TWI767479B - 離子植入系統 - Google Patents

離子植入系統 Download PDF

Info

Publication number
TWI767479B
TWI767479B TW109146519A TW109146519A TWI767479B TW I767479 B TWI767479 B TW I767479B TW 109146519 A TW109146519 A TW 109146519A TW 109146519 A TW109146519 A TW 109146519A TW I767479 B TWI767479 B TW I767479B
Authority
TW
Taiwan
Prior art keywords
analog
delay
digital converter
output
controller
Prior art date
Application number
TW109146519A
Other languages
English (en)
Other versions
TW202143279A (zh
Inventor
基斯 E 卡威爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=74851805&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI767479(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202143279A publication Critical patent/TW202143279A/zh
Application granted granted Critical
Publication of TWI767479B publication Critical patent/TWI767479B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/04Generating or distributing clock signals or signals derived directly therefrom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32146Amplitude modulation, includes pulsing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/14Vacuum chambers
    • H05H7/18Cavities; Resonators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/22Details of linear accelerators, e.g. drift tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/02Circuits or systems for supplying or feeding radio-frequency energy
    • H05H2007/025Radiofrequency systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Particle Accelerators (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measurement Of Radiation (AREA)

Abstract

公開一種用於測量及控制進入類比波形的相位的系統。 具體而言,公開一種離子植入系統。所述系統包括:類比-數位轉換器,將進入類比波形轉換成數位化表示。所述系統還包括:時鐘延遲產生器,允許向ADC的取樣時鐘中引入可編程的延遲量。所述系統還包括:控制器,操縱由時鐘延遲產生器使用的延遲並存儲來自ADC的輸出。控制器然後可使用數位化表示確定進入類比波形的頻率、進入類比波形的相位漂移及進入類比波形相對於主時鐘的相位。控制器然後可響應於這些確定而修改射頻產生器的輸出。

