KR20220015353A - 열가소성 수지 조성물 - Google Patents

열가소성 수지 조성물 Download PDF

Info

Publication number
KR20220015353A
KR20220015353A KR1020210100046A KR20210100046A KR20220015353A KR 20220015353 A KR20220015353 A KR 20220015353A KR 1020210100046 A KR1020210100046 A KR 1020210100046A KR 20210100046 A KR20210100046 A KR 20210100046A KR 20220015353 A KR20220015353 A KR 20220015353A
Authority
KR
South Korea
Prior art keywords
polystyrene
polyolefin
block copolymer
resin composition
thermoplastic resin
Prior art date
Application number
KR1020210100046A
Other languages
English (en)
Inventor
박지현
임슬기
이현모
김윤곤
유승정
사석필
이기수
신은지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180059500.0A priority Critical patent/CN116134090A/zh
Priority to EP21850170.8A priority patent/EP4169982A4/en
Priority to PCT/KR2021/009957 priority patent/WO2022025696A1/ko
Priority to US18/017,021 priority patent/US20230287207A1/en
Publication of KR20220015353A publication Critical patent/KR20220015353A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Abstract

본 발명은 폴리프로필렌 및 폴리올레핀 사슬의 양 단말에 폴리스티렌 사슬이 부착된 구조의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하는 열가소성 수지 조성물에 관한 것으로, 본 발명에 따른 열가소성 수지조성물은 현저히 개선된 저온 및 상온 충격 강도 특성을 가지면서도 이와 함께 고유동 특성을 나타내어 우수한 성형 가공성을 발휘할 수 있다.

