR3 및 CD28H이다. 억제 체크포인트 분자의 예는 CTLA-4, PD-1, PD-L1, PD-L2, LAG-3, TIM-3, 갈렉틴 9, CEACAM-1, BTLA, CD69, 갈렉틴-1, CD113, GPR56, VISTA, 2B4, CD48, GARP, PD1H, LAIR1, TIM-1, CD96 및 TIM-4이다.
어떠한 항암 면역요법제의 작용 방식이든지, 그의 유효성은 면역계의 일반적 상향조절 예컨대 TLR7의 활성화에 의해 증가될 수 있다. 따라서, 한 실시양태에서, 본 명세서는 암을 앓는 환자에게 항암 면역요법제와 본원에 개시된 TLR7 효능제의 치료상 유효한 조합물을 투여하는 것을 포함하는, 암을 치료하는 방법을 제공한다. 투여 시기는 동시, 순차적, 또는 교대일 수 있다. 투여 방식은 전신 또는 국부일 수 있다. TLR7 효능제는 접합체를 통해, 표적화 방식으로 전달될 수 있다.
상기 기재된 바와 같이 조합 치료로 치료될 수 있는 암의 비제한적 예는 급성 골수성 백혈병, 부신피질 암종, 카포시 육종, 림프종, 항문암, 충수암, 기형양/횡문근양 종양, 기저 세포 암종, 담관암, 방광암, 골암, 뇌암, 유방암, 기관지 종양, 카르시노이드 종양, 심장 종양, 자궁경부암, 척삭종, 만성 림프구성 백혈병, 만성 골수증식성 신생물, 결장암, 결장직장암, 두개인두종, 담관암, 자궁내막암, 상의세포종, 식도암, 감각신경모세포종, 유잉 육종, 안암, 난관암, 담낭암, 위장 카르시노이드 종양, 위장 기질 종양, 배세포 종양, 모발상 세포 백혈병, 두경부암, 심장암, 간암, 하인두암, 췌장암, 신장암, 후두암, 만성 골수 백혈병, 구순암 및 구강암, 폐암, 흑색종, 메르켈 세포 암종, 중피종, 구내암, 구강암, 골육종, 난소암, 음경암, 인두암, 전립선암, 직장암, 타액선암, 피부암, 소장암, 연부 조직 육종, 고환암, 인후암, 갑상선암, 요도암, 자궁암, 질암, 및 외음부암을 포함한다.
본원에 기재된 바와 같이 조합 요법에 사용될 수 있는 항암 면역요법제는 하기를 포함한다: AMG 557, AMP-224, 아테졸리주맙, 아벨루맙, BMS 936559, 세미플리맙, CP-870893, 다세투주맙, 두르발루맙, 에노블리투주맙, 갈릭시맙, IMP321, 이필리무맙, 루카투무맙, MEDI-570, MEDI-6383, MEDI-6469, 무로모납-CD3, 니볼루맙, 펨브롤리주맙, 피딜리주맙, 스파르탈리주맙, 트레멜리무맙, 우렐루맙, 우토밀루맙, 바를리루맙, 본레롤리주맙. 하기 표 B는 그의 대체 명칭 (상표명, 이전 명칭, 연구 코드 또는 동의어) 및 각 표적 체크포인트 분자를 열거한다.
Figure pct00052
TLR7 효능제를 사용하는 조합 치료의 한 실시양태에서, 항암 면역요법제는 길항작용 항-CTLA-4, 항-PD-1 또는 항-PD-L1 항체이다. 암은 폐암 (비소세포 폐암 포함), 췌장암, 신장암, 두경부암, 림프종 (호지킨 림프종 포함), 피부암 (흑색종 및 메르켈 피부암 포함), 요로상피암 (방광암 포함), 위암, 간세포성암 또는 결장직장암일 수 있다.
TLR7 효능제를 사용하는 조합 치료의 또 다른 실시양태에서, 항암 면역요법제는 길항작용 항-CTLA-4 항체, 바람직하게는 이필리무맙이다.
TLR7 효능제를 사용하는 조합 치료의 또 다른 실시양태에서, 항암 면역요법제는 길항작용 항-PD-1 항체, 바람직하게는 니볼루맙 또는 펨브롤리주맙이다.
본원에 개시된 TLR7 효능제는 백신 보조제로서 유용하다.
본 발명의 실시는 추가로 하기 실시예를 참조하여 이해될 수 있고, 이는 제한이 아니라 예시로 제공된다.
분석 절차
NMR
양성자 핵 자기 공명 (NMR) 스펙트럼을 수득하기 위해 하기 조건을 사용하였다: 용매 및 내부 표준으로서 DMSO-d6 또는 CDCl3을 사용하여 400 Mz 또는 500 Mhz 브루커 기기에서 NMR 스펙트럼을 수득하였다. 조 NMR 데이터를 ADC 랩스(ADC Labs)에 의한 ACD 스펙트러스 버전 2015-01 또는 메스트레노바 소프트웨어를 사용하여 분석하였다.
화학적 이동은 내부 테트라메틸실란 (TMS)으로부터 또는 중수소화 NMR 용매에 의해 추론된 TMS의 위치로부터 백만분율 (ppm) 다운필드로 보고된다. 겉보기 다중도는 단일선-s, 이중선-d, 삼중선-t, 사중선-q 또는 다중선-m으로 보고된다. 광폭화를 나타내는 피크는 br로 또한 나타낸다. 적분은 근사치이다. 적분 강도, 피크 형상, 화학적 이동 및 커플링 상수는 용매, 농도, 온도, pH 및 다른 인자에 따라 달라질 수 있음을 주목해야 한다. 또한, NMR 스펙트럼에서 물 또는 용매 피크와 중첩되거나 교환되는 피크는 신뢰가능한 적분 강도를 제공하지 않을 수 있다. 일부 경우에, NMR 스펙트럼은 물 피크 억제를 사용하여 수득될 수 있으며, 가시적이지 않거나 또는 변경된 형상 및/또는 적분을 갖는 중첩 피크를 생성할 수 있다.
액체 크로마토그래피
하기 정제용 및 분석용 (LC/MS) 액체 크로마토그래피 방법을 사용한다:
분석용 LC/MS 절차 A: 칼럼: 워터스 엑스브리지 C18, 2.1 mm x 50 mm, 1.7 μm 입자; 이동상 A: 5:95 아세토니트릴:물, 10 mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴:물, 10 mM NH4OAc 포함; 온도: 50℃; 구배: 3분에 걸쳐 0% B에서 100% B, 이어서 100% B에서 0.50분 유지; 유량: 1 mL/분; 검출: MS 및 UV (220 nm).
분석용 LC/MS 절차 B: 칼럼: 워터스 엑스브리지 C18, 2.1 mm x 50 mm, 1.7 μm 입자; 이동상 A: 5:95 아세토니트릴:물, 0.1% TFA 포함; 이동상 B: 95:5 아세토니트릴:물, 0.1% TFA 포함; 온도: 50℃; 구배: 3분에 걸쳐 0% B에서 100% B, 이어서 100% B에서 0.50분 유지; 유량: 1mL/분; 검출: MS 및 UV (220 nm).
LC/MS 방법 1: 칼럼: BEH C18 2.1 x 50mm; 이동상 A: 물, 0.05% TFA 포함; 이동상 B: 아세토니트릴, 0.05% TFA 포함; 온도: 50℃; 구배: 1.0분에 걸쳐 2-98% B, 이어서 98% B에서 0.50분 유지; 유량: 0.8 mL/분. 검출: MS 및 UV (220 nm).
LC/MS 방법 2: 칼럼: BEH C18 2.1 x 50mm; 이동상 A: 95:5 H2O:아세토니트릴, 0.01M NH4OAc 포함; 이동상 B: 5:95 H2O:아세토니트릴, 0.01M NH4OAc 포함; 온도: 50℃; 구배: 1분에 걸쳐 5-95% B; 유량: 0.8 mL/분.
LC/MS 방법 3: 칼럼: 워터스 엑스브리지 C18, 2.1 mm x 50 mm, 1.7 μm 입자; 이동상 A: 5:95 아세토니트릴:물, 0.1% TFA 포함; 이동상 B: 95:5 아세토니트릴:물, 0.1% TFA 포함; 온도: 50℃; 구배: 3분에 걸쳐 0% B에서 100% B, 이어서 100% B에서 0.50분 유지; 유량: 1 mL/분; 검출: MS 및 UV (220 nm).
LC/MS 방법 4: 칼럼: 워터스 엑스브리지 BEH C18 XP (50x2.1mm) 2.5 μm; 이동상 A: 5:95 아세토니트릴:물, 10 mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴:물, 10 mM NH4OAc 포함; 온도: 50℃; 구배: 3분에 걸쳐 0-100% B; 유량: 1.1 ml/분.
합성 - 일반적 절차
일반적으로, 본원에 개시된 절차는 피라졸로피리미딘 고리계의 1H 또는 2H 위치에서 알킬화된 위치이성질체의 혼합물을 생성한다 (이는 또한 알킬화된 질소를 지칭하는 N1 및 N2 위치이성질체로 각각 지칭됨). 간결하게 하기 위해, N2 위치이성질체는 편의상 나타내지 않았지만, 이들은 초기 생성물 혼합물 중에 존재하고, 예를 들어 정제용 HPLC에 의해 나중에 분리되는 것으로 이해되어야 한다.
Figure pct00053
위치이성질체의 혼합물은 합성의 초기 단계에서 분리되고, 나머지 합성 단계는 1H 위치이성질체를 사용하여 수행될 수 있거나, 또는 대안적으로, 합성은 위치이성질체의 혼합물을 보유하여 진행되고, 분리는 목적하는 바에 따라 후속 단계에서 실시될 수 있다.
본 개시내용의 화합물은 합성 유기 화학의 통상의 기술자에게 널리 공지된 다수의 방법에 의해 제조될 수 있다. 이들 방법은 하기 기재된 것들 또는 그의 변형을 포함한다. 바람직한 방법은 하기 반응식에 기재된 것을 포함하나 이에 제한되지는 않는다.
반응식 1
Figure pct00054
Figure pct00055
Ra는, 반응식 1 및 그의 다른 경우에서, 예를 들어
Figure pct00056
, 또는 다른 적합한 모이어티일 수 있다. Rb는, 반응식 1 및 그의 다른 경우에서, 예를 들어 C1-C3 알킬이다. RcNHRd는, 반응식 1 및 그의 다른 경우에서, 1급 또는 2급 아민이다. Ra, Rb, Rc, 및/또는 Rd는 합성 과정 동안 적절한 시점에 제거되는 보호기에 의해 차폐된 관능기를 가질 수 있다.
화합물 11을 상기 반응식 1에 요약된 합성 순서에 의해 제조할 수 있다. 니트로피라졸 1을 환원시켜 화합물 2를 수득하고, 이어서 1,3-비스(메톡시카르보닐)-2-메틸-2-티오슈도우레아로 고리화시켜 히드록시피라졸로피리미딘 3을 수득한다. BOP/DBU 커플링 조건을 사용하여 아민 RaNH2를 도입하고, NBS를 사용한 후속 브로민화 또는 NIS를 사용한 아이오딘화 (단계 4)로 브로모 또는 아이오도-피라졸로피리미딘 5를 제공한다. 벤질 할라이드 6을 사용한 알킬화로 N1 및 N2 생성물의 혼합물을 제공하며, 이를 분리하여 N1 중간체 7를 수득한다. 촉매 수소화 (단계 6)에 이어서 원-포트 LiAlH4 환원 및 카르바메이트 가수분해로 중간체 알콜 9를 제공한다. 알콜 9를 벤질 클로라이드로 전환시키고, 이어서 이를 적합한 아민으로 대체하여 화합물 11을 수득한다. (단계 5에서의 브로민화 중간체 5의 알킬화는 비브로민화 중간체 4의 알킬화에 비해 N1/N2 생성물의 보다 우수한 비를 제공함).
반응식 2
Figure pct00057
대안적으로, 중간체 9는 상기 반응식 2에 기재된 경로를 사용하여 접근할 수 있다. 중간체 3은 NBS 또는 NIS를 사용하여 브로민화 또는 아이오딘화된 다음, 알킬화되어 중간체 에스테르 12를 제공한다. 이어서 BOP 커플링 조건을 사용하여 아미노화를 수행하여 중간체 7을 수득한다. 촉매 수소화에 이어서 LiAlH4에 의한 알콜로의 환원 및 메틸 카르바메이트 탈보호로 중간체 9를 제공한다.
반응식 3
Figure pct00058
중간체 8로의 대안적 경로는 벤질 할라이드 6을 사용한 니트로피라졸 1의 알킬화로 시작하여 벤질 피라졸 13을 제공한다. 니트로 기의 환원에 이어서 1,3-비스(메톡시카르보닐)-2-메틸-2-티오슈도우레아를 사용한 고리화로 히드록시피라졸로피리미딘 15를 제공하며, 이를 BOP/ DBU 조건을 사용하여 적절한 아민 유도체 8로 전환한다. 이는 상기 반응식 3에 예시되어 있다.
반응식 4
Figure pct00059
목적 화합물로의 또 다른 대안적 경로는 상기 반응식 4에 제시된다. 중간체 15로부터, 에스테르 기를 환원시키고, NaOH를 사용하여 메틸 카르바메이트를 제거하여 알콜 16을 수득한다. 알콜 16의 클로라이드로의 전환에 이어서 적합한 아민으로의 치환으로 17을 제공하고, BOP/DBU 조건을 사용한 후속 아미노화로 표적 분자 11을 제공한다.
하기 반응식 5에서, 7/8 또는 15의 메틸 에스테르의 가수분해에 이은 아미드 형성은 상응하는 아미드 7a/8a 또는 15a를 제공할 수 있다. 7a의 촉매 수소화에 이은 카르바메이트 탈보호는 화합물 7b를 생성한다. 8a 상의 카르바메이트 탈보호로 화합물 8b를 수득한다. 최종적으로, 15a 상의 아민 도입에 이어서 카르바메이트 탈보호로 화합물 15b를 수득한다.
반응식 5
Figure pct00060
Figure pct00061
합성 - 구체적 실시예
상기를 추가로 예시하기 위해, 하기 비제한적인 하기 예시적인 합성 반응식이 포함된다. 청구범위의 범주 내의 이들 예의 변형은 관련 기술분야의 통상의 기술자의 이해범위 내에 있으며, 본 개시내용의 범주 내에 속하는 것으로 간주된다. 독자는 본 개시내용 및 관련 기술분야의 통상의 기술에 의해 통상의 기술자가 철저한 실시예 없이도 본원에 개시된 화합물을 제조하고 사용할 수 있을 것임을 인식할 것이다.
101 이상의 번호의 화합물에 대한 분석 데이터는 표 A에서 찾아볼 수 있다.
실시예 1 - 화합물 101
Figure pct00062
단계 1. 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-(4-(클로로메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (25 mg, 0.035 mmol)의 용액을 2 mL DMF 중 tert-부틸 (1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (35 mg, 0.175 mmol)와 함께 70℃에서 30분 동안 가열하였다. 염기 및 용매를 V-10 장치에서 증발시켰다. 잔류물을 2 mL DMF 중에 재용해시키고, 3HF·Et3N으로 처리하였다. 밤새 교반한 후, 반응 혼합물을 포화 수성 NaHCO3으로 중화시켰다. 용매를 V-10 장치에서 증발시키고, 10 g C-18 칼럼 상에서 아세토니트릴/물 (0.05% 포름산)을 사용하여 역상 이스코 장치 상에서 정제하였다. 용매를 V-10 장치에서 증발시키고, 생성물을 1 mL 디옥산 중에 용해시키고, 1 몰 수성 NaOH 용액 175 마이크로리터와 함께 70℃에서 2시간 동안 가열하였다. 카르바메이트 기의 가수분해가 완결되면, 용매를 V-10 장치에서 증발시켰다. 잔류물을 2 mL DMF 중에 용해시키고 시린지-여과하였다. 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 10-mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, 10-mM NH4OAc 포함; 구배: 22% B에서 0분 유지, 23분에 걸쳐 22-62% B, 이어서 100% B에서 4분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 tert-부틸 (1S,4S)-5-(4-((5-아미노-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤질)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 14.7 mg을 수득하였다.
LCMS ESI: C30H44N8O4에 대한 계산치 = 580.7 (M+H+), 실측치 580.9 (M+H+).
1H NMR (500 MHz, DMSO-d6) δ 7.58 (s, 1H), 7.02 (s, 1H), 6.79 (d, J = 7.9 Hz, 1H), 6.38 (d, J = 7.8 Hz, 1H), 5.68 (d, J = 26.6 Hz, 3H), 5.55 (d, J = 17.1 Hz, 1H), 4.17 (s, 0H), 4.13 (s, 1H), 3.85 (s, 3H), 3.63 (s, 1H), 3.37 (d, J = 40.2 Hz, 2H), 3.07 (dd, J = 19.7, 10.3 Hz, 1H), 2.79 - 2.72 (m, 1H), 2.55 (s, 4H), 2.46 (d, J = 9.7 Hz, 1H), 2.39 (s, 1H), 1.78 (s, 1H), 1.61 (dd, J = 23.0, 10.5 Hz, 2H), 1.50 (d, J = 5.5 Hz, 1H), 1.38 (d, J = 4.2 Hz, 9H), 1.04 (s, 1H), 0.75 (t, J = 7.3 Hz, 3H).
단계 2. CH2Cl2 (0.5 mL) 중 tert-부틸 (1S,4S)-5-(4-((5-아미노-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤질)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 1 (9.16 mg, 0.016 mmol)의 용액을 TFA (0.024 mL, 0.315 mmol)로 처리하였다. 30분 후, LCMS는 BOC 보호기의 손실을 나타내었다. 용매 및 TFA을 V-10 장치에서 증발시켰다. 잔류물을 DMF (1 mL) 중에 용해시키고, 휘니그 염기 (0.055 mL, 0.315 mmol 포함)에 이어서 Ac2O (1.5 μL, 0.016 mmol)로 처리하였다. LCMS는 10분 후 반응의 완결을 나타내었다. 염기를 증발에 의해 제거하였다. 잔류물을 2 mL DMF 중에 용해시켰다. 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-um 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 6% B에서 0분 유지, 20분에 걸쳐 6-46% B, 이어서 100% B에서 4분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 101 4.4 mg을 수득하였다.
하기 화합물을 유사하게 제조하였다: 화합물 107, 화합물 108, 화합물 109, 화합물 121, 및 화합물 122.
실시예 2 - 화합물 102
Figure pct00063
N7-부틸-1-(4-(클로로메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5,7-디아민의 용액 (20 mg, 0,.53 mmol)을 2 mL DMF 중에 용해시키고, tert-부틸 3,6-디아자비시클로[3.1.1]헵탄-3-카르복실레이트 (53 mg, 0.267 mmol)와 함께 70℃에서 1시간 동안 가열하였다. 과량의 염기를 V-10 장치에서 증발시켰다. 조 생성물을 0.082 mL TFA로 처리하고, 실온에서 1시간 동안 교반하였다. TFA을 V-10 장치에서 증발시키고, 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 0.1% TFA 포함; 이동상 B: 95:5 아세토니트릴: 물, 0.1% TFA 포함; 구배: 0% B에서 0분 유지, 20분에 걸쳐 0-40% B, 이어서 100% B에서 4분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 102 16.2 mg을 수득하였다.
하기 화합물을 유사하게 제조하였다: 화합물 103, 화합물 104, 화합물 105, 및 화합물 143
실시예 3 - 화합물 112
Figure pct00064
단계 1. DMSO (2 mL) 중 메틸 (7-히드록시-1-(4-(히드록시메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (100 mg, 0.278 mmol) 및 (3-시클로프로필시클로부틸)메탄아민 (69.7 mg, 0.557 mmol)의 용액을 DBU (0.126 mL, 0.835 mmol) 및 BOP (185 mg, 0.417 mmol)로 처리하였다. 40℃에서 1시간 동안 가열한 후, NaOH (0.278 mL, 1.391 mmol)를 첨가하였다. 반응 혼합물을 80℃에서 2시간 동안 가열하고, 역상 이스코에 의해 50 g C-18 칼럼을 사용하여 0-50% 물/아세토니트릴로 용리시키면서 직접 정제하였다. 생성물-함유 분획을 동결건조시켜 목적 생성물 90 mg을 수득하였다.
LCMS ESI:을 C22H28N6O2에 대한 계산치 = 409.5 (M+H+), 실측치 409.5 (M+H+).
단계 2. THF (1 mL) 중 (4-((5-아미노-7-(((3-시클로프로필시클로부틸)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시페닐)메탄올 (90 mg, 0.220 mmol)의 용액을 SOCl2 (0.032 mL, 0.441 mmol)로 처리하고, 실온에서 1시간 동안 교반하였다. 용매를 증발시키고, 조 클로라이드 생성물을 0.5 mL DMF 중에 용해시키고, tert-부틸 (1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (35 mg, 0.175 mmol)와 함께 70℃에서 1시간 동안 가열하였다. 염기를 V-10 장치에서 증발시키고, 조 생성물을 0.5 mL TFA로 처리하고, 실온에서 1시간 동안 교반하였다. TFA을 V-10 장치에서 증발시키고, 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 13% B에서 0분 유지, 20분에 걸쳐 13-53% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 112 13.2 mg을 수득하였다.
화합물 113을 유사하게 제조하였다.
실시예 4 - 화합물 110
Figure pct00065
단계 1. DMF (20 mL) 중 NBS (6.94 g, 39.0 mmol)의 용액을 DMF (80 mL) 중 메틸 (7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (10 g, 37.8 mmol)의 교반 현탁액에 첨가하였다. 실온에서 90분 동안 교반한 후, 반응 혼합물을 물 (400 mL)에 붓고, 5분 동안 교반하였다. 생성물을 여과에 의해 수집하고, 물 (200 mL)로 세척하고, 밤새 공기 건조시켜 메틸 (3-브로모-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (7.5 g, 21.85 mmol, 57.8% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 343.0, 345.0.
1H NMR (400 MHz, DMSO-d6) δ 12.87 (br s, 1H), 9.80 (s, 1H), 7.56 (br s, 1H), 3.62 (s, 3H), 3.54 (q, J=6.6 Hz, 2H), 1.62 (quin, J=7.2 Hz, 2H), 1.40 (dq, J=14.8, 7.4 Hz, 2H), 0.94 (t, J=7.4 Hz, 3H).
단계 2. DMF (5 mL) 중 메틸 4-(브로모메틸)-3-메톡시벤조에이트 (1.861 g, 7.18 mmol)의 용액을 DMF (35 mL) 중 메틸 (3-브로모-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (2.9 g, 8.45 mmol) 및 Cs2CO3 (3.30 g, 10.14 mmol)의 교반 현탁액에 0℃에서 5분에 걸쳐 조금씩 첨가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 밤새 교반하고, 포화 NaHCO3 용액 (300 mL)에 붓고, EtOAc (3 x 70 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 50% EtOAc까지)하여 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (1.400 g, 2.69 mmol, 31.8% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 521.2, 523.2.
1H NMR (400 MHz, DMSO-d6) δ 9.88 (s, 1H), 7.54 - 7.48 (m, 2H), 7.32 (t, J=5.6 Hz, 1H), 6.79 (d, J=7.7 Hz, 1H), 5.78 (s, 2H), 3.86 (s, 3H), 3.85 (s, 3H), 3.63 (s, 3H), 3.52 (q, J=6.6 Hz, 2H), 1.56 (quin, J=7.3 Hz, 2H), 1.28 - 1.15 (m, 2H), 0.84 (t, J=7.4 Hz, 3H).
단계 3. 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (1.400 g, 2.69 mmol)를 EtOH (80 mL) 중에 현탁시켰다. 10% Pd/C (200 mg)를 첨가하였다. 반응 용기를 6회 배기시키고 수소로 퍼징하였다. 반응 혼합물을 수소 분위기 하에 1시간 동안 교반하였다. 반응 용기를 배기시키고, 질소로 퍼징한 다음, EtOH (100 mL)로 세척하면서 셀라이트TM를 통해 여과하였다. 여과물을 증발 건조시켜 잔류물을 남기고, 이를 디옥산 (10 mL) 중에 용해시켰다. NaOH (3.22 mL, 16.11 mmol)를 첨가하였다. 반응 혼합물을 80℃에서 2시간 동안 교반하고, 실온으로 냉각시키고, 물 (10 mL)로 희석하고, 5N HCl로 산성화시켰다. 디옥산을 증발에 의해 제거하였다. 잔류물을 추가의 물 (20 mL)로 희석하고, 여과에 의해 수집하고, 물에 이어서 아세토니트릴로 세척하여 백색 고체로서의 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (900 mg, 2.430 mmol, 90% 수율)을 수득하였다.
LC-MS (ES, m/z): [M+H]+ 371.2.