Description

離子植入系統
本公開的實施例涉及系統,所述系統用於將從直線加速器(linear accelerator,LINAC)諧振器元件接收的類比波形數位化、檢測此類比波形的頻率及相位、以及控制此波形的頻率及相位。
半導體器件的製作涉及多個離散且複雜的製程。在這些製程中的一些製程中,使離子朝工件加速。可以若干種方式來加速這些離子。舉例來說,通常使用電場來吸引並加速帶正電荷的離子。
在某些實施例中,可使用直線加速器(或LINAC)來加速這些離子。在某些實施例中,LINAC包括多個射頻(radio frequency,RF)空腔,所述多個射頻腔室各自用於進一步加速從中穿過的離子。當射頻空腔中的每一者在其相應的共振頻率下被供能時,LINAC可最佳地運行。
雖然LINAC用於加速離子,但存在與LINAC的使用相關聯的挑戰。舉例來說,在某些實施例中,可以彼此固定的時間 關係對空腔供能,從而使每一相應諧振器的效果最大化。然而,建立並維持這種時間關係可能是困難的。
因此,對施加到LINAC的每一空腔的電壓及所得的諧振輸出進行監測可能是有利的。此外,隨著時間的推移監測輸入電壓相位的能力可能有助於使LINAC的性能最大化。然而,監測這些訊號的相位可能是困難的。
因此,如果存在能夠數位化地測量與LINAC的每一空腔相關聯的類比電壓和/或電流的相位及頻率的系統,則這將是有利的。如果此系統能夠使用傳統的類比-數位轉換器(analog to digital converter)實現亞納秒解析度,則這將是有益的。
公開一種用於測量及控制進入類比波形(incoming analog waveform)的相位的系統。所述系統包括:類比-數位轉換器,將進入類比波形轉換成數位化表示。所述系統還包括:時鐘延遲產生器,允許向ADC的取樣時鐘中引入可編程的延遲量。所述系統還包括:控制器,操縱由時鐘延遲產生器使用的延遲並存儲來自ADC的輸出。所述控制器然後可使用數位化表示確定進入類比波形的頻率、進入類比波形的相位漂移及進入類比波形相對於主時鐘的相位。所述控制器然後可響應於這些確定而修改射頻產生器的輸出。
根據一個實施例,公開一種離子植入系統。所述離子植 入系統包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;拾波回路(pickup loop),靠近所述空腔中的一者設置;類比-數位轉換器(ADC),包括輸入、輸出以及取樣時鐘,所述輸入包括從所述拾波回路生成的進入類比波形;時鐘延遲產生器,包括輸入時鐘、控制輸入及輸出,所述控制輸入確定延遲量,所述輸出包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件,其中所述控制器:存儲來自所述類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述進入類比波形的數位化表示為止。在某些實施例中,所述數位化表示的解析度小於一納秒。在一些實施例中,所述類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。在某些實施例中,所述離子植入系統還包括第二類比-數位轉換器,所述第二類比-數位轉換器包括:輸入,包括從所述拾波回路生成的進入類比波形;輸出;以及第二取樣時鐘,其中所述第二取樣時鐘的相位與所述取樣時鐘不同。在某些實施例中,所述離子植入系統包括射頻(radio frequency,RF)產生器,其中所述控制器基於所述數位化表示修改所述射頻產生器的所述輸出。在某些實施例中,所述控制器使用所述數位化表示確定所述進入類比波形的相位漂移並調整所述射頻產生器的頻率或振幅以修正所述相位漂移。在某些實施例中,所述控制器測量主時鐘與所述進 入類比波形之間的相位延遲並調整所述射頻產生器的頻率或振幅以獲得期望的相位延遲。在某些實施例中,所述離子植入系統包括全域控制器,且所述數位化表示被傳送到所述全域控制器進行分析。
根據另一實施例,公開一種離子植入系統。所述離子植入系統包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;射頻產生器,供應電訊號以對所述一個或多個空腔中的一者中的勵磁線圈進行勵磁;類比-數位轉換器(ADC),包括輸入、輸出以及取樣時鐘,所述輸入包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓;時鐘延遲產生器,包括輸入時鐘、控制輸入及輸出,所述控制輸入確定延遲量,所述輸出包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件,其中所述控制器:存儲來自所述類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述類比勵磁電壓的數位化表示為止。在某些實施例中,所述控制器使用所述數位化表示確定所述類比勵磁電壓的相位漂移並調整所述射頻產生器的頻率或振幅以修正所述相位漂移。在一些實施例中,所述控制器測量主時鐘與所述數位化表示之間的相位延遲並調整所述射頻產生器的頻率或振幅以獲得期望的相位延遲。在一些實施例中,所述數位化表示的解析度小於一納秒。在某些實施例中, 所述類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。