Description

열가소성 수지 조성물{Thermoplastic resin composition}
본 발명은 폴리프로필렌 및 폴리올레핀 사슬의 양 단말에 폴리스티렌 사슬이 부착된 구조의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하는 열가소성 수지 조성물에 관한 것이다.
폴리프로필렌은 강성과 성형 가공성이 우수하여 자동차용 내외장재 부품용 소재로 널리 활용되고 있지만 충격 강도가 약하다는 단점이 있어, 일반적으로 자동차 내외장재 부품용 조성물은 폴리프로필렌(PP)을 주성분으로 하여 충격 보강재와 무기충전제를 포함하는 폴리프로필렌계 수지 조성물이 사용되어 왔다.
종래 자동차 내외장재, 특히 범퍼 커버의 재료로서 대부분 폴리프로필렌계 수지 조성물에 EPR(Ethylene Propylene Rubber)이나 EPDM(ethylene propylene diene rubber)을 충격 보강재로서 주로 사용되었으며, 메탈로센 촉매에 의해 합성된 에틸렌-α-올레핀 공중합체가 등장한 이후로는 충격 보강재로서 에틸렌-α-올레핀 공중합체가 사용되기 시작하였다. 에틸렌-α-올레핀 공중합체를 사용한 폴리프로필렌계 수지 조성물은 충격 강도, 탄성률, 굴곡강도 등의 균형 잡힌 물성을 가지고 성형성이 좋으며 가격도 저렴한 장점 등을 가진다. 그러나, 에틸렌-α-올레핀 공중합체를 사용한 폴리프로필렌계 수지 조성물 역시 다양한 사용 환경에 따라 내충격성 확보에는 한계가 있다.
또한, 이외에도 스티렌계 열가소성 탄성체인 스티렌-에틸렌-부틸렌-스티렌(Styrene-Ethylene-Butylene-Styrene; SEBS)이 폴리프로필렌계 수지 조성물에 사용되었으나, SEBS는 고가이며 폴리프로필렌의 유동성을 상당히 저하시킨다는 단점이 있었다.
따라서, 폴리프로필렌의 고유동 특성을 유지하면서도 내충격성이 뛰어난 열가소성 수지 조성물의 개발이 여전히 요구되고 있는 실정이다.
한국등록특허 10-1657925
본 발명이 해결하고자 하는 과제는, 고유동 특성을 가지면서도 우수한 기계적 강도와 함께 현저히 개선된 충격 강도 특성을 나타낼 수 있는 열가소성 수지 조성물을 제공하는 것이다.
상기 과제를 해결하기 위해, 본 발명은 (1) 폴리프로필렌, 및 (2) 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)로부터 측정되는 하기 (a) 내지 (c) 조건, 및 13C NMR(500 MHz, tetrachloroethane-d2, 표준물질 TMS) 스펙트럼에서의 하기 (d) 조건을 충족하는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하는 열가소성 수지 조성물을 제공한다.
(a) 중량평균 분자량은 50,000 내지 300,000 g/mol이고,
(b) 분자량 분포는 1.5 내지 3.0이고,
(c) 겔 투과 크로마토그래피 측정 결과에 대하여, x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수가 하기 수학식 1로 표현되며, 하기 수학식 1에서, 각 상수 값은 -0.05 < A < 0.06, 4.6 < B < 5.5, 0.9 < C < 1.1, 0.5 < D < 0.9를 만족하고,
(d) 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체에 포함된 폴리올레핀 블록은 1 이상의 분지점을 포함하되, 상기 분지점 탄소 원자는 36 내지 40 ppm의 피크를 나타내고, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13 내지 15 ppm의 피크를 나타낸다.
[수학식 1]
Figure pat00001
(상기 수학식 1에서, Mw는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 중량평균 분자량을 나타냄.)
본 발명에 따른 열가소성 수지조성물은 현저히 개선된 충격 강도 특성을 가지면서도 이와 함께 고유동 특성을 나타내어 우수한 성형 가공성을 발휘할 수 있다.
도 1은 본 발명의 일 실시예에 따른 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조에 사용된 리간드 화합물의 1H NMR 및 13C NMR 스펙트럼을 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조에 사용된 전이금속 화합물의 1H NMR 및 13C NMR 스펙트럼을 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 수학식 1로 나타낸 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 이용되는 바와 같은 "조성물"이란 용어는, 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 명세서에서 이용되는 바와 같은 "중합체"란 용어는, 동일 혹은 상이한 종류이든지 간에, 단량체들을 중합함으로써 제조된 중합체 화합물을 지칭한다. 이와 같이 해서 일반 용어 중합체는, 단지 1종의 단량체로부터 제조된 중합체를 지칭하는데 통상 이용되는 단독중합체란 용어, 및 이하에 규정된 바와 같은 혼성중합체(interpolymer)란 용어를 망라한다.
본 명세서에서 이용되는 바와 같은 "혼성중합체"란 용어는, 적어도 2종의 상이한 단량체의 중합에 의해 제조된 중합체를 지칭한다. 이와 같이 해서, 일반 용어 혼성중합체는, 2종의 상이한 단량체로부터 제조된 중합체를 지칭하는데 통상 이용되는 공중합체, 및 2종 이상의 상이한 단량체로부터 제조된 중합체를 포함한다.
이하, 본 발명을 자세히 설명한다.
본 발명에 따른 열가소성 수지 조성물은, (1) 폴리프로필렌, 및 (2) 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)로부터 측정되는 하기 (a) 내지 (c) 조건, 및 13C NMR(500 MHz, tetrachloroethane-d2, 표준물질 TMS) 스펙트럼에서의 하기 (d) 조건을 충족하는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하는 것이다.
(a) 중량평균 분자량은 50,000 내지 300,000 g/mol이고,
(b) 분자량 분포는 1.5 내지 3.0이고,
(c) 겔 투과 크로마토그래피 측정 결과에 대하여, x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수가 하기 수학식 1로 표현되며, 하기 수학식 1에서, 각 상수 값은 -0.05 < A < 0.06, 4.6 < B < 5.5, 0.9 < C < 1.1, 0.5 < D < 0.9를 만족하고,
(d) 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체에 포함된 폴리올레핀 블록은 1 이상의 분지점을 포함하되, 상기 분지점 탄소 원자는 36 내지 40 ppm의 피크를 나타내고, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13 내지 15 ppm의 피크를 나타낸다.
[수학식 1]
Figure pat00002
(상기 수학식 1에서, Mw는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 중량평균 분자량을 나타냄.)
이하 각 구성 성분 별로 상세히 설명한다.
(1) 폴리프로필렌
본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물에 있어서, 상기 폴리프로필렌은 구체적으로 폴리프로필렌 단독 중합체이거나, 또는 프로필렌과 알파-올레핀 단량체와의 공중합체일 수 있으며, 이때 상기 공중합체는 교대(alternating) 또는 랜덤(random), 또는 블록(block) 공중합체일 수 있다.
상기 알파-올레핀계 단량체는 구체적으로 탄소수 2 내지 12, 또는 탄소수 2 내지 8의 지방족 올레핀일 수 있다. 보다 구체적으로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-데센(1-decene), 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센 또는 3,4-디메틸-1-헥센 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
보다 구체적으로, 상기 폴리프로필렌은 폴리프로필렌 공중합체, 프로필렌-알파-올레핀 공중합체, 및 프로필렌-에틸렌-알파-올레핀 공중합체로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물일 수 있으며, 이때 상기 공중합체는 랜덤 또는 블록 공중합체일 수 있다.
또, 상기 폴리프로필렌은 230℃ 및 2.16kg 하중에서 측정된 용융지수(MI)가 0.5 g/10min 내지 100 g/10min인 것으로, 구체적으로 상기 용융지수(MI)는 1 g/10min 내지 90 g/10min일 수 있다. 폴리프로필렌의 용융지수가 상기 범위를 벗어날 경우 상기 열가소성 수지 조성물의 사출 성형시 문제가 발생할 우려가 있다.
구체적으로, 본 발명의 일 실시예에 따른 열가소성 수지 조성물에 있어서, 상기 폴리프로필렌은 230℃ 및 2.16 kg 하중에서 측정된 용융지수(MI)가 0.5 g/10min 내지 100 g/10min, 구체적으로는 1 g/10min 내지 90 g/10min인 임팩트 코폴리머(impact copolymer)일 수 있으며, 보다 구체적으로는 프로필렌-에틸렌 임팩트 코폴리머일 수 있다. 이와 같은 물성을 갖는 임팩트 코폴리머를 폴리프로필렌으로서 상기한 함량 범위로 포함할 경우 충격 강도 특성이 향상될 수 있고, 특히 상온 강도 특성이 향상될 수 있다.
상기 임팩트 코폴리머는 상기 열가소성 수지 조성물 총 중량에 대하여 10 중량% 내지 90 중량%, 구체적으로는 20 중량% 내지 80 중량%, 더욱 구체적으로는 40 중량% 내지 60 중량% 포함될 수 있다.
상기한 임팩트 코폴리머는 통상의 중합체 제조 반응을 이용하여 상기한 물성적 요건을 충족하도록 제조할 수도 있고, 상업적으로 입수하여 사용할 수도 있다. 구체적인 예로서, LG 화학사제의 SEETEC™ M1600 등을 들 수 있다.
또한, 본 발명의 일 실시예에 따른 열가소성 수지 조성물에 있어서, 상기 폴리프로필렌은 구체적으로 120℃ 내지 160℃ 범위의 DSC 융점, 및 ASTM-D 1238에 따라 230℃, 2.16kg 하중 조건에서 측정한, 5 g/10min 내지 120 g/10min 범위의 용융 유속(MFR)을 갖는 하나 이상의 랜덤 프로필렌 공중합체일 수 있다.
이와 같은 물성을 갖는 폴리프로필렌을 상기한 함량 범위로 포함할 경우, 경도 등 열가소성 수지 조성물의 기계적 강도를 향상시킬 수 있다.
상기 랜덤 프로필렌 공중합체는 상기 열가소성 수지 조성물 총 중량에 대하여 10 중량% 내지 90 중량%, 구체적으로는 20 중량% 내지 80 중량%, 더욱 구체적으로는 40 중량% 내지 60 중량% 포함될 수 있다.
상기 랜덤 프로필렌 공중합체는 통상의 중합체 제조 반응을 이용하여 상기한 물성적 요건을 충족하도록 제조할 수도 있고, 상업적으로 입수하여 사용할 수도 있다. 구체적인 예로서, 브라스켐 아메리카 인코포레이션(Braskem America Inc.)의 Braskem™ PP R7021-50RNA 또는 미국 포르모사 플라스틱스 코포레이션(Formosa Plastics Corporation)의 Formolene™ 7320A 등을 들 수 있다.
(2) 폴리올레핀-폴리스티렌계 다중블록 공중합체
본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물에 있어서, 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)로부터 측정되는 하기 (a) 내지 (c) 조건, 및 13C NMR(500 MHz, tetrachloroethane-d2, 표준물질 TMS) 스펙트럼에서의 하기 (d) 조건을 충족하는 것을 특징으로 한다.
(a) 중량평균 분자량은 50,000 내지 300,000 g/mol이고,
(b) 분자량 분포는 1.5 내지 3.0이고,
(c) 겔 투과 크로마토그래피 측정 결과에 대하여, x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수가 하기 수학식 1로 표현되며, 하기 수학식 1에서, 각 상수 값은 -0.05 < A < 0.06, 4.6 < B < 5.5, 0.9 < C < 1.1, 0.5 < D < 0.9를 만족하고,
(d) 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체에 포함된 폴리올레핀 블록은 1 이상의 분지점을 포함하되, 상기 분지점 탄소 원자는 36 내지 40 ppm의 피크를 나타내고, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13 내지 15 ppm의 피크를 나타낸다.
[수학식 1]
Figure pat00003
(상기 수학식 1에서, Mw는 폴리올레핀-폴리스티렌 다중블록 공중합체의 중량평균 분자량을 나타냄.)
*본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는, 후술하는 바와 같이 신규한 구조의 특정 전이금속 화합물을 촉매로 하여 제조된 것으로서, 공중합체의 물성을 결정하는 중요한 요소인 중량평균 분자량이 수학식 1을 만족하여 특정 분포의 중량평균 분자량 및 분자량 분포 값을 가짐으로써, 인장 특성(예컨대 인장 강도, 신율, 모듈러스 등)이 우수하게 구현되는 특징을 가진다.
상기 조건 (a)와 관련하여, 폴리올레핀-폴리스티렌계 다중블록 공중합체의 중량평균 분자량은 50,000 내지 300,000 g/mol이고, 구체적으로는 60,000 내지 250,000 g/mol, 또는 70,000 내지 220,000 g/mol, 또는 70,000 내지 200,000 g/mol일 수 있다.
상기 조건 (b)와 관련하여, 폴리올레핀-폴리스티렌계 다중블록 공중합체의 분자량 분포는 1.5 내지 3.0이고, 구체적으로는 1.6 내지 2.3, 또는 1.6 내지 2.2일 수 있다.
상기 중량평균 분자량과 수평균 분자량은 겔 투과형 크로마토그래피(GPC; gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이며, 상기 분자량 분포는 (중량평균 분자량)/(수평균 분자량)의 비로부터 계산된 것이다.
후술하는 바와 같이, 조건 (c)의 수학식 1은 가우시안 분포를 나타내며 이에 포함된 상수 B 내지 D는 공중합체의 중량평균 분자량과 분자량 분포를 표현하는 상수 값으로 사용되며, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는 상기 A 내지 D의 수치범위를 만족하면서 조건 (a) 및 (b)의 중량평균 분자량 및 분자량 분포 값을 동시에 충족하는 것이다.
상기 조건 (c)와 관련하여, 겔 투과 크로마토그래피 측정 결과에 대하여, x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수로부터 하기 수학식 1을 도출하였을 때, 수학식 1에 포함된 각 상수 값은 -0.05 < A < 0.06, 4.6 < B < 5.5, 0.9 < C < 1.1, 0.5 < D < 0.9를 만족한다. 구체적으로는 상수 A는 -0.05 초과, -0.04 초과, 0.060 미만, 0.040 미만일 수 있고, 상수 B는 4.6 초과, 5.5 미만, 5.2 미만일 수 있고, 상수 C는 0.90 초과, 0.91 초과, 1.1 미만, 1.09 미만일 수 있고, 상수 D는 0.5 초과, 0.6 초과, 0.9 미만, 0.8 미만일 수 있다.
상기 수학식 1은, 전술한 바와 같이 폴리스티렌을 환산 기준으로 한 겔 투과형 크로마토그래피로 측정하여 얻어지는, 가로축이 중량평균 분자량(Mw)의 대수값인 「(log(Mw))」이고 세로축이 농도 분율(w)을 중량평균 분자량의 대수값(log(Mw))으로 미분한 값인 「dw/dlog(Mw)」을 나타내는 미분 분자량 분포 곡선을 나타내는 것으로서, 이는 중량평균 분자량의 대수값에 따라 해당 분자량을 가지는 고분자의 무게 분율(weight fraction)을 나타내는 것으로 볼 수 있다.
즉, 본 발명에서는 x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수를 상기 수학식 1로 표현하였으며, 이 때 상수 A 내지 D 값을 계산하여 각각 특정한 범위에 속한다는 것을 새롭게 알아내었다.
상기 수학식 1에서, 상기 상수 A 내지 D는 가우시안 분포가 나타내는 커브를 표현하는 상수로서, 분포 곡선의 높이, 최대 피크 반값의 너비 폭, 최대 피크가 나타내는 중심 위치 등을 보여준다. 보다 구체적으로, 가우시안 분포에 포함되는 상수 A는 y 절편을 나타내고 상수 C는 그래프 면적의 산술적 의미를 나타낸다. 또한, 상수 B 및 D는 중량평균 분자량과 분자량 분포에 대응한 공중합체의 물리적 특성을 나타낸다.
상기 조건 (d)와 관련하여, 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체에 포함된 폴리올레핀 블록은 1 이상의 분지점을 포함하되, 상기 분지점 탄소 원자는 36 내지 40 ppm의 피크를 나타내고, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13 내지 15 ppm의 피크를 나타낸다.
구체적으로는 상기 분지점 탄소 원자는 36.0 ppm 이상, 37.0 ppm 이상, 37.5 ppm 이상일 수 있고, 40.0 ppm 이하, 39.0 ppm 이하, 38.5 ppm 이하일 수 있다. 또한, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13.0 ppm 이상, 13.5 ppm 이상일 수 있고, 15.0 ppm 이하, 14.5 ppm 이하일 수 있다.
상기와 같이, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는 폴리올레핀 블록에 길이가 긴 특징의 분지쇄를 가지고, 이는 분지점으로부터 분지된 분지쇄의 말단 탄소 원자의 13C NMR에서 고유한 피크 영역으로 확인할 수 있다. 이러한 특징을 통해 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는 종래의 공중합체 대비 높은 충격강도를 나타내는 등 우수한 물성을 보인다.
상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 폴리스티렌-폴리(에틸렌-co-프로필렌)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-부텐)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-펜텐)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-헥센)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-헵텐)-폴리스티렌 블록 공중합체 및 폴리스티렌-폴리(에틸렌-co-1-옥텐)-폴리스티렌 블록 공중합체로 이루어진 군에서 선택된 1종 이상일 수 있다.
또한, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는, 상기 (a) 내지 (d) 조건을 만족함으로써 하기와 같은 인장 특성을 가질 수 있다.
구체적으로, 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는, 단면적에 균일하게 하중이 걸리도록 잡아당겨 끊어질 때의 최대 인장 응력을 나타내는 인장 강도(tensile strength)가 10 내지 100 MPa 일수 있고, 구체적으로는 10 내지 50 Mpa, 보다 구체적으로는 20 내지 40 Mpa일 수 있다.
상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는, 인장을 받아 생기는 인장하는 방향으로의 변형으로서 원래 길이에 대한 늘어난 길이의 비를 백분율로 나타낸 신율(elongation at break)이 500 내지 3,000%, 600 내지 2,800%, 800 내지 2,500%일 수 있다.
상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는, 300% 신장을 주었을 때의 인장 응력으로서 단위 면적당 평균 힘으로 나타낸 300% 모듈러스(300% modulus)가 2.1 내지 10.0 Mpa로서 우수한 강도와 탄성을 나타내어 강인성이 뛰어난 특성을 가진다.
상기 인장 강도, 신율, 300% 모듈러스 등 인장 특성은 표준측정 ASTM D412의 방법으로 측정한 것일 수 있다.
이와 같이, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는 상기 범위의 인장 강도, 신율, 300% 모듈러스를 만족하는 것으로서, 종래의 공중합체 대비 우수한 물리적 특성을 나타내며, 또한 본 발명에서 제공하는 제조방법을 이용하여 폴리올레핀 블록의 길이와 함량을 조절함으로써 원하는 용도에 따라 특정한 물성을 구현하는 공중합체의 제조가 가능하다.
또한, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 폴리올레핀 블록은 하기 화학식 a로 표시되는 반복 단위를 1종 이상 포함할 수 있다.
[화학식 a]
Figure pat00004
상기 화학식 a에서,
R1은 수소; 탄소수 1 내지 20의 알킬; 실릴로 치환된 탄소수 1 내지 20의 알킬; 탄소수 7 내지 20의 아릴알킬; 또는 실릴로 치환된 탄소수 7 내지 20의 아릴알킬이고,
n은 1 내지 10,000의 정수일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 R1은 수소; 탄소수 3 내지 20의 알킬일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 R1은 수소; 또는 탄소수 3 내지 12의 알킬일 수 있고, 구체적으로 상기 R1은 수소 또는 탄소수 4 내지 12의 알킬일 수 있다.
