KR20220123438A - 이온 주입 시스템 - Google Patents
이온 주입 시스템 Download PDFInfo
- Publication number
- KR20220123438A KR20220123438A KR1020227026492A KR20227026492A KR20220123438A KR 20220123438 A KR20220123438 A KR 20220123438A KR 1020227026492 A KR1020227026492 A KR 1020227026492A KR 20227026492 A KR20227026492 A KR 20227026492A KR 20220123438 A KR20220123438 A KR 20220123438A
- Authority
- KR
- South Korea
- Prior art keywords
- adc
- controller
- clock
- delay
- generator
- Prior art date
Links
- 238000005468 ion implantation Methods 0.000 title claims description 27
- 230000005284 excitation Effects 0.000 claims description 50
- 150000002500 ions Chemical class 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 10
- 230000001934 delay Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 abstract description 2
- 238000012544 monitoring process Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 8
- 230000009471 action Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- NCGICGYLBXGBGN-UHFFFAOYSA-N 3-morpholin-4-yl-1-oxa-3-azonia-2-azanidacyclopent-3-en-5-imine;hydrochloride Chemical compound Cl.[N-]1OC(=N)C=[N+]1N1CCOCC1 NCGICGYLBXGBGN-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/02—Circuits or systems for supplying or feeding radio-frequency energy
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/04—Generating or distributing clock signals or signals derived directly therefrom
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/022—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32146—Amplitude modulation, includes pulsing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03L—AUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
- H03L7/00—Automatic control of frequency or phase; Synchronisation
- H03L7/06—Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
- H03L7/08—Details of the phase-locked loop
- H03L7/081—Details of the phase-locked loop provided with an additional controlled phase shifter
- H03L7/0812—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
- H03L7/0814—Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/1205—Multiplexed conversion systems
- H03M1/121—Interleaved, i.e. using multiple converters or converter parts for one channel
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/14—Vacuum chambers
- H05H7/18—Cavities; Resonators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/22—Details of linear accelerators, e.g. drift tubes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H9/00—Linear accelerators
- H05H9/04—Standing-wave linear accelerators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/04—Means for controlling the discharge
- H01J2237/047—Changing particle velocity
- H01J2237/0473—Changing particle velocity accelerating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/31701—Ion implantation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/02—Circuits or systems for supplying or feeding radio-frequency energy
- H05H2007/025—Radiofrequency systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Theoretical Computer Science (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Particle Accelerators (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Saccharide Compounds (AREA)
- Measurement Of Radiation (AREA)
Abstract
인입(incoming) 아날로그 파형의 위상을 측정하고 제어하기 위한 시스템이 개시된다. 시스템은, 인입 아날로그 파형을 디지털 표현으로 변환하기 위한 아날로그 대 디지털 컨버터를 포함한다. 시스템은 또한, 프로그램가능한 양의 지연이 ADC에 대한 샘플 클럭 내로 도입되는 것을 가능하게 하는 클럭 지연 생성기를 포함한다. 시스템은, 클럭 지연 생성기에 의해 사용되는 지연을 조작하고 ADC로부터의 출력들을 저장하기 위한 제어기를 더 포함한다. 그런 다음, 제어기는, 인입 아날로그 파형의 주파수, 이것의 위상 드리프트, 및 마스터 클럭에 대한 이것의 위상을 결정하기 위해 디지털화된 표현을 사용할 수 있다. 그런 다음, 제어기는 이러한 결정들에 응답하여 RF 생성기의 출력을 수정할 수 있다.
Description
본 개시의 실시예들은, LINAC 공진기 요소로부터 수신되는 아날로그 파형을 디지털화하고, 해당 아날로그 파형의 주파수 및 위상을 검출하며, 해당 파형의 주파수 및 위상을 제어하기 위한 시스템들에 관한 것이다.
반도체 디바이스의 제조는 복수의 개별적이고 복잡한 프로세스들을 수반한다. 일부 프로세스들에서, 이온들이 작업물을 향해 가속된다. 이러한 이온들은 다수의 방식들로 가속될 수 있다. 예를 들어, 전기장들이 일반적으로 포지티브하게 대전된 이온들을 끌어당기고 가속하기 위해 사용된다.
특정 실시예들에서, 선형 가속기(또는 LINAC(linear accelerator))가 이러한 이온들을 가속하기 위해 사용될 수 있다. 특정 실시예들에서, LINAC은, 각기 이를 통과하는 이온들을 추가로 가속하도록 역할하는 복수의 RF 캐비티들을 포함한다. LINAC은, RF 캐비티들의 각각이 RF 캐비티의 개별적인 공진 주파수로 에너지가 공급될 때 최적으로 동작할 수 있다.
LINAC들이 이온들을 가속하는데 유용할 수 있지만, 그들의 사용과 연관된 난제들이 존재한다. 예를 들어, 특정 실시예들에서, 캐비티들은 각각의 개별적인 공진기의 효과를 최소화하기 위해 서로에 대해 고정된 시간적 관계로 에너지가 공급될 수 있다. 그러나, 이러한 시간적 관계를 생성하고 유지하는 것이 어려울 수 있다.
결과적으로, LINAC의 각각의 캐비티에 인가되는 전압들 및 결과적인 공진 출력을 모니터링하는 것이 유리할 수 있다. 추가로, 시간에 걸쳐 입력 전압의 위상을 모니터링하기 위한 능력은 LINAC의 성능을 최대화하는 것을 도울 수 있다. 그러나, 이러한 신호들의 위상을 모니터링하는 것이 어려울 수 있다.
따라서, LINAC의 각각의 캐비티와 연관된 아날로그 전압들 및/또는 전류들의 위상 및 주파수를 디지털적으로 측정할 수 있는 시스템이 존재하는 경우 유리할 것이다. 이러한 시스템이 전통적인 디지털 대 아날로그 컨버터들을 사용하여 서브-나노초(sub-nanosecond) 분해능을 달성할 수 있는 경우 유익할 것이다.
인입(incoming) 아날로그 파형의 위상을 측정하고 제어하기 위한 시스템이 개시된다. 시스템은, 인입 아날로그 파형을 디지털 표현으로 변환하기 위한 아날로그 대 디지털 컨버터를 포함한다. 시스템은 또한, 프로그램가능한 양의 지연이 ADC에 대한 샘플 클럭 내로 도입되는 것을 가능하게 하는 클럭 지연 생성기를 포함한다. 시스템은, 클럭 지연 생성기에 의해 사용되는 지연을 조작하고 ADC로부터의 출력들을 저장하기 위한 제어기를 더 포함한다. 그런 다음, 제어기는, 인입 아날로그 파형의 주파수, 이것의 위상 드리프트(drift), 및 마스터 클럭에 대한 이것의 위상을 결정하기 위해 디지털화된 표현을 사용할 수 있다. 그런 다음, 제어기는 이러한 결정들에 응답하여 RF 생성기의 출력을 수정할 수 있다.
일 실시예에 따르면, 이온 주입 시스템이 개시된다. 이온 주입 시스템은, 이온들을 생성하기 위한 이온 소스; 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 선형 가속기는 하나 이상의 캐비티들을 포함하는, 선형 가속기; 캐비티들 중 하나에 근접하여 배치되는 픽업 루프(pickup loop); 픽업 루프로부터 생성되는 인입(incoming) 아날로그 파형을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC); 입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 ADC에 대한 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및 프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함하며, 제어기는, ADC로부터의 출력을 저장하고, 클럭 지연 생성기에 의해 사용되는 지연의 양을 조정하며, 및 인입 아날로그 파형의 디지털화된 표현이 메모리 디바이스에 생성될 때까지 반복적으로 출력을 저장하고 지연의 양을 조정한다. 특정 실시예들에서, 디지털화된 표현의 분해능은 1 나노초 미만이다. 일부 실시예들에서, ADC의 최대 샘플링 레이트는 디지털화된 표현의 분해능보다 더 작다. 특정 실시예들에서, 이온 주입 시스템은, 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함하는 입력; 출력; 및 제2 샘플 클럭을 포함하는 제2 ADC를 더 포함하며, 제2 샘플 클럭의 위상은 샘플 클럭과는 상이하다. 특정 실시예들에서, 이온 주입 시스템은 RF 생성기를 포함하며, 제어기는 디지털화된 표현에 기초하여 RF 생성기의 출력을 수정한다. 특정 실시예들에서, 제어기는 인입 아날로그 파형의 위상 드리프트를 결정하기 위해 디지털화된 표현을 사용하고, 위상 드리프트를 교정하기 위해 RF 발생기의 주파수 또는 진폭을 조정한다. 특정 실시예들에서, 제어기는 마스터 클럭과 인입 아날로그 파형 사이의 위상 지연을 측정하고, 희망되는 위상 지연을 달성하기 위해 RF 생성기의 주파수 또는 진폭을 조정한다. 특정 실시예들에서, 이온 주입 시스템은 전역 제어기를 포함하며, 디지털화된 표현은 분석을 위해 전역 제어기로 송신된다.