根據另一實施例,公開一種離子植入系統。所述離子植入系統包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;射頻產生器,供應電訊號以對所述一個或多個空腔中的一者中的勵磁線圈進行勵磁;拾波回路,靠近所述空腔中的一者設置;類比-數位轉換器(ADC),包括輸入、輸出以及取樣時鐘,所述輸入包括進入類比波形;時鐘延遲產生器,包括輸入時鐘、控制輸入及輸出,控制輸入確定延遲量,所述輸出包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件。在某些實施例中,所述離子植入系統包括類比多路複用器,所述類比多路複用器具有與所述類比-數位轉換器的所述輸入連通的輸出,並具有兩個輸入:第一輸入,包括從所述拾波回路生成的進入類比波形;以及第二輸入,包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓。在某些實施例中,所述離子植入系統包括:第二類比-數位轉換器(ADC),包括輸入、輸出以及取樣時鐘,所述輸入包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓;第二時鐘延遲產生器,包括輸入時鐘、控制輸入及輸出,所述控制輸入確定延遲量,所述輸出包括所述第二類比-數位轉換器的所述取樣時鐘,其中所述第二類比-數位轉換器的所述輸出包括所述控制器的輸入,且其中所述類比-數位轉換器的所述 輸入包括從所述拾波回路生成的進入類比波形。在某些實施例中,所述控制器:存儲來自所述類比-數位轉換器的所述輸出及來自所述第二類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量及由所述第二時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述進入類比波形的數位化表示及所述類比勵磁電壓的數位化表示。在某些實施例中,所述控制器使用所述數位化表示確定所述進入類比波形與所述類比勵磁電壓之間的相位差,並基於所述相位差調整所述射頻產生器的頻率或振幅。在某些實施例中,所述數位化表示的解析度小於一納秒。在某些實施例中,所述類比-數位轉換器及所述第二類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。
1:離子植入系統
10:離子源
20:電極
30:質量分析器
40:直線加速器
41:空腔/諧振空腔
42:共振器線圈
43:加速器電極
44:射頻產生器
45:勵磁線圈
46:調諧器葉片
47:電流-電壓轉換器
50:工件
90:全域控制器
91、151:處理單元
92、152:存儲器器件
100:監測及控制電路
101:拾波回路
110:前置放大器
111、116、123、131、154:輸出
114:類比多路複用器
115:過零檢測器
120:時鐘延遲產生器
121:時鐘訊號
122:控制訊號
130:類比-數位轉換器
150:控制器
153:第二存儲器器件
155:第二輸出
300、310、320、330、340、500、510、530、600、610、620、630、640:框
915:第二過零檢測器
920:第二時鐘延遲產生器
930:第二類比-數位轉換器
為了更好地理解本公開,參考併入本文中供參考的附圖,且在附圖中:
圖1示出根據一個實施例的利用直線加速器(或LINAC)的離子植入系統的方塊圖。
圖2示出根據一個實施例的監測及控制電路。
圖3示出用於生成具有亞納秒解析度的數位化波形的序列。
圖4A到圖4F示出使用圖3所示序列生成數位化波形。
圖5示出用於確定及控制諧振器線圈的頻率的序列。
圖6示出用於確定及控制諧振器線圈的相位的序列。
圖7A到7B示出圖6所示序列在兩個不同場景中的結果。
圖8示出根據第二實施例的監測及控制電路。
圖9示出根據第三實施例的監測及控制電路。
如上文所述,直線加速器可用於朝工件加速離子。圖1示出離子植入系統1。離子植入系統1包括離子源10。離子源10可為任何適合的離子源,例如但不限於間接加熱式陰極(indirectly heated cathode,IHC)源、伯納斯(Bernas)源、電容耦合等離子體源、電感耦合等離子體源或任何其他適合的器件。離子源10具有孔口,可透過所述孔口從離子源10提取離子。可透過對靠近提取孔口設置在離子源10之外的一個或多個電極20施加負電壓來從離子源10提取這些離子。可對電極20加以脈衝以使得離子在特定的時間離開。離開的離子群組可被稱為束(bunch)。
然後,離子可進入質量分析器30,質量分析器30可為允許具有特定質荷比(mass to charge ratio)的離子穿過的磁體。此質量分析器30用於僅分離出所期望的離子。然後,所期望的離子進入直線加速器40。
直線加速器40包括一個或多個空腔41。每一空腔41包括共振器線圈42,可透過勵磁線圈45所生成的電磁場對共振器線圈42供能。勵磁線圈45與相應的共振器線圈42一起設置在空腔 41中。勵磁線圈45由勵磁電壓供能,所述勵磁電壓可為射頻訊號。相應的射頻產生器44可供應所述勵磁電壓。換句話說,施加到每一勵磁線圈45的勵磁電壓可獨立於供應給任何其他勵磁線圈45的勵磁電壓。每一勵磁電壓優選地被調製成處於其相應空腔41的共振頻率下。與射頻產生器44連通的監測及控制電路100可確定及改變勵磁電壓的振幅及相位。透過在空腔41中設置共振器線圈42,可在保持勵磁電壓的振幅相同的同時增大勵磁電壓的振幅或使勵磁電壓相移。
在每一空腔41內可存在相應的調諧器葉片46。調諧器葉片46可與致動器連通以修改調諧器葉片46在空腔41內的位置。調諧器葉片46的位置可影響空腔41的共振頻率。所述致動器可由監測及控制電路100控制。
當對勵磁線圈45施加勵磁電壓時,在共振器線圈42上會感應到電壓。結果是每一空腔41中的共振器線圈42由正弦電壓驅動。每一共振器線圈42可與相應的加速器電極43電連通。離子穿過每一加速器電極43中的孔口。
對束進入到特定加速器電極43中的時間進行計時,以使得當束接近時加速器電極43的電勢為負,但當束穿過加速器電極43時切換為正。如此一來,束在進入加速器電極43時被加速,且所述束在離開時受推斥。此使得束加速。針對直線加速器40中的每一加速器電極43重複進行此過程。每一加速器電極增大離子的加速度且可進行測量。
在束離開直線加速器40時,所述束被植入到工件50中。
當然,離子植入系統1可包括其他組件,例如用於生成帶狀射束的靜電掃描儀、四極元件、用於使射束加速或減速的額外電極、及其他元件。