단계 4. 20 mL 섬광 바이알에 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (160 mg, 0.432 mmol), (1R,4R)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄 디히드로브로마이드 (100 mg, 0.518 mmol), BOP (210 mg, 0.475 mmol) 및 DMSO (3 mL)를 채웠다. DBU (0.228 mL, 1.512 mmol)를 첨가하였다. 반응 혼합물을 40℃에서 2시간 동안 교반하고, 포화 NaHCO3 용액 (20 mL)에 붓고, EtOAc (3 x 5 mL)로 추출하였다. 유기 상을 버렸다. 수성 층을 증발 건조시켰다. 잔류물을 DCM (5 mL) 중에 현탁시키고, 여과하고, 플래쉬 크로마토그래피 (40 g SiO2 칼럼, DCM 중 0에서 50% MeOH)을 사용하여 정제하여 화합물 110 (13.2 mg, 0.028 mmol, 6.5% 수율)을 고체로서 수득하였다.
화합물 111을 유사하게 제조하였다.
실시예 5 - 화합물 114
Figure pct00066
단계 1. DMF (60 mL) 중 메틸 (7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (4.98 g, 18.84 mmol; US 2020/0038403 A1)의 교반 용액을 빙조에서 냉각시켰다. NIS (5.09 g, 22.61 mmol)를 조금씩 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, 물 (400 mL)에 부었다. 침전물을 여과에 의해 수집하여 메틸 (7-(부틸아미노)-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (6.46 g, 15.73 mmol, 83% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 391.1.
1H NMR (400 MHz, DMSO-d6) δ 12.96 (s, 1H), 9.74 (s, 1H), 7.52 (s, 1H), 3.62 (s, 3H), 3.53 (q, J = 6.5 Hz, 2H), 1.68 - 1.55 (m, 2H), 1.40 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H).
단계 2. Cs2CO3 (4.18 g, 12.81 mmol)을 DMF (50 mL) 중 메틸 (7-(부틸아미노)-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (2.5 g, 6.41 mmol)의 교반 용액에 첨가하였다. 5분 동안 초음파처리 후, DMF (10 mL) 중 메틸 4-(브로모메틸)-3-메톡시벤조에이트 (1.743 g, 6.73 mmol)의 용액을 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, 10% 시트르산 용액 (100 mL)에 붓고, DCM (3 x 100 mL)으로 추출하였다. 합한 유기 상을 염수로 세척하고, 건조 (Na2SO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 100% EtOAc)하여 고체로서의 메틸 4-((7-(부틸아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (2.26 g, 2.98 mmol, 46% 수율, 75% 순도)을 수득하였으며, 이를 추가 정제 없이 사용하였다.
LC-MS (ES, m/z): [M+H]+ = 569.2.
단계 3. 20 mL 마이크로웨이브 바이알에 메틸 4-((7-(부틸아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (1.34 g, 1.771 mmol, 75% 순도), [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐(II) (91 mg, 0.124 mmol), 트리메틸보록신 (1001 mg, 7.97 mmol), K2CO3 (734 mg, 5.31 mmol) 및 디옥산 (7 mL)을 채웠다. 반응 혼합물을 마이크로웨이브 오븐에서 120℃에서 1시간 동안 가열하고, DCM 및 10% 시트르산으로 희석하였다. 상을 분리하였다. 유기 상을 10% 시트르산 및 염수로 순차적으로 세척하고, 건조시키고 (Na2SO4), 여과하고, 감압 하에 농축시켰다. 플래쉬 크로마토그래피하여 고체로서의 메틸 4-((5-아미노-7-(부틸아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (422 mg, 1.06 mmol, 59.8% 수율)을 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 399.2.
단계 4. NaOH (1.190 mL, 5.95 mmol)를 디옥산 (5 mL) 중 메틸 4-((5-아미노-7-(부틸아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (237 mg, 0.595 mmol)의 현탁액에 첨가하였다. 80℃에서 1시간 동안 교반한 후, 반응 혼합물을 냉각시키고, 5N 염산으로 중화시키고, 증발 건조시켰다. 잔류물을을 DMSO (2 mL) 및 물 (20 mL) 중에 현탁시키고, 여과에 의해 수집하고, 물로 세척하여 4-((5-아미노-7-(부틸아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (184 mg, 0.479 mmol, 80% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M-H]+ = 383.2.
단계 5. 20 mL 섬광 바이알에 4-((5-아미노-7-(부틸아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (35 mg, 0.091 mmol), 2-(1H-벤조트리아졸-1-일)-1,1,3,3-테트라메틸우로늄 헥사플루오로포스페이트 ("HBTU," 41.4 mg, 0.109 mmol), (1R,4R)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄 디히드로브로마이드 (17.58 mg, 0.091 mmol) 및 DMF (2 mL)를 채웠다. DIPEA (0.048 mL, 0.273 mmol)를 첨가하였다. 반응 혼합물을 실온에서 밤새 교반하고, 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 4% B에서 0분 유지, 20분에 걸쳐 4-44% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발 giving 화합물 114 (15.1 mg, 0.032 mmol, 35% 수율)을 수득하였다.
화합물 115를 유사하게 제조하였다.
실시예 6 - 화합물 116, 디트리플루오로아세테이트
Figure pct00067
단계 1. 물 중 수산화칼륨 (5N, 24.07 mL, 120 mmol)의 용액을 아세토니트릴 (150 mL) 중 메틸 3-히드록시-4-메틸벤조에이트 (4 g, 24.07 mmol)의 냉각된 (빙조) 용액에 첨가하였다. 0℃에서 5분 동안 교반한 후, 디에틸 (브로모디플루오로메틸)포스포네이트 (12.85 g, 48.1 mmol)를 첨가하였다. 반응 혼합물을 실온으로 천천히 가온되도록 하고, 16시간 동안 교반하였다. 추가의 KOH 용액 (5N, 16 mL, 80 mmol)을 첨가하였다. 반응 혼합물을 실온에서 추가로 30분 동안 교반하고, 물 (200 mL)로 희석하고, EtOAc (3 x 50 mL)로 추출하였다. 합한 유기 상을 염수 (2 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 10% EtOAc)하여 메틸 3-(디플루오로메톡시)-4-메틸벤조에이트 (2.552 g, 11.80 mmol, 49.0% 수율)을 오일로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 217.1.
1H NMR (400 MHz, DMSO-d6) δ 7.76 (dd, J=7.8, 1.7 Hz, 1H), 7.68 (br. s, 1H), 7.51 - 7.10 (m, 2H), 3.87 (s, 3H), 2.31 (s, 3H).
단계 2. NBS (1.811 g, 10.18 mmol) 및 벤조일 퍼옥시드 (0.448 g, 1.850 mmol)를 CCl4 (20 mL) 중 메틸 3-(디플루오로메톡시)-4-메틸벤조에이트 (2 g, 9.25 mmol)의 교반 용액에 첨가하였다. 반응 혼합물을 75℃에서 4시간 동안 교반한 다음, 실온에서 밤새 교반하였다. 이어서 이것을 증발 건조시키고, 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 15% EtOAc)를 사용하여 정제하여 메틸 4-(브로모메틸)-3-(디플루오로메톡시)벤조에이트 (1.561 g, 5.29 mmol, 57.2% 수율)을 오일로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 295.0, 297.0.
1H NMR (400 MHz, CDCl3) δ 7.88 (dd, J=8.1, 1.5 Hz, 1H), 7.80 (s, 1H), 7.52 (d, J=8.1 Hz, 1H), 6.64 (t, J=73.0 Hz, 1H), 4.57 - 4.51 (m, 2H), 3.98 - 3.90 (m, 3H).
단계 3. Cs2CO3 (1329 mg, 4.08 mmol)을 DMF (5 mL) 중 메틸 (3-브로모-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (700 mg, 2.040 mmol)의 교반 용액에 첨가하였다. 빙조에서 냉각시킨 후, DMF (2 mL) 중 메틸 4-(브로모메틸)-3-(디플루오로메톡시)벤조에이트 (572 mg, 1.938 mmol)의 용액을 첨가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 3시간 동안 교반하고, 물 (20 mL)로 희석하고, EtOAc (3 x 5 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 10 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, DCM 중에 로딩함, 헥산 중 0에서 60% EtOAc)하여 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (275 mg, 0.493 mmol, 24.19% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 557.1, 559.1.
1H NMR (400 MHz, DMSO-d6) δ 9.89 (s, 1H), 7.82 - 7.69 (m, 2H), 7.61 - 7.14 (m, 2H), 6.87 (d, J=7.9 Hz, 1H), 5.88 (s, 2H), 3.87 (s, 3H), 3.64 (s, 3H), 3.54 - 3.45 (m, 2H), 1.58 - 1.46 (m, 2H), 1.19 (dq, J=15.0, 7.4 Hz, 2H), 0.83 (t, J=7.3 Hz, 3H).
단계 4. 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (275 mg, 0.493 mmol)를 에탄올 (15 mL) 중에 용해시켰다. 10% Pd/C (27 mg)를 첨가하였다. 반응 혼합물을 배기시키고, 6회 퍼징하고, 수소 분위기 하에 2시간 동안 교반하고, 여과하고, 증발 건조시켰다. 잔류물을 디옥산 (2 mL) 중에 용해시켰다. NaOH (0.564 mL, 2.82 mmol)를 첨가하고, 반응 혼합물을 80℃에서 2시간 동안 교반한 다음, 냉각되도록 하였다. 반응 혼합물을 5N HCl로 중화시키고, 증발 건조시켰다. 잔류물을 MeOH/물 (1:1, 8 mL) 중에 용해시켰다. 메탄올을 증발에 의해 제거하였다. 잔류 수현탁액을 여과하였다. 잔류물을 물로 세척하여 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조산 (54 mg, 0.133 mmol, 27% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 407.22.
1H NMR (400 MHz, DMSO-d6) δ 8.50 (br s, 1H), 7.84 (s, 2H), 7.79 - 7.68 (m, 2H), 7.63 - 7.05 (t, J=73.2 Hz 1H), 6.97 (d, J=7.9 Hz, 1H), 5.94 (s, 2H), 3.54 (q, J=6.4 Hz, 2H), 1.54 (quin, J=7.2 Hz, 2H), 1.19 (dq, J=14.9, 7.3 Hz, 2H), 0.84 (t, J=7.3 Hz, 3H).
단계 5. 20 mL 섬광 바이알에 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조산 (35 mg, 0.086 mmol), HATU (39.3 mg, 0.103 mmol), (3aR,6aS)-2-메틸옥타히드로피롤로[3,4-c]피롤 (10.87 mg, 0.086 mmol) 및 DMF (2 mL)를 채웠다. DIPEA (0.045 mL, 0.258 mmol)를 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하고, 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 0.05% TFA 포함; 이동상 B: 95:5 아세토니트릴: 물, 0.05% TFA 포함; 구배: 5% B에서 0분 유지, 20분에 걸쳐 5-45% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 116을 디트리플루오로아세테이트 염 (12.3 mg, 0.016 mmol, 19% 수율)으로서 수득하였다.
화합물 117 및 123을 유사하게 제조하였다:
실시예 7 - 화합물 118
Figure pct00068
단계 1. 마이크로웨이브 바이알에 메틸 3-히드록시-4-메틸벤조에이트 (2 g, 12.04 mmol), 브로모시클로프로판 (1.747 g, 14.44 mmol), Cs2CO3 (4.71 g, 14.44 mmol) 및 DMF (15 mL)를 채웠다. 반응 혼합물을 마이크로웨이브 오븐에서 160℃에서 3시간 동안 가열하고, 냉각시키고, 물 (150 mL)에 붓고, EtOAc (3 x 50 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 5% EtOAc)하여 메틸 3-시클로프로폭시-4-메틸벤조에이트 (980 mg, 1.901 mmol, 15.79% 수율, 순도 40%)을 오일로서 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS (ES, m/z): [M+H]+ 207.1.
단계 2. 메틸 3-시클로프로폭시-4-메틸벤조에이트 (1 g, 1.939 mmol, 40% 순도)을 CCl4 (5 mL) 중에 용해시켰다. NBS (0.759 g, 4.27 mmol) 및 벤조일 퍼옥시드 (0.103 g, 0.427 mmol)를 첨가하였다. 반응 혼합물을 70℃에서 밤새 교반하고, 냉각시키고, 증발 건조 시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 10% EtOAc)하여 메틸 4-(브로모메틸)-3-시클로프로폭시벤조에이트 (550 mg, 1.54 mmol, 순도 80%, 80% 수율)을 고체로서 수득하였다. 생성물을 후속 단계에 추가 정제 없이 사용하였다.
LC-MS (ES, m/z): [M+H]+ 285.0, 287.0.
단계 3. 0℃에서 DMF (5 mL) 중 메틸 (3-브로모-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (650 mg, 1.894 mmol; US 2020/0038403 A1)의 교반 용액에 Cs2CO3 (1296 mg, 3.98 mmol)에 이어서 DMF (2 mL) 중 메틸 4-(브로모메틸)-3-시클로프로폭시벤조에이트 (540 mg, 1.515 mmol, 80% 순도)의 용액을 첨가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 밤새 교반하고, 포화 NaHCO3 용액 (100 mL)에 붓고, EtOAc (3 x 50 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 플래쉬 크로마토그래피 (SiO2 칼럼, 헥산 중 0에서 70% EtOAc)하여 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-시클로프로폭시벤조에이트 (153 mg, 0.279 mmol, 14.76% 수율)을 오일로서 수득하였으며, 이는 정치 시 응고되었다.
LC-MS (ES, m/z): [M+H]+ 547.2, 549.2.
1H NMR (400 MHz, DMSO-d6) δ 9.86 (s, 1H), 7.80 (d, J=1.5 Hz, 1H), 7.53 (dd, J=7.9, 1.5 Hz, 1H), 7.32 (t, J=5.5 Hz, 1H), 6.91 (d, J=7.9 Hz, 1H), 5.72 (s, 2H), 4.03 - 3.93 (m, 1H), 3.85 (s, 3H), 3.71 - 3.60 (m, 3H), 3.56 - 3.45 (m, 2H), 1.56 (quin, J=7.3 Hz, 2H), 1.22 (dq, J=14.8, 7.4 Hz, 2H), 0.85 (t, J=7.4 Hz, 3H), 0.81 - 0.73 (m, 2H), 0.52 - 0.41 (m, 2H).
단계 4. 메틸 4-((3-브로모-7-(부틸아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-시클로프로폭시벤조에이트 (150 mg, 0.274 mmol)를 EtOH (5 mL) 중에 용해시키고, 10% Pd/C (15 mg)를 첨가하였다. 반응 혼합물을 배기시키고, 수소로 6회 퍼징하고, 수소 분위기 하에 1시간 동안 교반하고, 여과하였다. 이어서, 이를 증발 건조시켰다. 잔류물을 디옥산 (3 mL) 중에 용해시키고, NaOH (822 μl, 4.11 mmol)을 첨가하였다. 반응 혼합물을 80℃에서 2시간 동안 교반하고, 냉각시키고, 5N HCl로 산성화시키고, 물 (5 mL)로 희석하였다. 유기 휘발성 물질을 증발시키고, 수성 잔류물을 역상 플래쉬 크로마토그래피 (C18 칼럼, 0.05% TFA을 함유하는 물 중 0에서 70% 아세토니트릴)을 사용하여 정제하여 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-시클로프로폭시벤조산 (35 mg, 0.088 mmol, 32% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 397.2.
1H NMR (400 MHz, DMSO-d6) δ 8.21 (br t, J=5.6 Hz, 1H), 7.81 (br s, 2H), 7.73 (s, 1H), 7.69 (s, 1H), 7.42 (dd, J=7.9, 1.3 Hz, 1H), 6.81 (d, J=7.9 Hz, 1H), 5.66 (s, 2H), 3.87 (tt, J=5.9, 2.9 Hz, 1H), 3.48 (q, J=6.7 Hz, 2H), 1.48 (quin, J=7.3 Hz, 2H), 1.14 (sxt, J=7.4 Hz, 2H), 0.78 (t, J=7.4 Hz, 3H), 0.75 - 0.68 (m, 2H), 0.48 - 0.38 (m, 2H).
단계 5. 20 mL 섬광 바이알에 4-((5-아미노-7-(부틸아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-시클로프로폭시벤조산 (35 mg, 0.088 mmol), HATU (40.3 mg, 0.106 mmol), (3aR,6aS)-2-메틸옥타히드로피롤로[3,4-c]피롤 (22.28 mg, 0.177 mmol) 및 DMF (2 mL)를 채웠다. DIPEA (0.046 mL, 0.265 mmol)를 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하고, 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 6% B에서 0분 유지, 20분에 걸쳐 6-46% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 118 (17.4 mg, 0.034 mmol, 39% 수율)을 수득하였다.
실시예 8 - 화합물 124, 디트리플루오로아세테이트
Figure pct00069
Figure pct00070
단계 1. 탄소 상 10% 팔라듐 (0.622 g, 0.584 mmol)을 EtOH (100 mL) 중 메틸 4-니트로-1H-피라졸-5-카르복실레이트 (10 g, 58.4 mmol)의 교반 용액에 첨가하였다. 반응 용기를 6회 배기시키고 수소로 퍼징하였다. 반응 혼합물을 H2 (풍선) 하에 2일 동안 교반하고, 셀라이트TM를 통해 여과하고, EtOH (100 mL)로 세척하였다. 여과물을 증발 건조시키고, 에테르/헥산으로 연화처리하여 메틸 4-아미노-1H-피라졸-5-카르복실레이트 (8.012 g, 56.8 mmol, 97% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 142.1.
단계 2. 메틸 4-아미노-1H-피라졸-5-카르복실레이트 (4 g, 28.3 mmol)를 MeOH (75 mL) 중에 용해시켰다. 1,3-비스(메톡시카르보닐)-2-메틸-2-티오슈도우레아 (6.43 g, 31.2 mmol)를 첨가하고, 이어서 HOAc (6.49 mL, 113 mmol)를 첨가하였다. 반응 혼합물을 실온에서 5시간 동안 교반하였다. NaOMe (36.7 g, 170 mmol, 25 wt%)을 첨가하고, 이어서 추가로 실온에서 밤새 교반하였다. 반응 혼합물을 HOAc로 산성화시켰다. 침전물을 여과에 의해 수집하고, 물 (100 mL), THF (100 mL) 및 에테르 (100 mL)로 세척하여 메틸 (7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (5.098 g, 24.37 mmol, 86% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 210.0.
단계 3. N-브로모숙신이미드 (4.34 g, 24.38 mmol)를 DMF (100 mL) 중 메틸 (7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (5.1 g, 24.38 mmol)의 현탁액에 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하고, 물 (100 mL)로 켄칭하고, 10분 동안 교반하고, 여과하고, 물 (100 mL), THF (2 x 50 mL) 및 에테르 (2 x 50 mL)로 세척하여 메틸 (3-브로모-7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (8.32 g, 23.11 mmol, 95% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ 288.0, 290.0.
단계 4. DMF (50 mL) 중 메틸 (3-브로모-7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (2.169 g, 6.78 mmol) 및 Cs2CO3 (2.429 g, 7.46 mmol)의 교반 현탁액을 빙조에서 냉각시켰다. DMF (10 mL) 중 메틸 4-(브로모메틸)-3-(디플루오로메톡시)벤조에이트 (2 g, 6.78 mmol)의 용액을 첨가하였다. 반응 혼합물을 실온으로 천천히 가온하고, 밤새 교반하고, 물 (400 mL) 및 포화 NaHCO3 용액 (40 mL)에 붓고, EtOAc (3 x 100 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. DCM / 에테르를 사용하여 연화처리하여 메틸 4-((3-브로모-7-히드록시-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (1.937 g, 3.86 mmol, 56.9% 수율)를 고체로서 수득하였다.
LCMS M+H 502.1, 504.1.
1H NMR (400 MHz, DMSO-d6) δ 11.86 - 11.58 (m, 1H), 11.58 - 11.29 (m, 1H), 7.88 - 7.65 (m, 2H), 7.57 - 7.07 (m, 2H), 5.94 - 5.73 (m, 2H), 3.99 - 3.81 (m, 3H), 3.81 - 3.67 (m, 3H).