또한, 상기 n은 10 내지 10,000의 정수일 수 있고, 구체적으로 500 내지 7,000의 정수일 수 있다.
한편, 본 발명의 명세서에서 나타낸 화학식들에서 "*"는 반복단위의 단말 부위로서 연결부위를 나타낸다.
상기 폴리올레핀 블록이 상기 화학식 a로 표시되는 반복단위를 2종 이상 포함할 경우, 상기 폴리올레핀 블록은 하기 화학식 b로 표시되는 반복 단위를 포함할 수 있다.
[화학식 b]
Figure pat00005
상기 화학식 b에서,
R1' 및 R1"은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬; 실릴로 치환된 탄소수 1 내지 20의 알킬; 탄소수 7 내지 20의 아릴알킬; 또는 실릴로 치환된 탄소수 7 내지 20의 아릴알킬이고; 상기 R1' 및 R1"은 서로 다른 것이며,
0<p<1이고,
n'은 1 내지 10,000의 정수일 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 R1' 및 R1"은 각각 독립적으로 수소 또는 탄소수 3 내지 20의 알킬일 수 있고, 구체적으로 각각 독립적으로 수소 또는 탄소수 3 내지 12의 알킬일 수 있으며, 더욱 구체적으로 각각 독립적으로 수소 또는 탄소수 4 내지 12의 알킬일 수 있다.
또한, 구체적으로 n'은 10 내지 10,000의 정수일 수 있고, 더욱 구체적으로 500 내지 7,000의 정수일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 b에서 R1' 및 R1" 중 어느 하나는 수소이고, 나머지 하나는 전술한 치환기 중 수소 이외의 치환기일 수 있다.
즉, 상기 폴리올레핀 블록이 상기 화학식 a로 표시되는 반복단위를 2종 이상 포함할 경우, R1이 수소인 구조와 R1이 수소 이외의 탄소수 1 내지 20의 알킬; 실릴로 치환된 탄소수 1 내지 20의 알킬; 탄소수 7 내지 20의 아릴알킬; 또는 실릴로 치환된 탄소수 7 내지 20의 아릴알킬인 구조가 랜덤(random)하게 연결되어 있는 것일 수 있고, 구체적으로 R1이 수소인 구조와 R1이 수소 이외의 탄소수 3 내지 20의 알킬인 구조가 랜덤하게 연결되어 있는 것일 수 있다.
또한, 더욱 구체적으로 상기 폴리올레핀 블록은 상기 화학식 a에서 R1이 수소인 구조와 R1이 탄소수 3 내지 12의 알킬인 구조가 랜덤하게 연결되어 있는 것일 수 있으며, 보다 더 구체적으로 상기 폴리올레핀 블록은 상기 화학식 a에서 R1이 수소인 구조와 R1이 탄소수 4 내지 12의 알킬인 구조가 랜덤하게 연결되어 있는 것일 수 있다.
상기 폴리올레핀 블록이 상기 화학식 a로 표시되는 반복단위를 2종 이상 포함할 경우, 상기 폴리올레핀 블록은 상기 화학식 a에서 R1이 수소인 구조와 R1이 수소 이외의 치환기를 가지는 구조를 30:90 내지 70:10의 중량비로 포함할 수 있고, 구체적으로 40:60 내지 60:40의 중량비로 포함할 수 있으며, 더욱 구체적으로 45: 75 내지 55:25의 중량비로 포함할 수 있다.
상기 폴리올레핀 블록이 상기 화학식 a에서 R1이 수소인 구조와 R1이 수소 이외의 치환기를 가지는 구조를 상기 범위로 포함할 경우, 제조되는 블록 공중합체가 구조 내에 적절한 정도로 브랜치(branch)를 포함하므로, 높은 300% 모듈러스(modulus) 값과 파단 신장률(elongation at break) 값을 가져 우수한 탄성 특성을 발휘할 수 있으며, 또한 높은 분자량과 함께 넓은 분자량 분포를 나타내어 우수한 가공성을 가질 수 있다.
또한, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제1 폴리스티렌 블록은 하기 화학식 c로 표시되는 반복 단위를 1종 이상 포함할 수 있다.
*[화학식 c]
Figure pat00006
상기 화학식 c에서,
R2는 탄소수 6 내지 20의 아릴; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 20의 아릴이고,
l은 독립적으로 10 내지 1,000의 정수이다.
상기 R2는 페닐; 또는 할로겐, 탄소수 1 내지 8의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환되거나 비치환된 페닐일 수 있고, 또한 상기 R2는 페닐일 수 있다.
상기 l은 10 내지 1,000의 정수이고, 구체적으로 50 내지 700의 정수일 수 있으며, 상기 l이 상기 범위일 경우 본 발명의 제조방법에 의해 제조되는 폴리올레핀-폴리스티렌 블록 공중합체의 점도가 적절한 수준을 가질 수 있다.
특히, 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체에 있어서, 상기 화학식 a로 표시되는 반복단위를 포함하는 폴리올레핀 블록 및 상기 화학식 c으로 표시되는 반복단위를 포함하는 제1 폴리스티렌 블록은 서로 결합하여 하기 화학식 d로 표시되는 복합 블록을 형성할 수 있다.
[화학식 d]
Figure pat00007
상기 화학식 d에서,
R1은 수소; 탄소수 1 내지 20의 알킬; 실릴로 치환된 탄소수 1 내지 20의 알킬; 탄소수 7 내지 20의 아릴알킬; 또는 실릴로 치환된 탄소수 7 내지 20의 아릴알킬이고,
R2는 탄소수 6 내지 20의 아릴; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 20의 아릴이고,
l은 10 내지 1,000의 정수이며,
n은 1 내지 10,000의 정수이다.
또한, 상기 화학식 d에서, R1, R2, l 및 n은 각각 상기 화학식 a 및 화학식 c에서 정의한 바와 같다.
또한, 상기 폴리올레핀 블록이 상기 화학식 a로 표시되는 반복단위를 포함할 때, 상기 화학식 c로 표시되는 반복단위를 포함하는 제1 폴리스티렌 블록이 결합하여 형성된 복합 블록은 하기 화학식 e로 표시될 수 있다.
[화학식 e]
Figure pat00008
상기 화학식 e에서, 상기 R1', R1", R2, p, l 및 n'은 각각 상기 화학식 a 또는 c에서 정의한 바와 같다.
또한, 본 발명의 일례에 있어서, 폴리올레핀-폴리스티렌계 다중블록 공중합체 제조 시 스티렌계 단량체가 폴리올레핀 블록을 형성함과 동시에, 유기 아연 화합물에 상기 스티렌계 단량체가 결합하여 중합되어 별도의 스티렌계 중합체 블록을 형성할 수 있다. 본 명세서에서는 상기 별도의 스티렌계 중합체 블록을 제2 폴리스티렌 블록으로 나타낸다. 상기 제2 폴리스티렌 블록은 하기 화학식 f로 표시되는 반복 단위를 포함할 수 있다.
[화학식 f]
Figure pat00009
상기 화학식 f에서,
R3는 탄소수 6 내지 20의 아릴; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 20의 아릴이고,
m은 독립적으로 10 내지 1,000의 정수이다.
또한, 본 발명의 일 실시예에 따르면, 상기 R3는 페닐; 또는 할로겐, 탄소수 1 내지 8의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환되거나 비치환된 페닐일 수 있고, 또한, 상기 R3는 페닐일 수 있다.
상기 m은 10 내지 1,000의 정수이고, 구체적으로 50 내지 700의 정수일 수 있다.
즉, 본 발명의 열가소성 수지 조성물이 포함하는 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 상기 화학식 c로 표시되는 반복단위를 포함하는 제1 폴리스티렌 블록, 및 상기 화학식 f로 표시되는 제2 폴리스티렌 블록을 각각 포함할 수 있다.
따라서, 상기 블록 공중합체 조성물은, 하기 화학식 a로 표시되는 반복 단위를 1종 이상 포함하는 폴리올레핀 블록; 하기 화학식 c으로 표시되는 반복 단위를 포함하는 제1 폴리스티렌 블록; 및 하기 화학식 f로 표시되는 반복 단위를 포함하는 제2 폴리스티렌 블록을 포함하는 트리블록 공중합체를 포함할 수 있다.
[화학식 a]
Figure pat00010
[화학식 c]
Figure pat00011
[화학식 f]
Figure pat00012
상기 화학식에서,
R1은 수소; 탄소수 1 내지 20의 알킬; 실릴로 치환된 탄소수 1 내지 20의 알킬; 탄소수 7 내지 20의 아릴알킬; 또는 실릴로 치환된 탄소수 7 내지 20의 아릴알킬이고,
R2 R3는 각각 독립적으로 탄소수 6 내지 20의 아릴; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 20의 아릴이고,
n은 10 내지 10,000의 정수이며,
l 및 m은 각각 독립적으로 10 내지 1,000의 정수이다.
또한, 상기 화학식에 있어서, R1, R2, R3, n, l 및 m은 각각 상기 화학식 a, c 및 f에서 정의한 바와 같다.
폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조방법
상기 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조방법은(S1) 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매 조성물 존재 하에, 유기 아연 화합물을 사슬 이동제로 올레핀계 단량체를 중합하여 폴리올레핀 블록을 형성하는 단계; 및 (S2) 규소 원자를 포함하는 알킬 리튬 화합물 및 트리아민 화합물 존재 하에, 상기 폴리올레핀 블록과 스티렌계 단량체를 음이온 중합하여 폴리스티렌 블록을 형성하는 단계;를 포함하는 것을 특징으로 한다.
상기 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조방법은 후술하는 바와 같이 올레핀계 단량체의 중합에 효율적으로 활용되는 화학식 1로 표시되는 전이금속 화합물을 촉매로 하여 폴리올레핀 사슬을 형성한 후, 연속하여 스티렌 음이온 중합을 수행하여 폴리올레핀-폴리스티렌 블록을 형성함으로써, 특정한 tanδ 피크의 높이 및 tanδ 피크의 반값 폭을 나타내는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 형성할 수 있도록 한다.
단계 (S1)
단계 (S1)은 하기 화학식 1로 표시되는 전이금속 화합물을 포함하는 촉매 조성물 존재 하에, 유기 아연 화합물을 사슬 이동제로 올레핀계 단량체를 중합하여 폴리올레핀 블록을 형성하는 단계이다.
[화학식 1]
Figure pat00013
상기 화학식 1에서,
*R1 내지 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알키닐기; 탄소수 3 내지 20의 사이클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알콕시기; 탄소수 1 내지 20의 알콕시기; 탄소수 7 내지 20의 알킬아릴기; 탄소수 1 내지 20의 알킬실릴기; 또는 탄소수 7 내지 20의 아릴알킬기이고,
상기 R1 내지 R11 중 인접하는 2개 이상은 서로 연결되어 탄소수 3 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있고,
X1 및 X2는 각각 독립적으로 수소; 할로겐; 히드록시기; 아미노기; 싸이오기; 실릴기; 시아노기; 나이트로기; 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알키닐기; 탄소수 3 내지 20의 사이클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 알킬아릴기; 탄소수 7 내지 20의 아릴알킬기; 탄소수 5 내지 20의 헤테로아릴기; 탄소수 1 내지 20의 알콕시기; 탄소수 6 내지 20의 아릴옥시기; 탄소수 1 내지 20의 알킬아미노기; 탄소수 6 내지 20의 아릴아미노기; 탄소수 1 내지 20의 알킬싸이오기; 탄소수 6 내지 20의 아릴싸이오기; 탄소수 1 내지 20의 알킬실릴기; 또는 탄소수 6 내지 20의 아릴실릴기이다.
촉매 대비 과량의 사슬 이동제(예컨대,(Et)2Zn)의 존재 하에 중합 반응을 수행하면, 올레핀 중합체 사슬은 아연(Zn)과 하프늄(Hf) 사이에서 신속한 알킬 교환을 일으켜 디알킬아연으로부터 균일하게 성장하여 리빙 중합을 구현할 수 있으며, 이를 CCTP(coordinative chain transfer polymerization)라고 한다. 종래에 사용되던 메탈로센 촉매들은 β-제거(β-elimination) 과정으로 리빙 중합하는 것이 불가능하고, CCTP에 적용 가능하다고 알려진 소수의 촉매들도 에틸렌의 단일 중합만이 가능할 뿐 에틸렌과 알파-올레핀의 공중합을 CCTP로 진행하는 것은 매우 어려웠기 때문에, 일반적인 전이금속 화합물을 촉매로 사용하여 CCTP를 통해 리빙 중합을 수행하고 블록 공중합체를 제조하는 것은 매우 힘들었다.
반면, 상기 화학식 1로 표시되는 하프늄 화합물은 1,2,3,4-테트라하이드로-1,10-페난트롤린(1,2,3,4-tetrahydro-1,10-phenanthroline) 골격과 Hf-C(aryl) 결합을 포함하는 [Namido,N,Caryl]HfMe2-형 복합체로서, 이는 에틸렌 및 알파-올레핀의 중합 반응에서 우수한 알파-올레핀 혼입능을 나타내며, 특히 사슬 이동제의 함량에 따라 올레핀 중합체의 분자량이나 알파-올레핀의 함량이 달라지는데, 이는 상기 화합물이 CCTP에 성공적으로 사용되며 β-제거 반응이 무시할 수 있을 정도로 거의 발생하지 않았음을 나타내는 것이다. 즉, 상기 화학식 1로 표시되는 하프늄 화합물을 이용하여 에틸렌 및 알파-올레핀 단량체의 공중합을 CCTP로 진행하여 리빙 중합하는 것이 가능하며, 다양한 블록 조성을 갖는 블록 공중합체를 성공적으로 제조할 수 있다.
또한, 상기 하프늄 화합물을 이용한 CCTP를 음이온성 스티렌 중합 반응으로 전환시켜 수행함으로써 폴리올레핀-폴리스티렌 블록 공중합체를 합성하는 것이 가능하다. 이와 같이, 상기 하프늄 화합물은 올레핀 중합체의 제조를 위한 촉매로서 유용하게 사용될 수 있으며, 이는 상기 화학식 1로 표시되는 하프늄 화합물의 신규한 구조로 달성할 수 있는 고유한 특징이다.
구체적으로, 상기 화학식 1에서, 상기 R1 내지 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 사이클로알킬기; 또는 탄소수 6 내지 20의 아릴기일 수 있고, 바람직하게는 R1 내지 R10은 수소이고, 동시에 R11은 수소; 탄소수 1 내지 20의 알킬기; 또는 탄소수 6 내지 20의 아릴기일 수 있으며, 보다 바람직하게는, R1 내지 R10은 수소이고, 동시에 R11은 수소; 또는 탄소수 1 내지 20의 알킬기일 수 있다.
또는, 상기 화학식 1에서, 상기 R1 내지 R11은 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬기; 또는 탄소수 6 내지 20의 아릴기일 수 있고, 이 때, R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 방향족 고리, 예컨대 벤젠 고리를 형성할 수 있고, 바람직하게는 R3 및 R4는 서로 연결되어 벤젠 고리를 형성하면서, 동시에 R11은 탄소수 1 내지 20의 알킬기; 또는 탄소수 6 내지 20의 아릴기일 수 있다.
또는, 상기 화학식 1에서, 상기 R1, R2, 및 R5 내지 R10은 수소이고, 상기 R3, R4 및 R11은 각각 독립적으로 수소; 또는 탄소수 1 내지 20의 알킬기이고, 상기 R3 및 R4는 서로 연결되어 탄소수 5 내지 20의 방향족 고리, 예컨대 벤젠 고리를 형성할 수 있다.
한편, 상기 X1 및 X2는 각각 독립적으로 수소; 탄소수 1 내지 20의 알킬기; 탄소수 3 내지 20의 사이클로알킬기; 또는 탄소수 6 내지 20의 아릴기일 수 있고, 바람직하게는 각각 독립적으로 탄소수 1 내지 20의 알킬기일 수 있으며, 상기 X1 및 X2는 서로 동일할 수 있다.
본 발명에서, "알킬"은 직쇄 또는 분지쇄의 탄화수소 잔기를 의미한다.
본 발명에서, "알케닐"은 직쇄 또는 분지쇄의 알케닐기을 의미한다.
본 발명에서, "아릴"은 탄소수 6 내지 20인 것이 바람직하며, 구체적으로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등이 있으나, 이에 제한되지 않는다.
본 발명에서, "알킬아릴"은 상기 알킬기에 의해 치환된 아릴기를 의미한다.
본 발명에서, "아릴알킬"은 상기 아릴기에 의하여 치환된 알킬기를 의미한다.
본 발명에서, "알킬실릴"은 탄소수 1 내지 20의 알킬로 치환된 실릴일 수 있으며, 예컨대 트리메틸실릴 또는 트리에틸실릴일 수 있다.
본 발명에서, "알킬아미노"는 상기 알킬기에 의하여 치환된 아미노기를 의미하며, 디메틸아미노기, 디에틸아미노기 등이 있으나, 이들 예로만 한정된 것은 아니다.
본 발명에서, "하이드로카빌"은 다른 언급이 없으면, 알킬, 아릴, 알케닐, 알키닐, 사이클로알킬, 알킬아릴 또는 아릴알킬 등 그 구조에 상관없이 탄소 및 수소로만 이루어진 탄소수 1 내지 20의 1가의 탄화수소기를 의미한다.
보다 구체적으로, 상기 화학식 1로 표시되는 하프늄 화합물은 하기 화학식 1a 또는 1b로 표시되는 하프늄 화합물일 수 있다:
[화학식 1a]
Figure pat00014
[화학식 1b]
Figure pat00015
상기 화학식 1a 및 화학식 1b에서,
R11은 수소; 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알키닐기; 탄소수 3 내지 20의 사이클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 아릴알콕시기; 탄소수 1 내지 20의 알콕시기; 탄소수 7 내지 20의 알킬아릴기; 탄소수 1 내지 20의 알킬실릴기; 또는 탄소수 7 내지 20의 아릴알킬기이고,
X1 및 X2는 각각 독립적으로 수소; 할로겐; 히드록시기; 아미노기; 싸이오기; 실릴기; 시아노기; 나이트로기; 탄소수 1 내지 20의 알킬기; 탄소수 2 내지 20의 알케닐기; 탄소수 2 내지 20의 알키닐기; 탄소수 3 내지 20의 사이클로알킬기; 탄소수 6 내지 20의 아릴기; 탄소수 7 내지 20의 알킬아릴기; 탄소수 7 내지 20의 아릴알킬기; 탄소수 5 내지 20의 헤테로아릴기; 탄소수 1 내지 20의 알콕시기; 탄소수 6 내지 20의 아릴옥시기; 탄소수 1 내지 20의 알킬아미노기; 탄소수 6 내지 20의 아릴아미노기; 탄소수 1 내지 20의 알킬싸이오기; 탄소수 6 내지 20의 아릴싸이오기; 탄소수 1 내지 20의 알킬실릴기; 또는 탄소수 6 내지 20의 아릴실릴기이다.
상기 하프늄 화합물은 구체적으로 하기 화학식 1-1 내지 화학식 1-5 중 어느 하나로 표시되는 것일 수 있으나, 이에 제한되지 않고 화학식 1에 해당하는 모든 하프늄 화합물이 본 발명에 포함된다.
[화학식 1-1]
Figure pat00016
[화학식 1-2]
Figure pat00017
[화학식 1-3]
Figure pat00018
[화학식 1-4]
Figure pat00019
[화학식 1-5]
Figure pat00020
본 발명의 하프늄 화합물은 하기 화학식 2로 표시되는 화합물 및 화학식 3으로 표시되는 화합물을 반응시키는 단계;를 포함하여 제조될 수 있다.
[화학식 2]
Figure pat00021
[화학식 3]
Hf(X1X2)2
상기 화학식에서,
R1 내지 R11, X1 및 X2의 정의는 상술한 바와 동일하다.
한편, 상기 화학식 1로 표시되는 하프늄 화합물을 제조할 때, 최종적으로 제조된 하프늄 화합물의 구조에 따라 리간드 화합물을 제조하는 단계를 아래와 같이 상이하게 수행할 수 있다.
예컨대, 리간드 화합물에서 R3 및 R4가 서로 고리를 형성하지 않고 R11이 수소 원자인 경우, 아래와 같이 루테늄 촉매 하 수소화하여 리간드 화합물을 제조한 후 하프늄 전구체인 화학식 3으로 표시되는 화합물과 반응시켜 하프늄 화합물을 제조할 수 있다.
[반응식 1]
Figure pat00022
또한, 리간드 화합물 구조에서 R3 및 R4가 서로 고리를 형성하지 않고 R11이 수소 원자가 아닌 치환기인 경우, 하기 반응식 2와 같이, 유기리튬 화합물을 이용하여 R11을 먼저 도입한 후 루테늄 촉매 하 수소화하여 리간드 화합물을 제조한다.
[반응식 2]
Figure pat00023
또한, 리간드 화합물 구조에서 R3 및 R4가 서로 연결되어 탄소수 5 내지 20의 방향족 고리를 형성하고 R11이 수소 원자가 아닌 치환기인 경우, 하기와 같이 유기리튬 화합물을 이용하여 R11을 먼저 도입한 후, 나프틸 그룹과 같은 방향족 고리의 수소화를 방지하기 위해, Pd/C 촉매 하 수소화하여 리간드 화합물을 제조할 수 있다.
[반응식 3]
Figure pat00024
즉, 상기 하프늄 화합물은 리간드 화합물의 전구체인 화합물에 적절한 시약 및 반응 조건 하에서 알킬화 및 수소화를 통해 리간드 화합물을 제조한 후 이에 하프늄을 도입하여 제조된 것일 수 있으며, 구체적인 알킬화 시약의 종류, 반응 온도 및 압력 등은 통상의 기술자가 최종 화합물의 구조 및 실험 조건 등을 고려하여 적절히 변경할 수 있다.
본 발명에서, 상기 유기 아연 화합물은 사슬 이동제(chain transfer agent)로 사용되어 중합 반응에서 제조 시 사슬 이동이 이루어지도록 하여 공중합체가 제조되도록 유도하는 물질로서, 구체적으로 하기 화학식 4로 표시되는 화합물일 수 있다.
[화학식 4]
Figure pat00025
상기 화학식 4에서,
A는 탄소수 1 내지 20의 알킬렌; 탄소수 6 내지 20의 아릴렌; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 20의 아릴렌이고,
B는 탄소수 2 내지 12의 알켄일로 치환된 탄소수 6 내지 12의 아릴렌이다.