在某些實施例中,離子植入系統1還包括監測及控制電路100。在某些實施例中,每一空腔41具有單獨的監測及控制電路100。圖1僅示出單個監測及控制電路100。然而,這些組件可重複出現在每一空腔41中。舉例來說,每一空腔41可與相應的射頻產生器44、以及監測及控制電路100相關聯。
將每一勵磁線圈45調諧到單個諧振頻率。這是使用射頻產生器44及操縱調諧器葉片46來實現的。
監測及控制電路100包括拾波回路101,拾波回路101被設置成靠近空腔41中的一者或位於空腔41中的一者內。在空腔41附近或在空腔41內的電磁場會在拾波回路101上感應到正弦電壓。拾波回路101可簡單地是回線(looped wire)或印刷電路板。
在某些實施例中,使用電流-電壓轉換器47將射頻產生器44供應到勵磁線圈45的電流轉換成電壓。
還示出全域控制器90。全域控制器90可與多個監測及控制電路100連通。全域控制器90可生成由離子植入系統1的其餘部分使用的主時鐘。全域控制器90可包括處理單元91及存儲器器件92。處理單元91可為微處理器、訊號處理器、定制的現場可 編程門陣列(Field Programmable Gate Array,FPGA)或另一適合的單元。此存儲器器件92可為非易失性存儲器,例如快閃只讀存儲器(read only memory,ROM)、電可擦除ROM或其他適合的器件。在其他實施例中,存儲器器件92可為易失性存儲器,例如隨機存取存儲器(Random Access Memory,RAM)或動態隨機存取存儲器(Dynamic Random Access Memory,DRAM)。存儲器器件92包含使得全域控制器90能夠實行本文中所述的任務的指令。
圖2示出監測及控制電路100的第一實施例。
監測及控制電路100包括前置放大器(pre-amplifier)110。前置放大器110用於放大在拾波回路101上感應到的正弦訊號。舉例來說,前置放大器110的輸出111可為0伏到10伏之間或+5伏與-5伏之間的電壓。在其他實施例中,前置放大器110的輸出111可具有不同的電壓範圍。此輸出111可被稱為進入類比波形。
前置放大器110的輸出111可用作類比-數位轉換器(ADC)130的輸入。類比-數位轉換器130對從前置放大器110接收的進入類比波形進行取樣並產生此類比波形的數位化表示。在某些實施例中,數位化表示可為8位、12位或16位表示。類比-數位轉換器130基於來自時鐘延遲產生器120的輸出123對類比波形進行取樣。
另外,前置放大器110的輸出111可用作過零檢測器(zero-crossing detector)115的輸入。過零檢測器115可使用運算 放大器(Operation Amplifiers,op-amps)、光耦合器、或任何其他適合的方法來構造。過零檢測器115生成具有每次進入類比波形在正方向或負方向中的任一者上過零伏時的轉變的輸出116。
另外,監測及控制電路100包括控制器150。控制器150可包括處理單元151及相關聯的存儲器器件152。此存儲器器件152包含當由處理單元151執行時使控制器150能夠實行本文所述的功能的指令。處理單元151可為微處理器、訊號處理器、定制的現場可編程門陣列(FPGA)或另一適合的單元。此存儲器器件152可為非易失性存儲器,例如快閃ROM、電可擦除ROM或其他適合的器件。在其他實施例中,存儲器器件152可為易失性存儲器,例如RAM或DRAM。控制器150可包括:第二存儲器器件153,存儲從類比-數位轉換器130接收的數據;以及其他相關聯的電路系統。
舉例來說,在一個實施例中,到時鐘延遲產生器120的時鐘訊號121可為主時鐘。此主時鐘可能與進入類比波形具有已知的關係。舉例來說,主時鐘的頻率可為進入類比波形的頻率的倍數,例如2、4或另一倍數。在其他實施例中,對於進入類比波形的每一週期,可存在主時鐘的N個週期。根據實施方式而定,主時鐘的頻率可在25MHz與200MHz之間。
控制器150還向時鐘延遲產生器120提供一個或多個控制訊號122,所述一個或多個控制訊號122指示時鐘延遲產生器120要添加到時鐘訊號121的延遲量。時鐘延遲產生器120可為數 位地控制的延遲線,其中控制訊號122用於指示要添加的延遲量。舉例來說,所述多個控制訊號122可形成多位二進制值,其中此值指示延遲。在其它實施例中,可存在將串行數據流傳送到時鐘延遲產生器120的一個控制訊號。
如上所述,到時鐘延遲產生器120的時鐘訊號121可為主時鐘。控制訊號122由控制器150供應且表示要添加到輸入訊號的延遲量。最後,來自時鐘延遲產生器120的輸出123是按照控制器150規定的量延遲的時鐘訊號121。
除了向時鐘延遲產生器120提供控制訊號122之外,控制器150還從類比-數位轉換器130接收輸出131。此輸出131可存儲在第二存儲器器件153中並用於生成具有亞納秒解析度的進入類比波形的數位化版本,如以下更詳細地闡述。
最後,控制器150還可提供用於控制射頻產生器44的輸出154。可選地,控制器150還可具有用於控制調諧器葉片46的第二輸出155。如果期望的話,全域控制器90也可檢索進入類比波形的數位化版本。全域控制器90可分析數位化版本的異常,例如小故障。
控制器150假設來自拾波回路101的進入類比波形是週期性的。因此,控制器150不是試圖在一個週期期間捕獲整個波形,而是在多個週期期間捕獲波形。圖3中示出此過程且圖4A到圖4F中示出結果。
舉例來說,假設到時鐘延遲產生器120的輸入訊號是具 有比進入類比波形的頻率大N倍的頻率的主時鐘。因此,可在每一週期獲得進入類比波形的N個樣本。還假設時鐘延遲產生器120添加的延遲是最小延遲時間(或Td)的倍數。控制器150等待直到來自過零檢測器115的過零指示,如框300中所示。此用於指示收集週期的開始。在收集週期期間,控制器150將收集足夠數目的數位化樣本以重構進入類比波形。舉例來說,如果進入類比波形具有25MHz的頻率,則可使用間隔0.4納秒的100個樣本來再現進入類比波形。因此,數位化波形具有比類比-數位轉換器130的最小取樣時間小的解析度。