단계 5. 20 mL 섬광 바이알에 메틸 4-((3-브로모-7-히드록시-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (1.15 g, 2.290 mmol), (S)-3-아미노헥산-1-올 히드로클로라이드 (0.387 g, 2.52 mmol), BOP (1.215 g, 2.75 mmol) 및 DMSO (10 mL)를 채웠다. DBU (1.035 mL, 6.87 mmol)를 첨가하였다. 반응 혼합물을 50℃에서 밤새 동안 교반하고, 냉각시키고, 포화 NaHCO3 용액 (100 mL)에 붓고, EtOAc (3 x 50 mL)로 추출하였다. 합한 유기 상을 염수 (4 x 50 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 농축시켰다. 역상 플래쉬 크로마토그래피 (100 g C18 칼럼, 물 중 0에서 100% 아세토니트릴, 0.05% TFA 포함)하여 메틸 (S)-4-((3-브로모-7-((1-히드록시헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (400 mg, 0.532 mmol, 23.24% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 601.2, 603.1.
단계 6. 탄소 상 10% 팔라듐 (40 mg)을 에탄올 (15 mL) 중 메틸 (S)-4-((3-브로모-7-((1-히드록시헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조에이트 (400 mg, 0.532 mmol)의 교반 현탁액에 첨가하였다. 반응 용기를 6회 배기시키고 수소로 퍼징하였다. 반응 혼합물을 밤새 수소 분위기 하에 교반하고, 여과하고, 증발 건조시켰다. 잔류물을 디옥산 (8 mL) 중에 용해시켰다. NaOH (1.596 mL, 7.98 mmol)를 첨가하였다. 80℃에서 2시간 동안 교반한 다음 냉각시킨 후, 반응 혼합물을 5N HCl을 사용하여 중화시켰다. 디옥산을 증발에 의해 제거하였다. 수성 잔류물을 역상 플래쉬 크로마토그래피 (50 g C18 칼럼, 물 중 0에서 50% 아세토니트릴, 10 mM TEAA 포함)을 사용하여 정제하여 (S)-4-((5-아미노-7-((1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조산 (80 mg, 0.18 mmol, 33% 수율)을 고체로서 수득하였다.
LC-MS (ES, m/z): [M+H]+ = 451.2.
단계 7. 20 mL 섬광 바이알에 (S)-4-((5-아미노-7-((1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-(디플루오로메톡시)벤조산 (25 mg, 0.056 mmol), HATU (25.3 mg, 0.067 mmol), (3aR,6aS)-2-메틸옥타히드로피롤로[3,4-c]피롤 (10.51 mg, 0.083 mmol) 및 DMF (2 mL)를 채웠다. DIPEA (0.024 mL, 0.139 mmol)를 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하고, 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 0.05% TFA 포함; 이동상 B: 95:5 아세토니트릴: 물, 0.05% TFA 포함; 구배: 5% B에서 0분 유지, 20분에 걸쳐 5-45% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였으며; 생성물을 함유하는 것을 합하고, 원심 증발을 통해 건조시켜 화합물 124 (24.5 mg, 0.031 mmol, 55.2% 수율)을 디트리플루오로아세테이트 염으로서 수득하였다.
화합물 125를 유사하게 제조하였다.
실시예 9 - 화합물 119
Figure pct00071
Figure pct00072
단계 1. DBU (0.856 mL, 5.68 mmol)를 DMSO (5 mL) 중 메틸 4-((7-히드록시-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (550 mg, 1.420 mmol; NaOH 처리 전 실시예 2의 단계 6 참조) 및 (S)-3-아미노헥산-1-올 히드로클로라이드 2 (327 mg, 2.130 mmol)의 현탁액에 첨가하였다. 반응 혼합물을 실온에서 10분 동안 교반한 후, 이는 투명한 용액이 되었다. BOP (1256 mg, 2.84 mmol)를 첨가하고, 이어서 70℃에서 2시간 동안 교반하였다. 반응 혼합물을 5M NaOH (5 mL, 25.00 mmol)로 처리하고, 70℃에서 0.5시간 동안 교반하고, 냉각시키고, 시린지 필터 디스크를 통해 여과하였다. 여과물을 정제용 역 C18 칼럼 (150g)에 의해 아세토니트릴:물 (0.05% TFA 포함), 0-50% 구배로 용리시키면서 정제하였다. 목적 분획을 결빙시키고, 동결건조시켜 (S)-4-((5-아미노-7-((1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (860.8 mg, 1.246 mmol, 88% 수율)을 수득하였다.
LCMS ESI: C20H27N6O4에 대한 계산치 = 415.2 (M+H+), 실측치 415.2(M+H+).
단계 2. DMF (1 mL) 중 (S)-4-((5-아미노-7-((1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조산 (50 mg, 0.121 mmol), (1R,4R)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄, 2-히드로브로마이드 (66.1 mg, 0.241 mmol)의 혼합물을 휘니그 염기 (0.105 mL, 0.603 mmol)에 이어서 BOP (80 mg, 0.181 mmol)로 처리하였다. 반응 혼합물을 실온에서 3시간 동안 교반하고, 시린지 프릿을 통해 여과하였다. 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 2% B에서 0분 유지, 25분에 걸쳐 2-42% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 119 (6.8 mg, 0.013 mmol, 11.08% 수율)을 수득하였다.
화합물 120을 유사하게 제조하였다.
실시예 10 - 화합물 106
Figure pct00073
단계 1. DMSO (3.9 mL) 중 메틸 4-((7-히드록시-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (300 mg, 0.774 mmol; US 2020/0038403 A1)의 용액을 (5-메틸이속사졸-3-일)메탄아민 (174 mg, 1.55 mmol), BOP (411 mg, 0.929 mmol) 및 DBU (233 μL, 1.55 mmol)로 처리하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, EtOAc로 희석하고, H2O (3x)로 세척하였다. 유기 층을 Na2SO4 상에서 건조시키고, 여과하고, 진공 하에 농축시켜 메틸 3-메톡시-4-((5-((메톡시카르보닐)아미노)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)벤조에이트 (353 mg, 95% 수율)을 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 9.80 (s, 1H), 7.99 - 7.93 (m, 1H), 7.77 (t, J=5.9 Hz, 1H), 7.49 (d, J=1.5 Hz, 1H), 7.45 (dd, J=7.8, 1.5 Hz, 1H), 6.62 (d, J=7.9 Hz, 1H), 6.10 (d, J=0.9 Hz, 1H), 5.80 (s, 2H), 4.73 (d, J=5.9 Hz, 2H), 3.84 (s, 3H), 3.82 (s, 3H), 3.64 (s, 3H), 2.31 (s, 3H).
LC RT: 0.67분. LC/MS [M+H]+ = 482.3 (방법 1)
단계 2. THF (10 mL) 중 메틸 3-메톡시-4-((5-((메톡시카르보닐)아미노)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)벤조에이트 (190 mg, 0.395 mmol)의 용액을 0℃로 냉각시키고, LiAlH4 (THF, 691 μL 중 1M, 0.691 mmol)로 처리하였다. 반응 혼합물을 0℃에서 15분 동안 교반하고, MeOH 및 로쉘 염 (포화 수용액)로 켄칭하고, 실온에서 1시간 동안 교반하였다. 혼합물을 EtOAc (3x)로 추출하였다. 합한 유기 층을 H2O로 세척하고, Na2SO4 상에서 건조시키고, 여과하고, 진공 하에 농축시켜 메틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (160 mg, 89% 수율)을 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 9.77 - 9.75 (m, 1H), 7.90 - 7.88 (m, 1H), 7.72 (br t, J=5.7 Hz, 1H), 6.94 (s, 1H), 6.76 (d, J=7.5 Hz, 1H), 6.61 - 6.57 (m, 1H), 6.15 (d, J=0.8 Hz, 1H), 5.68 (s, 2H), 5.16 (t, J=5.7 Hz, 1H), 4.73 (br d, J=5.8 Hz, 2H), 4.44 (d, J=5.6 Hz, 2H), 3.70 (s, 3H), 3.62 (s, 3H), 2.33 (s, 3H).
LC RT: 0.58분. LCMS [M+H]+ = 454.3 (방법 1)
단계 3. DCM (3.5 mL) 중 메틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (159 mg, 0.350 mmol)의 용액을 SOCl2 (128 μL, 1.76 mmol)로 처리하였다. 반응 혼합물을 실온에서 15분 동안 교반하고, 진공 하에 농축시켰다. 잔류물을 DCM 중에 재용해시키고, 진공 하에 농축시켜 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (182 mg, 100%)을 수득하였다.
LC RT: 0.80분. LCMS [M+H]+ = 472.3 (방법 1)
단계 4. DMF (1.1 mL) 중 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (25 mg, 0.053 mmol의 용액을 tert-부틸 (1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (31.5 mg, 0.159 mmol)로 처리하였다. 반응 혼합물을 70℃에서 2시간 동안 교반하고, 진공 하에 농축시켰다. 잔류물을 실온에서 디옥산 (0.5 mL) 중에 재용해시키고, NaOH (10M 수용액, 26 μL, 0.26 mmol)로 처리하고, 70℃로 가열하고; 3시간 및 6시간에서 추가의 NaOH (10M 수용액, 100 μL, 1 mmol)를 반응 혼합물에 첨가하였다. 10시간 후, 반응 혼합물을 실온으로 냉각시키고, HOAc로 중화시키고, 진공 하에 농축시켰다. 조 생성물을 DMF 중에 용해시키고, PTFE 프릿을 통해 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 10 mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, 10 mM NH4OAc 포함; 구배: 20% B에서 0분 유지, 23분에 걸쳐 20-60% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 tert-부틸 (1S,4S)-5-({4-[(5-아미노-7-{[(5-메틸-1,2-옥사졸-3-일)메틸]아미노}-1H-피라졸로[4,3-d]피리미딘-1-일)메틸]-3-메톡시페닐}메틸)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (8.1 mg, 27%)을 수득하였다.
1H NMR (500 MHz, DMSO-d6) δ 7.59 (s, 1H), 7.27 (br d, J=2.5 Hz, 1H), 6.96 (s, 1H), 6.78 (br d, J=7.4 Hz, 1H), 6.50 (d, J=7.7 Hz, 1H), 5.99 (s, 1H), 5.75 (s, 2H), 5.60 (s, 2H), 4.64 (br s, 2H), 4.15 (br d, J=17.3 Hz, 1H), 3.74 (s, 3H), 3.40 (br s, 1H), 3.35 (br d, J=9.6 Hz, 1H), 3.07 (br dd, J=19.1, 9.5 Hz, 1H), 2.77 - 2.71 (m, 1H), 2.47 - 2.39 (m, 1H), 2.33 (s, 3H), 1.77 (br d, J=8.5 Hz, 1H), 1.65 - 1.56 (m, 1H), 1.38 (br s, 9H)
LC RT: 1.12분.
LCMS [M+H]+ = 576.2 (방법 3).
단계 5. tert-부틸 (1S,4S)-5-({4-[(5-아미노-7-{[(5-메틸-1,2-옥사졸-3-일)메틸]아미노}-1H-피라졸로[4,3-d]피리미딘-1-일)메틸]-3-메톡시페닐}메틸)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트를 DCM (1.0 mL) 및 TFA (0.5 mL, 6 mmol)로 처리하고, 50℃에서 30분 동안 교반하고, 농축시켰다. 조 생성물을 DMF 중에 용해시키고, PTFE 프릿을 통해 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 10 mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, 10 mM NH4OAc 포함; 구배: 5% B에서 0분 유지, 20분에 걸쳐 5-45% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 106 (10.0 mg, 39%)을 수득하였다.
하기 화합물을 유사하게 제조하였다: 화합물 126, 화합물 127, 및 화합물 128
실시예 11 - 화합물 129
Figure pct00074
단계 1. THF (16 mL) 중 메틸 4-((5-((tert-부톡시카르보닐)아미노)-7-히드록시-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (685 mg, 1.59 mmol; US 2020/0038403 A1)의 용액을 0℃로 냉각시키고, LiAlH4 (THF 중 1 M, 2.8 mL, 2.8 mmol)로 처리하였다. 반응 혼합물을 0℃에서 15분 동안 교반하고, H2O 및 로쉘 염 (포화 수용액)로 켄칭하고, 실온에서 3시간 동안 교반하였다. 유기 층을 셀라이트TM 상에 흡수시키고, 칼럼 크로마토그래피 (24g SiO2; 0에서 20% MeOH-DCM 구배 용리)에 의해 정제하여 tert-부틸 (7-히드록시-1-(4-(히드록시메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (460 mg, 72% 수율)을 수득하였다.
1H (400 MHz, DMSO-d6) δ 11.69 - 11.43 (m, 1H), 10.95 - 10.62 (m, 1H), 7.87 - 7.79 (m, 1H), 6.97 (s, 1H), 6.77 (d, J=7.7 Hz, 1H), 6.59 (d, J=7.8 Hz, 1H), 5.66 (s, 2H), 5.16 (t, J=5.8 Hz, 1H), 4.45 (d, J=5.8 Hz, 2H), 3.79 (s, 3H), 1.49 (s, 9H). LC RT: 0.77분.
LCMS [M+H]+ = 402.2 (방법 1)
단계 2. DMSO (5.7 mL) 중 tert-부틸 (7-히드록시-1-(4-(히드록시메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (460 mg, 1.15 mmol)의 용액을 (5-메틸-1,2,4-옥사디아졸-3-일)메탄아민·HCl (223 mg, 1.49 mmol), BOP (760 mg, 1.72 mmol) 및 DBU (0.69 mL, 4.6 mmol)로 처리하였다. 반응 혼합물을 실온에서 2시간 동안 교반하고, EtOAc로 희석하고, H2O (2x)로 세척하였다. 유기 층을 셀라이트TM 상에 흡수시키고, 칼럼 크로마토그래피 (100g C18 골드 칼럼; 이동상 A: 5:95 아세토니트릴:물, 0.05% TFA 포함; 이동상 B: 95:5 아세토니트릴:물, 0.05% TFA 포함; 유량: 60 mL/분, 30-50% 구배)에 의해 정제하였다. 정제된 생성물을 DCM 중에 용해시키고, 포화 수성 NaHCO3 용액으로 세척하였다. 유기 층을 Na2SO4 상에서 건조시키고, 여과하고, 진공 하에 농축시켜 tert-부틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (190 mg, 33% 수율)을 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 9.24 - 9.15 (m, 1H), 7.87 (s, 1H), 7.72 (t, J=5.8 Hz, 1H), 6.95 (s, 1H), 6.82 - 6.75 (m, 1H), 6.73 - 6.68 (m, 1H), 5.68 (s, 2H), 5.17 (t, J=5.7 Hz, 1H), 4.87 (d, J=5.7 Hz, 2H), 4.44 (d, J=5.7 Hz, 2H), 3.76 (s, 3H), 2.55 (s, 3H), 1.43 (s, 9H).
LC RT: 0.75분. LC/MS [M+H]+ = 497.2 (방법 1)
단계 3. DCM (0.65 mL) 중 tert-부틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (161 mg, 0.320 mmol)의 용액을 SOCl2 (71 μL, 0.97 mmol)로 처리하였다. 반응 혼합물을 실온에서 15분 동안 교반하고, 진공 하에 농축시켰다. 잔류물을 DCM 중에 재용해시키고, 진공 하에 농축시켜 tert-부틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (166 mg, 100%)을 수득하였다.
LC RT: 0.89분.
LCMS [M+H]+ = 515.2 (방법 1)
단계 4. DMF (1.3 mL) 중 tert-부틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (33 mg, 0.064 mmol)의 용액을 tert-부틸 (1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (38.3 mg, 0.193 mmol)로 처리하였다. 반응 혼합물을 70℃에서 2시간 동안 교반하고, 진공 하에 농축시켰다. 잔류물을 디옥산 (1.3 mL) 중에 용해시키고, HCl (디옥산 중 4 M, 0.40 mL, 1.6 mmol)로 처리하고, 40℃에서 30분 동안 교반하고, 농축시켰다. 조 생성물을 DMF 중에 용해시키고, PTFE 프릿을 통해 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 10 mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, 10 mM NH4OAc 포함; 구배: 0% B에서 0분 유지, 23분에 걸쳐 0-48% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 129 (16.2 mg, 53% 수율)을 수득하였다.
화합물 130을 유사하게 제조하였다.
실시예 12 - 화합물 128
Figure pct00075
단계 1
실온에서 DMF (24 mL) 중 tert-부틸 히드라진카르복실레이트 (12.75 g, 96 mmol) 및 DIPEA의 용액을 DMF 24 mL 중 메틸 4-(브로모메틸)-3-메톡시벤조에이트 (5 g, 19.30 mmol)의 적가로 첨가 깔때기를 통해 1시간에 걸쳐 처리하였다. 반응 혼합물을 실온에서 밤새 교반하였다. EtOAc (135 mL) 및 H2O (75 mL)를 첨가하고, 2상 혼합물을 30분 동안 교반하였다. 반응 혼합물을 분리 깔때기에 붓고, 수성 층을 제거하였다. 유기 층을 2 추가량의 H2O (75 mL), 2 부분의 10% LiCl 용액 (75 mL)으로 세척하고, Na2SO4 상에서 건조시키고, 농축시켰다. 칼럼 크로마토그래피 (이스코, 220 g SiO2, 0% CH2Cl2 (5분)에 이어서 15% EtOAc-CH2Cl2)하여 tert-부틸 2-(2-메톡시-4-(메톡시카르보닐)벤질)히드라진-1-카르복실레이트 (3.85 g)을 투명한 오일로서 수득하였다.
1H NMR (400 MHz, 클로로포름-d) δ 7.64 (dd, J=7.7, 1.5 Hz, 1H), 7.56 (d, J=1.5 Hz, 1H), 7.37 (d, J=7.7 Hz, 1H), 6.08 - 5.87 (m, 1H), 4.07 (s, 2H), 3.94 (d, J=4.6 Hz, 6H), 1.50 - 1.40 (m, 9H).
LC/MS [M+H]+ 311.2; LC RT = 0.80분 (방법 1).
단계 2
tert-부틸 2-(2-메톡시-4-(메톡시카르보닐)벤질)히드라진-1-카르복실레이트 (25.4 g, 82 mmol)를 실온에서 MeOH (164 mL) 중에 용해시켰다. 4 N HCl-디옥산 (123 ml, 59.5 mmol)을 첨가하고, 반응물을 실온에서 밤새 교반하였다. 백색 침전물을 여과에 의해 수집하고, 건조시켜 메틸 4-(히드라지닐메틸)-3-메톡시벤조에이트, 2·HCl (20 g)을 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 9.12 (br s), 7.62 - 7.55 (m, 1H), 7.53 - 7.47 (m, 2H), 4.10 (s, 2H), 3.88 (s, 3H), 3.87 (s, 3H)
LC/MS [M+H]+ 211.1; LC RT = 0.51분. (방법 1)
단계 3
CH2Cl2 (799 ml) 중 (E)-N,N-디메틸-2-니트로에텐-1-아민 (46.4 g, 400 mmol) 및 피리딘 (420 ml, 5195 mmol)의 용액을 -10℃로 냉각시키고, 천천히 에틸 2-클로로-2-옥소아세테이트 (51.4 ml, 460 mmol)로 처리하였다. 반응 혼합물을 25℃로 2시간에 걸쳐 가온되도록 하고, 밤새 교반하였다. CH2Cl2을 회전 증발에 의해 제거하고, 메틸 4-(히드라지닐메틸)-3-메톡시벤조에이트 디히드로클로라이드 (31.7 g, 112 mmol)를 반응 혼합물에 한 번에 첨가하였다. 용액을 실온에서 2시간 동안 교반하고, 용매를 진공 하에 제거하였다. 잔류물을 물, 1N 수성 HCl 용액으로 세척하고, EtOAc (3x)로 추출하였다. 유기 층을 Na2SO4 상에서 건조시키고, 농축시켰다. 잔류물을 CH2Cl2 중에 용해시키고, 짧은 실리카 겔 칼럼을 통해 통과시키고, 에탄올로부터 재결정화하여 에틸 1-(2-메톡시-4-(메톡시카르보닐)벤질)-4-니트로-1H-피라졸-5-카르복실레이트 (29.4 g)를 수득하였다.
1H NMR (400 MHz, 클로로포름-d) δ 8.06 (s, 1H), 7.64 (dd, J=7.9, 1.5 Hz, 1H), 7.56 (d, J=1.5 Hz, 1H), 7.13 (d, J=7.8 Hz, 1H), 5.53 (s, 2H), 4.45 (q, J=7.2 Hz, 2H), 3.94 (s, 3H), 3.88 (s, 3H), 1.37 (t, J=7.2 Hz, 3H).
LC/MS [M+Na]+ 386.0; LC RT = 0.98분 (방법 1).
단계 4
에틸 4-아미노-1-(2-메톡시-4-(메톡시카르보닐)벤질)-1H-피라졸-5-카르복실레이트 (3.04 g, 9.12 mmol, 86% 수율) 및 Pd-C (1.131 g, 0.531 mmol)를 EtOAc/MeOH (1:1) (152 mL) 중에 현탁시켰다. 반응 플라스크를 진공 하에 배기시키고, H2 (3X)로 퍼징한 후, H2 (g)의 풍선 압력 하에 교반하였다. 5시간 후, 반응 혼합물을 셀라이트TM을 통해 여과하고, 새로운 Pd-C (1.131 g, 0.531 mmol)를 첨가하였다. 반응 플라스크를 진공 하에 배기시키고, H2 (3X)로 퍼징한 후, H2 의 풍선 압력 하에 16시간 동안 교반하였다. 반응 혼합물을 셀라이트TM을 통해 여과하고, 농축시키고, 진공 하에 건조시켜 에틸 4-아미노-1-(2-메톡시-4-(메톡시카르보닐)벤질)-1H-피라졸-5-카르복실레이트 (3.04 g)를 크림 분말로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 7.52 - 7.49 (m, 1H), 7.47 (dd, J=7.9, 1.5 Hz, 1H), 7.19 (s, 1H), 6.40 (d, J=7.8 Hz, 1H), 5.54 (s, 2H), 5.10 (s, 1H), 4.15 (q, J=7.1 Hz, 2H), 3.91 (s, 3H), 3.84 (s, 3H), 1.14 (t, J=7.1 Hz, 3H).
LC/MS [M+H]+ 334.1; LC/RT = 0.85분. (방법 2).
단계 5
에틸 4-아미노-1-(2-메톡시-4-(메톡시카르보닐)벤질)-1H-피라졸-5-카르복실레이트 (1.65 g, 4.95 mmol)를 CHCl3 (49.5 ml) 중에 용해시키고, 0℃로 냉각시켰다. NBS (0.925 g, 5.20 mmol)를 혼합물에 한 번에 첨가하였다. 15분 후, 반응물을 CHCl3으로 희석하고 10% 수성 티오황산나트륨 용액과 함께 10분 동안 격렬히 교반하였다. 유기 상을 분리하고, H2O로 세척하고, MgSO4 상에서 건조시키고, 농축시켰다. 조 생성물을 칼럼 크로마토그래피 (80g SiO2, 0에서 50% EtOAc-헥산 구배 용리)에 의해 정제하여 에틸 4-아미노-3-브로모-1-(2-메톡시-4-(메톡시카르보닐)벤질)-1H-피라졸-5-카르복실레이트 (1.32 g)를 백색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 7.61 - 7.41 (m, 2H), 6.55 (d, J=8.3 Hz, 1H), 5.56 (s, 2H), 5.02 (s, 2H), 4.20 (q, J=7.1 Hz, 2H), 3.90 (s, 3H), 3.85 (s, 3H), 1.15 (t, J=7.1 Hz, 3H).