다른 실시예에 따르면, 이온 주입 시스템이 개시된다. 이온 주입 시스템은, 이온들을 생성하기 위한 이온 소스; 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 선형 가속기는 하나 이상의 캐비티들을 포함하는, 선형 가속기; 하나 이상의 캐비티들 중 하나 내의 여기(excitation) 코일을 여기시키기 위해 전기적 신호를 공급하는 RF 생성기; 여기 코일에 공급되는 전기적 신호를 나타내는 아날로그 여기 전압을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC); 입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 ADC에 대한 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및 프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함하며, 제어기는, ADC로부터의 출력을 저장하고, 클럭 지연 생성기에 의해 사용되는 지연의 양을 조정하며, 아날로그 여기 전압의 디지털화된 표현이 메모리 디바이스에 생성될 때까지 반복적으로 출력을 저장하고 지연의 양을 조정한다. 특정 실시예들에서, 제어기는 아날로그 여기 전압의 위상 드리프트를 결정하기 위해 디지털화된 표현을 사용하고, 위상 드리프트를 교정하기 위해 RF 발생기의 주파수 또는 진폭을 조정한다. 일부 실시예들에서, 제어기는 마스터 클럭과 디지털화된 표현 사이의 위상 지연을 측정하고, 희망되는 위상 지연을 달성하기 위해 RF 생성기의 주파수 또는 진폭을 조정한다. 일부 실시예들에서, 디지털화된 표현의 분해능은 1 나노초 미만이다. 특정 실시예들에서, ADC의 최대 샘플링 레이트는 디지털화된 표현의 분해능보다 더 작다.
다른 실시예에 따르면, 이온 주입 시스템이 개시된다. 이온 주입 시스템은, 이온들을 생성하기 위한 이온 소스; 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 선형 가속기는 하나 이상의 캐비티들을 포함하는, 선형 가속기; 하나 이상의 캐비티들 중 하나 내의 여기 코일을 여기시키기 위해 전기적 신호를 공급하는 RF 생성기; 캐비티들 중 하나에 근접하여 배치되는 픽업 루프; 인입 아날로그 파형을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC); 입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 ADC에 대한 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및 프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함한다. 특정 실시예들에서, 이온 주입 시스템은, ADC의 입력과 연통하는 출력을 가지며 2개의 입력들을 갖는 아날로그 멀티플렉서를 포함하며, 2개의 입력들 중 제1 입력은 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함하고 2개의 입력들 중 제2 입력은 여기 코일에 공급되는 전기적 신호를 나타내는 아날로그 여기 전압을 포함한다. 특정 실시예들에서, 이온 주입 시스템은, 여기 코일에 공급되는 전기적 신호를 나타내는 아날로그 여기 전압을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 제2 아날로그 대 디지털 컨버터(analog to digital converter; ADC); 입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 제2 ADC에 대한 샘플 클럭을 포함하는 출력을 포함하는 제2 클럭 지연 생성기를 포함하며, 제2 ADC의 출력은 제어기에 대한 입력을 포함하고, ADC에 대한 입력은 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함한다. 특정 실시예들에서, 제어기는, ADC 및 제2 ADC로부터의 출력들을 저장하고, 클럭 지연 생성기 및 제2 클럭 지연 생성기에 의해 사용되는 지연들을 조정하며, 및 인입 아날로그 파형 및 아날로그 여기 전압의 디지털화된 표현들이 메모리 디바이스에 생성될 때까지 반복적으로 출력들을 저장하고 지연들을 조정한다. 특정 실시예들에서, 제어기는 인입 아날로그 파형과 아날로그 여기 전압 사이의 위상 차이를 결정하기 위해 디지털화된 표현들을 사용하고, 위상 차이에 기초하여 RF 발생기의 주파수 또는 진폭을 조정한다. 특정 실시예들에서, 디지털화된 표현들의 분해능은 1 나노초 미만이다. 특정 실시예들에서, ADC 및 제2 ADC의 최대 샘플링 레이트는 디지털화된 표현들의 분해능보다 더 작다.
본 개시의 더 양호한 이해를 위하여, 본원에 참조로서 포함되는 첨부된 도면들에 대한 참조가 이루어진다.
도 1은 일 실시예에 따른 선형 가속기 또는 LINAC을 사용하는 이온 주입 시스템의 블록도를 도시한다.
도 2는 일 실시예에 따른 모니터링 및 제어 회로를 도시한다.
도 3은 서브-나노초 분해능을 갖는 디지털화된 파형을 생성하기 위한 시퀀스를 도시한다.
도 4a 내지 도 4f는 도 3의 시퀀스를 사용하는 디지털화된 파형의 생성을 도시한다.
도 5는 공진기 코일의 주파수를 결정하고 제어하기 위한 시퀀스를 도시한다.
도 6은 공진기 코일의 위상을 결정하고 제어하기 위한 시퀀스를 도시한다.
도 7a 내지 도 7b는 2개의 상이한 시나리오들에서 도 6의 시퀀스의 결과들을 도시한다.
도 8은 제2 실시예에 따른 모니터링 및 제어 회로를 도시한다.
도 9는 제3 실시예에 따른 모니터링 및 제어 회로를 도시한다.
도 1은 일 실시예에 따른 선형 가속기 또는 LINAC을 사용하는 이온 주입 시스템의 블록도를 도시한다.
도 2는 일 실시예에 따른 모니터링 및 제어 회로를 도시한다.
도 3은 서브-나노초 분해능을 갖는 디지털화된 파형을 생성하기 위한 시퀀스를 도시한다.
도 4a 내지 도 4f는 도 3의 시퀀스를 사용하는 디지털화된 파형의 생성을 도시한다.
도 5는 공진기 코일의 주파수를 결정하고 제어하기 위한 시퀀스를 도시한다.
도 6은 공진기 코일의 위상을 결정하고 제어하기 위한 시퀀스를 도시한다.
도 7a 내지 도 7b는 2개의 상이한 시나리오들에서 도 6의 시퀀스의 결과들을 도시한다.
도 8은 제2 실시예에 따른 모니터링 및 제어 회로를 도시한다.
도 9는 제3 실시예에 따른 모니터링 및 제어 회로를 도시한다.
위에서 설명된 바와 같이, 선형 가속기들은 작업물을 향해 이온들을 가속하기 위해 사용될 수 있다. 도 1은 이온 주입 시스템(1)을 도시한다. 이온 주입 시스템(1)은 이온 소스(10)를 포함한다. 이온 소스(10)는, 비제한적으로, 간접 가열식 캐소드(indirectly heated cathode; IHC) 소스, 버나스(Bernas) 소스, 용량 결합 플라즈마 소스, 유도 결합 플라즈마 소스, 또는 임의의 다른 적절한 디바이스와 같은 임의의 적절한 이온 소스일 수 있다. 이온 소스(10)는, 이를 통해 이온들이 이온 소스(10)로부터 추출될 수 있는 개구를 갖는다. 이러한 이온들은, 추출 개구에 근접하여 이온 소스(10) 외부에 배치된 하나 이상의 전극들(20)에 네거티브 전압을 인가함으로써 이온 소스(10)로부터 추출될 수 있다. 전극들(20)은 이온들이 특정 시간들에 빠져나오도록 펄싱될 수 있다. 빠져나오는 이온들의 그룹이 묶음(bunch)으로 지칭될 수 있다.
그런 다음 이온들은, 특정한 질량 대 전하 비율을 갖는 이온들이 이를 통과하는 것을 허용하는 자석일 수 있는 질량 분석기(30)에 진입할 수 있다. 이러한 질량 분석기(30)는 희망되는 이온들만을 분리하기 위해 사용된다. 그러면, 선형 가속기(40)에 진입하는 것은 희망되는 이온들이다.