此外,可進一步縮短取樣時間。在一個實施例中,使用兩個或更多個類比-數位轉換器來獲得數位化樣本。可以不同的延遲來操作這兩個或更多個類比-數位轉換器,以捕獲進入類比波形的不同值。換句話說,供應到第二類比-數位轉換器的取樣時鐘的相位不同於供應到類比-數位轉換器130的取樣時鐘的相位。在另一實施例中,可使用主時鐘的兩個轉變來將類比-數位轉換器130的取樣速率加倍。此可使用一個類比-數位轉換器或利用第二類比-數位轉換器來實現,第二類比-數位轉換器對與類比-數位轉換器130相反的轉變進行取樣。這些方式可用於實現提高數位化表示的解析度、減少生成數位化表示的時間、或兩者。
最初,控制器150可將控制訊號122設定為第一延遲時間。此第一次延遲時間可表示最小允許延遲,或1 x Td。在其它實施例中,可使用不同的第一延遲時間。
因此,類比-數位轉換器130將提供等於第一延遲時間(其可為1 x Td)的時間處的進入類比波形的數位化表示。此時採集的第一樣本如圖4A中所示。控制器150可使用此第一延遲時間接收多個樣本,如框310中所示。舉例來說,控制器150可使用此延遲接收N個樣本。在此實施例中,控制器150將接收N個樣本,其值為:樣本(n)=sin(F*2*π*n/N+(1xTd)+φ),
其中F是進入類比波形的頻率,n是樣本的數目,1 x Td是由控制訊號122指示的延遲,且φ是主時鐘與過零之間的相位差。
在稍後的時間,也可同步到過零,控制器150然後可改變控制訊號122以提供不同的延遲,例如2 x Td,如框320中所示。
因此,類比-數位轉換器130然後將獲得等於F*2*π*n/N+(2xTd)+φ的時間處的進入類比波形的數位值表示。
如果主時鐘是進入類比波形的頻率的倍數,則特定樣本(sample(n))將相對於樣本(n-N)偏移正好所述兩個延遲時間的差。換句話說,在此實例中,樣本(n)相對於樣本(n-N)偏移1 x Td的相位。因此,以第二延遲採集的樣本將在時間上接近先前的樣本,如圖4B中所示。在此實例中,控制器150可使用此延遲接收N個樣本,如框330中所示。
因此,控制器150不使用絕對時間,而是使用相對時間 來生成波形(即模F*2*π)。圖4C到圖4E示出控制器150如何以分別等於3 x Td、4 x Td及5 x Td的延遲繼續重構進入類比波形。一旦已收集到足夠的樣本,收集週期即告完成,如框340中所示。
以這種方式,可生成具有亞納秒解析度的進入類比波形的數位版本,如圖4F中所示。
此外,雖然圖4A到圖4E示出對於每一延遲時間僅添加一個樣本,但應理解,如果主時鐘處於比進入類比波形高的頻率下,則可添加多於一個樣本。
舉例來說,假設進入類比波形的頻率為25MHz且主時鐘的頻率為100MHz,因此N=4。假設主時鐘之間的相位差給出為φ。同時假設最小時延為0.5ns。因此,在過零之後,控制器150將捕獲4個樣本:樣本(n)=sin(F*2*π*n/N+(1*Td)+φ),減小到sin(2*π*n/4+0.5ns+φ)。
因此,前4個樣本可給出如下:樣本(1)=sin(π/2+0.5ns+φ);樣本(2)=sin(π+0.5ns+φ);樣本(3)=sin(3π/2+0.5ns+φ);以及樣本(4)=sin(2π+0.5ns+φ)。
然後將延遲改變為2*Td或1.0ns。因此,接下來的四個樣本可給出如下:樣本(5)=sin(π/2+1.0ns+φ); 樣本(6)=sin(π+1.0ns+φ);樣本(7)=sin(3π/2+1.0ns+φ);以及樣本(8)=sin(2π+1.0ns+φ)。
這一直持續到延遲達到π/2,此時波形中的所有點都將被填充。
控制器150可將這些數位值中的每一者存儲在第二存儲器153中。在某些實施例中,將數位值存儲在指示其在波形期間的時間的地址處的位置中。以這種方式,可按時間次序存儲數位化樣本。
此外,在某些實施例中,時鐘延遲產生器120可能能夠引入至少與進入類比波形的週期除以N一樣大的延遲。
因此,假設主時鐘以比進入類比波形的頻率大4倍的頻率工作,控制器150可能能夠在小如進入類比波形的25個週期內產生具有100個樣本的數位化波形。如果進入類比波形的頻率為12.5MHz,則這意味著樣本隔開約0.8納秒。如果使用200個樣本來生成數位化波形,則這些樣本可隔開0.4納秒。
因此,數位化的樣本以亞納秒的解析度非常精確地表示進入類比波形。
可以多種方式使用這種數位化波形。首先,數位化波形提供對進入類比波形的週期的非常精確的確定。因此,如果進入類比波形的週期不是預期的週期,則控制器150可操縱輸出154以改變射頻產生器44的頻率。控制器150然後可再次重複上述過 程以確定進入類比波形的新週期。
因此,在一個實施例中,使用數位化波形驗證進入類比波形的頻率。圖5中示出序列。首先,如框500中所示,例如使用圖3中所示的序列來收集數位化波形。接下來,確定數位化波形的週期,如框510中所示。這可透過計算兩個過零之間的樣本的數目、兩個峰值之間的樣本的數目,或使用另一個參數來完成。然後,基於主時鐘的頻率將樣本的數目轉換成時間或頻率。控制器150然後可判斷頻率是否正確。如果頻率正確,則不進行進一步的動作且過程完成,如框530中所示。然而,如果頻率不正確,則控制器150可操縱輸出154以改變射頻產生器44的頻率,如框520中所示。在穩定時間之後,控制器150然後重複此過程,直到頻率正確為止。