LC/MS [M+H]+ 412.2; LC RT = 1.02분 (방법 1).
단계 6
에틸 4-아미노-3-브로모-1-(2-메톡시-4-(메톡시카르보닐)벤질)-1H-피라졸-5-카르복실레이트 (741.2 mg, 67.1% 수율), K2CO3 (1.098 g, 7.94 mmol) 및 2,4,6-트리메틸-1,3,5,2,4,6-트리옥사트리보리난 (THF 중 3.5 M) (1.816 ml, 6.36 mmol)을 디옥산 (26.5 ml):물 (5.30 ml) (5:1) 중에 현탁시켰다. N2의 스트림을 반응 혼합물을 통해 5분 동안 버블링한 후, PdCl2(dppf)-CH2Cl2 부가물 (0.052 g, 0.064 mmol)을 첨가하고, 추가로 4분 동안 계속한 후, 반응 용기를 밀봉하고, 90℃로 가열하였다. 3시간 후, 추가량의 2,4,6-트리메틸-1,3,5,2,4,6-트리옥사트리보리난 (THF 중 3.5 M) (0.908 ml, 3.18 mmol) 및 PdCl2(dppf)-CH2Cl2 부가물 (0.052 g, 0.064 mmol)을 첨가하였다. 반응 혼합물을 100℃에서 16시간 동안 교반하고, 냉각시키고, EtOAc 100 mL로 희석하고, 추가의 EtOAc로 세척하면서 셀라이트TM을 통해 여과하였다. 조 생성물을 4 g 셀라이트TM 상에서 농축시켰다. 칼럼 크로마토그래피 (80g SiO2, 0에서 30% EtOAc-CH2Cl2 구배 용리)하여 목적 생성물, 에틸 4-아미노-1-(2-메톡시-4-(메톡시카르보닐)벤질)-3-메틸-1H-피라졸-5-카르복실레이트 (741 mg)를 크림색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 7.49 (d, J=1.5 Hz, 1H), 7.46 (dd, J=7.9, 1.5 Hz, 1H), 6.40 (d, J=7.8 Hz, 1H), 5.48 (s, 2H), 4.94 - 4.86 (m, 2H), 4.14 (q, J=7.0 Hz, 2H), 3.90 (s, 3H), 3.84 (s, 3H), 2.10 (s, 3H), 1.15 - 1.08 (m, 3H).
LC/MS [M+H]+ 348.2; LC/RT = 0.89분. (방법 1).
단계 7
에틸 4-아미노-1-(2-메톡시-4-(메톡시카르보닐)벤질)-3-메틸-1H-피라졸-5-카르복실레이트 (742 mg, 2.136 mmol)를 MeOH (10.800 mL) 중에 현탁시키고, 격렬한 교반 하에 서서히 가열하여 물질을 가용화시켰다. 1,3-비스-(메톡시카르보닐)-2-메틸-2-티오슈도우레아 (661 mg, 3.20 mmol)를 첨가하고, 이어서 AcOH (0.611 mL, 10.68 mmol)를 첨가하였다. 반응 혼합물을 실온에서 16시간 동안 교반하였다. AcOH의 추가의 부분을 첨가 (0.049 mL, 0.854 mmol)하고, 반응 혼합물을 실온에서 추가로 72시간 동안 교반한 후, NaOMe (MeOH 중 25wt%) (5.69 mL, 25.6 mmol)을 첨가하였다. 3시간 동안 교반한 후, 반응 혼합물을 AcOH로 재산성화시켰다. 생성물을 여과에 의해 수집하고, 10분 동안 공기-건조시키고, 화학-건조 오븐에서 완전히 건조시켜 메틸 4-((7-히드록시-5-((메톡시카르보닐)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (중간체 A) (722.0 mg)을 크림색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 11.58 - 11.17 (m, 2H), 7.51 (d, J=1.4 Hz, 1H), 7.49 - 7.42 (m, 1H), 6.67 (d, J=7.9 Hz, 1H), 5.67 (s, 2H), 3.90 (s, 3H), 3.84 (s, 3H), 3.71 (s, 3H), 2.31 (s, 3H).
LC/MS [M+H]+ 402.3; LC RT = 0.86분 (방법 1).
단계 8. RR에서 DMF (2491 μL) 중 메틸 4-((7-히드록시-5-((메톡시카르보닐)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (중간체 A, 200 mg, 0.498 mmol) 및 BOP (331 mg, 0.747 mmol)의 현탁액을 (5-메틸이속사졸-3-일)메탄아민 (72.6 mg, 0.648 mmol) 및 DBU (3 당량) (225 μl, 1.495 mmol)로 처리하였다. 반응 혼합물을 40℃로 가열하였다. 15분 후, DBU (2 당량) (150 μL, 0.997 mmol)의 추가의 부분을 첨가하였다. 반응물을 40℃에서 16시간 동안 교반하고, 냉각시키고, EtOAc와 반포화 수성 NaHCO3 용액 사이에 분배하였다. 유기 상을 분리하고, 수성 상을 EtOAc (2x)로 추출하였다. 합한 유기 층을 10% 수성 LiCl 용액 및 염수로 순차적으로 세척하고, Na2SO4 상에서 건조시키고, 농축시켰다. 칼럼 크로마토그래피 (12g SiO2, 0에서 10% CH3OH-CH2Cl2 구배 용리)하여 메틸 3-메톡시-4-((5-((메톡시카르보닐)아미노)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)벤조에이트 (201.1 mg)를 수득하였다.
LC/MS [M+H]+ 496.2; LC RT = 0.79분 (방법 1).
단계 9. 메틸 3-메톡시-4-((5-((메톡시카르보닐)아미노)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)벤조에이트 (200 mg, 0.404 mmol)를 실온에서 THF 중에 현탁시키고, 초음파처리하여 용해를 보조하였다. LiAlH4 (THF 중 1M) (807 μl, 0.807 mmol)을 10분에 걸쳐 적가하였다. 20분 후, 반응물을 MeOH로 켄칭하고, EtOAc와 로쉘 염 사이에 분배하였다. 2상 혼합물을 실온에서 2시간 동안 교반하였다. 수성 층을 분리하고, EtOAc (1X)로 재추출하였다. 합한 유기 층을 염수로 세척하고, 농축시켰다. 칼럼 크로마토그래피 (12g SiO2, 0에서 10% CH3OH-CH2Cl2 구배 용리)하여 메틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (73 mg)를 수득하였다.
LC/MS [M+H]+ 468.4; LC RT = 0.62분. (방법 1).
단계 10. 메틸 (1-(4-(히드록시메틸)-2-메톡시벤질)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (73 mg, 0.156 mmol)를 실온에서 CH2Cl2 (1562 μL) 중에 용해시켰다. SOCl2 (57.0 μl, 0.781 mmol)을 첨가하고, 반응 혼합물을 20분 동안 교반하였다. 농축시켜 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (80 mg)를 추가 정제 없이 사용하기에 충분한 순도로 수득하였다.
LC/MS [M+H]+ 486.1; LC RT = 0.83분 (방법 1).
단계 11. 아세토니트릴 (412 μL) 중 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-7-(((5-메틸이속사졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (20 mg, 0.041 mmol)의 원액을 2-드램 바이알에 들은 (1R,4R)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄, 2·히드로브로마이드 (33.8 mg, 0.123 mmol)에 첨가하였다. DIPEA (21.57 μl, 0.123 mmol)을 첨가하였다. 반응 혼합물을 70℃로 가열하고, 냉각시키고, 농축시켰다. 잔류물을 디옥산 (400 μL) 중에 재용해시키고, 10 M NaOH 용액 (82 μL, 0.823 mmol)로 처리하였다. 반응 혼합물을 80℃로 5시간 동안 가열하고, 냉각시키고, AcOH (42μL)로 중화시키고, 농축시켰다. 조 생성물을 DMF-H2O 중에 용해시키고, PTFE 프릿을 통해 여과하고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 3% B에서 0분 유지, 20분에 걸쳐 3-43% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃에 의해 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 128 (8.6 mg)을 수득하였다.
상기 반응식에서의 중간체 A는 또한 필요한 변경을 가하여 본 개시내용에 따른 다른 화합물을 제조하는데 사용될 수 있다.
실시예 13 - 화합물 131
Figure pct00076
Figure pct00077
단계 1. 디에틸 에테르 (25 mL) 및 DMF (25 mL) 중 수소화나트륨 (5.92 g, 148 mmol)의 현탁액에 50-mL 2구 플라스크에서 불활성 분위기 하에 0℃에서 메탄올 (6.49 mL, 160 mmol)을 첨가하였다. 20분 후, 디에틸 에테르 (25 mL) 중 2,4-디클로로-5-메틸피리딘 (상업적으로 이용가능함, 20 g, 123 mmol)의 용액을 적가한 다음, 혼합물을 실온으로 가온되도록 하였다. 12시간 후, 분쇄 얼음을 반응 혼합물에 첨가하고, 이어서 이를 DCM (2 x 250 mL)으로 추출하였다. 합한 유기 층을 Na2SO4 상에서 건조시키고, 증발시켜 조 생성물을 수득하였으며, 이를 칼럼 크로마토그래피에 의해 용리액으로서 석유 에테르 중 80 g 실리카 겔 칼럼 및 5-30% 에틸 아세테이트를 사용하여 정제하여 2-클로로-4-메톡시-5-메틸피리딘 (18 g, 93%)을 수득하였다.
LC-MS m/z 158 [M+H]+.
단계 2. MeOH (350 mL) 중 2-클로로-4-메톡시-5-메틸피리딘 (19 g, 121 mmol)의 용액을 반응기에 첨가하고, 이어서 DMF (350 mL)를 첨가하였다. 혼합물을 질소 기체로 퍼징한 후, Pd(dppf)Cl2-DCM (19.69 g, 24.11 mmol) 및 트리에틸아민 (50.3 mL, 362 mmol)을 첨가하였다. 질소 기체로 퍼징한 후, 반응 혼합물을 100℃에서 일산화탄소의 10 bar 압력 하에 18시간 동안 교반하였다. 반응 혼합물을 반응기로부터 수집하고, 증발시켜 조 생성물을 수득하였으며, 이를 칼럼 크로마토그래피에 의해 용리액으로서 석유 에테르 중 80 g 실리카 겔 칼럼 및 5-30% 에틸 아세테이트를 사용하여 정제하여 메틸 4-메톡시-5-메틸피콜리네이트 (18.4 g, 84%)을 수득하였다.
LC-MS m/z 182 [M+H]+.
단계 3. CCl4 (50 mL) 중 메틸 4-메톡시-5-메틸피콜리네이트 (5.8 g, 32.0 mmol)의 혼합물에 NBS (5.70 g, 32.0 mmol) 및 AIBN (1.051 g, 6.40 mmol)을 첨가하고, 반응 혼합물을 60℃에서 불활성 분위기 하에 12시간 동안 가열하였다. 추가의 NBS (0.5 당량) 및 AIBN (0.1 당량)을 첨가하고, 반응물을 18시간 동안 교반하였다. 포화 수성 중탄산나트륨을 반응 혼합물에 첨가하고, 이어서 이를 DCM (2 x 150 mL)으로 추출하였다. 합한 유기 층을 Na2SO4 상에서 건조시키고, 증발시켜 조 생성물을 수득하였으며, 이를 칼럼 크로마토그래피에 의해 용리액으로서 석유 에테르 중 80 g 실리카 겔 칼럼 및 20-50% 에틸 아세테이트를 사용하여 정제하여 메틸 5-(브로모메틸)-4-메톡시피콜리네이트 (5.5 g, 66%)을 수득하였다.
LC-MS m/z 260/262 [M+H]+.
단계 4. DMF (10 mL) 중 메틸 (7-히드록시-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (6 g, 17.91 mmol)의 혼합물을 0℃로 냉각시키고, 메틸 5-(브로모메틸)-4-메톡시피콜리네이트 (4.66 g, 17.91 mmol)를 첨가하고, 이어서 Cs2CO3 (11.67 g, 35.8 mmol)을 첨가하였다. 반응 혼합물을 동일한 온도에서 1시간 동안 교반하였다. 반응 혼합물을 실온에서 2시간 동안 교반하였다. 분쇄 얼음을 반응 혼합물에 첨가하여 연황색 침전물을 수득하였으며, 이를 소결 깔때기를 통해 여과하고, 석유 에테르 중 30% 에틸 아세테이트로 세척하였다. 고체를 진공 하에 건조시켜 조 생성물을 수득하였으며, 이를 칼럼 크로마토그래피에 의해 용리액으로서 DCM 중 80 g 실리카 겔 칼럼 및 2-10% 메탄올을 사용하여 정제하여 메틸 5-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (4 g, 43%)을 수득하였다.
LC-MS m/z 515 [M+H]+.
단계 5. DMSO (5 mL) 중 메틸 5-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (500 mg, 0.972 mmol)의 교반 용액에 연속적으로 (S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-아민 (415 mg, 1.167 mmol) (US 2020/0038403 A1, 도 8, 화합물 71a), BOP (645 mg, 1.458 mmol), 및 DBU (0.440 mL, 2.92 mmol)를 첨가하고, 반응 혼합물을 45℃에서 4시간 동안 교반하였다. 분쇄 얼음을 반응 혼합물에 첨가하고, 이어서 이를 DCM (2 x 150 mL)으로 추출하였다. 합한 유기 층을 Na2SO4 상에서 건조시키고, 증발시켜 조 생성물을 수득하였으며, 이를 칼럼 크로마토그래피에 의해 용리액으로서 석유 에테르 중 80 g 실리카 겔 칼럼 및 15-40% 에틸 아세테이트를 사용하여 정제하여 메틸 (S)-5-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (400 mg, 48%)을 수득하였다.
LC-MS m/z 852 [M+H]+.
단계 6. MeOH (10 mL) 및 THF (10 mL) 중 메틸 (S)-5-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (1.5 g, 1.761 mmol)의 혼합물에, 탈기 후, 탄소 상 건조 팔라듐 (0.937 g, 0.880 mmol)을 첨가하였다. 반응 혼합물을 수소 분위기 하에 25℃에서 12시간 동안 교반하고, 셀라이트TM의 층을 통해 여과하였다. 여과물을 증발시켜 조 생성물, 메틸 (S)-5-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (1.1 g, 86%)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS m/z 726 [M+H]+.
단계 7. THF (8 mL) 및 MeOH (2 mL) 중 메틸 (S)-5-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-4-메톡시피콜리네이트 (270 mg, 0.372 mmol)의 교반 용액에 빙냉 온도에서 LiBH4 (0.930 mL, 2 M 용액, 1.860 mmol)을 첨가하였다. 반응 혼합물을 아르곤 분위기 하에 45℃로 12시간 동안 가열하였다. 추가의 LiBH4 (2.5 당량)을 첨가하고, 반응물을 5시간 동안 교반하였다. 반응물을 실온으로 냉각시킨 다음, 분쇄 얼음을 첨가하여 백색 침전물을 수득하였다. 투명한 용액을 코튼 플러그를 사용하여 여과한 다음 증발 건조 시켜 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(히드록시메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (220 mg, 85%)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS m/z 698 [M+H]+.
단계 8. THF (5 mL) 중 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(히드록시메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (230 mg, 0.330 mmol)의 교반 용액에 SOCl2 (0.072 mL, 0.989 mmol)를 첨가하고, 반응 혼합물을 0℃에서 1.5시간 동안 교반하였다. 용매를 증발시켜 조 생성물, 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(클로로메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (220 mg, 93%)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS m/z 716 [M+H]+.
단계 9. 0℃에서 DMF (2 mL) 중 (1S,4S)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄, HCl (24.90 mg, 0.168 mmol) 및 K2CO3 (57.9 mg, 0.419 mmol)의 용액에 불활성 분위기 하에 DMF (2 mL) 중 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(클로로메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (100 mg, 0.140 mmol)의 용액을 첨가하였다. 반응 혼합물을 25℃에서 12시간 동안 교반하였다. 반응 혼합물을 셀라이트TM을 통해 여과하고, 여과물을 증발시켜 조 생성물, 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((4-메톡시-6-(((1S,4S)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (100 mg, 0.126 mmol, 90% 수율)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS m/z 792 [M+H]+.
단계 10. MeOH (5 mL) 중 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((4-메톡시-6-(((1S,4S)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (100 mg, 0.126 mmol)의 용액에 HCl (0.033 mL, 35 wt%, 0.379 mmol)을 첨가하였다. 반응 혼합물을 25℃에서 1시간 동안 교반하였다. 용매를 증발시켜 조 생성물, 메틸 (7-(((S)-1-히드록시헥산-3-일)아미노)-1-((4-메톡시-6-(((1S,4S)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (60 mg, 86%)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
LC-MS m/z 554 [M+H]+.
단계 11. 1,4-디옥산 (1 mL) 및 H2O (1 mL)의 혼합물 중 메틸 (7-(((S)-1-히드록시헥산-3-일)아미노)-1-((4-메톡시-6-(((1S,4S)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (60 mg, 0.108 mmol)의 용액에 NaOH (4.33 mg, 0.108 mmol)를 첨가하고, 혼합물을 75℃에서 12시간 동안 가열하였다. 반응 혼합물을 실온으로 냉각시키고, 층을 분리하였다. 유기 층을 증발시키고, 조 물질을 메탄올 중에 용해시키고, 정제용 LC/MS에 의해 하기 조건을 사용하여 정제하였다: 칼럼: 워터스 엑스브리지 C18, 19 x 150 mm, 5-μm 입자; 이동상 A: 10-mM NH4OAc; 이동상 B: 메탄올; 구배: 20분에 걸쳐 10-35% B, 이어서 100% B에서 0-분 유지; 유량: 20 mL/분. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해서 건조하였다. 조 물질을 정제용 LC/MS를 통해 하기 조건을 사용하여 정제하였다: 칼럼: 엑스브리지 페닐, 250 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 메탄올: 물, 물 중 10mM 중탄산암모늄 PH-9.5 포함; 이동상 B: 95:5 메탄올: 물, 물 중 10mM 중탄산암모늄 PH-9.5 포함; 구배: 50% B에서 2-분 유지, 15분에 걸쳐 50-70% B, 이어서 100% B에서 5-분 유지; 유량: 19 mL/분; 칼럼 온도: 맞춤형 수조에 의해 C 유지. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 131 (1 mg)을 수득하였다.
하기 화합물을 유사하게 제조하였다: 화합물 132, 화합물 133, 및 화합물 134.
실시예 14 - 화합물 140
Figure pct00078
Figure pct00079
단계 1. 건조 아세토니트릴 (10 mL) 중 (1R,4R)-2,5-디아자-비시클로[2.2.1]헵탄-2-카르복실산 tert-부틸 에스테르 (500 mg, 2.52 mmol; 상업적으로 입수가능한)의 용액에 질소 분위기 하에 K2CO3 (3485 mg, 25.2 mmol) 및 2-브로모에탄-1-올 (630 mg, 5.04 mmol)을 첨가하였다. 반응 혼합물을 80℃에서 12시간 동안 가열하고, NH4Cl 용액과 EtOAc 사이에 분배하였다. 유기 층을 물 및 염수로 세척하고, 무수 Na2SO4 상에서 건조시키고, 농축시켜 조 생성물을 수득하였으며, 이를 플래쉬 크로마토그래피 (60-120 실리카 겔; CHCl3 중 1-10% MeOH)에 의해 정제하여 tert-부틸 (1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (600 mg, 98%)을 담황색 오일로서 수득하였다.
LC-MS m/z 243 [M+H]+.
단계 2. 1,4-디옥산 (1 mL) 중 tert-부틸 (1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-카르복실레이트 (700 mg, 2.89 mmol)에 질소 분위기 하에 0℃에서 디옥산 중 4 N HCl (7.22 mL, 28.9 mmol)을 첨가하였다. 0℃에서 3시간 동안 교반한 후, 반응 혼합물을 진공 하에 30℃에서 농축시켰다. 잔류물을 에테르와 함께 교반하였다. 용매를 조심스럽게 경사분리하였다. 생성된 고체를 진공 하에 건조시켰다. 고체를 아세토니트릴 및 물의 혼합물 중에 용해시킨 다음, 이것을 결빙시키고, 동결건조시켜 2-((1R,4R)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올, HCl (500 mg, 97%)을 백색 고체로서 수득하였다.
LC-MS m/z 143 [M+H]+.
단계 3. DMF (2 mL) 중 2-((1R,4R)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올 (55.6 mg, 0.391 mmol) 및 K2CO3 (81 mg, 0.584 mmol)의 교반 혼합물에 DMF (2 mL) 중 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(클로로메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (140 mg, 0.195 mmol)의 용액을 첨가하였다. 반응 혼합물을 60℃에서 12시간 동안 교반하고, 실온으로 냉각시키고, 셀라이트TM의 층을 통해 여과하였다. 여과물을 증발시켜 조 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(((1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (100 mg, 62%)을 수득하였으며, 이를 추가 정제 없이 사용하였다.
단계 4. MeOH (5 mL) 중 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((6-(((1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-4-메톡시피리딘-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (140 mg, 0.170 mmol)의 혼합물에 HCl (0.026 mL, 0.851 mmol)을 첨가하였다. 반응 혼합물을 실온에서 1.5시간 동안 교반하였다. 용매를 증발시켜 조 메틸 (1-((6-(((1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-4-메톡시피리딘-3-일)메틸)-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (60 mg, 60%)을 수득하였으며, 이를 추가 정제 없이 사용하였다.