선형 가속기(40)는 하나 이상의 캐비티들(41)을 포함한다. 각각의 캐비티(41)는, 여기(excitation) 코일(45)에 의해 생성되는 전자기장들에 의해 에너지가 공급되는 공진기 코일(42)을 포함한다. 여기 코일(45)은 개별적인 공진기 코일(42)과 함께 캐비티(41)에 배치된다. 여기 코일(45)은 RF 신호일 수 있는 여기 전압에 의해 에너지가 공급된다. 여기 전압은 개별적인 RF 생성기(44)에 의해 공급될 수 있다. 다시 말해서, 각각의 여기 코일(45)에 인가되는 여기 전압은 임의의 다른 여기 코일(45)에 공급되는 여기 전압에 독립적일 수 있다. 각각의 여기 전압은 바람직하게는 이것의 개별적인 캐비티(41)의 공진 주파수에서 변조된다. 여기 전압의 크기 및 위상은, RF 생성기(44)와 통신하는 모니터링 및 제어 회로(100)에 의해 결정되고 변화될 수 있다. 캐비티(41)에 공진기 코일(42)을 배치함으로써, 진폭을 동일하게 유지하면서 여기 전압의 크기가 증가되거나 또는 위상 시프트될 수 있다.
각각의 캐비티(41) 내에, 개별적인 튜너 패들(tuner paddle)(46)이 존재할 수 있다. 튜너 패들(46)은 캐비티(41) 내에서 이것의 위치를 수정하기 위해 작동기와 연통할 수 있다. 튜너 패들(46)의 위치는 캐비티(41)의 공진 주파수에 영향을 줄 수 있다. 작동기는 모니터링 및 제어 회로(100)에 의해 제어될 수 있다.
여기 전압이 여기 코일(45)에 인가될 때, 공진기 코일(42) 상에 전압이 유도된다. 결과는, 각각의 캐비티(41) 내의 공진기 코일(42)이 사인파 전압에 의해 구동되는 것이다. 각각의 공진기 코일(42)은 개별적인 가속기 전극(43)과 전기적으로 연통할 수 있다. 이온들은 각각의 가속기 전극(43)의 개구들을 통과한다.
특정 가속기 전극(43) 내로의 묶음의 진입은, 묶음이 접근함에 따라 가속기 전극(43)의 전위가 네거티브지만 묶음이 가속기 전극(43)을 통과함에 따라 포지티브로 전환되도록 타이밍된다. 이러한 방식으로, 묶음은, 묶음이 가속기 전극(43)에 진입함에 따라 가속되고 묶음이 빠져나감에 따라 반사(repel)된다. 이는 묶음의 가속을 야기한다. 이러한 프로세스는 선형 가속기(40) 내의 각각의 가속 전극(43)에 대해 반복된다. 각각의 가속기 전극은 이온들의 가속을 증가시키고, 측정될 수 있다.
묶음이 선형 가속기(40)를 빠져나온 이후에, 이는 작업물(50) 내로 주입된다.
물론, 이온 주입 시스템(1)은 리본 빔을 생성하기 위한 정전 스캐너, 4중극자 요소들, 빔을 가속하고 감속하기 위한 추가적인 전극들 및 다른 요소들과 같은 다른 구성 요소들을 포함할 수 있다.
특정 실시예들에서, 이온 주입 시스템(1)은 또한 모니터링 및 제어 회로(100)를 포함한다. 특정 실시예들에서, 각각의 캐비티(41)에 대한 별개의 모니터링 및 제어 회로(100)가 존재한다. 도 1은 단지 단일 모니터링 및 제어 회로(100)만을 도시한다. 그러나, 이러한 구성 요소들이 각각의 캐비티(41)에 대해 복제될 수 있다. 예를 들어, 각각의 캐비티(41)는 개별적인 RF 생성기(44) 및 모니터링 및 제어 회로(100)와 연관될 수 있다.
각각의 여기 코일(45)은 단일 공진 주파수로 튜닝된다. 이는, RF 생성기(44)를 사용하고 튜너 패들(46)을 조작하여 달성된다.
모니터링 및 제어 회로(100)는, 캐비티들(41) 중 하나에 근접하여 또는 그 내부에 배치되는 픽업 루프(101)를 포함한다. 사인파 전압은 캐비티(41) 내의 또는 그 근처의 전자기장들에 의해 픽업 루프(101) 상에 유도된다. 픽업 루프(101)는 단순히 루프형(looped) 와이어 또는 인쇄 회로 보드일 수 있다.
특정 실시예들에서, 전류 대 전압 컨버터(47)는, RF 생성기(44)에 의해 여기 코일(45)로 공급되는 전류를 전압으로 변화하기 위해 사용된다.
전역 제어기(90)가 또한 도시된다. 전역 제어기(90)는 복수의 모니터링 및 제어 회로들(100)과 통신할 수 있다. 전역 제어기(90)는, 이온 주입 시스템(1)의 나머지에 의해 사용되는 마스터 클럭을 생성할 수 있다. 전역 제어기(90)는 프로세싱 유닛(91) 및 메모리 디바이스(92)를 포함할 수 있다. 프로세싱 유닛(91)은 마이크로프로세서, 단일 프로세서, 맞춤화된 필드 프로그램가능 게이트 어레이(field programmable gate array; FPGA), 또는 다른 적절한 유닛일 수 있다. 이러한 메모리 디바이스(92)는 플래시 ROM, 전기적 소거가능 ROM 또는 다른 적절한 디바이스들과 같은 비-휘발성 메모리일 수 있다. 다른 실시예들에서, 메모리 디바이스(92)는 RAM 또는 DRAM과 같은 휘발성 메모리일 수 있다. 메모리 디바이스(92)는, 전역 제어기(90)가 본원에서 설명되는 태스크들을 수행하는 것을 가능하게 하는 명령어들을 포함한다.
도 2는 모니터링 및 제어 회로(100)의 제1 실시예를 도시한다.
모니터링 및 제어 회로(100)는 전치-증폭기(110)를 포함한다. 전치-증폭기(110)는 픽업 루프(101) 상에 유도된 사인파 신호를 증폭하기 위해 사용된다. 예를 들어, 전치-증폭기(110)의 출력(111)은 0-10 볼트 사이의 또는 +/- 5 볼트 사이의 전압일 수 있다. 다른 실시예들에서, 전치-증폭기(110)의 출력(111)은 전압들의 상이한 범위를 가질 수 있다. 이러한 출력(111)은 인입 아날로그 파형으로 지칭될 수 있다.
전치-증폭기(110)의 출력(111)은 아날로그-대-디지털 변환기(analog-to-digital converter; ADC)(130)에 대한 출력으로서 역할할 수 있다. ADC(130)는 전치-증폭기(110)로부터 수신된 인입 아날로그 파형을 샘플링하며, 해당 아날로그 파형의 디지털 표현을 생성한다. 디지털 표현은, 특정 실시예들에서, 8, 12 또는 16 비트 표현일 수 있다. ADC(130)는 클럭 지연 생성기(120)로부터의 출력(123)에 기초하여 아날로그 파형을 샘플링한다.
추가적으로, 전치-증폭기(110)의 출력(111)은 제로-크로싱(zero-crossing) 검출기(115)에 대한 출력으로서 역할할 수 있다. 제로-크로싱 검출기(115)는 연산-증폭기(op-amp)들, 광-커플러들, 또는 임의의 다른 적절한 방법을 사용하여 구성될 수 있다. 제로-크로싱 검출기9115)는, 인입 아날로그 파형이 양의 방향 또는 음의 방향으로 제로 전압을 교차할 때마다 천이(transition)를 갖는 출력(116)을 생성한다.
추가적으로, 모니터링 및 재어 회로(100)는 제어기(150)를 포함한다. 제어기(150)는 프로세싱 유닛(151) 및 연관된 메모리 디바이스(152)를 포함할 수 있다. 이러한 메모리 디바이스(152)는, 프로세싱 유닛(151)에 의해 실행될 때, 제어기(150)가 본원에서 설명되는 기능들을 수행하는 것을 가능하게 하는 명령어들을 포함한다. 프로세싱 유닛(151)은 마이크로프로세서, 단일 프로세서, 맞춤화된 필드 프로그램가능 게이트 어레이(field programmable gate array; FPGA), 또는 다른 적절한 유닛일 수 있다. 이러한 메모리 디바이스(152)는 플래시 ROM, 전기적 소거가능 ROM 또는 다른 적절한 디바이스들과 같은 비-휘발성 메모리일 수 있다. 다른 실시예들에 있어서, 메모리 디바이스(152)는 RAM 또는 DRAM과 같은 휘발성 메모리일 수 있다. 제어기(150)는 ADC(130)로부터 수신된 데이터를 저장하기 위한 제2 메모리 디바이스(153), 및 다른 연관된 회로를 포함할 수 있다.