另外,控制器150可使用數位化樣本來檢測小的相移或漂移。圖6示出控制器150用於確定進入類比波形的相移的序列。首先,如框600中所示,控制器150可獲得第一數位化波形,如圖3中所闡釋。然後,控制器150可等待預定時間。控制器150然後獲得第二數位化波形,如框610中所示。控制器150然後計算這兩個數位化波形之間的相位差,如框620中所示。舉例來說,如果進入類比波形的頻率正好等於主時鐘的1/N,則兩個數位化波形將是相同的(考慮到雜訊)。然而,如果進入類比波形的頻率不正好等於主時鐘的1/N,則第一數位化樣本與第二數位化樣本的開始相位將不同。此外,第一數位化波形的峰值及過零將不在與第 二數位化波形的峰值及過零相同的位置中。在一個實施例中,控制器150確定所述兩個數位化波形之間的偏移隨著樣本的數目而變化。樣本的數目之差乘以主時鐘的週期表示所述兩個數位化波形之間的相位差。如果相位匹配,如圖7B中所示,則不採取進一步的動作且序列完成,如框640中所示。如果相位不匹配,如圖7A中所示,則控制器150可改變射頻產生器44的頻率或振幅,如框630中所示。在穩定時間之後,控制器150然後重複此過程,直到頻率正確為止。
另外,控制器150還可調節進入類比波形相對於主時鐘的相位。如上文所述,對束進入到特定加速器電極43中的時間進行計時,以使得在束接近時加速器電極43的電勢為負,但當束穿過加速器電極43時切換為正。如此一來,束在進入加速器電極43時被加速,且所述束在離開時受推斥。為將此效果最大化,需要使每一加速器電極43的相位恰當地關聯。
因此,控制器150可利用數位化波形來確定感應到的電壓的相位。舉例來說,可將數位化波形與主時鐘訊號進行比較以確定相位。
換言之,在過零之後,控制器150透過使到時鐘延遲產生器120的延遲時間變化來收集數位化波形。然而,數位化波形的開始反映進入類比波形的具有最小延遲時間的值。然後可使用此值來確定當時數位化表示的相位。已知進入類比波形的頻率及振幅,可根據相位=sin-1(值/A)容易地找到數位化表示中任何點 的相位,其中值是數位化波形的值且A是最大振幅。此相位可基於進入類比波形的頻率轉換成絕對時間延遲。作為另外一種選擇,也可使用直到下一個過零的樣本的數目來確定主時鐘與進入類比波形之間的相位延遲(或相位超前)。
每一控制器150可由所期望相位的全域控制器90指導。控制器150然後試圖實現此階段。舉例來說,控制器150可調整的射頻產生器44的頻率。在另一實施例中,控制器150可修改調諧器葉片46在空腔41中的位置,以調整感應到的電壓的所期望的相位。
儘管以上說明闡述了監測及控制電路100針對從拾波回路101接收的進入類比波形的操作,但也可具有額外特徵。
舉例來說,監測及控制電路100還可對輸送到勵磁線圈45的勵磁電流進行監測。首先,如上所述,使用電流-電壓轉換器47將電流轉換成電壓。然後將類比勵磁電壓作為輸入提供到監測及控制電路100。然後可以與上述針對來自拾波回路101的類比波形的方式相同的方式將類比勵磁電壓數位化。這可以各種方式實現。
首先,如圖8中所示,可使用類比多路複用器114在來自拾波回路101的進入類比波形與來自電流-電壓轉換器47的類比勵磁電壓之間進行選擇。因此,控制器150可透過操縱到類比多路複用器114的選擇輸入來選擇所述兩個輸入中的一者。控制器150然後可透過操縱類比多路複用器114來產生這兩個類比波 形的數位化表示。
作為另外一種選擇,如圖9中所示,可包括第二類比-數位轉換器930、第二時鐘延遲產生器920及第二過零檢測器915,以允許監測及控制電路100將類比勵磁電壓數位化。可以與上述相同的方式來完成此數位化。
可使用數位化的勵磁電壓來查找射頻產生器44的頻率並確定類比勵磁電壓相對於主時鐘的相位。可使用上述針對圖5及圖6的算法獲得頻率及相位訊息。
另外,控制器150還可將來自拾波回路101的進入類比波形與類比勵磁電壓進行比較。舉例來說,可使用上述技術來確定類比勵磁電壓與來自拾波回路101的進入類比波形之間的相位差。在一個實施例中,透過確定每一訊號相對於主時鐘的相位差來計算這兩個波形之間的相位差。在另一實施例中,透過比較所述兩個數位化表示來計算這兩個波形之間的相位差。此相位差可用於控制射頻產生器44的振幅和/或頻率。
以上公開闡述了正常操作。然而,還可考慮其他因素。舉例來說,數位化波形可指示發生小故障。在小故障的情況下,控制器150可向全域控制器90提供訊息。全域控制器90可指示控制器150重新校準諧振空腔41或採取一些其它動作。
另外,溫度變化、空腔真空及振動可影響空腔41的固有諧振頻率。控制器150可連續監測進入類比波形的頻率及相位。進入類比波形最大振幅的相位或頻率的改變可能指示固有共振頻 率的漂移。控制器150可發起修正動作。舉例來說,在一個實施例中,控制器150可移動空腔41中的調諧器葉片46以重新獲取諧振頻率。控制器150可向全域控制器90報告諧振頻率中的任何改變。全域控制器90然後可指導控制器150採取一些修正動作。
當前系統有許多優點。以亞納秒解析度監測進入類比訊號的能力,允許數位控制器做出各種決定並採取各種修正動作。先前,可使用類比電路系統來確定相位,必須對相位進行校準及重新校準,從而降低其精度。此外,這種方式允許捕獲進入類比波形的一個或多個週期並分析異常,例如小故障。亞納秒解析度還允許控制器觀察到小於1納秒的相位漂移。因此,可提高LINAC的精度及效率。
本公開的範圍不受本文所述具體實施例限制。實際上,透過閱讀以上說明及附圖,對所屬領域中的普通技術人員來說,除本文所述實施例及修改以外的本公開其他各種實施例及對本公開的各種修改也將顯而易見。因此,這些其他實施例及修改都旨在落於本公開的範圍內。此外,儘管本文中已在用於具體目的的具體環境中的具體實施方式的上下文中闡述了本公開,但所屬領域中的普通技術人員將認識到,其適用性並不僅限於此且本公開可出於任意數目的目的而有益地實施於任意數目的環境中。因此,所附的發明申請專利範圍應根據本文所述本公開的全部廣度及精神來加以解釋。
1:離子植入系統
10:離子源
20:電極
30:質量分析器
40:直線加速器
41:空腔/諧振空腔
42:共振器線圈
43:加速器電極
44:射頻產生器
45:勵磁線圈
46:調諧器葉片
47:電流-電壓轉換器
50:工件
90:全域控制器
91:處理單元
92:存儲器器件
100:監測及控制電路
101:拾波回路