단계 5. 1,4-디옥산 (1 mL) 중 메틸 (1-((6-(((1R,4R)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-4-메톡시피리딘-3-일)메틸)-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (65 mg, 0.111 mmol)의 교반 용액에 H2O (1 mL) 중 NaOH (13.36 mg, 0.334 mmol)의 용액을 첨가하였다. 반응 혼합물을 80℃에서 6시간 동안 교반하였다. 층을 분리하고, 유기 층을 증발시키고, 메탄올 중에 용해시키고, 정제용 LC/MS에 의해 하기 조건: 칼럼: 제미니 nx; 이동상 A: 10-mM NH4OAc; 이동상 B: 아세토니트릴; 구배: 10-70% B; 유량: 20 mL/분에 의해 정제하였다. 목적 생성물을 함유하는 분획을 농축시켜 화합물 140 (2.3 mg)을 수득하였다.
실시예 15 - 화합물 135
Figure pct00080
Figure pct00081
단계 1. 1,4-디옥산 (100.0 mL) 및 MeOH (18.73 mL, 463 mmol) 중 5-브로모-6-메틸니코틴산 (10.0 g, 46.3 mmol)의 교반 용액에 질소 퍼징 하에 Cs2CO3 (30.2 g, 93 mmol), Pd2(dba)3 (4.24 g, 4.63 mmol), 및 tBuXPhos (3.93 g, 9.26 mmol)를 첨가하였다. 반응 혼합물을 70℃에서 16시간 동안 교반하였다. 반응 혼합물을 셀라이트TM 층을 통해 여과하고, EtOAc로 세척하고, 여과물을 감압 하에 농축시켰다. 조 화합물을 DCM으로 처리한 다음, 여과하였다. 고체를 석유 에테르로 세척한 다음, 진공 하에 건조시켜 5-메톡시-6-메틸니코틴산 (7.6 g, 98%)을 담갈색 고체로서 수득하였다.
LC-MS m/z 168 [M+H]+.
1H NMR (300MHz, DMSO-d6) δ 8.42 - 8.32 (m, 1H), 7.64 - 7.55 (m, 1H), 3.79 (s, 3H), 2.32 (s, 3H).
단계 2. 에탄올 (80.0 mL) 중 5-메톡시-6-메틸니코틴산 (8.0 g, 47.9 mmol)의 교반 용액에 H2SO4 (7.65 mL, 144 mmol)를 첨가하였다. 반응 혼합물을 90℃에서 20시간 동안 교반하고, 감압 하에 농축시켜 잔류물을 수득하였으며, 이를 포화 중탄산나트륨 용액으로 켄칭한 다음, DCM와 물 사이에 분배하였다. 유기 층을 염수 용액으로 세척하고, Na2SO4 상에서 건조시키고, 여과하고, 감압 하에 농축시켜 에틸 5-메톡시-6-메틸니코티네이트 (8.1 g, 80%)을 갈색 오일로서 수득하였다.
LC-MS m/z 196 [M+H]+
1H NMR (300MHz, DMSO-d6) δ 8.56 (d, J=1.5 Hz, 1H), 7.66 (d, J=1.9 Hz, 1H), 4.35 (q, J=7.2 Hz, 2H), 3.90 (s, 3H), 2.43 (s, 3H), 1.34 (t, J=7.2 Hz, 3H).
단계 3. 무수 CCl4 (140 mL) 중 에틸 5-메톡시-6-메틸니코티네이트 (7.1 g, 36.4 mmol), AIBN (1.194 g, 7.27 mmol), 및 NBS (7.12 g, 40.0 mmol)의 교반 현탁액을 65℃로 16시간 동안 가열하였다. 반응 혼합물을 농축시키고, 잔류물을 플래쉬 크로마토그래피 (용리액으로서 석유 에테르 중 실리카 겔 60-120 메쉬; 15% 에틸 아세테이트)에 의해 정제하여 에틸 6-(브로모메틸)-5-메톡시니코티네이트 (5.7 g, 57%)을 회백색 고체로서 수득하였다.
LC-MS m/z 276 [M+H]+.
단계 4. 0℃에서 무수 DMF (50 mL) 중 메틸 (7-히드록시-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (3.4 g, 10.15 mmol)의 교반 용액에 Cs2CO3 (6.61 g, 20.29 mmol) 및 에틸 6-(브로모메틸)-5-메톡시니코티네이트 (2.92 g, 10.65 mmol)를 첨가하였다. 0℃에서 1시간 동안 교반한 후, 반응 혼합물을 빙냉수에 적가하였다. 생성된 현탁액을 5분 동안 교반하고, 여과하였다. 수집된 고체를 고진공 하에 건조시켰다. 이 물질을 플래쉬 크로마토그래피 (실리카 겔 60-120 메쉬; 용리액으로서 클로로포름 중 5% 메탄올)에 의해 정제하여 에틸 6-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (4.3 g, 64%)을 연황색 고체로서 수득하였다.
LC-MS m/z 529 [M+H]+.
단계 5. 무수 DMSO (8 mL) 중 에틸 6-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (700 mg, 1.325 mmol)의 교반 용액에 실온에서 DBU (0.599 mL, 3.98 mmol), BOP (1758 mg, 3.98 mmol) 및 최종적으로 (S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-아민 (471 mg, 1.325 mmol)을 첨가하였다. 반응 혼합물을 45℃로 가열하고, 1시간 동안 교반하고, 물과 에틸 아세테이트 사이에 분배하였다. 유기 층을 H2O 및 포화 NaCl 용액으로 세척하고, 무수 Na2SO4 상에서 건조시키고, 여과하고, 감압 하에 농축시켰다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔 60-120 메쉬; 용리액으로서 석유 에테르 중 55% 에틸 아세테이트)에 의해 정제하여 에틸 (S)-6-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (850 mg, 52%)을 연황색 반고체로서 수득하였다.
LC-MS m/z 866 [M+H]+.
단계 6. 무수 메탄올 (25 mL) 중 에틸 (S)-6-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (830 mg, 0.959 mmol)의 교반 용액에 실온에서 Pd/C (510 mg, 0.479 mmol)를 첨가하였다. 반응물을 수소 주머니 하에 실온에서 16시간 동안 교반하였다. 현탁액을 셀라이트TM 층을 통해 여과하고, 층을 에틸 아세테이트로 세척하였다. 여과물을 감압 하에 농축시켜 에틸 (S)-6-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (800 mg, 90%)을 연황색 반고체로서 수득하였다.
LC-MS m/z 740 [M+H]+.
단계 7. 0℃에서 THF (20 mL) 및 메탄올 (3.0 mL) 중 에틸 (S)-6-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-5-메톡시니코티네이트 (800 mg, 1.081 mmol)의 교반 용액에 LiBH4 (2.70 mL, 2 M 용액, 5.41 mmol)을 적가하였다. 빙조를 제거하고, 반응 혼합물을 40℃로 가열하고, 16시간 동안 교반하였다. 반응 혼합물을 실온이 되게하고, 추가의 LiBH4 (2 mL)을 첨가하였다. 반응 혼합물을 45℃로 가열하고, 3시간 동안 교반하고, 0℃로 냉각시켰다. 빙냉수 및 에틸 아세테이트를 적가하였다. 유기 층을 H2O 및 포화 NaCl 용액으로 세척하고, 무수 Na2SO4 상에서 건조시키고, 여과하고, 감압 하에 농축시켜 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(히드록시메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (750 mg, 99%)을 갈색 고체로서 수득하였다.
LC-MS m/z 698 [M+H]+.
단계 8. 0℃에서 무수 THF (4 mL) 중 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(히드록시메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (90 mg, 0.129 mmol)의 교반 용액에 SOCl2 (0.047 mL, 0.645 mmol)를 첨가하였다. 반응 혼합물을 0℃에서 30분 동안 교반하고, 고진공 하에 농축 건조시켜 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(클로로메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (95 mg, 93%)을 황색 고체로서 수득하였다. 이 물질을 추가 정제 없이 사용하였다.
LC-MS m/z 716 [M+H]+.
단계 9. 무수 DMF (2 mL) 중 메틸 (S)-(7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(클로로메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (90 mg, 0.126 mmol)의 교반 용액에 K2CO3 (52.1 mg, 0.377 mmol) 및 2-((1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올 (35.7 mg, 0.251 mmol)을 첨가하였다. 반응 혼합물을 75℃로 가열하고, 16시간 동안 교반하고, 고진공 하에 농축 건조시켜 조 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(((1S,4S)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (120 mg)을 수득하였으며, 이를 추가 정제 없이 사용하였다.
LC-MS m/z 822 [M+H]+.
단계 10. 무수 MeOH (2 mL) 중 메틸 (7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-1-((5-(((1S,4S)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-3-메톡시피리딘-2-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (110 mg, 0.134 mmol)의 교반 용액에 실온에서 HCl (0.5 mL, 16.46 mmol)을 첨가하였다. 반응 혼합물을 2시간 동안 교반하고, 고진공 하에 농축 건조시켜 조 메틸 (1-((5-(((1S,4S)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-3-메톡시피리딘-2-일)메틸)-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (90 mg)을 수득하였으며, 이를 추가 정제 없이 사용하였다.
LC-MS m/z 584 [M+H]+.
단계 11. 디옥산 (2 mL) 및 물 (1 mL)의 혼합물 중 메틸 (1-((5-(((1S,4S)-5-(2-히드록시에틸)-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)-3-메톡시피리딘-2-일)메틸)-7-(((S)-1-히드록시헥산-3-일)아미노)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (90 mg, 0.154 mmol)의 교반 용액에 NaOH (61.7 mg, 1.542 mmol)를 첨가하였다. 반응 혼합물을 75℃로 가열하고, 3시간 동안 교반하였다. 반응 혼합물로부터의 디옥산 층을 분리하고, 농축 건조시켜 조 생성물을 수득하였으며, 이를 정제용 LC/MS에 의해 하기 조건: 칼럼: 워터스 엑스브리지 C18, 19 x 150 mm, 5-μm 입자; 이동상 A: 10-mM NH4OAc; 이동상 B: 아세토니트릴; 구배: 20분에 걸쳐 7-22% B, 이어서 100% B에서 5분 유지; 유량: 20 mL/분을 사용하여 정제하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 135 (12.3 mg)을 수득하였다.
화합물 138을 유사하게 제조하였다.
실시예 16 - 화합물 141
Figure pct00082
단계 1. DMF (50 mL) 중 메틸 (7-히드록시-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (5.00 g, 14.92 mmol)의 교반 용액에 Cs2CO3 (9.72 g, 29.8 mmol) 및 메틸 4-(브로모메틸)-3-메톡시벤조에이트 (3.87 g, 14.92 mmol; 상업적으로 입수가능한)을 첨가하였다. 반응 혼합물을 0℃에서 1시간 동안 교반하고, 물과 에틸 아세테이트 사이에 분배하였다. 유기 층을 염수 용액으로 세척하고, 무수 Na2SO4 상에서 건조시키고, 여과하고, 진공 하에 농축시켜 조 생성물을 수득하였으며, 이를 플래쉬 크로마토그래피 (용리액으로서 클로로포름 중 실리카 겔 60-120 메쉬; 10% 에틸 아세테이트)을 이용하여 정제하였다. 분획을 고진공 하에 50℃에서 농축시켜 메틸 4-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (3.3 g, 41%)을 회백색 고체로서 수득하였다.
LC-MS m/z 514 [M+H]+.
단계 2. 실온에서 건조 DMSO (10mL) 중 메틸 4-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (5 g, 9.74 mmol)의 교반 용액에 질소 분위기 하에 DMSO 중 DBU (4.41 mL, 29.2 mmol), BOP (6.46 g, 14.61 mmol), 및 (S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-아민 (3.46 g, 9.74 mmol)을 첨가하였다. 반응 혼합물을 45℃에서 2시간 동안 교반하고, 에틸 아세테이트와 빙냉수 사이에 분배하였다. 유기 층을 물 및 염수로 세척하고, 무수 Na2SO4 상에서 건조시키고, 진공 하에 45℃에서 농축시켰다. 조 생성물을 플래쉬 크로마토그래피 (60-120 실리카 겔; 용리액으로서 석유 에테르 중 20-60% 에틸 아세테이트)에 의해 정제하여 메틸 (S)-4-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (4.5 g, 54%)을 담황색 오일로서 수득하였다.
LC-MS m/z 851 [M+H]+.
단계 3. 건조 1,4-디옥산 (5 mL) 중 메틸 (S)-4-((7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (0.5 g, 0.588 mmol)의 용액을 아르곤으로 3분 동안 퍼징한 다음, 트리메틸보록신 (TMB, 0.246 mL, 1.763 mmol), K2CO3 (0.162 g, 1.175 mmol), 및 PdCl2(dppf)-CH2Cl2 부가물 (0.038 g, 0.047 mmol)을 질소 분위기 하에 첨가하였다. 반응 혼합물을 100℃에서 12시간 동안 가열하고, 중탄산나트륨 용액과 DCM 사이에 분배하였다. 유기 층을 물 및 염수로 세척하고, 무수 Na2SO4 상에서 건조시키고, 농축시켜 조 생성물을 수득하였으며, 이를 플래쉬 크로마토그래피 (석유 에테르 중 60-120 실리카 겔; 10-50% 에틸 아세테이트)에 의해 정제하여 메틸 (S)-4-((5-아미노-7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (0.2 g, 50%)을 담황색 오일로서 수득하였다.
LC-MS m/z 681 [M+H]+.
단계 4. 건조 테트라히드로푸란 (3 mL) 및 MeOH (1 mL) 중 메틸 (S)-4-((5-아미노-7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (0.2 g, 0.294 mmol)의 용액에 질소 분위기 하에 LiBH4 (0.734 mL, 2 M 용액, 1.469 mmol)을 첨가하였다. 반응 혼합물을 45℃에서 12시간 동안 가열하고, 염화암모늄 용액과 EtOAc 사이에 분배하였다. 유기 층을 물 및 염수로 세척하고, 무수 Na2SO4 상에서 건조시키고, 농축시켜 조 생성물을 수득하였으며, 이를 플래쉬 크로마토그래피 (60-120 실리카 겔; 용리액으로서 석유 에테르 중 5-55% 에틸 아세테이트)에 의해 정제하여 (S)-(4-((5-아미노-7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시페닐)메탄올 (0.3 g)을 담황색 고체로서 수득하였다.
LC-MS m/z 653 [M+H]+.
단계 5. N2 분위기 하에 0℃에서 THF (0.5 mL) 중 (S)-(4-((5-아미노-7-((1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시페닐)메탄올 (50 mg, 0.077 mmol)의 교반 용액에 SOCl2 (0.011 mL, 0.153 mmol)를 첨가하였다. 반응 혼합물을 N2 분위기 하에 0℃에서 1시간 동안 교반하고, 진공 하에 농축시켜 조 (S)-N7-(1-((tert-부틸디페닐실릴)옥시)헥산-3-일)-1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-1H-피라졸로[4,3-d]피리미딘-5,7-디아민,를 담황색빛 오일로서 수득하였으며, 이를 추가 정제 없이 사용하였다.
LC-MS m/z 671 [M+H]+.
단계 6. DMF (1 mL) 중 (S)-N7-(1-((tert-부틸디페닐실릴)옥시)헥산-3-일)-1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-1H-피라졸로[4,3-d]피리미딘-5,7-디아민 (100 mg, 0.149 mmol)의 교반 용액에 2-((1R,4R)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올, HCl (53.2 mg, 0.298 mmol), 및 K2CO3 (61.8 mg, 0.447 mmol)을 첨가하였다. 반응 혼합물을 50℃에서 12시간 동안 교반하고, 여과하여 고체를 제거하였다. 여과물을 진공 하에 농축시켜 조 2-((1R,4R)-5-(4-((5-아미노-7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤질)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올을 회백색 고체로서 수득하였으며, 이를 추가 정제 없이 사용하였다.
LC-MS m/z 777 [M+H]+.
단계 7. MeOH (3 mL) 중 2-((1R,4R)-5-(4-((5-아미노-7-(((S)-1-((tert-부틸디페닐실릴)옥시)헥산-3-일)아미노)-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤질)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올 (100 mg, 0.129 mmol)의 교반 용액에 HCl (0.3 mL, 9.87 mmol)을 첨가하였다. 반응 혼합물을 N2 분위기 하에 0℃ 내지 실온에서 2시간 동안 교반하고, 진공 하에 농축시켰다. 잔류물을 물 중 MeOH 중에 용해시켰다. 용액을 정제용 LC/MS에 의해 하기 조건: 칼럼: 워터스 엑스브리지 C18, 150 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 10-mM NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, 10-mM NH4OAc 포함; 구배: 5% B에서 0분 유지, 20분에 걸쳐 5-25% B, 이어서 100% B에서 5분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 141 (10.6 mg)을 수득하였다.
실시예 17 - 화합물 137
Figure pct00083
단계 1. 메틸 (7-히드록시-1-(4-(히드록시메틸)-2-메톡시벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (304 mg, 0.846 mmol)를 CH2Cl2 (4230 μL) 중에 현탁시켰다. SOCl2 (309 μl, 4.23 mmol)을 첨가하고, 반응물을 실온에서 3시간 동안 교반하고, 농축시켜 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (311 mg)를 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ 11.38 - 10.97 (m, 1H), 7.88 (s, 1H), 7.11 (d, J=1.3 Hz, 1H), 6.92 (dd, J=7.7, 1.3 Hz, 1H), 6.63 (d, J=7.7 Hz, 1H), 5.69 (s, 2H), 4.72 (s, 2H), 3.83 (s, 3H), 3.76 (s, 3H). LC RT: 0.80분. LC/MS [M+H]+ = 378.1 (방법 1)
단계 2. 메틸 (1-(4-(클로로메틸)-2-메톡시벤질)-7-히드록시-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (50 mg, 0.132 mmol) 및 (1R,4R)-2-메틸-2,5-디아자비시클로[2.2.1]헵탄, 2 히드로브로마이드 (39.9 mg, 0.146 mmol)를 아세토니트릴 (660 μL) 중에 현탁시키고, DIPEA (46.2 μl, 0.265 mmol)로 처리하였다. 반응 혼합물을 70℃로 16시간 동안 가열하고, 냉각시키고, N2의 스트림 하에 농축시켰다. 조 물질을 MeOH-DMSO 중에 용해시키고, 정제용 크로마토그래피에 의해 하기 조건을 사용하여 정제하였다: 칼럼: 펜 악시아 루나 C18, 21.2mm x 100 mm, 5-μm 입자; 이동상 A: 90% H2O/10% MeOH/0.1% TFA; 이동상 B: 10% H2O/90% MeOH/0.1% TFA; 구배:10분에 걸쳐 0-100% B, 이어서 100% B에서 2분 유지; 유량: 25 mL/분; 칼럼 온도: 25℃. UV 검출: 220 nm. 목적 생성물을 함유하는 분획을 농축시킨 다음, 아세토니트릴 (2X)로부터 공비혼합하여 메틸 (7-히드록시-1-(2-메톡시-4-(((1R,4R)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트, 2 TFA (22.3 mg)을 수득하였다.
1H NMR (400 MHz, 메탄올-d4) δ 7.77 (s, 1H), 7.21 (br s, 1H), 7.01 (br d, J=7.8 Hz, 1H), 6.84 (d, J=7.7 Hz, 1H), 5.81 (s, 2H), 4.49 - 4.42 (m, 1H), 4.42 - 4.33 (m, 2H), 4.32 - 4.22 (m, 1H), 4.03 - 3.93 (m, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.55 - 3.40 (m, 2H), 3.01 (s, 3H), 2.66 - 2.56 (m, 1H), 2.45 (br d, J=3.6 Hz, 1H).
LC RT: 0.58분. LC/MS [M+H]+ = 454.2 (방법 1).
단계 3. 메틸 (7-히드록시-1-(2-메톡시-4-(((1R,4R)-5-메틸-2,5-디아자비시클로[2.2.1]헵탄-2-일)메틸)벤질)-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (19.5 mg, 0.043 mmol), (S)-2-아미노-3-시클로프로필프로판-1-올, HCl (13.04 mg, 0.086 mmol) 및 BOP,98%,25g (33.6 mg, 0.064 mmol)을 디옥산 (430 μl) 중에 실온에서 현탁시켰다. 반응 혼합물을 DBU (25.9 μl, 0.172 mmol)로 처리하고, 실온에서 72시간 동안 교반하였다. (S)-2-아미노-3-시클로프로필프로판-1-올 7 mg, HCl (13.04 mg, 0.086 mmol) 및 13 μL의 DBU의 또 다른 부분을 첨가하고, 반응물을 40℃로 ~4시간 동안 가열하였다. 10 M 수성 NaOH 용액 (43.0 μl, 0.430 mmol)을 첨가하였다. 온도를 60℃로 증가시키고, 반응 혼합물을 밤새 교반하였다. 조 생성물을 함유하는 혼합물을 농축시키고, DMF/1N HCl 용액 (430 μL)으로 희석하였다. 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 0% B에서 0분 유지, 25분에 걸쳐 0-40% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 137 (1.7 mg)을 유리 염기로서 수득하였다.
실시예 18 - 화합물 139
Figure pct00084