예를 들어, 일 실시예에서, 클럭 지연 생성기(120)에 대한 클럭 신호(121)는 마스터 클럭일 수 있다. 이러한 마스터 클럭은 인입 아날로그 파형에 대해 알려진 관계를 가질 수 있다. 예를 들어, 마스터 클럭의 주파수는, 2배, 4배, 또는 다른 배수와 같이, 인입 아날로그 파형의 주파수의 배수일 수 있다. 다른 실시예들에서, 인입 아날로그 파형의 각각의 주기에 대해 마스터 클럭의 N개의 주기들이 있을 수 있다. 마스터 클럭은, 구현에 의존하여, 25 MHz와 200 MHz 사이의 주파수를 가질 수 있다.
제어기(150)는 또한, 클럭 지연 생성기(120)가 클럭 신호(121)에 추가할 지연의 양을 나타내는 하나 이상의 제어 신호들(122)을 클럭 지연 생성기(120)에 제공한다. 클럭 지연 생성기(120)는 디지털적으로 제어되는 지연 라인일 수 있으며, 여기서 제어 신호들(122)은 추가될 지연의 양을 나타내기 위해 사용된다. 예를 들어, 복수의 제어 신호들(122)은 멀티-비트 2진 값을 형성할 수 있으며, 여기서 해당 값은 지연을 나타낸다. 다른 실시예들에서, 직렬 데이터 스트림을 클럭 지연 생성기(120)로 송신하는 하나의 제어 신호가 있을 수 있다.
언급된 바와 같이, 클럭 지연 생성기(120)에 대한 클럭 신호(121)는 마스터 클럭일 수 있다. 제어 신호들(122)은 제어기(150)에 의해 공급되며, 입력 신호에 추가될 지연의 양을 나타낸다. 마지막으로, 클럭 지연 생성기(120)로부터의 출력(123)은, 제어기(150)에 의해 지정된 양만큼 지연된 클럭 신호(121)이다.
클럭 지연 생성기(120)에 제어 신호들(122)을 제공하는 것에 더하여, 제어기(150)는 또한 ADC(130)로부터 출력(131)을 수신한다. 이러한 출력(131)은 제2 메모리 디바이스(153)에 저장될 수 있으며, 이하에서 더 상세히 설명되는 바와 같이, 서브-나노초 분해능을 갖는 인입 아날로그 파형의 디지털화된 버전을 생성하기 위해 사용될 수 있다.
마지막으로, 제어기(150)는 또한, RF 생성기(44)를 제어하기 위해 사용되는 출력(154)을 제공할 수 있다. 선택적으로, 제어기(150)는 또한, 튜너 패들(46)을 제어하기 위해 사용되는 제2 출력(155)을 가질 수 있다. 인입 아날로그 파형의 디지털화된 버전은 또한, 희망되는 경우, 전역 제어기(90)에 의해 검색될 수 있다. 전역 제어기(90)는, 글리치와 같은 이상(anomaly)들에 대해 디지털화된 버전을 분석할 수 있다.
제어기는(150)는, 픽업 루프(101)로부터의 인입 아날로그 파형이 주기적이라고 가정한다. 따라서, 하나의 주기 동안 파형의 전체를 캡처하려고 시도하는 것이 아니라, 제어기(150)는 복수의 주기들에 걸쳐 파형을 캡처한다. 이러한 프로세스가 도 3에 도시되며, 결과들이 도 4a 내지 도 4f에 도시된다.
예를 들어, 클럭 지연 생성기(120)에 대한 입력 신호가 인입 아날로그 파형의 주파수보다 4배 더 큰 주파수를 갖는 마스터 클럭이라고 가정한다. 따라서, 각각의 주기에서 인입 아날로그 파형의 N개의 샘플들을 획득하는 것이 가능하다. 또한, 클럭 지연 생성기(120)에 의해 추가되는 지연은 최소 지연 시간 또는 Td의 배수라고 가정한다. 제어기는(150)는, 박스(300)에 도시된 바와 같이, 제로-크로싱 검출기(115)로부터의 제로-크로싱의 표시까지 대기한다. 이는, 수집 기간의 시작을 나타내기 위해 사용될 수 있다. 수집 기간 동안, 제어기(150)는 인입 아날로그 파형을 재구성하기 위해 충분한 수의 디지털화된 샘플들을 수집할 것이다. 예를 들어, 인입 아날로그 파형이 25 MHz의 주파수를 갖는 경우, 0.4 나노초만큼 이격된 100개의 샘플들이 인입 아날로그 파형을 재생성하기 위해 사용될 수 있다. 따라서, 디지털화된 파형은, ADC(130)의 최소 샘플링 시간보다 더 작은 분해능을 갖는다.
또한, 샘플링 시간이 추가로 감소될 수 있다. 일 실시예에서, 2개 이상의 ADC들이 디지털화된 샘플들을 획득하기 위해 사용된다. 이러한 2개 이상의 ADC들은, 인입 아날로그 파형의 상이한 값들을 캡처하기 위해 상이한 지연들을 가지고 동작할 수 있다. 다시 말해서, 제2 ADC에 공급되는 샘플 클럭의 위상은 ADC(130)에 공급되는 샘플 클럭의 위상과는 상이하다. 다른 실시예에서, 마스터 클럭의 천이들 둘 모두는 ADC(130)의 샘플링 레이트를 2배로 만들기 위해 사용될 수 있다. 이는, 하나의 ADC를 사용하여 또는 ADC(130)로부터 반대되는 천이에서 샘플링하는 제2 ADC를 사용하여 달성될 수 있다. 이러한 접근 방식들은 디지털화된 표현의 분해능을 증가시키기 위해, 디지털화된 표현을 생성하는 시간을 감소시키기 위해, 또는 둘 모두를 위해 사용될 수 있다.
처음에, 제어기(150)는 제어 신호들(122)을 제1 지연 시간으로 설정할 수 있다. 이러한 제1 지연 시간은 최소 허용가능 지연 또는 1 x Td를 나타낼 수 있다. 다른 실시예들에서, 상이한 제1 지연 시간이 사용될 수 있다.
따라서, ADC(130)는, 1 x Td일 수 있는 제1 지연 시간과 동일한 시간에 인입 아날로그 파형의 디지털 표현을 제공할 것이다. 이러한 시간에 취해진 제1 샘플이 도 4a에 도시된다. 제어기(150)는, 박스(310)에 도시된 바와 같이, 이러한 제1 지연 시간을 사용하여 복수의 샘플들을 수신할 수 있다. 예를 들어, 제어기(150)는 이러한 지연을 사용하여 N개의 샘플들을 수신할 수 있다. 이러한 실시예에서, 제어기(150)는, 다음의 값들을 갖는 N개의 샘플들을 수신할 것이다:
샘플(n)= sin (F*2*π*n/N+(1xTd)+φ),
여기서 F는 인입 아날로그 파형의 주파수이고, n은 샘플의 번호이며, 1xTd는 제어 신호(122)에 의해 표시된 지연이고, φ는 마스터 클럭과 제로 크로싱 사이의 위상 차이이다.
제로 크로싱에 또한 동기화될 수 있는 나중의 시간에서, 제어기(150)는 그런 다음, 박스(320)에 도시된 바와 같이, 상이한 지연을 제공하기 위해 제어 신호들(122)을 변화시킬 수 있다.
따라서, 그러면 ADC(130)는 F*2*π*n/N+(2xTd)+φ와 동일한 시간에 인입 아날로그 파형의 디지털 값 표현을 획득할 수 있다.