Claims (20)

  1. 一種離子植入系統,包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;拾波回路,靠近所述空腔中的一者設置;類比-數位轉換器,包括:輸入,包括從所述拾波回路生成的進入類比波形;輸出;以及取樣時鐘;時鐘延遲產生器,包括:輸入時鐘;控制輸入,確定延遲量;以及輸出,包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件,其中所述控制器:存儲來自所述類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述進入類比波形的數位化表示為止。
  2. 如請求項1所述的離子植入系統,其中所述數位化表示的解析度小於一納秒。
  3. 如請求項2所述的離子植入系統,其中所述類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。
  4. 如請求項1所述的離子植入系統,還包括第二類比-數位轉換器,所述第二類比-數位轉換器包括:輸入,包括從所述 拾波回路生成的所述進入類比波形;輸出;以及第二取樣時鐘,其中所述第二取樣時鐘的相位與所述取樣時鐘不同。
  5. 如請求項1所述的離子植入系統,還包括射頻產生器,其中所述控制器基於所述數位化表示修改所述射頻產生器的輸出。
  6. 如請求項5所述的離子植入系統,其中所述控制器使用所述數位化表示確定所述進入類比波形的相位漂移並調整所述射頻產生器的頻率或振幅以修正所述相位漂移。
  7. 如請求項5所述的離子植入系統,其中所述控制器測量主時鐘與所述進入類比波形之間的相位延遲並調整所述射頻產生器的頻率或振幅以獲得期望的相位延遲。
  8. 如請求項1所述的離子植入系統,還包括全域控制器,且其中所述數位化表示被傳送到所述全域控制器進行分析。
  9. 一種離子植入系統,包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;射頻產生器,供應電訊號以對所述一個或多個空腔中的一者中的勵磁線圈進行勵磁;類比-數位轉換器,包括:輸入,包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓;輸出;以及取樣時鐘;時鐘延遲產生器,包括:輸入時鐘;控制輸入,確定延遲量; 以及輸出,包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件,其中所述控制器:存儲來自所述類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述類比勵磁電壓的數位化表示為止。
  10. 如請求項9所述的離子植入系統,其中所述控制器使用所述數位化表示確定所述類比勵磁電壓的相位漂移並調整所述射頻產生器的頻率或振幅以修正所述相位漂移。
  11. 如請求項9所述的離子植入系統,其中所述控制器測量主時鐘與所述數位化表示之間的相位延遲並調整所述射頻產生器的頻率或振幅以獲得期望的相位延遲。
  12. 如請求項9所述的離子植入系統,其中所述數位化表示的解析度小於一納秒。
  13. 如請求項12所述的離子植入系統,其中所述類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。
  14. 一種離子植入系統,包括:離子源,產生離子;直線加速器,使所述離子朝工件加速,其中所述直線加速器包括一個或多個空腔;射頻產生器,供應電訊號以對所述一個或多個空腔中的一者 中的勵磁線圈進行勵磁;拾波回路,靠近所述空腔中的一者設置;類比-數位轉換器,包括:輸入,包括進入類比波形;輸出;以及取樣時鐘;時鐘延遲產生器,包括:輸入時鐘;控制輸入,確定延遲量;以及輸出,包括所述類比-數位轉換器的所述取樣時鐘;以及控制器,包括處理單元及存儲器器件。
  15. 如請求項14所述的離子植入系統,還包括類比多路複用器,所述類比多路複用器具有與所述類比-數位轉換器的所述輸入連通的輸出,並具有兩個輸入:第一輸入,包括從所述拾波回路生成的所述進入類比波形;以及第二輸入,包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓。
  16. 如請求項14所述的離子植入系統,還包括:第二類比-數位轉換器,包括:輸入,包括能夠代表被供應到所述勵磁線圈的所述電訊號的類比勵磁電壓;輸出;以及取樣時鐘;第二時鐘延遲產生器,包括:輸入時鐘;控制輸入,確定延遲量;以及輸出,包括所述第二類比-數位轉換器的所述取樣時鐘,其中所述第二類比-數位轉換器的所述輸出包括所述控制器的輸入,且其中所述類比-數位轉換器的所述輸入包括從所述拾波回路生成的所述進入類比波形。
  17. 如請求項16所述的離子植入系統,其中所述控制器:存儲來自所述類比-數位轉換器的所述輸出及來自所述第二類比-數位轉換器的所述輸出;調整由所述時鐘延遲產生器使用的所述延遲量及由所述第二時鐘延遲產生器使用的所述延遲量;以及重複地存儲所述輸出及調整所述延遲量,直到在所述存儲器器件中生成所述進入類比波形及所述類比勵磁電壓的數位化表示為止。
  18. 如請求項17所述的離子植入系統,其中所述控制器使用所述數位化表示確定所述進入類比波形與所述類比勵磁電壓之間的相位差,並基於所述相位差調整所述射頻產生器的頻率或振幅。
  19. 如請求項17所述的離子植入系統,其中所述數位化表示的解析度小於一納秒。
  20. 如請求項19所述的離子植入系統,其中所述類比-數位轉換器及所述第二類比-數位轉換器的最大取樣速率小於所述數位化表示的所述解析度。
TW109146519A 2020-01-09 2020-12-28 離子植入系統 TWI767479B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/738,021 2020-01-09
US16/738,021 US10943767B1 (en) 2020-01-09 2020-01-09 Digital sampling to control resonator frequency and phase in a LINAC