DMF (0.5 mL) 중 화합물 812 (US 2020/0038403; 18 mg, 0.040 mmol)의 용액을 K2CO3 (16.56 mg, 0.120 mmol) 및 2-브로모에탄-1-올 (5.66 μl, 0.080 mmol)로 처리하였다. 반응 혼합물을 50℃에서 2시간 동안 가열하였다. 조 물질을 정제용 LC/MS에 의해 하기 조건: 칼럼: 엑스브리지 C18, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, NH4OAc 포함; 이동상 B: 95:5 아세토니트릴: 물, NH4OAc 포함; 구배: 7% B에서 0분 유지, 20분에 걸쳐 7-47% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃을 사용하여 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켰다. 물질을 추가로 정제용 LC/MS에 의해 하기 조건으로 정제하였다: 칼럼: 엑스브리지 페닐, 200 mm x 19 mm, 5-μm 입자; 이동상 A: 5:95 아세토니트릴: 물, 0.05% TFA 포함; 이동상 B: 95:5 아세토니트릴: 물, 0.05% TFA; 구배: 0% B에서 0분 유지, 20분에 걸쳐 0-40% B, 이어서 100% B에서 0분 유지; 유량: 20 mL/분; 칼럼 온도: 25℃. 분획 수집을 MS 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 원심 증발을 통해 건조시켜 화합물 139 4.3 mg을 수득하였다.
실시예 19 - 화합물 142
Figure pct00085
단계 1. 0℃에서 DMF (50.0 mL) 중 메틸 (7-히드록시-3-아이오도-1H-피라졸로[4,3-d]피리미딘-5-일)카르바메이트 (5.0 g, 14.92 mmol)의 교반 용액에 Cs2CO3 (9.72 g, 29.8 mmol) 및 메틸 4-(브로모메틸)-3-메톡시벤조에이트 (3.87 g, 14.92 mmol)를 첨가하였다. 반응 혼합물을 0℃에서 1시간 동안 교반하고, 물을 첨가하였다. 침전된 고체를 여과하고, 과량의 물에 이어서 석유 에테르로 세척하고, 진공 하에 건조시켰다. 조 화합물을 이스코 콤비플래쉬 크로마토그래피에 의해 클로로포름 중 0-100% 에틸 아세테이트로 용리시키면서 정제하여 메틸 4-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (3.88 g, 6.20 mmol, 41.5% 수율)을 회백색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ ppm: 11.69 (br s, 1H), 11.38 (s, 1H), 7.56 - 7.45 (m, 2H), 6.87 - 6.78 (m, 1H), 5.75 (s, 2H), 3.88 (s, 3H), 3.85 (s, 3H), 3.75 (s, 3H).
LC-MS m/z 514.0 [M+H]+.
단계 2. 1,4-디옥산 (35.0 mL) 중 메틸 4-((7-히드록시-3-아이오도-5-((메톡시카르보닐)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (3.5 g, 6.82 mmol)의 교반 용액에 질소 퍼징 하에 K2CO3 (1.885 g, 13.64 mmol), 트리메틸보록신 (TMB, 1.907 mL, 13.64 mmol) 및 PdCl2(dppf).CH2Cl2 부가물 (0.557 g, 0.682 mmol)을 첨가하였다. 반응 혼합물을 100℃에서 6시간 동안 교반하였다. 반응 혼합물을 셀라이트TM 층을 통해 여과하고, 이를 후속적으로 과량의 에틸 아세테이트로 세척하였다. 여과물을 감압 하에 농축시켜 잔류물을 수득하였다. 조 화합물을 이스코 콤비플래쉬 크로마토그래피 (클로로포름 중 0-20% 메탄올)에 의해 정제하여 메틸 4-((5-아미노-7-히드록시-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (2.1 g, 4.10 mmol, 60.1% 수율)을 갈색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ = 10.90 (s, 1H), 7.51 (s, 1H), 7.46 (d, J = 8.0 Hz, 1H), 6.63 - 6.50 (m, 1H), 6.18 - 6.01 (m, 2H), 5.71 - 5.54 (m, 2H), 3.91 (s, 3H), 3.87 - 3.78 (s, 3H), 2.23 (s, 3H).
LC-MS m/z 344.0 [M+H]+.
단계 3. 0℃에서 THF (5.0 mL) 중 메틸 4-((5-아미노-7-히드록시-3-메틸-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시벤조에이트 (0.5 g, 1.456 mmol)의 교반 용액에 LiAlH4 (1.214 mL, 2.91 mmol)를 첨가하였다. 반응 혼합물을 실온으로 가온하고, 1시간 동안 교반하고, 빙냉수로 켄칭하고, 셀라이트TM 층을 통해 여과하였으며, 이를 과량의 에틸 아세테이트로 세척하였다. 유기 층을 Na2SO4 상에서 건조시키고, 여과하고, 감압 하에 농축시켜 5-아미노-1-(4-(히드록시메틸)-2-메톡시벤질)-3-메틸-1H-피라졸로[4,3-d]피리미딘-7-올 (0.31 g, 0.551 mmol, 37.8% 수율)을 갈색 반고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ = 6.99 - 6.95 (m, 1H), 6.73 (br d, J = 7.5 Hz, 1H), 6.44 - 6.38 (m, 1H), 5.75 - 5.49 (m, 2H), 5.26 - 4.99 (m, 1H), 4.44 (s, 2H), 3.87 - 3.80 (m, 3H), 2.23 (s, 3H).
LC-MS m/z 316.3 [M+H]+.
단계 4. DMSO (10.0 mL) 중 5-아미노-1-(4-(히드록시메틸)-2-메톡시벤질)-3-메틸-1H-피라졸로[4,3-d]피리미딘-7-올 (1.1 g, 3.49 mmol)의 교반 용액에 DBU (1.577 mL, 10.47 mmol), BOP (2.314 g, 5.23 mmol) 및 (5-메틸-1,2,4-옥사디아졸-3-일)메탄아민 히드로클로라이드 (0.522 g, 3.49 mmol)를 첨가하였다. 반응 혼합물을 실온에서 2시간 동안 교반하였다. (5-메틸-1,2,4-옥사디아졸-3-일)메탄아민 히드로클로라이드 (0.3 g, 2.0 mmol)를 첨가하였다. 반응 혼합물을 실온에서 16시간 동안 교반하고, EtOAc와 물 사이에 분배하였다. 유기 층을 염수로 세척하고, Na2SO4 상에서 건조시키고, 여과하고, 감압 하에 농축시켜 잔류물을 수득하였다. 조 화합물을 이스코 콤비플래쉬 크로마토그래피에 의해 클로로포름 중 0-20% 메탄올로 용리시키면서 정제하여 (4-((5-아미노-3-메틸-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시페닐)메탄올 (0.81 g, 1.243 mmol, 35.6% 수율)을 갈색 고체로서 수득하였다.
1H NMR (400 MHz, DMSO-d6) δ = 7.60 - 7.55 (m, 1H), 7.26 (br t, J = 5.8 Hz, 1H), 6.98 - 6.93 (m, 1H), 6.77 (br d, J = 7.5 Hz, 1H), 6.68 - 6.60 (m, 1H), 5.68 (s, 2H), 5.55 - 5.48 (m, 1H), 5.20 - 5.13 (m, 1H), 4.78 (br d, J = 5.5 Hz, 2H), 4.49 - 4.42 (m, 2H), 3.82 - 3.77 (m, 3H), 2.56 (d, J = 2.0 Hz, 4H), 2.55 - 2.50 (m, 6H).
LC-MS m/z 411.2 [M+H]+.
단계 5. 0℃에서 THF (10.0 mL) 중 (4-((5-아미노-3-메틸-7-(((5-메틸-1,2,4-옥사디아졸-3-일)메틸)아미노)-1H-피라졸로[4,3-d]피리미딘-1-일)메틸)-3-메톡시페닐)메탄올 (0.45 g, 1.096 mmol)의 교반 용액에 SOCl2 (1.0 ml, 13.70 mmol)를 첨가하였다. 반응 혼합물을 0℃에서 1시간 동안 교반하고, 실온으로 가온하고, 감압 하에 농축시켜 1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-N7-((5-메틸-1,2,4-옥사디아졸-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5,7-디아민 (0.51 g, 추정 수율 100%)을 갈색 고체로서 수득하였다. 조 생성물을 후속 단계에 그대로 사용하였다.
LC-MS m/z 429.4 [M+H]+.
단계 6. DMF (3.0 mL) 중 1-(4-(클로로메틸)-2-메톡시벤질)-3-메틸-N7-((5-메틸-1,2,4-옥사디아졸-3-일)메틸)-1H-피라졸로[4,3-d]피리미딘-5,7-디아민 (0.15 g, 0.350 mmol)의 교반 용액에 2-((1S,4S)-2,5-디아자비시클로[2.2.1]헵탄-2-일)에탄-1-올 히드로클로라이드 (0.094 g, 0.525 mmol) 및 K2CO3 (0.048 g, 0.350 mmol)을 첨가하였다. 반응 혼합물을 50℃에서 90분 동안 교반하였다. 반응 혼합물을 셀라이트TM 층을 통해 여과하고, 이를 후속적으로 과량의 에틸 아세테이트로 세척하였다. 여과물을 감압 하에 농축시켜 잔류물을 수득하였다. 조 화합물을 역상 정제용 LC/MS (칼럼: TRIART-YMC EXRS- (250 x 19 mm), 이동상 A:10 mM NH4HCO3; 이동상 B: 아세토니트릴: MeOH (1:1); 구배: 0/20, 2/20 10/40, 15/40 18/100 20/20, 유량: 19 mL/분)에 의해 정제하였다. 분획 수집을 MS 및 UV 신호에 의해 개시하였다. 목적 생성물을 함유하는 분획을 합하고, 진백 장치를 사용하여 원심 증발을 통해 건조시켜 화합물 142 (33.2 mg, 0.062 mmol, 17.76% 수율)을 수득하였다.
실시예 20 - 출발 물질 및 중간체
하기 차트는 본원에 개시된 TLR7 효능제의 제조를 위한 출발 물질 또는 중간체로서 유용할 수 있는 화합물을 제조하기 위한 반응식을 나타낸다. 반응식은 출발 물질 또는 중간체로서 사용될 수 있는 다른 유사한 화합물을 제조하기 위해 적합화될 수 있다. 사용된 시약은 관련 기술분야에 널리 공지되어 있고, 많은 경우에 그의 사용은 상기 실시예에서 입증되었다.
차트 1
Figure pct00086
차트 2
Figure pct00087
Figure pct00088
차트 3
Figure pct00089
Figure pct00090
생물학적 활성
TLR7 효능제로서 본원에 개시된 화합물의 생물학적 활성은 하기 절차에 의해 검정될 수 있다.
인간 TLR7 효능제 활성 검정
이 절차는 본 명세서에 개시된 화합물의 인간 TLR7 (hTLR7) 효능제 활성을 검정하는 방법을 기재한다.
인간 TLR7-분비 배아 알칼리성 포스파타제 (SEAP) 리포터 트랜스진을 보유하는 조작된 인간 배아 신장 블루 세포 (HEK-블루™ TLR 세포; 인비보젠(Invivogen))를 비-선택적인 배양 배지 (10% 소 태아 혈청 (시그마(Sigma))이 보충된 DMEM 고-글루코스 (인비트로겐(Invitrogen))) 중에 현탁시켰다. HEK-블루™ TLR7 세포를 384-웰 조직-배양 플레이트의 각 웰에 첨가하고 (웰 당 15,000개 세포), 16-18시간 동안 37℃, 5% CO2에서 인큐베이션하였다. 화합물 (100 nl)을 HEK-블루™ TLR 세포를 함유하는 웰에 분배하고, 처리된 세포를 37℃, 5% CO2에서 인큐베이션하였다. 18시간 처리 후, 10 마이크로리터의 새로 제조된 퀀티-블루™ 시약 (인비보젠)을 각각의 웰에 첨가하고, 30분 동안 인큐베이션하고 (37℃, 5% CO2), SEAP 수준을 엔비전 플레이트 판독기 (OD = 620 nm)를 사용하여 측정하였다. 반수 최대 유효 농도 값 (EC50; 검정 기준선과 최대값 사이의 반응 중간값을 유도하는 화합물 농도)을 계산하였다.
인간 혈액에서의 제I형 인터페론 유전자 (MX-1) 및 CD69의 유도
제I형 인터페론 (IFN) MX-1 유전자 및 B-세포 활성화 마커 CD69의 유도는 TLR7 경로의 활성화시 발생하는 하류 이벤트이다. 하기는 TLR7 효능제에 반응하는 그의 유도를 측정하는 인간 전혈 검정이다.
헤파린첨가 인간 전혈을 인간 대상체로부터 수거하고, 1mM의 시험 TLR7 효능제 화합물로 처리하였다. 혈액을 RPMI 1640 배지로 희석하고, 에코(Echo)를 사용하여 웰당 10 nL을 적가하여 최종 농도 1uM (혈액 10uL 중 10nL)를 수득하였다. 30초 동안 진탕기에서 혼합한 후, 플레이트를 덮고, 챔버에 37℃에서 o/n=17시간 동안 두었다. 고정/용해 완충제를 제조하고 (H2O 중 5x->1x, 37℃에서 가온; Cat# BD 558049), 나중에 사용하기 위해 투과화 완충제 (얼음 상)를 유지하였다.
표면 마커 염색 (CD69)의 경우: 표면 Abs: 0.045ul hCD14-FITC (써모피셔(ThermoFisher) Cat # MHCD1401) + 0.6ul hCD19-ef450 (써모피셔 Cat # 48-0198-42) + 1.5ul hCD69-PE (cat# BD555531) + 0.855ul FACS 완충제를 제조했다. 3ul/웰을 첨가하고, 1분 동안 1000 rpm 회전시키고, 진탕기에서 30초 동안 혼합하고, 얼음 상에 30분 동안 두었다. 30분 후에 70uL의 미리가온된 1x 고정/용해 완충제를 사용하여 자극을 중지시키고, 펠릭스 메이트를 사용하여 재현탁시키고 (15회, 각 플레이트에 대해 팁을 바꿈), 37℃에서 10분 동안 인큐베이션하였다.
2000 rpm에서 5분 동안 원심분리하고, HCS 플레이트 세척기로 흡인하고, 진탕기에서 30초 동안 혼합한 다음, 이어서 dPBS 70uL로 세척하고, 2xs (2000rpm, 5분 동안) 펠릿화하고, FACS 완충제 50ul로 세척하고, 1xs (2000rpm, 5분 동안) 펠릿화하였다. 진탕기에서 30초 동안 혼합하였다. 세포내 마커 염색 (MX-1)의 경우: 50ul의 BD 투과화 완충제 III을 첨가하고, 진탕기에서 30초 동안 혼합하였다. 얼음 상에서 30분 동안 (암소에서) 인큐베이션하였다. 50uL의 FACS 완충제 2X (투과화 후에 회전 @2300rpm x 5분)로 세척한 다음, 진탕기에서 30초 동안 혼합하였다. MX1 항체()(4812)-알렉사 647: 노부스 바이올로지칼스(Novus Biologicals) #NBP2-43704AF647) 20ul FACS bf + 0.8ul hIgG + 0.04ul MX-1을 함유하는 20ul의 FACS 완충제에 재현탁시켰다. 1000rpm로 1분 동안 회전시키고, 진탕기에서 30초 동안 혼합하고, 샘플을 암소에서 실온에서 45분 동안 인큐베이션한 다음, 이어서 2x FACS 완충제로 세척하였다 (투과 후에 회전 @2300rpm x 5분). 20ul (35uL, 웰 당 총계)의 FACS 완충제를 재현탁시키고, 호일로 덮고, 4℃에서 두어 다음날 판독하였다. 플레이트를 i큐플러스(iQuePlus)에서 판독하였다. 결과를 툴세트에 기록하고, 커브 마스터에서 IC50 곡선을 생성한다. y-축 100%를 1uM의 레시퀴모드로 설정한다.
마우스 혈액에서의 TNF-알파 및 제I형 IFN 반응 유전자의 유도
TNF-알파 및 제I형 IFN 반응 유전자의 유도는 TLR7 경로의 활성화시 발생하는 하류 이벤트이다. 하기는 TLR7 효능제에 반응하는 마우스 전혈에서의 그의 유도를 측정하는 검정이다.
헤파린첨가 마우스 전혈을 Pen-Strep을 함유한 RPMI 1640에 의해 5:4 (50 uL 전혈 및 배지 40 uL)의 비로 희석하였다. 희석된 혈액 90 uL의 부피를 팔콘(Falcon) 편평 바닥 96-웰 조직 배양 플레이트의 웰로 옮기고, 플레이트를 4℃에서 1시간 동안 인큐베이션하였다. 100% DMSO 스톡 중 시험 화합물을 농도 반응 검정 동안 동일한 배지에서 20배 희석한 다음, 이어서 희석된 시험 화합물 10 uL을 웰에 첨가하여 최종 DMSO 농도가 0.5%가 되었다. 대조군 웰은 5% DMSO를 함유하는 10 uL 배지를 수용하였다. 이어서, 플레이트를 5% CO2 인큐베이터에서 37℃에서 17시간 동안 인큐베이션하였다. 인큐베이션 후, 배양 배지 100 uL을 각 웰에 첨가하였다. 플레이트를 원심분리하고, 상청액 130 uL을 ELISA (인비트로젠, 카탈로그 번호 88-7324, 써모-피셔 사이언티픽(Thermo-Fisher Scientific)에 의함)에 의한 TNFa 생산의 검정에 사용하기 위해 제거하였다. 인비트로젠 mRNA 캐처 플러스 키트 (Cat#K1570-02)로부터의 DTT를 함유한 mRNA 캐처 용해 완충제 (1x) 70 uL 부피를 웰 내의 나머지 70 uL 샘플에 첨가하고, 5회 상하로 피펫팅하여 혼합하였다. 이어서, 플레이트를 실온에서 5 - 10분 동안 진탕한 다음, 이어서 프로테이나제 K 2 uL을 각 웰에 첨가하였다 (20 mg/mL). 이어서, 플레이트를 실온에서 15 - 20분 동안 진탕하였다. 이어서, 플레이트를 추가로 가공할 때까지 -80℃에서 저장하였다.
동결된 샘플을 해동시키고, mRNA를 인비트로젠 mRNA 캐처 플러스 키트 (Cat# K1570-02)를 사용하여 제조업체의 지침서에 따라 추출하였다. RNA 추출로부터의 절반 수율의 mRNA를 사용하여 인비트로젠 슈퍼스크립트 IV VILO 마스터 믹스 (Cat# 11756500)를 사용하여 20 μL 리버스 트랜스크립타제 반응물 중에 cDNA를 합성하였다. 택맨(TaqMan)® 실시간 PCR을 써모피셔 (어플라이드 바이오시스템즈(Applied Biosystems))로부터의 퀀트스튜디오 실시간 PCR 시스템을 사용하여 수행하였다. 모든 실시간 PCR 반응을 마우스 IFIT1, IFIT3, MX1 및 PPIA 유전자 발현에 대해 상업적으로 예비설계된 택맨 검정 및 택맨 마스터 믹스를 사용하여 이중으로 실행하였다. PPIA를 하우스키핑 유전자로서 사용하였다. 제조업체의 권장사항을 따랐다. 모든 미가공 데이터 (Ct)를 평균 하우스키핑 유전자 (Ct)에 의거해 정규화하고, 이어서 비교 Ct (ΔΔCt) 방법을 사용하여 실험적 분석에 대한 상대 유전자 발현을 정량화 (RQ)하였다.
정의
"지방족"은 명시된 수의 탄소 원자를 갖거나 (예를 들어, "C3 지방족", "C1-5 지방족", "C1-C5 지방족" 또는 "C1 내지 C5 지방족"에서와 같으며, 후자 3개의 어구는 1 내지 5개의 탄소 원자를 갖는 지방족 모이어티에 대한 동의어임) 또는 탄소 원자의 수가 명확하게 명시되지 않은 경우에는 1 내지 4개의 탄소 원자 (불포화 지방족 모이어티의 경우에는 2 내지 4개의 탄소)를 갖는 직쇄 또는 분지쇄, 포화 또는 불포화, 비-방향족 탄화수소 모이어티를 의미한다. 유사한 이해가 C2-4 알켄, C4-C7 시클로지방족 등에서와 같은 다른 유형에서의 탄소의 수에 적용된다. 유사한 맥락에서, "(CH2)1-3"과 같은 용어는 이러한 용어가 CH2, CH2CH2, 및 CH2CH2CH2를 나타내도록, 아래첨자가 1, 2, 또는 3인 것에 대한 약칭으로서 이해되어야 한다.
"알킬"은 포화 지방족 모이어티를 의미하며, 여기서 탄소 원자의 수의 지정에 대한 동일한 규정이 적용가능하다. 예시로서, C1-C4 알킬 모이어티는 메틸, 에틸, 프로필, 이소프로필, 이소부틸, t-부틸, 1-부틸, 2-부틸 등을 포함하나 이에 제한되지는 않는다. "알칸디일" (때때로 "알킬렌"으로도 지칭됨)은 알킬 기의 2가 대응물, 예컨대
Figure pct00091
를 의미한다.
"알케닐"은 적어도 1개의 탄소-탄소 이중 결합을 갖는 지방족 모이어티를 의미하며, 여기서 탄소 원자의 수의 지정에 대한 동일한 규정이 적용가능하다. 예시로서, C2-C4 알케닐 모이어티는 에테닐 (비닐), 2-프로페닐 (알릴 또는 프로프-2-에닐), 시스-1-프로페닐, 트랜스-1-프로페닐, E- (또는 Z-) 2-부테닐, 3-부테닐, 1,3-부타디에닐 (부트-1,3-디에닐) 등을 포함하나 이에 제한되지는 않는다.
"알키닐"은 적어도 1개의 탄소-탄소 삼중 결합을 갖는 지방족 모이어티를 의미하며, 여기서 탄소 원자의 수의 지정에 대한 동일한 규정이 적용가능하다. 예시로서, C2-C4 알키닐 기는 에티닐 (아세틸레닐), 프로파르길 (프로프-2-이닐), 1-프로피닐, 부트-2-이닐 등을 포함한다.
"시클로지방족"은 1 내지 3개의 고리를 가지며, 각각의 고리가 3 내지 8개 (바람직하게는 3 내지 6개)의 탄소 원자를 갖는, 포화 또는 불포화, 비-방향족 탄화수소 모이어티를 의미한다. "시클로알킬"은 각각의 고리가 포화된 시클로지방족 모이어티를 의미한다. "시클로알케닐"은 적어도 1개의 고리가 적어도 1개의 탄소-탄소 이중 결합을 갖는 시클로지방족 모이어티를 의미한다. "시클로알키닐"은 적어도 1개의 고리가 적어도 1개의 탄소-탄소 삼중 결합을 갖는 시클로지방족 모이어티를 의미한다. 예시로서, 시클로지방족 모이어티는 시클로프로필, 시클로부틸, 시클로펜틸, 시클로펜테닐, 시클로헥실, 시클로헥세닐, 시클로헵틸, 시클로옥틸 및 아다만틸을 포함하나 이에 제한되지는 않는다. 바람직한 시클로지방족 모이어티는 시클로알킬 모이어티, 특히 시클로프로필, 시클로부틸, 시클로펜틸 및 시클로헥실이다. "시클로알칸디일" (때때로 "시클로알킬렌"으로도 지칭됨)은 시클로알킬 기의 2가 대응물을 의미한다. 유사하게, "비시클로알칸디일" (또는 "비시클로알킬렌") 및 "스피로시클로알칸디일" (또는 "스피로알킬렌")은 비시클로알킬 및 스피로알킬 (또는 "스피로시클로알킬") 기의 2가 대응물을 지칭한다.
"헤테로시클로지방족"은 그의 적어도 1개의 고리 내에서, 3개 이하 (바람직하게는 1 내지 2개)의 탄소가 N, O, 또는 S로부터 독립적으로 선택된 헤테로원자로 대체된 것인 시클로지방족 모이어티를 의미하며, 여기서 N 및 S는 임의로 산화될 수 있고, N은 임의로 4급화될 수 있다. 바람직한 시클로지방족 모이어티는 5- 내지 6-원 크기인 1개의 고리로 이루어진다. 유사하게, "헤테로시클로알킬", "헤테로시클로알케닐", 및 "헤테로시클로알키닐"은 그의 적어도 1개의 고리가 이렇게 하여 변형된, 각각 시클로알킬, 시클로알케닐, 또는 시클로알키닐 모이어티를 의미한다. 예시적인 헤테로시클로지방족 모이어티는 아지리디닐, 아제티디닐, 1,3-디옥사닐, 옥세타닐, 테트라히드로푸릴, 피롤리디닐, 피페리디닐, 피페라지닐, 테트라히드로피라닐, 테트라히드로티오피라닐, 테트라히드로티오피라닐 술폰, 모르폴리닐, 티오모르폴리닐, 티오모르폴리닐 술폭시드, 티오모르폴리닐 술폰, 1,3-디옥솔라닐, 테트라히드로-1,1-디옥소티에닐, 1,4-디옥사닐, 티에타닐 등을 포함한다. "헤테로시클로알킬렌"은 헤테로시클로알킬 기의 2가 대응물을 의미한다.
"알콕시", "아릴옥시", "알킬티오", 및 "아릴티오"는 각각 -O(알킬), -O(아릴), -S(알킬), 및 -S(아릴)을 의미한다. 예는 각각 메톡시, 페녹시, 메틸티오 및 페닐티오이다.
보다 좁은 의미가 지정되지 않는 한, "할로겐" 또는 "할로"는 플루오린, 염소, 브로민 또는 아이오딘을 의미한다.
"아릴"은 각각의 고리가 3 내지 7개의 탄소 원자를 갖고 적어도 1개의 고리가 방향족인 모노-, 비-, 또는 트리시클릭 고리계 (바람직하게는 모노시클릭)를 갖는 탄화수소 모이어티를 의미한다. 고리계 내의 고리는 서로 융합될 수 있거나 (나프틸에서와 같음) 또는 서로 결합될 수 있으며 (비페닐에서와 같음), 비-방향족 고리에 융합 또는 결합될 수 있다 (인다닐 또는 시클로헥실페닐에서와 같음). 추가 예시로서, 아릴 모이어티는 페닐, 나프틸, 테트라히드로나프틸, 인다닐, 비페닐, 페난트릴, 안트라세닐 및 아세나프틸을 포함하나 이에 제한되지는 않는다. "아릴렌"은 아릴 기의 2가 대응물, 예를 들어 1,2-페닐렌, 1,3-페닐렌, 또는 1,4-페닐렌을 의미한다.
"헤테로아릴"은 각각의 고리가 3 내지 7개의 탄소 원자를 갖고 적어도 1개의 고리가 N, O, 또는 S로부터 독립적으로 선택된 1 내지 4개의 헤테로원자를 함유하는 방향족 고리인 모노-, 비-, 또는 트리시클릭 고리계 (바람직하게는 5 내지 7-원 모노시클릭)를 갖는 모이어티를 의미하며, 여기서 N 및 S는 임의로 산화될 수 있고, N은 임의로 4급화될 수 있다. 이러한 적어도 1개의 헤테로원자 함유 방향족 고리는 다른 유형의 고리에 융합될 수 있거나 (벤조푸라닐 또는 테트라히드로이소퀴놀릴에서와 같음) 또는 다른 유형의 고리에 직접 결합될 수 있다 (페닐피리딜 또는 2-시클로펜틸피리딜에서와 같음). 추가 예시로서, 헤테로아릴 모이어티는 피롤릴, 푸라닐, 티오페닐 (티에닐), 이미다졸릴, 피라졸릴, 옥사졸릴, 이속사졸릴, 티아졸릴, 이소티아졸릴, 트리아졸릴, 테트라졸릴, 피리딜, N-옥소피리딜, 피리다지닐, 피리미디닐, 피라지닐, 퀴놀리닐, 이소퀴놀리닐, 퀴나졸리닐, 신놀리닐, 퀴노잘리닐, 나프티리디닐, 벤조푸라닐, 인돌릴, 벤조티오페닐, 옥사디아졸릴, 티아디아졸릴, 페노티아졸릴, 벤즈이미다졸릴, 벤조트리아졸릴, 디벤조푸라닐, 카르바졸릴, 디벤조티오페닐, 아크리디닐 등을 포함한다. "헤테로아릴렌"은 헤테로아릴 기의 2가 대응물을 의미한다.