또한, 상기 A는 탄소수 1 내지 12의 알킬렌; 탄소수 6 내지 12의 아릴렌; 또는 할로겐, 탄소수 1 내지 12의 알킬, 탄소수 3 내지 12의 사이클로알킬, 탄소수 1 내지 8의 알콕시 또는 탄소수 6 내지 12의 아릴로 치환된 탄소수 6 내지 12의 아릴렌일 수 있고,
상기 B는 탄소수 2 내지 8의 알켄일로 치환된 탄소수 6 내지 12의 아릴렌일 수 있다.
상기 화학식 4는 화학식의 양 말단이 이중 결합인 구조를 가질 수 있으며, 예컨대 상기 B가 알켄일로 치환된 아릴렌일 때, 상기 아릴렌이 상기 A와 연결되고, 상기 아릴렌에 치환된 알켄일의 이중결합이 상기 화학식 4에서 가장 바깥 쪽 부분에 위치할 수 있다.
상기 유기 아연 화합물을 촉매 조성물 존재 하에 올레핀계 단량체 1종 이상과 반응시킬 경우, 상기 유기 아연 화합물의 아연(Zn)과 유기기(A) 사이에 상기 올레핀계 단량체가 삽입되면서 중합이 이루어지게 될 수 있다.
상기 유기 아연 화합물은 상기 화학식 1의 전이금속 화합물 1 당량에 대해 1 내지 200 당량의 양으로 혼합될 수 있고, 구체적으로 상기 화학식 1의 전이금속 화합물 1 당량에 대해 10 내지 100 ?량의 양으로 혼합될 수 있다.
상기 유기 아연 화합물은 THF 및 다량의 마그네슘 염 등의 불순물을 포함하고 있지 않아 고순도로 제공하는 것이 가능하며 이에 따라 사슬 이동제로 사용될 수 있고, 올레핀 중합에 사용하기에 유리하다.
상기 촉매 조성물은 조촉매 화합물을 더 포함할 수 있다. 이 때, 상기 조촉매 화합물은 화학식 1로 표시되는 전이금속 화합물을 활성화시키는 역할을 하며, 조촉매는 당해 기술분야에 공지된 것을 사용할 수 있고, 예컨대 조촉매로서 하기 화학식 5 내지 7 중에서 선택되는 하나 이상을 사용할 수 있다.
[화학식 5]
-[Al(Ra)-O]m-
[화학식 6]
D(Ra)3
[화학식 7]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 식에서,
Ra은 각각 독립적으로 할로겐 라디칼; 탄소수 1 내지 20의 하이드로카르빌 라디칼; 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌 라디칼이고,
m는 2 이상의 정수이고,
D는 알루미늄 또는 보론이고,
L은 중성 또는 양이온성 루이스 산이고,
Z는 13족 원소이고,
A는 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴; 또는 탄소수 1 내지 20의 알킬이고,
상기 A의 치환기는 할로겐; 탄소수 1 내지 20의 하이드로카르빌; 탄소수 1 내지 20의 알콕시; 또는 탄소수 6 내지 20의 아릴옥시이다.
상기 화학식 5로 표시되는 화합물은 알킬알루미녹산이라면 특별히 한정되지 않는다. 바람직한 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 특히 바람직한 화합물은 메틸알루미녹산이다.
상기 화학식 6으로 표시되는 화합물은 특별히 한정되지 않으나 바람직한 예로는 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론 등이 포함되며, 특히 바람직한 화합물은 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄 중에서 선택된다.
상기 화학식 7로 표시되는 화합물의 예로는 Z가 보론일 경우, 예컨대 디옥타데실메틸암모늄 테트라키스(펜타플루오로페닐)보레이트[(C18H37)2N(H)Me]+[B(C6F5)4]-, 디옥타데실메틸암모늄 테트라키스(페닐)보레이트, 디옥타데실메틸암모늄 테트라키스[3,5-비스(트리플루오로메틸)페닐]보레이트 테트라키스(페닐)보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리부틸암모늄 테트라페닐보레이트, 트리메틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리메틸암모늄 테트라(p-톨릴)보레이트, 트리메틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리부틸암모늄 테트라(p-트리플루오로메틸페닐)보레이트, 트리메틸암모늄 테트라(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라펜타플루오로페닐보레이트, N,N-디에틸아닐리디움 테트라페틸보레이트, N,N-디에틸아닐리디움 테트라페닐보레이트, N,N-디에틸아닐리니움 테트라펜타플루오로페닐보레이트, 디에틸암모늄 테트라펜타플루오로페닐보레이트, 트리페닐포스포늄 테트라페닐보레이트, 트리메틸포스포늄 테트라페닐보레이트, 트리메틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리메틸암모늄 테트라(p-톨릴)보레이트, 트리프로필암모늄 테트라(p-톨릴)보레이트, 트리에틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리메틸암모늄 테트라(o,p-디메틸페닐)보레이트, 트리부틸암모늄 테트라(p-트리플루오로메틸페닐)보레이트, 트리메틸암모늄 테트라(p-트리플루오로메틸페닐)보레이트, 트리부틸암모늄 테트라펜타플루오로페닐보레이트, N,N-디에틸아닐리니움 테트라페닐보레이트, N,N-디에틸아닐리니움 테트라페닐보레이트, N,N-디에틸아닐리니움 테트라펜타플루오로페닐보레이트, 디에틸암모늄 테트라펜타플루오로페닐보레이트, 트리페닐포스포늄 테트라페닐보레이트, 트리페닐카보니움 테트라(p-트리플루오로메틸페닐)보레이트, 트리페닐카보니움 테트라펜타플루오로페닐보레이트, 또는 이들의 조합일 수 있고, Z가 알루미늄일 경우, 예컨대 트리에틸암모늄 테트라페닐알루미늄, 트리부틸암모늄 테트라페닐알루미늄, 트리메틸암모늄 테트라페닐알루미늄, 트리프로필암모늄 테트라페닐알루미늄, 트리메틸암모늄 테트라(p-톨릴)알루미늄, 트리프로필암모늄 테트라(p-톨릴)알루미늄, 트리에틸암모늄 테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모늄 테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모늄 테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모늄 테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움 테트라페닐알루미늄, N,N-디에틸아닐리니움 테트라페닐알루미늄, N,N-디에틸아닐리니움 테트라펜타플루오로페닐알루미늄, 디에틸암모늄 테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄 테트라페닐알루미늄, 트리메틸포스포늄 테트라페닐알루미늄, 트리에틸암모늄 테트라페닐알루미늄, 트리부틸암모늄 테트라페닐알루미늄, 또는 이들의 조합일 수 있으나, 이에 제한되지 않는다.
특히, 본 발명에서 사용되는 조촉매는 상기 화학식 7로 표시되는 화합물일 수 있고, 구체적으로 디옥타데실메틸암모늄 디옥타데실메틸암모늄 테트라키스(펜타플루오로페닐)보레이트일 수 있다.
또한, 본 발명에서 사용되는 조촉매는 무수 탄화수소 용매 중에서 제조된 것일 수 있다. 예컨대, 상기 탄화수소 용매는 부탄, 펜탄, 네오펜탄, 헥산, 사이클로헥산, 메틸사이클로헥산, 헵탄, 옥탄, 벤젠, 톨루엔, 자일렌 및 에틸벤젠으로 이루어진 군에서 선택된 1종 이상이 사용될 수 있으나, 이에 제한되지 않으며, 당해 기술분야에서 사용 가능한 모든 탄화수소 용매가 무수(anhydrous) 형태로서 사용될 수 있다.
본 발명에서 상기 조촉매가 무수 탄화수소 용매 하에서 제조될 경우 1H NMR 스펙트럼에서는, 1.75 ppm 내지 1.90 ppm의 범위 및 1.90 ppm 내지 2.00 ppm의 범위에서 각각 적어도 1개의 피크가 나타난다. 이는 L에 포함된 질소, 황 또는 인에 인접한 α-탄소에 부착된 양성자가 각각 다른 피크를 나타내는 것이다. 예컨대, 화학식 1로 표시되는 화합물이 [(C18H37)2N(H)Me]+[B(C6F5)4]-일 경우, 이의 1H NMR 스펙트럼에서, NCH 2에 존재하는 양성자 2개는 각각 다른 신호를 나타낼 수 있다.
또한, 상기 화학식 1로 표시되는 하프늄 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카나 알루미나가 사용될 수 있으나, 이에 제한되지 않는다.
상기 단계 (S1)에서 반응물질로 투입하는 올레핀 단량체는, 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-에이코센 또는 이들의 혼합물로 형성된 단량체 등을 예시할 수 있다. 상기 올레핀 단량체는 1종을 단독으로 사용할 수 있고, 2종 이상을 혼합하여 사용할 수도 있다.
상기 단계 (S1)는 예를 들면, 균일 용액 상태에서 수행될 수 있다. 이때, 용매로는 탄화수소 용매 또는 올레핀 단량체 자체를 매질로 사용할 수도 있다. 상기 탄화수소 용매로는 탄소수 4 내지 20의 지방족 탄화수소 용매, 구체적으로 이소부탄, 헥산, 사이클로헥산, 메틸사이클로헥산 등을 예시할 수 있다. 상기 용매는 1종을 단독으로 사용할 수 있고, 2종 이상을 혼합하여 사용할 수도 있다.
단계 (S1)의 중합 온도는 반응 물질, 반응 조건 등에 따라 변할 수 있으나, 구체적으로 70 내지 170℃, 구체적으로 80 내지 150℃, 또는 90 내지 120℃에서 수행될 수 있다. 상기 범위 내에서, 고분자의 용해도를 높이면서도, 촉매를 열적으로 안정시킬 수 있다.
단계 (S1)의 중합은 배치식, 반연속식 또는 연속식으로 수행될 수 있고 또한 상이한 반응 조건을 갖는 둘 이상의 단계로도 수행될 수도 있다.
전술한 단계 (S1)에 의해 제조된 화합물은, 후술하는 단계 (S2)의 음이온 중합 반응에 의해 본 발명의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하기 위한 전구체의 역할을 수행할 수 있다.
단계 (S2)
상기 단계 (S2)는 단계 (S1)에 연속하여 규소 원자를 포함하는 알킬 리튬 화합물 및 트리아민 화합물 존재 하에, 상기 폴리올레핀 블록과 스티렌계 단량체를 음이온 중합하여 폴리스티렌 블록을 형성하여, 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하는 단계이다.
상기 단계 (S2)에서는 전술한 단계 (S1)에 의하여 형성된 화합물이 포함하고 있는 (폴리올레핀일)2Zn의 아연-탄소 결합 사이로 스티렌계 단량체를 연속적으로 삽입할 수 있고, 또한 동시에 단계 (S1)에 의하여 형성된 화합물의 단말기에 존재하는 스티렌기가 스티렌계 단량체와의 공중합 부위로 참여하여 폴리스티렌 사슬에 연결될 수 있다. 또한, 상기 공정을 통하여 생성된 다중블록 공중합체는 말단기가 물, 산소 또는 유기산과 반응하여 쉽게 ?칭될 수 있으며, 이를 통해 산업적으로 유용한 폴리올레핀-폴리스티렌계 다중블록 공중합체로 전환된다.
상기 스티렌계 단량체는 탄소수 6 내지 20의 스티렌계 단량체일 수 있다. 더욱 구체적으로, 탄소수 6 내지 20의 아릴기가 치환된 에틸렌, 페닐기가 치환된 에틸렌 등을 포함하는 스티렌계 단량체, 예를 들면 스티렌일 수 있다.
상기 규소 원자를 포함하는 알킬 리튬 화합물은 하기 화학식 8로 표시되는 화합물일 수 있다.
[화학식 8]
(CH3)3Si(CH2)Li
이러한 규소 원자를 포함하는 알킬 리튬 화합물은 음이온 중합의 개시제로 널리 사용되는 물질로 입수가 용이하여 본 발명에 활용하기에 수월하다.
상기 트리아민 화합물은 하기 화학식 9로 표시되는 화합물일 수 있다.
[화학식 9]
Figure pat00026
상기 트리아민 화합물은 리튬에 배위를 잘하여 상기 알킬 리튬 화합물의 염기로서의 반응성 또는 친핵체로서의 반응성을 향상시키는 목적으로 사용되는 화합물로 입수가 용이하고 단가가 저렴하다.
본 발명은 상기 화학식 8 및 9의 화합물(예컨대, Me3SiCH2Li·(PMDETA))을 단계 (S2)의 개시제로 새롭게 사용함에 의해, 폴리스티렌 호모폴리머, 폴리올레핀 호모폴리머, 폴리올레핀-폴리스티렌 이중블록 공중합체 생성량을 억제하면서, 본 발명의 목적인 폴리올레핀-폴리스티렌계 다중블록 공중합체 생성을 극대화할 수 있다.
상기 화학식 8로 표시되는 규소 원자를 포함하는 알킬 리튬 화합물과 화학식 9로 표시되는 트리아민 화합물은 지방족 탄화수소 용매에서 혼합하여 투입할 수도 있고, 또는 반응기에 화학식 8로 표시되는 규소 원자를 포함하는 알킬 리튬 화합물과 화학식 9로 표시되는 트리아민 화합물을 순차적으로 투입할 수도 있다.
상기 단계 (S2)의 음이온 중합 온도는 반응 물질, 반응 조건 등에 따라 변할 수 있으나, 구체적으로 40 내지 170℃, 보다 구체적으로 60 내지 150℃, 또는 90 내지 100℃에서 수행될 수 있다.
상기 단계 (S2)의 음이온 중합은 배치식, 반연속식 또는 연속식으로 수행될 수 있고, 또한 상이한 반응 조건을 갖는 둘 이상의 단계로도 수행될 수도 있다.
상기 단계 (S2)의 음이온 중합 시간은 반응 물질, 반응 조건 등에 따라 변할 수 있으나, 구체적으로 0.5 내지 10시간, 1 내지 8시간, 2 내지 7시간, 또는 4 내지 6시간일 수 있다. 상기 범위 내에서, 투입되는 스티렌계 단량체를 전량 다중블록 공중합체로 전환하기에 유리하다.
이와 같이, 본 발명의 제조방법에서는, 전술한 화학식 4로 표시되는 유기 아연 화합물을 이용하여 올레핀 중합을 통해 폴리올레핀 사슬을 성장시킨 후 연속으로 스티렌 음이온 중합을 수행하는 방법을 통해 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하며, 이를 통해 종래보다 향상된 물리적 특성을 가져 산업상 활용이 용이한 폴리올레핀-폴리스티렌계 다중블록 공중합체를 효율적으로 제조할 수 있다.
이와 같은 본 발명의 일례에 따른 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조방법은 종래의 폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조방법인 스티렌 및 디엔의 음이온성 중합 후, 수소화의 2단계 공정과는 다른 경로에 의한 것으로, 공중합체 주쇄 중의 이중 결합에 대한 수소화 반응 없이 제조된 것을 특징으로 하며, 이에 따라 본 발명의 열가소성 수지 조성물이 포함하는 폴리올레핀-폴리스티렌계 다중블록 공중합체는 주쇄의 이중 결합에 대한 수소화 과정에서 포화되지 않고 존재하는 불포화 결합을 포함하지 않는 것을 특징으로 한다.
한편, 상기한 바와 같은 구성을 갖는 본 발명의 일 실시예에 따른 열가소성 수지 조성물은 그 용도 및 이에 따라 요구되는 물성적 특성을 충족할 수 있도록 적절한 함량으로 각각의 구성 성분을 포함할 수 있다. 예컨대, 본 발명에 있어서 상기 열가소성 수지 조성물은 상기 (1) 폴리 프로필렌과 상기 (2) 폴리올레핀-폴리스티렌계 다중블록 공중합체를 10:90 내지 90:10의 중량비로 포함할 수 있고, 구체적으로 20:80 내지 80:20의 중량비로 포함할 수 있으며, 더욱 구체적으로는 40:60 내지 60:40의 중량비로 포함할 수 있다. 본 발명에 따른 열가소성 수지 조성물은 폴리 프로필렌과 폴리올레핀-폴리스티렌계 다중블록 공중합체를 상기 중량비로 포함하므로, 개선된 저온 및 상온 충격 강도 특성을 가지면서도 이와 함께 고유동 특성을 나타낼 수 있다. 상기 열가소성 수지 조성물에 포함된 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체의 함량이 과소할 경우 충격 강도가 저하될 우려가 있고, 또한 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체의 함량이 과다할 경우 열가소성 수지 조성물의 유동성이 저하될 수 있다. 상기 폴리프로필렌과 폴리올레핀-폴리스티렌계 다중블록 공중합체의 물성적 특성의 현저함을 고려하여 혼합비를 제어할 수 있다.
본 발명에 따른 열가소성 수지 조성물은 상기 조건 (a) 내지 (d)를 충족하는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하므로 상대적으로 폴리올레핀-폴리스티렌계 다중블록 공중합체가 적은 함량으로 포함되어도 우수한 저온 및 상온 충격 강도를 나타낼 수 있다.
본 발명의 일 실시예에 따른 열가소성 수지 조성물은 상기 폴리프로필렌 및 폴리올레핀-폴리스티렌계 다중블록 공중합체와 함께, 열가소성 수지 조성물의 기계적 특성 개선을 위하여 무기충진제를 선택적으로 더 포함할 수 있다.
상기 무기충진제는 구체적으로 분말형 충진제, 플레이크형 충진제, 섬유형 충진재 또는 벌룬형 충진제일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 구체적으로 상기 분말형 충진제로는 미분말 탈크, 카올리나이트, 소성점토, 견운모 등의 천연 규산 또는 규산염; 침강성 탄산칼슘, 중질 탄산칼슘 또는 탄산마그네슘 등의 탄산염; 수산화 알루미늄 또는 수산화 마그네슘 등의 수산화물; 산화 아연, 산화 마그네슘 또는 산화티탄 등의 산화물; 함수 규산 칼슘, 함수 규산 알루미늄, 함수 규산 또는 무수 규산 등의 합성 규산 또는 규산염; 탄화규소 등을 들 수 있다. 또, 상기 플레이크형 충진제로는 마이카 등을 들 수 있다. 또 상기 섬유형 충진제로는 염기성 황산 마그네슘 휘스커, 티탄산 칼슘 휘스커, 붕산 알루미늄 휘스커, 세피올라이트, PMF(Processed Mineral Fiber), 또는 티탄산 칼리 등을 들 수 있다. 또 상기 벌룬형 충진제로는 유리 벌룬 등을 들 수 있다. 이중에서도 탈크일 수 있다.
또한, 상기 무기충진제는 열가소성 수지 조성물의 강도 특성 및 성형 가공성 개선을 위해 표면처리된 것일 수 있다.
구체적으로는 실란 커플링제, 고급 지방산(higher fatty acid), 지방산 금속염, 불포화 유기산, 유기 티타네이트, 수지산 또는 폴리에틸렌 글리콜 등의 표면처리제를 이용하여 물리 또는 화학적으로 표면처리된 것일 수 있다.
또한, 상기 무기충진제는 평균입경(D50)이 1 ㎛ 내지 20 ㎛, 구체적으로 3 ㎛ 내지 15 ㎛, 보다 구체적으로는 5 ㎛ 내지 10 ㎛인 것일 수 있다. 무기충진제의 평균 입경이 과소하면 무기충진제 입자간의 응집으로 폴리프로필렌 및 폴리올레핀-폴리스티렌계 다중블록 공중합체와의 혼합시 균일 분산이 어렵고, 그 결과 열가소성 수지 조성물의 기계적 특성 개선효과가 미미할 수 있다. 또 무기충진제의 평균입경이 과대하면 무기충진제 자체의 분산성 저하로 인한 물성 저하의 우려가 있다.
본 발명에 있어서, 상기 무기충진제의 평균 입자 직경(D50)은 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 본 발명에 있어서 무기충진제 입자의 평균 입자 직경(D50)은 예를 들어, 주사전자 현미경(scanning electron microscopy, SEM) 또는 전계 방사형 전자 현미경(field emission scanning electron microscopy, FE-SEM) 등을 이용한 전자 현미경 관찰이나, 또는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 레이저 회절법에 의해 측정시, 보다 구체적으로는, 무기충진제 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac MT 3000)에 도입하여 측정 장치에 있어서의 입경 분포의 50% 기준에서의 평균 입자 직경(D50)을 산출할 수 있다.
상기한 무기충진제는 열가소성 수지 조성물 100 중량부에 대하여 0.1 중량부 내지 40중량부 포함될 수 있다. 열가소성 수지 조성물 내 무기충진재의 함량이 열가소성 수지 조성물 100 중량부에 대하여 0.1 중량부 미만이면 무기충진제 포함에 따른 개선 효과가 미미하고, 40 중량부를 초과하면 열가소성 수지 조성물의 가공성이 저하될 우려가 있다. 보다 구체적으로 상기 무기충진제는 열가소성 수지 조성물 총 중량에 대하여 0.1 중량% 내지 20 중량%로 포함될 수 있다.
상기한 바와 같은 구성 및 함량적 조건을 충족하는 본 발명의 일 실시예에 따른 상기 열가소성 수지 조성물은, 폴리올레핀-폴리스티렌계 다중블록 공중합체에 폴리프로필렌 및 선택적으로 무기충진제를 첨가한 후 열처리함으로써 제조될 수 있다. 이때 상기 폴리프로필렌의 종류 및 함량은 앞서 설명한 바와 동일하다.
상기 혼합 공정은 통상의 방법에 따라 수행될 수 있다. 구체적으로는, 상기 혼합은 수퍼 믹서 또는 리본 믹서를 이용할 수 있다.
또, 상기 혼합 공정시 필요에 따라 산화방지제, 열 안정제, 자외선 안정제, 대전 방지제 등의 첨가제가 더 포함될 수 있으며, 도장성을 향상시키기 위해 소량의 접착성 수지나 극성기를 갖는 첨가제가 적정 함량 범위 내에서 선택적으로 더 사용될 수도 있다.
또, 상기 열처리 공정은 폴리프로필렌의 융점 이상, 210℃ 이하의 온도에서 수행될 수 있다. 상기 열처리 공정은 통상의 이축압출기(twin-screw extruder), 일축압출기(single-screw extruder), 롤밀(roll-mill), 니이더(kneader) 또는 밴버리 믹서(banbury mixer) 등 다양한 배합가공기를 이용하여 수행될 수 있다.
상기한 바와 같은 제조방법에 따라 제조되는 본 발명의 일 실시예에 따른 열가소성 수지 조성물은 우수한 저온 충격 강도 특성을 가지면서도 고유동성을 나타내는 것일 수 있으며, 추가적으로 우수한 상온 충격 강도 특성을 나타낼 수 있다.
구체적으로, 상기 열가소성 수지 조성물은 하기 (A) 내지 (C)의 물성을 만족할 수 있다.
(A) 상온 충격 강도가 3 내지 100 kgf·m/m
(B) 저온(-40℃) 충격 강도가 2 내지 120 kgf·m/m
(C) 용융 유속(MFR, 230 ℃, 2.16 kg)이 0.5 내지 200 g/10min.
(A) 상온 충격 강도는 ASTM D256 방법에 의해 측정된 것으로 3 내지 100 kgf·m/m일 수 있고, 구체적으로는 20 내지 100 kgf·m/m, 더욱 구체적으로는 30 내지 90 kgf·m/m일 수 있다.