마스터 클럭이 입력 아날로그 파형의 주파수의 배수인 경우, 특정 샘플(샘플(n))은 정확히 2개의 지연 시간들의 차이만큼 샘플 (n-N)으로부터 오프셋될 것이다. 다시 말해서, 이러한 예에서, 샘플 (n)은 1 x Td의 위상만큼 샘플(n-N)으로부터 오프셋된다. 따라서, 제2 지연을 가지고 취해진 샘플들은, 도 4b에 도시된 바와 같이, 시간적으로 이전의 샘플들 근처에 있을 것이다. 이러한 예에서, 제어기(150)는, 박스(330)에 도시된 바와 같이, 이러한 지연을 사용하여 N개의 샘플들을 수신할 수 있다.
따라서, 절대적인 시간을 사용하는 것이 아니라, 제어기(150)는 상대적인 시간(즉, 모듈로(modulo) F*2*π)을 사용하여 파형을 생성한다. 도 4c 내지 도 4e는, 제어기(150)가 각기 3 x Td, 4 x Td 및 5 x Td와 동일한 지연들에서 인입 아날로그 파형을 계속해서 재구성하는 방법을 도시한다. 일단 충분한 샘플들이 수집되었으면, 박스(340)에 도시된 바와 같이, 수집 기간이 종료된다.
이러한 방식으로, 인입 아날로그 파형의 디지털 버전은, 도 4f에 도시된 바와 같이, 서브-나노초 분해능으로 생성될 수 있다.
추가로, 도 4a 내지 도 4e가 각각의 지연 시간에 대해 추가되는 하나의 샘플만을 도시하지만, 마스터 클럭이 입력 아날로그 파형보다 더 높은 주파수인 경우 2개 이상의 샘플이 추가될 수 있음이 이해될 것이다.
예를 들어, 인입 아날로그 파형의 주파수가 25 MHz이고 마스터 클럭이 100 MHz이어서 N=4라고 가정한다. 마스터 클럭 사이의 위상 차이는 φ로 주어지는 것으로 가정한다. 또한, 최소 지연 시간이 0.5ns라고 가정한다. 따라서, 제로-크로싱 이후에, 제어기(150)는 4개의 샘플들을 캡처할 것이다:
샘플(n)= sin (F*2*π*n/N+(1*Td)+φ),
이는 sin (2*π*n/4 + 0.5 ns + φ)으로 바뀐다.
따라서, 처음 4개의 샘플들은 다음과 같이 주어질 수 있다:
샘플(1)=sin(π/2 + 0.5 ns + φ);
샘플(2)=sin(π + 0.5 ns + φ);
샘플(3)=sin(3π/2 + 0.5 ns + φ); 및
샘플(4)=sin(2π + 0.5 ns + φ).
그런 다음, 지연이 2*Td 또는 1.0ns로 변경된다. 따라서, 다음 4개의 샘플들은 다음과 같이 주어질 수 있다
샘플(5)=sin(π/2 + 1.0 ns + φ);
샘플(6)=sin(π + 1.0 ns + φ);
샘플(7)=sin(3π/2 + 1.0 ns + φ); 및
샘플(8)=sin(2π + 1.0 ns + φ).
이는, 지연이 파형 내의 포인트들 모두가 채워지는 π/2에 도달할 때까지 계속된다.
제어기(150)는 제2 메모리(153)에 이러한 디지털 값들의 각각을 저장할 수 있다. 특정 실시예들에서, 디지털 값들은, 파형 동안 그들의 시간을 나타내는 어드레스들에서의 위치들에 저장된다. 이러한 방식으로, 디지털화된 샘플들이 시간적 순서로 저장될 수 있다.
추가로, 특정 실시예들에서, 클럭 지연 생성기(120)는, 적어도 인입 아날로그 파형의 주기를 N으로 나눈 것만큼 큰 지연을 도입할 수 있다.
따라서, 마스터 클럭이 인입 아날로그 파형의 주파수보다 4배 더 큰 주파수로 동작한다고 가정하면, 제어기(150)는 인입 아날로그 파형의 25개의 주기들만큼 짧은 기간에 100개의 샘플들을 갖는 디지털화된 파형을 생성할 수 있다. 인입 아날로그 파형이 12.5 MHz의 주파수를 갖는 경우, 이는, 샘플들이 약 0.8 나노초만큼 분리된다는 것을 의미한다. 200개의 샘플들이 디지털화된 파형을 생성하기 위해 사용되는 경우, 샘플들은 0.4 나노초만큼 분리될 수 있다.
따라서, 디지털화된 샘플들은 서브-나노초 분해능을 가지고 인입 아날로그 파형을 매우 정확하게 표현한다.
이러한 디지털화된 파형은 다수의 방식들로 사용될 수 있다. 먼저, 디지털화된 파형은 인입 아날로그 파형의 주기의 매우 정확한 결정을 제공한다. 따라서, 인입 아날로그 파형의 주기가 예상된 것이 아닌 경우, 제어기(150)는 RF 생성기(44)의 주파수를 변화시키기 위해 출력(154)을 조작할 수 있다. 그런 다음, 제어기(150)는, 인입 아날로그 파형의 새로운 주기를 결정하기 위해 위에서 설명된 프로세스를 다시 반복할 수 있다.
따라서, 일 실시예에서, 디지털화된 파형은 인입 아날로그 파형의 주파수를 검증하기 위해 사용된다. 시퀀스가 도 5에 도시된다. 먼저, 박스(500)에 도시된 바와 같이, 디지털화된 파형은, 예컨대 도 3에 도시된 시퀀스를 사용하여 수집된다. 다음으로, 박스(510)에 도시된 바와 같이, 디지털화된 파형의 주기가 결정된다. 이는, 2개의 제로 크로싱들 사이의 샘플들의 수를 카운팅함으로써, 2개의 피크들 사이의 샘플들의 수를 카운팅함으로써, 또는 다른 파라미터를 사용함으로써 이루어질 수 있다. 그런 다음, 샘플들의 수는 마스터 클럭의 주파수에 기초하여 주파수 또는 시간으로 변환된다. 그런 다음, 제어기(150)는 주파수가 정확한지 여부를 결정할 수 있다. 주파수가 정확한 경우, 박스(530)에 도시된 바와 같이, 추가적인 액션이 존재하지 않고 프로세스가 종료된다. 그러나, 주파수가 부정확한 경우, 제어기(150)는 RF 생성기(44)의 주파수를 변화시키기 위해 출력(154)을 조작할 수 있다. 안정화 시간 이후에, 그런 다음 제어기(150)는 주파수가 정확할 때까지 이러한 프로세스를 반복한다.
추가적으로, 제어기(150)는 작은 위상 시프트들 또는 드리프트들을 검출하기 위해 디지털화된 샘플들을 사용할 수 있다. 도 6은, 인입 아날로그 파형의 위상 시프트를 결정하기 위해 제어기(150)에 의해 사용되는 시퀀스를 도시한다. 먼저, 박스(600)에 도시된 바와 같이, 제어기(150)는 도 3에서 설명된 바와 같이 제1 디지털화된 파형을 획득할 수 있다. 그런 다음, 제어기(150)는 미리 결정된 시간 동안 대기할 수 있다. 그런 다음, 제어기(150)는, 박스(610)에 도시된 바와 같이, 제2 디지털화된 파형을 획득한다. 그런 다음, 제어기(150)는, 박스(620)에 도시된 바와 같이, 이러한 2개의 디지털화된 파형들 사이의 위상 차이를 계산한다. 예를 들어, 인입 아날로그 파형의 주파수가 마스터 클럭의 1/N과 정확히 동일한 경우, 디지털화된 파형들 둘 모두가 동일하여 잡음을 허용할 것이다. 그러나, 인입 아날로그 파형의 주파수가 마스터 클럭의 1/N과 정확히 동일하지 않은 경우, 제1 디지털화된 샘플 및 제2 디지털화된 샘플의 시작 위상이 상이할 것이다. 추가로, 제1 디지털화된 파형의 피크들 또는 제로 크로싱은 제2 디지털화된 파형의 피크들 및 제로 크로싱과 동일한 위치들에 있지 않을 것이다. 일 실시예에서, 제어기(150)는 샘플들의 수의 함수로서 2개의 디지털화된 파형들 사이의 오프셋을 결정한다. 마스터 클럭의 주기로 곱한 샘플들의 수의 차이는 2개의 디지털화된 파형들 사이의 위상 차이의 표시이다. 도 7b에 도시된 바와 같이, 위상이 매칭되는 경우, 박스(640)에 도시된 바와 같이, 추가적인 액션이 취해지지 않고 시퀀스가 완료된다. 도 7a에 도시된 바와 같이, 위상이 매칭되지 않는 경우, 제어기(150)는, 박스(630)에 도시된 바와 같이, RF 생성기(44)의 주파수 또는 진폭을 변화시킬 수 있다. 안정화 시간 이후에, 그런 다음 제어기(150)는 주파수가 정확할 때까지 이러한 프로세스를 반복한다.