"비치환되거나 또는 치환된 C1-C5 알킬" 또는 "임의로 치환된 헤테로아릴"에서와 같은 "비치환되거나 또는 치환된" 또는 "임의로 치환된" 어구의 사용에 의해서와 같이 모이어티가 치환될 수 있는 것으로 나타낸 경우에, 이러한 모이어티는 1개 이상의 독립적으로 선택된 치환기, 바람직하게는 수에 있어서 1 내지 5개, 보다 바람직하게는 수에 있어서 1 또는 2개를 가질 수 있다. 치환기 및 치환 패턴은 관련 기술분야의 통상의 기술자에 의해, 치환기가 부착되는 모이어티를 고려하여, 화학적으로 안정하고 관련 기술분야에 공지된 기술뿐만 아니라 본원에 제시된 방법에 의해 합성될 수 있는 화합물을 제공하도록 선택될 수 있다. 모이어티가 "비치환되거나 또는 치환된" 또는 "임의로 치환된" 것으로 확인되는 경우에, 바람직한 실시양태에서 이러한 모이어티는 비치환된다.
"아릴알킬", "(헤테로시클로지방족)알킬", "아릴알케닐", "아릴알키닐", "비아릴알킬" 등은, 예를 들어 벤질, 페네틸, N-이미다조일에틸, N-모르폴리노에틸 등에서와 같이, 경우에 따라 알킬, 알케닐, 또는 알키닐 모이어티에서 개방 (비충족) 원자가를 갖는, 경우에 따라 아릴, 헤테로시클로지방족, 비아릴 등의 모이어티로 치환된 알킬, 알케닐, 또는 알키닐 모이어티를 의미한다. 반대로, "알킬아릴", "알케닐시클로알킬" 등은, 경우에 따라 예를 들어 메틸페닐 (톨릴) 또는 알릴시클로헥실에서와 같이, 경우에 따라 알킬, 알케닐 등의 모이어티로 치환된 아릴, 시클로알킬 등의 모이어티를 의미한다. "히드록시알킬", "할로알킬", "알킬아릴", "시아노아릴" 등은, 경우에 따라 확인된 치환기 (경우에 따라 히드록실, 할로 등) 중 1개 이상으로 치환된 알킬, 아릴 등의 모이어티를 의미한다.
예를 들어, 허용되는 치환기는 알킬 (특히 메틸 또는 에틸), 알케닐 (특히 알릴), 알키닐, 아릴, 헤테로아릴, 시클로지방족, 헤테로시클로지방족, 할로 (특히 플루오로), 할로알킬 (특히 트리플루오로메틸), 히드록실, 히드록시알킬 (특히 히드록시에틸), 시아노, 니트로, 알콕시, -O(히드록시알킬), -O(할로알킬) (특히 -OCF3), -O(시클로알킬), -O(헤테로시클로알킬), -O(아릴), 알킬티오, 아릴티오, =O, =NH, =N(알킬), =NOH, =NO(알킬), -C(=O)(알킬), -C(=O)H, -CO2H, -C(=O)NHOH, -C(=O)O(알킬), -C(=O)O(히드록시알킬), -C(=O)NH2, -C(=O)NH(알킬), -C(=O)N(알킬)2, -OC(=O)(알킬), -OC(=O)(히드록시알킬), -OC(=O)O(알킬), -OC(=O)O(히드록시알킬), -OC(=O)NH2, -OC(=O)NH(알킬), -OC(=O)N(알킬)2, 아지도, -NH2, -NH(알킬), -N(알킬)2, -NH(아릴), -NH(히드록시알킬), -NHC(=O)(알킬), -NHC(=O)H, -NHC(=O)NH2, -NHC(=O)NH(알킬), -NHC(=O)N(알킬)2, -NHC(=NH)NH2, -OSO2(알킬), -SH, -S(알킬), -S(아릴), -S(시클로알킬), -S(=O)알킬, -SO2(알킬), -SO2NH2, -SO2NH(알킬), -SO2N(알킬)2 등을 포함하나 이에 제한되지는 않는다.
치환될 모이어티가 지방족 모이어티인 경우에, 바람직한 치환기는 아릴, 헤테로아릴, 시클로지방족, 헤테로시클로지방족, 할로, 히드록실, 시아노, 니트로, 알콕시, -O(히드록시알킬), -O(할로알킬), -O(시클로알킬), -O(헤테로시클로알킬), -O(아릴), 알킬티오, 아릴티오, =O, =NH, =N(알킬), =NOH, =NO(알킬), -CO2H, -C(=O)NHOH, -C(=O)O(알킬), -C(=O)O(히드록시알킬), -C(=O)NH2, -C(=O)NH(알킬), -C(=O)N(알킬)2, -OC(=O)(알킬), -OC(=O)(히드록시알킬), -OC(=O)O(알킬), -OC(=O)O(히드록시알킬), -OC(=O)NH2, -OC(=O)NH(알킬), -OC(=O)N(알킬)2, 아지도, -NH2, -NH(알킬), -N(알킬)2, -NH(아릴), -NH(히드록시알킬), -NHC(=O)(알킬), -NHC(=O)H, -NHC(=O)NH2, -NHC(=O)NH(알킬), -NHC(=O)N(알킬)2, -NHC(=NH)NH2, -OSO2(알킬), -SH, -S(알킬), -S(아릴), -S(=O)알킬, -S(시클로알킬), -SO2(알킬), -SO2NH2, -SO2NH(알킬), 및 -SO2N(알킬)2이다. 보다 바람직한 치환기는 할로, 히드록실, 시아노, 니트로, 알콕시, -O(아릴), =O, =NOH, =NO(알킬), -OC(=O)(알킬), -OC(=O)O(알킬), -OC(=O)NH2, -OC(=O)NH(알킬), -OC(=O)N(알킬)2, 아지도, -NH2, -NH(알킬), -N(알킬)2, -NH(아릴), -NHC(=O)(알킬), -NHC(=O)H, -NHC(=O)NH2, -NHC(=O)NH(알킬), -NHC(=O)N(알킬)2, 및 -NHC(=NH)NH2이다. 페닐, 시아노, 할로, 히드록실, 니트로, C1-C4 알콕시, O(C2-C4 알칸디일)OH, 및 O(C2-C4 알칸디일)할로가 특히 바람직하다.
치환될 모이어티가 시클로지방족, 헤테로시클로지방족, 아릴 또는 헤테로아릴 모이어티인 경우에, 바람직한 치환기는 알킬, 알케닐, 알키닐, 할로, 할로알킬, 히드록실, 히드록시알킬, 시아노, 니트로, 알콕시, -O(히드록시알킬), -O(할로알킬), -O(아릴), -O(시클로알킬), -O(헤테로시클로알킬), 알킬티오, 아릴티오, -C(=O)(알킬), -C(=O)H, -CO2H, -C(=O)NHOH, -C(=O)O(알킬), -C(=O)O(히드록시알킬), -C(=O)NH2, -C(=O)NH(알킬), -C(=O)N(알킬)2, -OC(=O)(알킬), -OC(=O)(히드록시알킬), -OC(=O)O(알킬), -OC(=O)O(히드록시알킬), -OC(=O)NH2, -OC(=O)NH(알킬), -OC(=O)N(알킬)2, 아지도, -NH2, -NH(알킬), -N(알킬)2, -NH(아릴), -NH(히드록시알킬), -NHC(=O)(알킬), -NHC(=O)H, -NHC(=O)NH2, -NHC(=O)NH(알킬), -NHC(=O)N(알킬)2, -NHC(=NH)NH2, -OSO2(알킬), -SH, -S(알킬), -S(아릴), -S(시클로알킬), -S(=O)알킬, -SO2(알킬), -SO2NH2, -SO2NH(알킬), 및 -SO2N(알킬)2이다. 보다 바람직한 치환기는 알킬, 알케닐, 할로, 할로알킬, 히드록실, 히드록시알킬, 시아노, 니트로, 알콕시, -O(히드록시알킬), -C(=O)(알킬), -C(=O)H, -CO2H, -C(=O)NHOH, -C(=O)O(알킬), -C(=O)O(히드록시알킬), -C(=O)NH2, -C(=O)NH(알킬), -C(=O)N(알킬)2, -OC(=O)(알킬), -OC(=O)(히드록시알킬), -OC(=O)O(알킬), -OC(=O)O(히드록시알킬), -OC(=O)NH2, -OC(=O)NH(알킬), -OC(=O)N(알킬)2, -NH2, -NH(알킬), -N(알킬)2, -NH(아릴), -NHC(=O)(알킬), -NHC(=O)H, -NHC(=O)NH2, -NHC(=O)NH(알킬), -NHC(=O)N(알킬)2, 및 -NHC(=NH)NH2이다. C1-C4 알킬, 시아노, 니트로, 할로, 및 C1-C4알콕시가 특히 바람직하다.
"C1-C5 알킬" 또는 "5 내지 10%"에서와 같이 범위가 언급된 경우에, 이러한 범위는 첫 번째 경우에서는 C1 및 C5 및 두 번째 경우에서는 5% 및 10%에서와 같은 범위의 종점을 포함한다.
특정한 입체이성질체가 구체적으로 (예를 들어, 구조 화학식에서의 관련 입체중심에서 굵은선 또는 파선 결합에 의해, 구조 화학식에서 E 또는 Z 배위를 갖는 것으로서의 이중 결합의 도시에 의해, 또는 입체화학-지정 명명법 또는 기호의 사용에 의해) 나타나 있지 않은 한, 모든 입체이성질체는 순수한 화합물뿐만 아니라 그의 혼합물로서 본 발명의 범주 내에 포함된다. 달리 나타내지 않는 한, 라세미체, 개별 거울상이성질체 (광학적으로 순수하거나 또는 부분적으로 분해됨), 부분입체이성질체, 기하 이성질체, 및 그의 조합 및 혼합물은 모두 본 발명에 의해 포괄된다.
관련 기술분야의 통상의 기술자는 화합물이 본원에 사용된 구조 화학식에 도시된 것들과 등가인 호변이성질체 형태 (예를 들어, 케토 및 엔올 형태), 공명 형태 및 쯔비터이온 형태를 가질 수 있다는 것 및 구조 화학식이 이러한 호변이성질체, 공명 또는 쯔비터이온 형태를 포괄한다는 것을 인지할 것이다.
"제약상 허용되는 에스테르"는 생체내에서 (예를 들어 인간 신체에서) 가수분해되어 모 화합물 또는 그의 염을 생산하거나, 또는 그 자체로 모 화합물의 것과 유사한 활성을 갖는 에스테르를 의미한다. 적합한 에스테르는 C1-C5 알킬, C2-C5 알케닐 또는 C2-C5 알키닐 에스테르, 특히 메틸, 에틸 또는 n-프로필을 포함한다.
"제약상 허용되는 염"은 제약 제제에 적합한 화합물의 염을 의미한다. 화합물이 1개 이상의 염기성 기를 갖는 경우에, 염은 산 부가염, 예컨대 술페이트, 히드로브로마이드, 타르트레이트, 메실레이트, 말레에이트, 시트레이트, 포스페이트, 아세테이트, 파모에이트 (엠보네이트), 히드로아이오다이드, 니트레이트, 히드로클로라이드, 락테이트, 메틸술페이트, 푸마레이트, 벤조에이트, 숙시네이트, 메실레이트, 락토비오네이트, 수베레이트, 토실레이트 등일 수 있다. 화합물이 1개 이상의 산성 기를 갖는 경우에, 염은 칼슘 염, 칼륨 염, 마그네슘 염, 메글루민 염, 암모늄 염, 아연 염, 피페라진 염, 트로메타민 염, 리튬 염, 콜린 염, 디에틸아민 염, 4-페닐시클로헥실아민 염, 벤자틴 염, 나트륨 염, 테트라메틸암모늄 염 등과 같은 염일 수 있다. 다형성 결정질 형태 및 용매화물은 본 발명의 범주 내에 또한 포괄된다.
용어 "대상체"는 영장류 (예를 들어, 인간), 원숭이, 소, 돼지, 양, 염소, 말, 개, 고양이, 토끼, 래트, 또는 마우스를 포함하나, 이에 제한되지는 않는 동물을 지칭한다. 용어 "대상체" 및 "환자"는, 예를 들어 포유동물 대상체, 예컨대 인간과 관련하여 본원에서 참조로 상호교환가능하게 사용된다.
질환 또는 장애를 치료하는 것과 관련하여, 용어 "치료하다", "치료하는" 및 "치료"는 장애, 질환 또는 상태, 또는 장애, 질환 또는 상태와 연관된 증상 중 1종 이상의 완화 또는 제거; 또는 질환, 장애 또는 상태 또는 그의 1종 이상의 증상의 진행, 확산 또는 악화의 저속화를 포함하도록 의도된다. "암의 치료"는 하기 효과: (1) 종양 성장의 (i) 저속화 및 (ii) 완전 성장 정지를 포함하는 어느 정도까지의 억제; (2) 종양 세포 수의 감소; (3) 종양 크기의 유지; (4) 종양 크기의 감소; (5) 말초 기관으로의 종양 세포 침윤의 (i) 감소, (ii) 저속화 또는 (iii) 완전 예방을 포함하는 억제; (6) 전이의 (i) 감소, (ii) 저속화 또는 (iii) 완전 예방을 포함하는 억제; (7) (i) 종양 크기의 유지, (ii) 종양 크기의 감소, (iii) 종양 성장의 저속화, (iv) 침습의 감소, 저속화 또는 예방을 유발할 수 있는 항종양 면역 반응의 증진, 및/또는 (8) 장애와 연관된 1종 이상의 증상의 중증도 또는 수의 어느 정도까지의 경감 중 1종 이상을 지칭한다.
본 명세서의 화학식에서, 결합을 가로지르는 파상선 (
Figure pct00092
) 또는 결합의 말단에서의 별표 (*)는 공유 부착 부위를 나타낸다. 예를 들어, 화학식
Figure pct00093
에서 R이
Figure pct00094
이거나 또는 R이
Figure pct00095
이다라는 언급은
Figure pct00096
임을 의미한다.
본 명세서의 화학식에서, 방향족 고리를 그의 2개의 탄소 사이를 가로지르는 결합은 결합에 부착된 기가 암시적으로 그곳에 존재하는 (또는 그려진 경우, 그곳에 명백하게 존재하는) 수소의 제거에 의해 이용가능하게 되는 방향족 고리의 임의의 위치에 위치할 수 있음을 의미한다. 예시로서, 화학식
Figure pct00097
Figure pct00098
를 나타내고;
Figure pct00099
Figure pct00100
를 나타내고;
Figure pct00101
Figure pct00102
를 나타낸다.
본 개시내용은 본원에 기재된 화합물에서 발생하는 원자의 모든 동위원소를 포함한다. 동위원소는 동일한 원자 번호를 갖지만 상이한 질량수를 갖는 원자를 포함한다. 일반적 예로서 및 비제한적으로, 수소의 동위원소는 중수소 및 삼중수소를 포함한다. 탄소의 동위원소는 13C 및 14C를 포함한다. 본 발명의 동위원소-표지된 화합물은 일반적으로 관련 기술분야의 통상의 기술자에게 공지된 통상의 기술에 의해 또는 본원에 기재된 것과 유사한 방법에 의해, 달리 사용되는 비-표지된 시약 대신에 적절한 동위원소-표지된 시약을 사용하여 제조될 수 있다. 예로서, C1-C3 알킬 기는 중수소화되지 않을 수 있거나, 부분적으로 중수소화되거나, 또는 완전히 중수소화되고, "CH3"은 CH3, 13CH3, 14CH3, CH2T, CH2D, CHD2, CD3 등을 포함한다. 한 실시양태에서, 화합물의 다양한 성분은 그의 천연 동위원소 존재비로 존재한다.
관련 기술분야의 통상의 기술자는 특정 구조가 1종의 호변이성질체 형태 또는 또 다른 것 - 예를 들어, 케토 대 엔올 -로 그려질 수 있고, 2종의 형태는 동등한 것으로 인식될 것이다.
두문자어들 및 약어들
표 C는 본 명세서에 사용된 두문자어 및 약어의 목록을 그의 의미와 함께 제공한다.
Figure pct00103
Figure pct00104
참고문헌
본 명세서에 앞에서 제1 저자 (또는 발명자) 및 연도에 따른 약기 방식으로 인용된 하기 참고문헌에 대한 전체 인용이 하기에 제공된다. 각각의 이들 참고문헌은 모든 목적을 위해 본원에 참조로 포함된다.
Akinbobuyi et al., Tetrahedron Lett. 2015, 56, 458, "Facile syntheses of functionalized toll-like receptor 7 agonists".
Akinbobuyi et al., Bioorg. Med. Chem. Lett. 2016, 26, 4246, "Synthesis and immunostimulatory activity of substituted TLR7 agonists."
Barberis et al., US 2012/0003298 A1 (2012).
Beesu et al., J. Med. Chem. 2017, 60, 2084, "Identification of High-Potency Human TLR8 and Dual TLR7/TLR8 Agonists in Pyrimidine-2,4-diamines."
Berghoefer et al., J. Immunol. 2007, 178, 4072, "Natural and Synthetic TLR7 Ligands Inhibit CpG-A- and CpG-C-Oligodeoxynucleotide-Induced IFN-α Production."
Bonfanti et al., US 2014/0323441 A1 (2015) [2015a].
Bonfanti et al., US 2015/0299221 A1 (2015) [2015b].
Bonfanti et al., US 2016/0304531 A1 (2016).
Carson et al., US 2013/0202629 A1 (2013).
Carson et al., US 8,729,088 B2 (2014).
Carson et al., US 9,050,376 B2 (2015).
Carson et al., US 2016/0199499 A1 (2016).
Chan et al., Bioconjugate Chem. 2009, 20, 1194, "Synthesis and Immunological Characterization of Toll-Like Receptor 7 Agonistic Conjugates."
Chan et al., Bioconjugate Chem. 2011, 22, 445, "Synthesis and Characterization of PEGylated Toll Like Receptor 7 Ligands."
Chen et al., US 7,919,498 B2 (2011).
Coe et al., US 9,662,336 B2 (2017).
Cortez and Va, Medicinal Chem. Rev. 2018, 53, 481, "Recent Advances in Small-Molecule TLR7 Agonists for Drug Discovery".
Cortez et al., US 2017/0121421 A1 (2017).
Cortez et al., US 9,944,649 B2 (2018).
Dellaria et al., WO 2007/028129 A1 (2007).
Desai et al., US 9,127,006 B2 (2015).
Ding et al., WO 2016/107536 A1 (2016).
Ding et al., US 2017/0273983 A1 (2017) [2017a].
Ding et al., WO 2017/076346 A1 (2017) [2017b].
Gadd et al., Bioconjugate Chem. 2015, 26, 1743, "Targeted Activation of Toll-Like Receptors: Conjugation of a Toll-Like Receptor 7 Agonist to a Monoclonal Antibody Maintains Antigen Binding and Specificity."
Graupe et al., US 8,993,755 B2 (2015).
Embrechts et al., J. Med. Chem. 2018, 61, 6236, "2,4-Diaminoquinazolines as Dual Toll Like Receptor (TLR) 7/8 Modulators for the Treatment of Hepatitis B Virus."
Halcomb et al., US 9,161,934 B2 (2015).
Hashimoto et al., US 2009/0118263 A1 (2009).
He et al., US 10,487,084 B2 (2019) [2019a].
He et al., US 10,508,115 B2 (2019) [2019b].
Hirota et al., US 6,028,076 (2000).
Holldack et al., US 2012/0083473 A1 (2012).
Isobe et al., US 6,376,501 B1 (2002).
Isobe et al., JP 2004137157 (2004).
Isobe et al., J. Med. Chem. 2006, 49 (6), 2088, "Synthesis and Biological Evaluation of Novel 9-Substituted-8-Hydroxyadenine Derivatives as Potent Interferon Inducers."
Isobe et al., US 7,521,454 B2 (2009) [2009a].
Isobe et al., US 2009/0105212 A1 (2009) [2009b].
Isobe et al., US 2011/0028715 A1 (2011).
Isobe et al., US 8,148,371 B2 (2012).
Jensen et al., WO 2015/036044 A1 (2015).
Jones et al., US 7,691,877 B2 (2010).
Jones et al., US 2012/0302598 A1 (2012).
Kasibhatla et al., US 7,241,890 B2 (2007).
Koga-Yamakawa et al., Int. J. Cancer 2013, 132 (3), 580, "Intratracheal and oral administration of SM-276001: A selective TLR7 agonist, leads to antitumor efficacy in primary and metastatic models of cancer."
Li et al., US 9,902,730 B2 (2018).
Lioux et al., US 9,295,732 B2 (2016).
Lund et al., Proc. Nat’l Acad. Sci (USA) 2004, 101 (15), 5598, "Recognition of single-stranded RNA viruses by Toll-like receptor 7."
Maj et al., US 9,173,935 B2 (2015).
McGowan et al., US 2016/0168150 A1 (2016) [2016a].
McGowan et al., US 9,499,549 B2 (2016) [2016b].
McGowan et al., J. Med. Chem. 2017, 60, 6137, "Identification and Optimization of Pyrrolo[3,2-d]pyrimidine Toll-like Receptor 7 (TLR7) Selective Agonists for the Treatment of Hepatitis B."
Musmuca et al., J. Chem. Information & Modeling 2009, 49 (7), 1777, "Small-Molecule Interferon Inducers. Toward the Comprehension of the Molecular Determinants through Ligand-Based Approaches."
Nakamura et al., Bioorg. Med. Chem. Lett. 2013, 13, 669, "Synthesis and evaluation of 8-oxoadenine derivatives as potent Toll-like receptor agonists with high water solubility."
Ogita et al., US 2007/0225303 A1 (2007).
Ota et al., WO 2019/124500 A1 (2019).
Pilatte et al., WO 2017/216293 A1 (2017).
Poudel et al., US 10,472,361 B2 (2019) [2019a].
Poudel et al., US 10,494,370 B2 (2019) [2019b].
Poudel et al., US 2020/0083403 A1 (2020) [2020a].
Poudel et al., US 2020/0039986 A1 (2020) [2020b].
Purandare et al., WO 2019/209811 A1 (2019).
Pryde, US 7,642,350 B2 (2010).
Sato-Kaneko et al., JCI Insight 2017, 2, e93397, "Combination Immunotherapy with TLR Agonists and Checkpoint Inhibitors Suppresses Head and Neck Cancer".
Smits et al., The Oncologist 2008, 13, 859, "The Use of TLR7 and TLR8 Ligands for the Enhancement of Cancer Immunotherapy".
Vasilakos and Tomai, Expert Rev. Vaccines 2013, 12, 809, "The Use of Toll-like Receptor 7/8 Agonists as Vaccine Adjuvants".
Vernejoul et al., US 2014/0141033 A1 (2014).
Young et al., US 10,457,681 B2 (2019).
Yu et al., PLoS One 2013, 8 (3), e56514, "Toll-Like Receptor 7 Agonists: Chemical Feature Based Pharmacophore Identification and Molecular Docking Studies."
Zhang et al., Immunity 2016, 45, 737, "Structural Analysis Reveals that Toll-like Receptor 7 Is a Dual Receptor for Guanosine and Single-Stranded RNA."
Zhang et al., WO 2018/095426 A1 (2018)>
Zurawski et al., US 2012/0231023 A1 (2012).
상기 본 발명의 상세한 설명은 본 발명의 특정한 부분 또는 측면과 주로 또는 독점적으로 관련된 구절을 포함한다. 이는 명확성 및 편의성을 위한 것이고, 특정한 특색은 그것이 개시된 구절을 넘어 관련될 수 있으며, 본원의 개시내용은 상이한 구절에서 발견된 정보의 모든 적절한 조합을 포함하는 것으로 이해되어야 한다. 유사하게, 본원의 다양한 도면 및 설명은 본 발명의 구체적 실시양태와 관련되어 있지만, 구체적 특색이 특정한 도면 또는 실시양태의 문맥에서 개시되는 경우에, 이러한 특색은 또한 적절한 정도로, 또 다른 도면 또는 실시양태의 문맥에서, 또 다른 특색과 조합되어, 또는 본 발명에서 일반적으로 사용될 수 있는 것으로 이해되어야 한다.
추가로, 본 발명이 특정의 바람직한 실시양태의 면에서 구체적으로 기재되기는 하였지만, 본 발명이 이러한 바람직한 실시양태로 제한되는 것은 아니다. 오히려, 본 발명의 범주는 첨부된 청구범위에 의해 정의된다.