Publications (2)

Publication Number Publication Date
TW202143279A TW202143279A (zh) 2021-11-16
TWI767479B true TWI767479B (zh) 2022-06-11

Family

ID=74851805

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146519A TWI767479B (zh) 2020-01-09 2020-12-28 離子植入系統

Country Status (6)

Country Link
US (1) US10943767B1 (zh)
JP (1) JP7422882B2 (zh)
KR (1) KR20220123438A (zh)
CN (1) CN114946276A (zh)
TW (1) TWI767479B (zh)
WO (1) WO2021141722A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11555791B2 (en) * 2019-12-03 2023-01-17 Corning Incorporated Chamber for vibrational and environmental isolation of thin wafers
US11476087B2 (en) * 2020-08-03 2022-10-18 Applied Materials, Inc. Ion implantation system and linear accelerator having novel accelerator stage configuration
US11825590B2 (en) * 2021-09-13 2023-11-21 Applied Materials, Inc. Drift tube, apparatus and ion implanter having variable focus electrode in linear accelerator
US11856685B2 (en) 2021-09-20 2023-12-26 Applied Materials, Inc. Stiffened RF LINAC coil inductor with internal support structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040227106A1 (en) * 2003-05-13 2004-11-18 Halling Alfred M. System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway
US6903349B2 (en) * 2002-11-11 2005-06-07 Applied Materials, Inc. Ion implanter and a method of implanting ions
US20070164237A1 (en) * 2006-01-18 2007-07-19 Axcelis Technologies, Inc. Application of digital frequency and phase synthesis for control of electrode voltage phase in a high-energy ion implantation machine, and a means for accurate calibration of electrode voltage phase
US20080128641A1 (en) * 2006-11-08 2008-06-05 Silicon Genesis Corporation Apparatus and method for introducing particles using a radio frequency quadrupole linear accelerator for semiconductor materials
US9219453B2 (en) * 2012-01-27 2015-12-22 Freescale Semiconductor, Inc. Phase shift and attenuation circuits for use with multiple-path amplifiers
US9429624B2 (en) * 2014-04-17 2016-08-30 Colin Patrick O'Flynn Synchronous sampling of internal state for investigation of digital systems
TW201820421A (zh) * 2016-11-21 2018-06-01 日商住友重機械離子科技股份有限公司 離子植入方法及離子植入裝置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653803B1 (en) 2000-05-30 2003-11-25 Axcelis Technologies, Inc. Integrated resonator and amplifier system
US6949895B2 (en) * 2003-09-03 2005-09-27 Axcelis Technologies, Inc. Unipolar electrostatic quadrupole lens and switching methods for charged beam transport
DE102007027069B3 (de) * 2007-06-12 2008-10-23 Texas Instruments Deutschland Gmbh Elektronische Vorrichtung und Verfahren zur chipintegrierten Zeitversatzmessung
US9774299B2 (en) * 2014-09-29 2017-09-26 Nxp Usa, Inc. Modifiable signal adjustment devices for power amplifiers and corresponding methods and apparatus
KR20180058243A (ko) * 2016-11-23 2018-06-01 주식회사 현택 선형가속기의 rf 파워 모니터링 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903349B2 (en) * 2002-11-11 2005-06-07 Applied Materials, Inc. Ion implanter and a method of implanting ions
US20040227106A1 (en) * 2003-05-13 2004-11-18 Halling Alfred M. System and methods for ion beam containment using localized electrostatic fields in an ion beam passageway
US20070164237A1 (en) * 2006-01-18 2007-07-19 Axcelis Technologies, Inc. Application of digital frequency and phase synthesis for control of electrode voltage phase in a high-energy ion implantation machine, and a means for accurate calibration of electrode voltage phase
US20080128641A1 (en) * 2006-11-08 2008-06-05 Silicon Genesis Corporation Apparatus and method for introducing particles using a radio frequency quadrupole linear accelerator for semiconductor materials
US9219453B2 (en) * 2012-01-27 2015-12-22 Freescale Semiconductor, Inc. Phase shift and attenuation circuits for use with multiple-path amplifiers
US9429624B2 (en) * 2014-04-17 2016-08-30 Colin Patrick O'Flynn Synchronous sampling of internal state for investigation of digital systems
TW201820421A (zh) * 2016-11-21 2018-06-01 日商住友重機械離子科技股份有限公司 離子植入方法及離子植入裝置

Also Published As

Publication number Publication date
KR20220123438A (ko) 2022-09-06
JP7422882B2 (ja) 2024-01-26
CN114946276A (zh) 2022-08-26
US10943767B1 (en) 2021-03-09
TW202143279A (zh) 2021-11-16
WO2021141722A1 (en) 2021-07-15
JP2023510256A (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
TWI767479B (zh) 離子植入系統
JP6977212B2 (ja) 構成可能な線形加速器システム及び方法
JP7373656B2 (ja) 絶縁されたライナック共振器ピックアップ回路
US8487249B2 (en) Auxiliary frequency parametric excitation of quadrupole mass spectrometers
CN110234196B (zh) 一种用于同步加速器的数字低电平系统
JP2023519205A (ja) 線形加速器のための制御装置及び制御技術並びに線形加速器を有するイオン注入装置
KR20150111275A (ko) 플라즈마 처리 장치
CA3166860A1 (en) Time-domain analysis of signals for charge detection mass spectrometry
US8723112B2 (en) Controller and control method for improving signal performance of ion cyclotron resonance mass spectrometer
Sommer et al. Interaction of rf phase modulation and coupled-bunch instabilities at the DELTA storage ring
JP5368173B2 (ja) 高周波加速装置及び環状型加速器
RU2785815C1 (ru) Система и способ для настраиваемых линейных ускорителей
JPH1027570A (ja) 四重極質量分析装置
JP5293562B2 (ja) イオントラップ質量分析装置
Podobedov Beam Dynamics Measurements with New Generation BPMs
JPH06168799A (ja) タイミング制御装置
Revol et al. Diagnostics and equipments for single bunch operation at ESRF
Kikutani et al. Front‐end electronics for the bunch feedback systems for KEKB
Kanazawaa et al. Synchronized Clock System for Acceleration Pattern Generation and its Beam Tests in HIMAC Synchrotron
Suzuki et al. Beam commissioning of the SPring-8 synchrotron
Teytelman Bunch-by-bunch feedback studies at LNLS