추가적으로, 제어기(150)는 또한 마스터 클럭에 대해 인입 아날로그 파형의 위상을 조절할 수 있다. 위에서 언급된 바와 같이, 특정 가속기 전극(43) 내로의 묶음의 진입은, 묶음이 접근함에 따라 가속기 전극(43)의 전위가 네거티브지만 묶음이 가속기 전극(43)을 통과함에 따라 포지티브로 전환되도록 타이밍된다. 이러한 방식으로, 묶음은, 묶음이 가속기 전극(43)에 진입함에 따라 가속되고 묶음이 빠져나감에 따라 반사된다. 이러한 효과를 최대화하기 위해, 각각의 가속기 전극(43)의 위상들은 적절하게 상관되어야 한다.
따라서, 제어기(150)는 유도된 전압의 위상을 결정하기 위해 디지털화된 파형을 사용할 수 있다. 예를 들어, 디지털화된 파형은 위상을 결정하기 위해 마스터 클럭 신호와 비교될 수 있다.
달리 말하면, 제로-크로싱 이후에, 제어기(150)는 클럭 지연 생성기(120)에 대한 지연 시간을 변화시킴으로써 디지털화된 파형을 수집한다. 그러나, 해당 디지털화된 파형의 시작은, 최소 지연 시간을 갖는 인입 아날로그 파형의 값을 반영한다. 그런 다음, 이러한 값은 해당 시간에서의 디지털화된 표현의 위상을 결정하기 위해 사용될 수 있다. 인입 아날로그 파형의 주파수 및 진폭을 알면, 위상=sin-1(값/A)으로서 디지털화된 표현에서 임의의 포인트의 위상을 쉽게 찾을 수 있으며, 여기서 값은 디지털화된 파형의 값이고 A는 최대 진폭이다. 이러한 위상은 인입 아날로그 파형의 주파수에 기초하여 절대적인 시간 지연으로 변환된다. 대안적으로, 다음 제로 크로싱까지의 샘플들의 수는 또한 마스터 클럭과 인입 아날로그 파형 사이의 위상 지연(또는 위상 선행(phase lead))을 결정하기 위해 사용될 수 있다.
각각의 제어기(150)는 희망되는 위상을 전역 제어기(90)에 의해 지시 받을 수 있다. 그런 다음, 제어기(150)는 이러한 위상을 달성하려고 시도한다. 예를 들어, 제어기(150)는 RF 생성기(44)의 주파수를 조정할 수 있다. 다른 실시예에서, 제어기(200)는 유도되는 전압의 희망되는 위상을 조정하기 위해 캐비티(41) 내의 튜너 패들(46)의 위치를 수정할 수 있다.
이상의 설명이 픽업 루프(101)로부터 수신되는 인입 아날로그 파형에 대한 모니터링 및 제어 회로(100)의 동작을 설명하지만, 추가적인 특징들이 또한 가능하다.
예를 들어, 모니터링 및 제어 회로(100)는 또한 여기 코일(45)로 전달되는 여기 전류를 모니터링할 수 있다. 먼저, 이상에서 설명된 바와 같이, 전류는 전류 대 전압 컨버터(47)를 사용하여 전압으로 변환된다. 그런 다음, 아날로그 여기 전압이 모니터링 및 제어 회로(100)에 대한 입력으로서 제공된다. 그런 다음, 아날로그 여기 전압은 픽업 루프(101)로부터의 아날로그 파형에 대해 이상에서 설명되 것과 동일한 방식으로 디지털화될 수 있다. 이는 다양한 방식들로 달성될 수 있다.
먼저, 도 8에 도시된 바와 같이, 아날로그 멀티플렉서(114)는, 픽업 루프(101) 로부터의 인입 아날로그 파형과 전류 대 전압 컨버터(47)로부터의 아날로그 여기 전압 사이에서 선택하기 위해 사용될 수 있다. 따라서, 제어기(150)는, 아날로그 멀티플렉서(114)에 대한 선택 입력을 조작함으로써 2개의 입력들 중 하나를 선택할 수 있다. 그런 다음, 제어기(150)는, 아날로그 멀티플렉서(114)를 조작함으로써 이러한 아날로그 파형들 둘 모두에 대한 디지털화된 표현들을 생성할 수 있다.
대안적으로, 도 9에 도시된 바와 같이, 제2 ADC(930), 제2 클럭 지연 생성기(920) 및 제2 제로-크로싱 검출기(915)가, 모니터링 및 제어 회로(100)가 아날로그 여기 전압을 디지털화하는 것을 가능하게 하기 위해 포함될 수 있다. 이러한 디지털화는 이상에서 설명된 것과 동일한 방식으로 이루어질 수 있다.
디지털화된 여기 전압은, RF 생성기(44)의 주파수를 찾기 위해 그리고 마스터 클럭에 대한 아날로그 여기 전압의 위상을 결정하기 위해 사용될 수 있다. 주파수 및 위상 정보는 도 5 및 도 6에 대해 이상에서 설명된 알고리즘들을 사용하여 획득될 수 있다.
추가적으로, 제어기(150)는 또한 아날로그 여기 전압과 픽업 루프(101)로부터의 인입 아날로그 파형을 비교할 수 있다. 예를 들어, 아날로그 여기 전압과 픽업 루프(101)로부터의 인입 아날로그 파형 사이의 위상 차이는 이상에서 설명된 기술들을 사용하여 결정될 수 있다. 일 실시예에서, 이러한 2개의 파형들 사이의 위상 차이는 마스터 클럭에 대해 각각의 신호의 위상 차이를 결정함으로써 계산된다. 다른 실시예에서, 이러한 2개의 파형들 사이의 위상 차이는 2개의 디지털화된 표현들을 비교함으로써 계산된다. 이러한 위상 차이는 RF 생성기(44)의 진폭 및/또는 주파수를 제어하기 위해 사용될 수 있다.
이상의 개시는 정상 동작을 설명한다. 그러나, 다른 인자들이 또한 고려될 수 있다. 예를 들어, 디지털화된 파형은 글리치가 발생했다는 것을 나타낼 수 있다. 글리치의 이벤트에서, 제어기(150)는 전역 제어기(90)로 정보를 제공할 수 있다. 전역 제어기(90)는, 공진 캐비티(41)를 재보정(recalibrate)하거나 또는 어떤 다른 액션을 취할 것을 제어기(150)에 지시할 수 있다.
추가적으로, 온도 변동, 캐비티 진공, 및 진동이 캐비티(41)의 고유 공진 주파수에 영향을 줄 수 있다. 제어기(150)는 인입 아날로그 파형의 주파수 및 위상을 연속적으로 모니터링할 수 있다. 이것의 최대 진폭에서의 위상 또는 주파수의 변화는 고유 공진 주파수에서의 드리프트를 나타낼 수 있다. 제어기(150)는 교정 액션을 개시할 수 있다. 예를 들어, 일 실시예에서, 제어기(150)는 공진 주파수를 재획득하기 위해 캐비티(41) 내의 튜너 패들(46)을 움직일 수 있다. 제어기(150)는 공진 주파수의 임의의 변화를 전역 제어기(90)로 보고할 수 있다. 그러면, 전역 제어기(90)는 어떤 교정 액션을 취할 것을 제어기(200)에 지시할 수 있다.
본 시스템은 다수의 장점들을 갖는다. 서브-나노초 분해능을 가지고 인입 아날로그 신호를 모니터링하는 능력은, 디지털 제어기가 다양한 결정들을 결정하고 다양한 교정 액션들을 취하는 것을 가능하게 한다. 이전에는, 위상은, 보정되고 재보정되어야만 했던 아날로그 회로를 사용하여 결정될 수 있으며, 이는 이것의 정확도를 감소시킨다. 추가로, 이러한 접근 방식은, 인입 아날로그 파형의 하나 이상의 주기들이 글리치들과 같은 이상들에 대해 캡처되고 분석되는 것을 가능하게 한다. 서브-나노초 분해능은 또한, 제어기에 의해 관찰될 1 나노초 미만의 위상 드리프트를 가능하게 한다. 따라서, LINAC의 정확도 및 효율이 개선될 수 있다.