Claims (17)

  1. 하기 화학식 (I)에 따른 구조를 갖는 화합물:
    Figure pct00105

    여기서
    W는
    Figure pct00106
    이고;
    각각의 X는 독립적으로 N 또는 CR2이고;
    R1은 (C1-C5 알킬),
    (C2-C5 알케닐),
    (C1-C8 알칸디일)0-1(C3-C6 시클로알킬),
    (C2-C8 알칸디일)OH,
    (C2-C8 알칸디일)O(C1-C3 알킬),
    (C1-C4 알칸디일)0-1(5-6원 헤테로아릴),
    (C1-C4 알칸디일)0-1페닐,
    (C1-C4 알칸디일)CF3,
    (C2-C8 알칸디일)N[C(=O)](C1-C3 알킬),
    (C2-C8 알칸디일)0-1(C3-C6 시클로알칸디일)(C3-C6 시클로알킬),
    또는
    (C2-C8 알칸디일)NRxRy
    이고;
    각각의 R2는 독립적으로 H, O(C1-C3 알킬), S(C1-C3 알킬), SO2(C1-C3 알킬), C1-C3 알킬, O(C3-C4 시클로알킬), S(C3-C4 시클로알킬), SO2(C3-C4 시클로알킬), C3-C4 시클로알킬, Cl, F, CN; 또는 [C(=O)]0-1NRxRy이고;
    R3은 NH[C(=O)]0-1(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), O(C1-C4 알칸디일)0-1(C4-C8 비시클로알킬), 또는
    하기 구조를 갖는 모이어티
    Figure pct00107

    이고;
    R4는 NH(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), 또는
    하기 구조를 갖는 모이어티
    Figure pct00108

    이고;
    R5는 H, C1-C5 알킬, C2-C5 알케닐, C3-C6 시클로알킬, 할로, O(C1-C5 알킬), (C1-C4 알칸디일)OH, (C1-C4 알칸디일)O(C1-C3 알킬), 페닐, NH(C1-C5 알킬), 5 또는 6원 헤테로아릴,
    Figure pct00109

    이고;
    R6은 (NH)0-1(C1-C4 알칸디일)0-1(C4-C10 비시클로알킬), 또는
    하기 구조를 갖는 모이어티
    Figure pct00110

    이고;
    Rx 및 Ry는 독립적으로 H 또는 C1-C3 알킬이거나, 또는 Rx 및 Ry는 이들이 결합되어 있는 질소와 조합되어 3- 내지 7-원 헤테로사이클을 형성하고;
    n은 1, 2 또는 3이고;
    p는 0, 1, 2, 또는 3이고;
    여기서 R1, R2, R3, R4, R5, 및 R6에서
    알킬, 알케닐, 시클로알킬, 알칸디일, 비시클로알킬, 또는 하기 화학식
    Figure pct00111

    의 모이어티는
    OH, 할로, CN, (C1-C3 알킬), O(C1-C3 알킬), C(=O)(C1-C3 알킬), SO2(C1-C3 알킬), NRxRy, (C1-C4 알칸디일)OH, (C1-C4 알칸디일)O(C1-C3 알킬)로부터 선택된 1개 이상의 치환기로 임의로 치환되고;
    알킬, 알케닐, 알칸디일, 시클로알킬, 비시클로알킬, 또는 하기 화학식
    Figure pct00112

    의 모이어티는 임의로 CH2 기가
    O, SO2, CF2, C(=O), NH,
    N[C(=O)]0-1(C1-C5 알킬),
    N[C(=O)]0-1(C1-C4 알칸디일)CF3,
    N[C(=O)]0-1(C2-C4 알칸디일)OH
    N(SO2)(C1-C3 알킬),
    N(C1-C3 알칸디일)0-1[C(=O)]N(C1-C3 알킬)2,
    또는
    N[C(=O)]0-1(C1-C4 알칸디일)0-1(C3-C5 시클로알킬)
    에 의해 대체될 수 있고;
    단, 상기 화학식 (I)의 화합물은
    Figure pct00113

    Figure pct00114

    가 아니다.
  2. 제1항에 있어서, W는
    Figure pct00115
    인 화합물.
  3. 제2항에 있어서, W는
    Figure pct00116

    로 이루어진 군으로부터 선택되는 것인 화합물.
  4. 제1항에 있어서, W는
    Figure pct00117
    인 화합물.
  5. 제4항에 있어서, W는
    Figure pct00118

    로 이루어진 군으로부터 선택되는 것인 화합물.
  6. 제1항에 있어서, R1
    Figure pct00119

    로 이루어진 군으로부터 선택되는 것인 화합물.
  7. 제1항에 있어서, R2는 OMe, O(시클로프로필) 또는 OCHF2인 화합물.
  8. 제1항에 있어서, R5는 H, CH2OH 또는 Me인 화합물.
  9. 제1항에 있어서, 하기 화학식 (Ia)에 따른 구조를 갖는 화합물:
    Figure pct00120
    .
  10. 제1항에 있어서, 하기 화학식 (Ib)에 따른 구조를 갖는 화합물:
    Figure pct00121
    .
  11. 제1항에 있어서, 하기 화학식 (Ic)에 따른 구조를 갖는 화합물:
    Figure pct00122
    .
  12. 하기 화학식 (Ia)에 따른 구조를 갖는 화합물:
    Figure pct00123

    여기서
    R1
    Figure pct00124
    이고;
    R2는 OMe 또는 OCHF2이고;
    R5는 H 또는 Me이고;
    W는
    Figure pct00125
    이다.
  13. 암을 앓는 환자에게 항암 면역요법제 및 제1항 또는 제12항에 따른 화합물의 치료상 유효한 조합물을 투여하는 것을 포함하는, 암을 치료하는 방법.
  14. 제13항에 있어서, 항암 면역요법제가 길항작용 항-CTLA-4, 항-PD-1, 또는 항-PD-L1 항체인 방법.
  15. 제13항에 있어서, 암이 폐암 (비소세포 폐암 포함), 췌장암, 신장암, 두경부암, 림프종 (호지킨 림프종 포함), 피부암 (흑색종 및 메르켈 피부암 포함), 요로상피암 (방광암 포함), 위암, 간세포성암 또는 결장직장암인 방법.
  16. 제15항에 있어서, 항암 면역요법제가 이필리무맙, 니볼루맙 또는 펨브롤리주맙인 방법.
  17. 제1항에 있어서, 하기 화학식 (Id)에 의해 나타내어지는 구조를 갖는 화합물:
    Figure pct00126
    .
KR1020227029360A 2020-01-27 2021-01-26 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물 KR20220132601A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US202062966119P 2020-01-27 2020-01-27
US62/966,119 2020-01-27
PCT/US2021/014982 WO2021154668A1 (en) 2020-01-27 2021-01-26 1H-PYRAZOLO[4,3-d]PYRIMIDINE COMPOUNDS AS TOLL-LIKE RECEPTOR 7 (TLR7) AGONISTS

Publications (1)

Publication Number Publication Date
KR20220132601A true KR20220132601A (ko) 2022-09-30

Family

ID=74661500

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227029360A KR20220132601A (ko) 2020-01-27 2021-01-26 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물

Country Status (6)

Country Link
US (1) US20230041738A1 (ko)
EP (1) EP4097106A1 (ko)
JP (1) JP2023512207A (ko)
KR (1) KR20220132601A (ko)
CN (1) CN115151547A (ko)
WO (1) WO2021154668A1 (ko)

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE283855T1 (de) 1996-07-03 2004-12-15 Sumitomo Pharma Neue purinderivate
TW572758B (en) 1997-12-22 2004-01-21 Sumitomo Pharma Type 2 helper T cell-selective immune response inhibitors comprising purine derivatives
US7157465B2 (en) 2001-04-17 2007-01-02 Dainippon Simitomo Pharma Co., Ltd. Adenine derivatives
US7241890B2 (en) 2001-10-30 2007-07-10 Conforma Therapeutics Corporation Purine analogs having HSP90-inhibiting activity
WO2004029054A1 (ja) 2002-09-27 2004-04-08 Sumitomo Pharmaceuticals Company, Limited 新規アデニン化合物及びその用途
JP2004137157A (ja) 2002-10-16 2004-05-13 Sumitomo Pharmaceut Co Ltd 新規アデニン誘導体を有効成分として含有する医薬
JPWO2005092892A1 (ja) 2004-03-26 2008-02-14 大日本住友製薬株式会社 8−オキソアデニン化合物
KR20080006004A (ko) 2005-05-04 2008-01-15 화이자 리미티드 암 및 c형 간염과 같은 바이러스 감염의 치료를 위한톨-유사 수용체 조절제인 2-아미도-6-아미노-8-옥소퓨린유도체
CA2620933A1 (en) 2005-09-02 2007-03-08 Pfizer Inc. Hydroxy substituted 1h-imidazopyridines and methods
WO2007034917A1 (ja) 2005-09-22 2007-03-29 Dainippon Sumitomo Pharma Co., Ltd. 新規なアデニン化合物
US20090118263A1 (en) 2005-09-22 2009-05-07 Dainippon Sumitomo Pharma Co., Ltd. Novel Adenine Compound
ATE532784T1 (de) 2006-02-17 2011-11-15 Pfizer Ltd 3-deazapurinderivate als tlr7-modulatoren
JP5425642B2 (ja) 2007-02-07 2014-02-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 合成tlrアゴニストの結合体およびそのための使用
TW200902018A (en) 2007-03-20 2009-01-16 Dainippon Sumitomo Pharma Co Novel adenine compound
CA2680783C (en) 2007-03-23 2012-04-24 Amgen Inc. Heterocyclic compounds and their uses
NZ582090A (en) 2007-06-29 2012-05-25 Gilead Sciences Inc Purine derivatives and their use as modulators of toll-like receptor 7
JP2010535755A (ja) 2007-08-03 2010-11-25 ファイザー・リミテッド イミダゾピリジノン
KR101687841B1 (ko) 2008-12-09 2016-12-19 길리애드 사이언시즈, 인코포레이티드 톨-유사 수용체의 조절제
SG173617A1 (en) 2009-02-11 2011-09-29 Univ California Toll-like receptor modulators and treatment of diseases
US8962652B2 (en) 2009-10-22 2015-02-24 Gilead Sciences, Inc. Derivatives of purine or deazapurine useful for the treatment of (inter alia) viral infections
CN103221067B (zh) 2010-04-30 2016-01-06 泰勒麦迪克斯公司 磷脂药物类似物
EP2563401A1 (en) 2010-04-30 2013-03-06 Telormedix SA Methods for inducing an immune response
CN103118682A (zh) 2010-04-30 2013-05-22 加利福尼亚大学校务委员会 合成tlr7激动剂的磷脂缀合物的用途
US20120083473A1 (en) 2010-09-21 2012-04-05 Johanna Holldack Treatment of conditions by toll-like receptor modulators
WO2012122396A1 (en) 2011-03-08 2012-09-13 Baylor Research Institute Novel vaccine adjuvants based on targeting adjuvants to antibodies directly to antigen-presenting cells
SI2776439T1 (sl) 2011-11-09 2018-11-30 Janssen Sciences Ireland Uc Derivati purina za zdravljenje virusnih okužb
US10280180B2 (en) 2012-07-13 2019-05-07 Janssen Sciences Ireland Uc Macrocyclic purines for the treatment of viral infections
AR092198A1 (es) 2012-08-24 2015-04-08 Glaxosmithkline Llc Derivados de pirazolopirimidinas
RS57225B1 (sr) 2012-10-10 2018-07-31 Janssen Sciences Ireland Uc Derivati pirolo[3,2-d]pirimidina za tretman viralnih infekcija i drugih bolesti
EP2732825B1 (en) 2012-11-19 2015-07-01 Invivogen Conjugates of a TLR7 and/or TLR8 agonist and a TLR2 agonist
US9295732B2 (en) 2013-02-22 2016-03-29 Invivogen Conjugated TLR7 and/or TLR8 and TLR2 polycationic agonists
SG11201508078XA (en) 2013-03-29 2015-11-27 Janssen Sciences Ireland Uc Macrocyclic deaza-purinones for the treatment of viral infections
CA2913028C (en) 2013-06-27 2022-03-08 Janssen Sciences Ireland Uc Pyrrolo[3,2-d]pyrimidine derivatives for the treatment of viral infections and other diseases
EP3033089A2 (en) 2013-08-16 2016-06-22 The Regents of The University of California Uses of phospholipid conjugates of synthetic tlr7 agonists
WO2015036044A1 (en) 2013-09-13 2015-03-19 Telormedix Sa Cationic lipid vehicles for delivery of tlr7 agonists for specific targeting of human cd14+ monocytes in whole blood
ES2908150T3 (es) 2014-05-01 2022-04-27 Novartis Ag Compuestos y composiciones como agonistas del receptor de tipo Toll 7
CN106232603B (zh) 2014-05-01 2019-07-05 诺华股份有限公司 作为toll-样受体7激动剂的化合物和组合物
US9917227B1 (en) 2014-05-07 2018-03-13 Soraa, Inc. Controlling oxygen concentration levels during processing of highly-reflective contacts
DK3190113T3 (da) 2014-08-15 2021-06-07 Chia Tai Tianqing Pharmaceutical Group Co Ltd Pyrrolopyrimidinforbindelser anvendt som tlr7-agonist
CN105732635A (zh) 2014-12-29 2016-07-06 南京明德新药研发股份有限公司 一类Toll样受体7激动剂
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
MY189991A (en) 2015-11-05 2022-03-22 Chia Tai Tianqing Pharmaceutical Group Co Ltd 7-(thiazol-5-yl)pyrrolopyrimidine compound as tlr7 agonist
EA037871B1 (ru) 2016-06-16 2021-05-28 Янссен Фармацевтика Нв Производные азабензимидазола в качестве ингибиторов pi3k beta
EP3546457B1 (en) * 2016-11-28 2021-07-14 Jiangsu Hengrui Medicine Co., Ltd. Pyrazolo-heteroaryl derivative, preparation method and medical use thereof
US10487084B2 (en) 2017-08-16 2019-11-26 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a heterobiaryl moiety, conjugates thereof, and methods and uses therefor
US10508115B2 (en) * 2017-08-16 2019-12-17 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having heteroatom-linked aromatic moieties, conjugates thereof, and methods and uses therefor
US10494370B2 (en) * 2017-08-16 2019-12-03 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a pyridine or pyrazine moiety, conjugates thereof, and methods and uses therefor
US10457681B2 (en) * 2017-08-16 2019-10-29 Bristol_Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a tricyclic moiety, conjugates thereof, and methods and uses therefor
US10472361B2 (en) 2017-08-16 2019-11-12 Bristol-Myers Squibb Company Toll-like receptor 7 (TLR7) agonists having a benzotriazole moiety, conjugates thereof, and methods and uses therefor
RU2020124007A (ru) 2017-12-21 2022-01-21 Сумитомо Дайниппон Фарма Ко., Лтд. Комбинированный препарат, включающий агонист tlr7
WO2019209811A1 (en) 2018-04-24 2019-10-31 Bristol-Myers Squibb Company Macrocyclic toll-like receptor 7 (tlr7) agonists
US11554120B2 (en) * 2018-08-03 2023-01-17 Bristol-Myers Squibb Company 1H-pyrazolo[4,3-d]pyrimidine compounds as toll-like receptor 7 (TLR7) agonists and methods and uses therefor

Also Published As

Publication number Publication date
JP2023512207A (ja) 2023-03-24
WO2021154668A1 (en) 2021-08-05
EP4097106A1 (en) 2022-12-07
CN115151547A (zh) 2022-10-04
US20230041738A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
KR20220132601A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132591A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132592A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132590A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132589A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132593A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132595A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 C3-치환된 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132594A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물
KR20220132602A (ko) 톨-유사 수용체 7 (TLR7) 효능제로서의 1H-피라졸로[4,3-d]피리미딘 화합물