(B) 저온 충격 강도는 ASTM D256 방법에 의해 저온(-40℃에서 측정된 것으로 2 내지 120 kgf·m/m일 수 있고, 구체적으로는 10 내지 110 kgf·m/m, 더욱 구체적으로는 22 내지 80 kgf·m/m일 수 있다.
(C) 용융 유속(MFR)은 ASTM-D 1238에 따라 230℃ 2.16kg 하중 조건에서 측정한 것으로 0.5 내지 200 g/10min일 수 있고, 구체적으로는 3 내지 100 g/10min일 수 있고, 더욱 구체적으로는 7 내지 50 g/10 min일 수 있다.
본 발명의 일 실시예에 따른 열가소성 수지 조성물은, 자동차용, 전선용, 완구용, 섬유용 또는 의료용 등의 재료과 같은 각종 포장용, 건축용, 생활용품 등의 다양한 분야 및 용도에서의 중공성형용, 압출성형용 또는 사출성형용으로 유용하며, 특히 상온뿐만 아니라 저온에서의 인성과 충격 강도가 우수함은 물론, 내열성, 강성 등의 물성이 매우 우수하여 자동차의 내·외장 부품 등에 유용하게 사용될 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기한 물성적 요건을 충족하는 열가소성 수지 조성물을 이용하여 제조된 성형체 및 자동차 부품을 제공한다.
상기 성형체는 구체적으로 블로우 몰딩 성형체, 인플레이션 성형체, 캐스트 성형체, 압출 라미네이트 성형체, 압출 성형체, 발포 성형체, 사출 성형체, 시이트(sheet), 필름(film), 섬유, 모노필라멘트, 또는 부직포 등일 수 있다.
또한, 상기 자동차 부품은 자동차용 내·외장재 등일 수 있다.
실시예
이하, 실시예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것으로 이들만으로 본 발명의 범위가 한정되는 것은 아니다.
<전이금속 화합물의 제조>
제조예 1
(i) 리간드 화합물의 제조
-10℃에서 톨루엔(8 mL) 중 2-나프틸-1,10-페난트롤린(0.789 g, 2.58 mmol)에 이소프로필리튬(0.45 mL, 0.36 mmol, 펜탄 중 0.79 M)를 천천히 첨가하였다. 실온에서 3시간 동안 교반한 후, 가스를 제거한 H2O(3 mL)를 첨가하였다. 수성 층을 N2 하에서 주사기로 제거하였다. 용매를 진공 라인을 사용하여 제거하고, 잔류물을 가스를 제거한 에탄올(15 mL) 및 THF(5 mL) 중에 용해시켰다. 용액을 N2 하에서 Pd/C(0.242 mmol, 10 mol %)를 함유하는 bomb reactor로 옮겼다. H2 기체를 5 bar로 충전한 후, 실온에서 12시간 동안 교반하였다. H2 기체를 방출하고 촉매 잔류물을 셀라이트 상에서 여과시켜 제거하였다. 용매를 제거하고, 잔류물을 에틸 아세테이트/헥산(1/3, v/v)을 사용하여 실리카 겔 컬럼 크로마토그래피로 정제하였다. 담황색의 끈적한 고체를 수득하였다(0.085 g, 73 %). 1H NMR 및 13C NMR 스펙트럼을 도 1에 나타내었다.
- 1H NMR(C6D6): δ 8.58(d, J = 7.8 Hz, H), 7.75(d, J = 9.0 Hz, H), 7.70(d, J = 9.6 Hz, H), 7.66(d, J = 7.2 Hz, H), 7.63(d, J = 6.6 Hz, H), 7.32(m, 4H), 7.18(d, J = 8.4 Hz, H), 6.99(d, J = 7.8 Hz, H), 6.39(s, H, NH), 2.93(m, H), 2.79(m, H), 2.70(dt, J = 4.8 Hz, H), 1.70(m, H), 1.63(m, H), 1.47(m, H), 0.81(d, J = 7.2 Hz, 3H, CH(CH3)2), 0.76(d, J = 7.2 Hz, 3H, CH(CH3)2) ppm.
- 13C{1H} NMR(C6D6): δ 18.34, 18.77, 24.43, 26.78, 32.52, 56.73, 112.78, 116.67, 122.62, 125.59, 126.10, 126.51, 126.61, 126.86, 128.14, 128.69, 129.03, 129.28, 132.20, 134.71, 136.41, 137.64, 139.79, 141.75, 155.92 ppm.
- m/z calcd([M+] C25H24N2) 352.4800. Found: 352.1942.
(ii) 전이금속 화합물의 제조
[화학식 1-3]
Figure pat00027
-78℃에서 톨루엔(8 mL) 중 HfCl4의 교반된 현탁액(0.300 g, 0.938 mmol)에 MeMgBr(1.24 mL, 디에틸 에테르 중 3.11 M)을 적가하였다. -40℃ 및 -35℃의 온도 범위에서 1시간 동안 교반한 후 용액을 다시 -78℃로 냉각시켰다. 톨루엔(4 mL) 중 리간드 화합물(0.366 g, 1.00 mmol)의 용액(0.24 g, 0.94 mmol)을 적가하였다. 생성된 용액을 -40℃ 및 -35℃의 범위 내의 조절된 온도에서 2시간 동안 교반하고, 이어서, 실온에서 밤새 교반하였다. 용매를 진공 라인을 사용하여 제거하고, 잔류물을 톨루엔(50 mL)으로 추출하였다. 헥산에서 분쇄하여 어두운 갈색 분말을 수득하였다(0.226 g, 47 %). 1H NMR 및 13C NMR 스펙트럼을 도 2에 나타내었다.
- 1H NMR(C6D6): δ 8.66(d, J = 7.8 Hz, H), 8.50(d, J = 7.8 Hz, H), 7.92(d, J = 9.0 Hz, H), 7.83(d, J = 7.2 Hz, H), 7.76(d, J = 8.4 Hz, H), 7.62(d, J = 7.8 Hz, H), 7.40(td, J = 7.2 Hz, H), 7.32(m, H), 7.14(d, J = 7.8 Hz, H), 6.77(d, J = 7.2 Hz, H), 4.02(m, H), 2.80(m, H), 2.62(dt, J = 6.0 Hz, H), 2.55(m, H), 1.88(m, H), 1.72(m, H), 1.09 and 1.04(d, J = 6.6 Hz, 6H, CH(CH3)2), 0.82(s, 3H, HfCH3), 0.81(s, 3H, HfCH3) ppm.
- 13C{1H} NMR(C6D6): δ 18.55, 21.28, 23.07, 25.44, 32.58, 60.98, 63.06, 66.88, 112.37, 119.64, 120.21, 124.55, 125.48, 126.81, 126.97, 129.31, 129.97, 130.26, 131.25, 133.82, 135.51, 140.97, 141.44, 143.94, 150.14, 164.58, 209.13 ppm.
- Anal. Calcd.(C27H28HfN2): C, 58.01; H, 5.05; N, 5.01%.
- Found: C, 57.91; H, 5.01; N, 5.11%.
<조촉매의 제조>
과량의 K+[B(C6F5)4]-(0.633 g, 0.881 mmol, 순수한 것으로 가정)은 톨루엔(무수, 10 mL) 중 [(C18H37)2N(H)Me]+[Cl]-(0.404 g, 0.705 mmol)의 용액과 1시간 동안 실온에서 글러브 박스 내에서 반응시켰다. 셀라이트상에서 여과한 후, 진공 라인을 사용하여 용매를 제거하였다. 잔류물을 메틸사이클로헥산(4 mL)에 용해시키고 셀라이트상에서 다시 여과하였다. 용매를 제거하여 황색 유성 화합물을 생성하였으며, 이를 추가 정제 없이 사용하였다(0.797 g, 93 %).
- 1H NMR(C6D6): δ 3.15(br, H, NH), 1.97(m, 2H, NCH2), 1.80(m, H, NCH2), 1.51(d, J = 6.0 Hz, 3H, NCH3), 1.45-1.29(m, 48H), 1.26(quintet, J = 7.2 Hz, 4H), 1.13(quintet, J = 7.2 Hz, 4H), 0.94(t, J = 7.8 Hz, 6H), 0.88(quintet, J = 7.8 Hz, 4H), 0.81(m, 4H) ppm.
- 19F NMR(C6D6): δ -132.09, -161.75, -165.98.
<유기 아연 화합물의 제조>
Figure pat00028
보레인 디메틸 설파이드(1.6 mL, 3.2 mmol)를 교반 중에 있는 트리에틸보레인(0.6 g)에 천천히 투입한 후 90분간 반응시켰다. -20℃로 냉각되어 있는 무수 디에틸에테르(10 mL)에 녹인 디비닐벤젠(3.8 g)에 천천히 투입한 다음 하룻밤 동안 교반하였다. 진공 펌프로 용매를 제거한 후 디에틸징크(0.8 g)를 첨가하였다. 5시간 동안 0℃에서 감압 증류를 통해 생성되는 트리에틸보레인을 제거하면서 반응을 진행시켰다. 40℃에서 여분의 디비닐벤젠 및 디에틸징크를 감압 증류로 제거하였다. 메틸사이클로헥산(150 mL)을 첨가하여 산물을 다시 용해한 후 부산물로 생성된 고체 화합물을 셀라이트를 사용하여 여과하여 제거하여 상기 화학식으로 표시되는 유기 아연 화합물을 제조하였다.
<폴리올레핀-폴리스티렌계 다중블록 공중합체의 제조>
실시 제조예 1
Parr 반응기(Parr reactor, 1 갤런)를 120℃에서 2시간 동안 진공 건조 해주었다. 메틸사이클로헥산(1,200 g) 중 Oc3Al(트리옥틸알루미늄, 1466.4 mg, 1,000 μmol-Al)의 용액을 반응기에 첨가하였다. 혼합물을 히팅 자켓을 사용하여 120℃에서 1시간 동안 교반하고, 이어서 용액을 캐뉼라를 사용하여 제거하였다.
반응기에 스캐빈저로서 Oc3Al(1466.4 mg, 1,000 μmol-Al / 25 wt% in 헥산) 을 함유하는 메틸사이클로헥산(1,200 g)으로 채우고 올레핀 단량체로서 1-헥센(560 g)을 채운 후에 온도는 90℃로 설정하였다. 사슬 이동제로서 메틸사이클로헥산(3.85 g) 중 상기 유기 아연 화합물(3,100 μmol)의 용액을 채우고, 이어서 메틸사이클로헥산 중 [(C18H37)2N(H)Me]+[B(C6F5)4]-(12.0 μmol)로 활성화시킨 상기 제조예 1의 전이금속 화합물(12.0 μmol-Hf)을 함유하는 메틸사이클로헥산 용액(1.68 g)을 주입하였다. 에틸렌 탱크의 밸브를 열어 반응기 내 압력이 25 bar가 되도록 유지시키면서 중합을 40분 동안 수행하였다. 온도는 90 내지 120℃의 범위 내에서 조절하였고, 나머지 에틸렌 가스를 배출하였다.
온도가 90℃에 도달하면, Me3SiCH2Li(244.8 mg, 2.6 mmol) 및 PMDETA(495.1 mg, 2.86 mmol)를 메틸사이클로헥산(3.85 g)에 혼합하여 제조한 Me3SiCH2Li·(PMDETA) 용액을 첨가하였다. 교반하면서 온도를 90℃에서 30분간 유지한 후, 스티렌(104.0 g)을 주입하였다. 온도는 히팅 자켓을 사용하여 90 내지 100℃의 범위에서 조절하였다.
분취물의 1H NMR 분석으로부터 스티렌의 완전한 전환을 확인하였다. 스티렌의 완전한 전환 후, 2-에틸헥산산(2-ethylhexanoic acid) 및 에탄올을 연속적으로 주입하였다. 수득한 중합체 덩어리(300 g)를 80℃의 진공 오븐에서 밤새 건조시켜 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하였다.
실시 제조예 2
유기 아연 화합물의 사용량 및 스티렌의 사용량을 하기 표 1과 같이 달리한 것을 제외하고는, 상기 실시 제조예 1과 마찬가지의 방법으로 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하였다.
실시 제조예 3 및 4
상기 실시 제조예 1과 마찬가지의 방법을 각각 반복하여 폴리올레핀-폴리스티렌계 다중블록 공중합체를 제조하였다.
비교 제조예 1
상업적으로 입수한 SEBS로서, Kraton 사의 G1651을 사용하였다.
비교 제조예 2
전이금속 화합물로서 하기 화학식으로 표시되는 화합물을 이용하여, 다음과 같은 방법으로 제조하였다.
[비교 화학식 1]
Figure pat00029
고압 반응기에 메틸사이클로헥산(17 g)에 용해한 트리메틸알루미늄(14.4 mg, 200 umol-Al) 용액을 주입하였다. 100℃에서 1시간 동안 고압 반응기안의 촉매 독을 정화하고 용액을 케뉼라를 사용하여 제거하였다.
고압 반응기에 상기 유기 아연 화합물(49.1 mg, 150 μmol)을 메틸사이클로헥산(40 g)에 녹여서 투입하고 온도를 80℃로 올렸다. 상기 전이금속 화합물과(C18H37)N(Me)H+[B(C6F5)4]-(4.0 μmol)을 벤젠에서 2시간 동안 교반시킨 용액을 트리옥틸알루미늄(50 μmol, 18.3 mg)을 메틸사이클로헥산(15 g)에 녹인 용액(1.0 g)과 희석시켰다. 촉매 용액을 고압 반응기에 주입한 뒤 곧바로 에틸렌-프로필렌 혼합가스를 20 bar의 압력(프로필렌 10 bar)으로 주입하였다. 온도를 95~115℃의 범위에서 조절하였다. 단량체의 소비로 압력이 서서히 감소하였고 45℃에서 60분 동안 중합 공정을 수행한 후, 나머지 가스를 배출하였다.
Me3SiCH2Li(150 μmol, 14.1 mg)와 PMDETA(150 μmol, 26 mg)를 메틸사이클로헥산(1.0 g)에 혼합하여 상기 반응기에 주입한 뒤 30분간 교반시켰다. 교반 온도는 90℃에서 100℃로 유지시켰다. 스티렌(7.8 g)을 고압 반응기에 주입한 뒤 90℃에서 100℃사이로 유지하며 5시간에 걸쳐 반응시켜 스티렌 단량체를 모두 전환시켰다. 스티렌 단량체의 완전한 전환 후, 아세트산 및 에탄올을 연속적으로 주입하였다. 중합체를 수득한 후 180℃의 진공 오븐에서 밤새 건조시켰다.
촉매 종류 촉매 투입량
(umol)
조촉매
(umol)
Zn
(umol)
알파-올레핀 스티렌
(g)
사슬이동 반응온도, 시간
종류 투입량
실시
제조예 1
화학식 1-3 12.0 12.0 3,100 1-헥센 560 g 104 90~120℃40 min
실시 제조예 2 화학식 1-3 12.0 12.0 3,720 1-헥센 560 g 109 90~120℃40 min
실시 제조예 3 화학식 1-3 12.0 12.0 3,100 1-헥센 560 g 104 90~120℃40 min
실시 제조예 4 화학식 1-3 12.0 12.0 3,100 1-헥센 560 g 104 90~120℃40 min
비교
제조예 1
상업적으로 입수한 SEBS(G1651)
비교
제조예 2
비교 화학식 1 4.0 4.0 150 프로필렌 10 bar 7.8 g 90~120℃40 min
실험예 1
상기 실시 제조예 1 내지 3 및 비교 제조예 1의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 대상으로, 하기 조건 및 방법에 따라 각 공중합체의 물성을 측정하여 그 결과를 표 2에 나타내었다.
(1) 에틸렌, 알파-올레핀 및 스티렌의 함량 측정
NMR을 통해 측정하였다. Bruker 600MHz AVANCE III HD NMR 장비를 사용하여 1H NMR을 ns=16, d1=3s, solvent=TCE-d2, 373K 조건에서 측정 후 TCE-d2 용매 피크를 6.0 ppm으로 보정하였으며, 1 ppm에서 1-프로필렌의 CH3를, 0.96 ppm 근처에서 1-헥센에 의한 부틸 브랜치의 CH3 관련 피크(triplet)를 확인 후 함량을 계산하였다. 또한, 스티렌의 함량은 6.5 내지 7.5 ppm 근처에서 방향족 피크로 계산하였다.
(2) 중량평균 분자량(Mw, g/mol) 및 분자량 분포(polydispersity index, PDI)
겔 투과 크로마토그래피(GPC: gel permeation chromatography)를 이용하여 중량평균 분자량(Mw, g/mol) 및 수평균 분자량(Mn, g/mol)을 각각 측정하고, 중량평균 분자량을 수평균 분자량으로 나누어 분자량 분포(polydispersity index, PDI)를 계산하였다.
- 컬럼: PL Olexis
- 용매: TCB(trichlorobenzene)
- 유속: 1.0 ml/min
- 시료농도: 1.0 mg/ml
- 주입량: 200 ㎕
- 컬럼온도: 160℃
- Detector: Agilent High Temperature RI detector
- Standard: Polystyrene
- Mark-Houwink 식을 이용해(K = 40.8 x 10-5, α=0.7057), Universal Calibration으로 분자량 계산
(3) 수학식 1의 상수 A~D 값 계산
상수 A~D 값을 계산하기 위해서 Origin의 Nonlinear Curve Fit을 활용하여 GPC 측정 데이터를 Gaussian 함수로 피팅하였다.
또한, 도 3에 실시 제조예 1에서 얻은 폴리올레핀-폴리스티렌계 다중블록 공중합체를 수학식 1로 나타낸 그래프를 도시하였다.
조성 GPC 상수
에틸렌
(wt%)
알파-올레핀
(wt%)
스티렌
(wt%)
Mw(g/mol) PDI A B C D
실시 제조예 1 43.3 31.1 25.6 144,188 1.67 0.00502 5.01307 0.98947 0.72544
실시 제조예 2 43.6 31.9 24.5 160,889 1.77 -0.02399 5.05566 1.05495 0.83622
실시 제조예 3 41.4 36.6 22.1 191,669 1.81 -0.0369 5.12906 1.08269 0.87756
실시 제조예 4 42.5 32.1 25.4 180,236 1.79 -0.00914 5.08700 1.02180 0.81827
비교 제조예 1 43.4 24.8 31.8 139,300 1.10 0.02908 5.11902 0.95502 0.32777
비교제조예 2 39.9 22.1 38.0 93,075 1.73 0.01583 4.84804 0.96417 0.70169
실험예 2
상기 실시 제조예 1 내지 3 및 비교 제조예 1의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 대상으로 분지점 탄소원자, 분지점으로부터 분지된 분지쇄의 말단 탄소 원자의 피크 값을 하기 표 3에 정리하여 기재하였다.
구체적으로, 기기 Bruker AVANCEIII 500 MHz NMR를 사용하였고, 시료 50mg 정도를 TCE-d2(tetrachloroethane-d2) 용매 1.2 mL에 넣고 heating block에서 100℃으로 1시간 가열하면서 중간에 2-3차례 vortexing 하였다. 샘플이 균일하게 녹은 것을 확인한 후, NMR tube에 옮겨 담아 100℃에서 13C NMR 스펙트럼을 측정하였다.
분지점 탄소 원자 분지쇄의 말단 탄소 원자
실시 제조예 1 38 14
실시 제조예 2 38 14
실시 제조예 3 38 14
실시 제조예 4 38 14
비교 제조예 1 34 11
비교 제조예 2 30 23
실험예 3
(1) 인장 특성
ASTM D412의 인장 시험법에 준하여 각 시험편을 제조하고 인장 강도, 신율, 300% 모듈러스를 측정하였다.
인장 강도 (MPa) 신율 (%) 300% 모듈러스 (MPa)
실시 제조예 1 24.5 2,103 2.2
실시 제조예 2 22.9 1,904 2.1
실시 제조예 3 17.8 2,477 1.2
실시 제조예 4 24.1 1,959 1.9
비교 제조예 1 27.6 1,849 1.8
비교 제조예 2 4.3 490 2.3
상기 표 4에 나타낸 바와 같이, 실시 제조예 1의 블록 공중합체는, 상기 조건을 모두 충족하지 않는 비교 제조예 1의 공중합체에 비하여, 인장 강도, 신율, 300% 모듈러스의 인장 특성이 모두 일정 수준으로 고루 우수하게 나타나는 특성이 있음을 확인하였다.
실시예 1 - 열가소성 수지 조성물의 제조
상기 실시 제조예 1에서 제조한 폴리올레핀-폴리스티렌계 다중블록 공중합체 50 중량부에, 용융지수(230℃, 2.16kg)가 30 g/10 min인 고결정성 임팩트 코폴리머 폴리프로필렌(CB5230, 대한유화사제) 50 중량부를 첨가하고, 반응기를 이용하여 자일렌 내에서 솔루션 블렌딩하여 열가소성 수지 조성물 컴파운드(compound)를 제조하였다. 이때 온도는 200℃ 내지 230℃ 임펠러 회전속도 400 rpm, 블렌딩 시간은 4시간으로 진행하였다. 블렌딩이 끝난 이후에 컴파운드를 회수하여 100℃ 진공 오븐에서 밤새 건조하였다.
실시예 2 내지 4 - 열가소성 수지 조성물의 제조
실시 제조예 1에서 제조한 폴리올레핀-폴리스티렌계 다중블록 공중합체를 대신하여 각각 실시 제조예 2 내지 4에서 제조한 폴리올레핀-폴리스티렌계 다중블록 공중합체를 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 열가소성 수지 조성물 컴파운드를 제조하였다.
비교예 1 및 2 - 열가소성 수지 조성물의 제조
상기 실시 제조예 1에서 제조한 폴리올레핀-폴리스티렌계 다중블록 공중합체를 대신하여 각각 비교 제조예 1 및 2의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 사용한 것을 제외하고는, 실시예 1과 마찬가지의 방법으로 열가소성 수지 조성물 컴파운드를 제조하였다.
실험예 4
1) 저온 충격 강도
ASTM D256에 따라 수행하였으며, 저온(-40℃)에서 6시간 이상 방치하여 에이징(aging)한 후 저온 충격 강도를 측정하였다.
2) 용융유속(MFR)
ASTM-D 1238에 따라 230℃, 2.16kg 하중 조건에서 측정하였다.
다중블록 공중합체의 조성 다중블록 공중합체의 함량 저온 충격 강도 MFR
(230℃2.16 Kg)
에틸렌
(wt%)
알파-올레핀
(wt%)
스티렌
(wt%)
wt% Kgf·m/m g/10min
실시예 1 43.3 31.1 25.6 50 36.99 8.4
실시예 2 43.6 31.9 24.5 50 24.30 11.5
실시예 3 41.4 36.6 22.1 50 57.17 17.3
실시예 4 42.5 32.1 25.4 50 32.05 8.0
비교예 1 43.4 24.8 31.8 50 20.04 6.3
비교예 2 39.9 22.1 38.0 50 12.32 7.1
상기 표 5에서 확인할 수 있는 바와 같이, 실시 제조예 1 내지 4의 폴리올레핀-폴리스티렌계 다중블록 공중합체를 각각 포함하는 실시예 1 내지 4의 열가소성 수지 조성물은 저온 충격 강도 및 용융 유속이 비교예 1 및 2의 열가소성 수지 조성물에 비해 우수하여, 전반적인 물성이 현저히 우수함을 확인할 수 있었다.