본 개시는 본원에서 설명된 특정 실시예에 의해 범위가 제한되지 않는다. 오히려, 본원에서 설명된 실시예들에 더하여, 본 개시의 다른 다양한 실시예들 및 이에 대한 수정예들이 이상의 설명 및 첨부된 도면들로부터 당업자들에게 자명해질 것이다. 따라서, 이러한 다른 실시예들 및 수정예들이 본 개시의 범위 내에 속하도록 의도된다. 추가로, 본 개시가 본원에서 특정 목적을 위한 특정 환경에서의 특정 구현예의 맥락에서 설명되었지만, 당업자들은 이의 유용함이 이에 한정되지 않으며, 본 개시가 임의의 수의 목적들을 위한 임의의 수의 환경들에서 유익하게 구현될 수 있다는 것을 인식할 것이다. 따라서, 이하에서 기술되는 청구항들은 본원에서 설명된 바와 같은 본 개시의 완전한 폭과 사상의 관점에서 해석되어야만 한다.
Claims (20)
- 이온 주입 시스템으로서,
이온들을 생성하기 위한 이온 소스;
상기 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 상기 선형 가속기는 하나 이상의 캐비티들을 포함하는, 상기 선형 가속기;
상기 캐비티들 중 하나에 근접하여 배치되는 픽업 루프(pickup loop);
상기 픽업 루프로부터 생성되는 인입(incoming) 아날로그 파형을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC);
입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 상기 ADC에 대한 상기 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및
프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함하며,
상기 제어기는,
상기 ADC로부터의 출력을 저장하고, 상기 클럭 지연 생성기에 의해 사용되는 상기 지연의 양을 조정하며, 및
상기 인입 아날로그 파형의 디지털화된 표현이 상기 메모리 디바이스에 생성될 때까지 반복적으로 상기 출력을 저장하고 상기 지연의 양을 조정하는, 이온 주입 시스템.
- 청구항 1에 있어서,
상기 디지털화된 표현의 분해능은 1 나노초 미만인, 이온 주입 시스템.
- 청구항 2에 있어서,
상기 ADC의 최대 샘플링 레이트는 상기 디지털화된 표현의 분해능보다 더 작은, 이온 주입 시스템.
- 청구항 1에 있어서,
상기 이온 주입 시스템은, 상기 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함하는 입력; 출력; 및 제2 샘플 클럭을 포함하는 제2 ADC를 더 포함하며, 상기 제2 샘플 클럭의 위상은 상기 샘플 클럭과는 상이한, 이온 주입 시스템.
- 청구항 1에 있어서,
상기 이온 주입 시스템은 RF 생성기를 더 포함하며, 상기 제어기는 상기 디지털화된 표현에 기초하여 상기 RF 생성기의 출력을 수정하는, 이온 주입 시스템.
- 청구항 5에 있어서,
상기 제어기는 상기 인입 아날로그 파형의 위상 드리프트를 결정하기 위해 상기 디지털화된 표현을 사용하고, 상기 위상 드리프트를 교정하기 위해 상기 RF 발생기의 주파수 또는 진폭을 조정하는, 이온 주입 시스템.
- 청구항 5에 있어서,
상기 제어기는 마스터 클럭과 상기 인입 아날로그 파형 사이의 위상 지연을 측정하고, 희망되는 위상 지연을 달성하기 위해 상기 RF 생성기의 주파수 또는 진폭을 조정하는, 이온 주입 시스템.
- 청구항 1에 있어서,
상기 이온 주입 시스템은 전역 제어기를 더 포함하며, 상기 디지털화된 표현은 분석을 위해 상기 전역 제어기로 송신되는, 이온 주입 시스템.
- 이온 주입 시스템으로서,
이온들을 생성하기 위한 이온 소스;
상기 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 상기 선형 가속기는 하나 이상의 캐비티들을 포함하는, 상기 선형 가속기;
상기 하나 이상의 캐비티들 중 하나 내의 여기 코일을 여기시키기 위해 전기적 신호를 공급하는 RF 생성기;
상기 여기 코일에 공급되는 상기 전기적 신호를 나타내는 아날로그 여기 전압을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC);
입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 상기 ADC에 대한 상기 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및
프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함하며,
상기 제어기는,
상기 ADC로부터의 출력을 저장하고,
상기 클럭 지연 생성기에 의해 사용되는 상기 지연의 양을 조정하며, 상기 아날로그 여기 전압의 디지털화된 표현이 상기 메모리 디바이스에 생성될 때까지 반복적으로 상기 출력을 저장하고 상기 지연의 양을 조정하는, 이온 주입 시스템.
- 청구항 9에 있어서,
상기 제어기는, 상기 아날로그 여기 전압의 위상 드리프트를 결정하기 위해 상기 디지털화된 표현을 사용하며, 상기 위상 드리프트를 교정하기 위해 상기 RF 발생기의 주파수 또는 진폭을 조정하는, 이온 주입 시스템.
- 청구항 9에 있어서,
상기 제어기는 마스터 클럭과 상기 디지털화된 표현 사이의 위상 지연을 측정하고, 희망되는 위상 지연을 달성하기 위해 상기 RF 생성기의 주파수 또는 진폭을 조정하는, 이온 주입 시스템.
- 청구항 9에 있어서,
상기 디지털화된 표현의 분해능은 1 나노초 미만인, 이온 주입 시스템.
- 청구항 12에 있어서,
상기 ADC의 최대 샘플링 레이트는 상기 디지털화된 표현의 분해능보다 더 작은, 이온 주입 시스템.
- 이온 주입 시스템으로서,
이온들을 생성하기 위한 이온 소스;
상기 이온들을 작업물을 향해 가속하기 위한 선형 가속기로서, 상기 선형 가속기는 하나 이상의 캐비티들을 포함하는, 상기 선형 가속기;
상기 하나 이상의 캐비티들 중 하나 내의 여기 코일을 여기시키기 위해 전기적 신호를 공급하는 RF 생성기;
상기 캐비티들 중 하나에 근접하여 배치되는 픽업 루프;
인입 아날로그 파형을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 아날로그 대 디지털 컨버터(analog to digital converter; ADC);
입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 상기 ADC에 대한 상기 샘플 클럭을 포함하는 출력을 포함하는 클럭 지연 생성기; 및
프로세싱 유닛 및 메모리 디바이스를 포함하는 제어기를 포함하는, 이온 주입 시스템.
- 청구항 14에 있어서,
상기 이온 주입 시스템은, 상기 ADC의 입력과 연통하는 출력을 가지며 2개의 입력들을 갖는 아날로그 멀티플렉서를 더 포함하며, 상기 2개의 입력들 중 제1 입력은 상기 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함하고 상기 2개의 입력들 중 제2 입력은 상기 여기 코일에 공급되는 상기 전기적 신호를 나타내는 아날로그 여기 전압을 포함하는, 이온 주입 시스템.
- 청구항 14에 있어서,
상기 이온 주입 시스템은,
상기 여기 코일에 공급되는 상기 전기적 신호를 나타내는 아날로그 여기 전압을 포함하는 입력; 출력; 및 샘플 클럭을 포함하는 제2 아날로그 대 디지털 컨버터(analog to digital converter; ADC);
입력 클럭; 지연의 양을 결정하기 위한 제어 입력; 및 상기 제2 ADC에 대한 상기 샘플 클럭을 포함하는 출력을 포함하는 제2 클럭 지연 생성기를 더 포함하며,
상기 제2 ADC의 출력은 상기 제어기에 대한 입력을 포함하고, 상기 ADC에 대한 입력은 상기 픽업 루프로부터 생성되는 인입 아날로그 파형을 포함하는, 이온 주입 시스템.
- 청구항 16에 있어서,
상기 제어기는,
상기 ADC 및 상기 제2 ADC로부터의 출력들을 저장하고,
상기 클럭 지연 생성기 및 상기 제2 클럭 지연 생성기에 의해 사용되는 지연들을 조정하며, 및
상기 인입 아날로그 파형 및 상기 아날로그 여기 전압의 디지털화된 표현들이 상기 메모리 디바이스에 생성될 때까지 반복적으로 상기 출력들을 저장하고 상기 지연들을 조정하는, 이온 주입 시스템.