Claims (9)

  1. (1) 폴리프로필렌, 및
    (2) 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)로부터 측정되는 하기 (a) 내지 (c) 조건, 및 13C NMR(500 MHz, tetrachloroethane-d2, 표준물질 TMS) 스펙트럼에서의 하기 (d) 조건을 충족하는 폴리올레핀-폴리스티렌계 다중블록 공중합체를 포함하는 열가소성 수지 조성물:
    (a) 중량평균 분자량은 50,000 내지 300,000 g/mol이고,
    (b) 분자량 분포는 1.5 내지 3.0이고,
    (c) 겔 투과 크로마토그래피 측정 결과에 대하여, x축을 logMw로, y축을 dw/dlogMw로 하는 그래프로부터 모델링한 가우시안 함수가 하기 수학식 1로 표현되며, 하기 수학식 1에서, 각 상수 값은 -0.05 < A < 0.06, 4.6 < B < 5.5, 0.9 < C < 1.1, 0.5 < D < 0.9를 만족하고,
    (d) 상기 폴리올레핀-폴리스티렌계 다중블록 공중합체에 포함된 폴리올레핀 블록은 1 이상의 분지점을 포함하되, 상기 분지점 탄소 원자는 36 내지 40 ppm의 피크를 나타내고, 상기 분지점으로부터 분지된 분지쇄의 말단 탄소 원자는 13 내지 15 ppm의 피크를 나타내며,
    [수학식 1]
    Figure pat00030

    상기 수학식 1에서, Mw는 폴리올레핀-폴리스티렌계 다중블록 공중합체의 중량평균 분자량을 나타낸다.
  2. 제 1 항에 있어서,
    상기 수학식 1의 각 상수 값은 -0.04 < A < 0.040, 4.6 < B < 5.2, 0.91 < C < 1.09, 0.6 < D < 0.9인, 열가소성 수지 조성물.
  3. 제 1 항에 있어서,
    상기 중량평균 분자량은 60,000 내지 250,000 g/mol인, 열가소성 수지 조성물.
  4. 제 1 항에 있어서,
    상기 분자량 분포는 1.6 내지 2.3인, 열가소성 수지 조성물.
  5. 제 1 항에 있어서,
    상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 폴리스티렌-폴리(에틸렌-co-프로필렌)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-부텐)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-펜텐)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-헥센)-폴리스티렌 블록 공중합체, 폴리스티렌-폴리(에틸렌-co-1-헵텐)-폴리스티렌 블록 공중합체 및 폴리스티렌-폴리(에틸렌-co-1-옥텐)-폴리스티렌 블록 공중합체로 이루어진 군에서 선택된 1종 이상인 열가소성 수지 조성물.
  6. 제 1 항에 있어서,
    상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 폴리스티렌계 블록을 10 중량% 내지 30 중량% 포함하는 열가소성 수지 조성물.
  7. 제 1 항에 있어서,
    상기 폴리올레핀-폴리스티렌계 다중블록 공중합체는 공중합체 주쇄 중의 이중 결합에 대한 수소화 반응 없이 제조된 것을 특징으로 하는 열가소성 수지 조성물.
  8. 제 1 항에 있어서,
    상기 (1) 폴리 프로필렌과 상기 (2) 폴리올레핀-폴리스티렌계 다중블록 공중합체는 10:90 내지 90:10의 중량비를 갖는 열가소성 수지 조성물.
  9. 제 1 항에 있어서,
    상기 열가소성 수지 조성물은 하기 (A) 내지 (C)의 물성을 만족하는 열가소성 수지 조성물:
    (A) 상온 충격 강도가 3 내지 100 kgf·m/m
    (B) 저온(-40℃) 충격 강도가 2 내지 120 kgf·m/m
    (C) 용융 유속(MFR, 230 ℃, 2.16 kg)이 0.5 내지 200 g/10min.
KR1020210100046A 2020-07-30 2021-07-29 열가소성 수지 조성물 KR20220015353A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180059500.0A CN116134090A (zh) 2020-07-30 2021-07-30 热塑性树脂组合物
EP21850170.8A EP4169982A4 (en) 2020-07-30 2021-07-30 THERMOPLASTIC RESIN COMPOSITION
PCT/KR2021/009957 WO2022025696A1 (ko) 2020-07-30 2021-07-30 열가소성 수지 조성물
US18/017,021 US20230287207A1 (en) 2020-07-30 2021-07-30 Thermoplastic Resin Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200095282 2020-07-30
KR20200095282 2020-07-30

Publications (1)

Publication Number Publication Date
KR20220015353A true KR20220015353A (ko) 2022-02-08

Family

ID=80252333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210100046A KR20220015353A (ko) 2020-07-30 2021-07-29 열가소성 수지 조성물

Country Status (2)

Country Link
KR (1) KR20220015353A (ko)
TW (1) TW202222957A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657925B1 (ko) 2015-02-10 2016-09-20 아주대학교산학협력단 폴리올레핀-폴리스티렌 블록공중합체를 포함하는 유기 아연 화합물 및 이의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657925B1 (ko) 2015-02-10 2016-09-20 아주대학교산학협력단 폴리올레핀-폴리스티렌 블록공중합체를 포함하는 유기 아연 화합물 및 이의 제조 방법

Also Published As

Publication number Publication date
TW202222957A (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
JP7297366B2 (ja) ポリプロピレン系複合材及びこの製造方法
WO2015147186A1 (ja) オレフィン系樹脂およびその製造方法
CN113631604B (zh) 聚烯烃-聚苯乙烯多嵌段共聚物及其制备方法
KR20190076499A (ko) 폴리프로필렌계 복합재
US20230287207A1 (en) Thermoplastic Resin Composition
KR102335315B1 (ko) 폴리프로필렌계 복합재
KR20220015353A (ko) 열가소성 수지 조성물
KR20200132760A (ko) 폴리올레핀-폴리스티렌계 다중블록 공중합체 및 이의 제조방법
US20230287208A1 (en) Thermoplastic Resin Composition
KR20220018942A (ko) 열가소성 수지 조성물
CN109563323B (zh) 基于聚丙烯的树脂组合物
KR20220015354A (ko) 열가소성 수지 조성물
US20230340243A1 (en) Thermoplastic resin composition
JP7262883B2 (ja) ポリオレフィン-ポリスチレン系多重ブロック共重合体及びこの製造方法
TWI833021B (zh) 聚烯烴-聚苯乙烯多嵌段共聚物及其製造方法
KR20230047913A (ko) 다중블록 공중합체, 이를 포함하는 수지조성물 및 이의 제조방법
KR20210145013A (ko) 폴리프로필렌계 복합재
KR20220135280A (ko) 폴리프로필렌계 복합재
KR20220135270A (ko) 폴리프로필렌계 복합재
KR20210144351A (ko) 폴리프로필렌계 복합재
TW202330776A (zh) 熱塑性樹脂組成物
KR20220135279A (ko) 폴리프로필렌계 복합재
KR20210021752A (ko) 폴리프로필렌계 복합재

Legal Events

Date Code Title Description
A201 Request for examination