- 청구항 17에 있어서,
상기 제어기는 상기 인입 아날로그 파형과 상기 아날로그 여기 전압 사이의 위상 차이를 결정하기 위해 상기 디지털화된 표현들을 사용하고, 상기 위상 차이에 기초하여 상기 RF 발생기의 주파수 또는 진폭을 조정하는, 이온 주입 시스템.
- 청구항 17에 있어서,
상기 디지털화된 표현들의 분해능은 1 나노초 미만인, 이온 주입 시스템.
- 청구항 19에 있어서,
상기 ADC 및 상기 제2 ADC의 최대 샘플링 레이트는 상기 디지털화된 표현들의 분해능보다 더 작은, 이온 주입 시스템.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/738,021 | 2020-01-09 | ||
US16/738,021 US10943767B1 (en) | 2020-01-09 | 2020-01-09 | Digital sampling to control resonator frequency and phase in a LINAC |
PCT/US2020/064441 WO2021141722A1 (en) | 2020-01-09 | 2020-12-11 | Digital sampling to control resonator frequency and phase in a linac |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220123438A true KR20220123438A (ko) | 2022-09-06 |
Family
ID=74851805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020227026492A KR20220123438A (ko) | 2020-01-09 | 2020-12-11 | 이온 주입 시스템 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10943767B1 (ko) |
JP (1) | JP7422882B2 (ko) |
KR (1) | KR20220123438A (ko) |
CN (1) | CN114946276B (ko) |
TW (1) | TWI767479B (ko) |
WO (1) | WO2021141722A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11555791B2 (en) * | 2019-12-03 | 2023-01-17 | Corning Incorporated | Chamber for vibrational and environmental isolation of thin wafers |
US11576252B2 (en) * | 2020-03-24 | 2023-02-07 | Applied Materials, Inc. | Controller and control techniques for linear accelerator and ion implanter having linear accelerator |
US11476087B2 (en) * | 2020-08-03 | 2022-10-18 | Applied Materials, Inc. | Ion implantation system and linear accelerator having novel accelerator stage configuration |
US11825590B2 (en) * | 2021-09-13 | 2023-11-21 | Applied Materials, Inc. | Drift tube, apparatus and ion implanter having variable focus electrode in linear accelerator |
US11856685B2 (en) | 2021-09-20 | 2023-12-26 | Applied Materials, Inc. | Stiffened RF LINAC coil inductor with internal support structure |
CN113990726A (zh) * | 2021-09-24 | 2022-01-28 | 散裂中子源科学中心 | 基于plc的bnct高占空比ecr离子源高效出束系统和方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2526941B2 (ja) * | 1987-11-24 | 1996-08-21 | 日新電機株式会社 | イオン注入装置 |
US6320334B1 (en) * | 2000-03-27 | 2001-11-20 | Applied Materials, Inc. | Controller for a linear accelerator |
US6653803B1 (en) | 2000-05-30 | 2003-11-25 | Axcelis Technologies, Inc. | Integrated resonator and amplifier system |
GB2395354B (en) | 2002-11-11 | 2005-09-28 | Applied Materials Inc | Ion implanter and a method of implanting ions |
US20040227106A1 (en) * | 2003-05-13 | 2004-11-18 | Halling Alfred M. | System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway |
US6949895B2 (en) * | 2003-09-03 | 2005-09-27 | Axcelis Technologies, Inc. | Unipolar electrostatic quadrupole lens and switching methods for charged beam transport |
US7402821B2 (en) | 2006-01-18 | 2008-07-22 | Axcelis Technologies, Inc. | Application of digital frequency and phase synthesis for control of electrode voltage phase in a high-energy ion implantation machine, and a means for accurate calibration of electrode voltage phase |
US20080128641A1 (en) * | 2006-11-08 | 2008-06-05 | Silicon Genesis Corporation | Apparatus and method for introducing particles using a radio frequency quadrupole linear accelerator for semiconductor materials |
DE102007027069B3 (de) * | 2007-06-12 | 2008-10-23 | Texas Instruments Deutschland Gmbh | Elektronische Vorrichtung und Verfahren zur chipintegrierten Zeitversatzmessung |
US8232748B2 (en) * | 2009-01-26 | 2012-07-31 | Accuray, Inc. | Traveling wave linear accelerator comprising a frequency controller for interleaved multi-energy operation |
US8514007B1 (en) * | 2012-01-27 | 2013-08-20 | Freescale Semiconductor, Inc. | Adjustable power splitter and corresponding methods and apparatus |
US9429624B2 (en) * | 2014-04-17 | 2016-08-30 | Colin Patrick O'Flynn | Synchronous sampling of internal state for investigation of digital systems |
US9774299B2 (en) * | 2014-09-29 | 2017-09-26 | Nxp Usa, Inc. | Modifiable signal adjustment devices for power amplifiers and corresponding methods and apparatus |
JP6662549B2 (ja) * | 2016-11-21 | 2020-03-11 | 住友重機械イオンテクノロジー株式会社 | イオン注入方法およびイオン注入装置 |
KR20180058243A (ko) * | 2016-11-23 | 2018-06-01 | 주식회사 현택 | 선형가속기의 rf 파워 모니터링 시스템 |
-
2020
- 2020-01-09 US US16/738,021 patent/US10943767B1/en active Active
- 2020-12-11 KR KR1020227026492A patent/KR20220123438A/ko not_active Application Discontinuation
- 2020-12-11 CN CN202080092177.2A patent/CN114946276B/zh active Active
- 2020-12-11 WO PCT/US2020/064441 patent/WO2021141722A1/en active Application Filing
- 2020-12-11 JP JP2022541801A patent/JP7422882B2/ja active Active
- 2020-12-28 TW TW109146519A patent/TWI767479B/zh active
Also Published As
Publication number | Publication date |
---|---|
JP2023510256A (ja) | 2023-03-13 |
JP7422882B2 (ja) | 2024-01-26 |
CN114946276B (zh) | 2024-07-16 |
TW202143279A (zh) | 2021-11-16 |
WO2021141722A1 (en) | 2021-07-15 |
US10943767B1 (en) | 2021-03-09 |
CN114946276A (zh) | 2022-08-26 |
TWI767479B (zh) | 2022-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20220123438A (ko) | 이온 주입 시스템 | |
JP6977212B2 (ja) | 構成可能な線形加速器システム及び方法 | |
US4220854A (en) | Method for the contactless measurement of the potential waveform in an electronic component and apparatus for implementing the method | |
JP3761223B2 (ja) | 四重極イオントラップ内での周波数変調を利用した選択イオン分離方法 | |
KR20220082902A (ko) | 이온 주입 시스템 및 이와 함께 사용하기 위한 모니터링 회로 | |
US20060262889A1 (en) | Synchronous undersampling for high-frequency voltage and current measurements | |
EP1222680A2 (en) | Methods and apparatus for driving a quadrupole ion trap device | |
CA3166860A1 (en) | Time-domain analysis of signals for charge detection mass spectrometry | |
JP2023519205A (ja) | 線形加速器のための制御装置及び制御技術並びに線形加速器を有するイオン注入装置 | |
Klingbeil | A fast DSP-based phase-detector for closed-loop RF control in synchrotrons | |
EP0304525A1 (en) | Pulsed microfocused ion beams | |
RU2222025C2 (ru) | Устройство и способ преобразования потока носителей заряда в частотный сигнал | |
US3920985A (en) | Means for effecting improvements to mass spectrometers and mass filters | |
JP2001351570A (ja) | 飛行時間型質量分析装置 | |
JP5293562B2 (ja) | イオントラップ質量分析装置 | |
JPH1027570A (ja) | 四重極質量分析装置 | |
Steinmann et al. | Continuous Bunch-by-Bunch Reconstruction of Short Detector Pulses | |
RU2785815C1 (ru) | Система и способ для настраиваемых линейных ускорителей | |
Revol et al. | Diagnostics and equipments for single bunch operation at ESRF | |
Bruker et al. | Beam test of a harmonic kicker cavity | |
JPWO2020166111A1 (ja) | 質量分析装置 | |
JPH06168799A (ja) | タイミング制御装置 | |
JP2012169175A (ja) | 四重極型質量分析装置 | |
JPH09171088A (ja) | 時間間隔測定器及びこれを用いた時間間隔測定方法 | |
Uzun et al. | An FPGA-based transverse multibunch feedback system for Diamond Light Source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal |