KR20210118144A - 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법 - Google Patents

상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법 Download PDF

Info

Publication number
KR20210118144A
KR20210118144A KR1020217026865A KR20217026865A KR20210118144A KR 20210118144 A KR20210118144 A KR 20210118144A KR 1020217026865 A KR1020217026865 A KR 1020217026865A KR 20217026865 A KR20217026865 A KR 20217026865A KR 20210118144 A KR20210118144 A KR 20210118144A
Authority
KR
South Korea
Prior art keywords
industrial equipment
evaluation
compressor
acoustic wave
abnormality
Prior art date
Application number
KR1020217026865A
Other languages
English (en)
Other versions
KR102715650B1 (ko
Inventor
요시노리 모리
히데후미 다카미네
가즈오 와타베
하야토 도다
Original Assignee
가부시끼가이샤 도시바
도시바 캐리어 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 도시바 캐리어 가부시키가이샤 filed Critical 가부시끼가이샤 도시바
Publication of KR20210118144A publication Critical patent/KR20210118144A/ko
Application granted granted Critical
Publication of KR102715650B1 publication Critical patent/KR102715650B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/002Thermal testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4183Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by data acquisition, e.g. workpiece identification
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37291Electro acoustic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37337Noise, acoustic emission, sound
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37351Detect vibration, ultrasound
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Quality & Reliability (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Thermal Sciences (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

실시 형태의 상태 평가 시스템은, 센서와, 필터와, 신호 처리부와, 평가부를 갖는다. 센서는, 가동 중인 산업 기기로부터 발생한 탄성파를 검출한다. 필터는, 상기 산업 기기 내부에서 발생하는 마모에 기인하는 주파수 특성을 갖는 탄성파를 통과 가능하다. 신호 처리부는, 상기 필터를 통과한 탄성파를 사용하여 복수의 특징량을 추출한다. 평가부는, 추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가한다.

Description

상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법
본 발명의 실시 형태는, 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법에 관한 것이다.
공조·열원 시스템용의 압축기는, 실외기에 내장되고 나서 압축기의 수명에 이를 때까지 내부 상태를 눈으로 보아 확인하는 것이 곤란하다. 그 때문에, 압축기의 교환 시기를 적절하게 관리하기 위해서는 압축기 내부의 이상의 발생 및 이상의 진행을 어떠한 방법으로 모니터링할 필요가 있다. 종래, 압축기의 이상 검지 방법으로서, 압축기 외부에 설치한 AE 센서로부터 취득되는 신호를 사용하는 방법이 제안되어 있다(예를 들어, 특허문헌 1 및 특허문헌 2 참조). AE 센서는, 경미한 파괴의 기점이 되는 미소한 크랙이나 마모와 같은 초기 단계의 이상이 발생한 타이밍에 신호의 변화를 검지할 수 있을 가능성이 있다. 그 때문에, 압축기 내부의 미끄럼 이동부(예를 들어, 회전체의 축과 베어링의 조합이나 블레이드와 롤러의 조합)로부터 발생한 탄성파를 검출할 수 있으면 압축기 내부에 센서를 내장하지 않고 케이싱의 외측으로부터 압축기 내부의 미끄럼 이동 상태의 추정이 가능하다고 생각된다. 그러나, 가동 중인 압축기는 항상 진동하고 있다. 그 때문에, 검출되는 탄성파가 하우징의 진동이나 압축 공정의 응력 변형에 기인하는 경우가 많다. 이 경우, 검출된 탄성파가 기기의 이상에 의해 발생한 탄성파인지, 응력 변형에 기인하여 발생한 탄성파인지 판별하는 것이 곤란하다. 그 때문에, 고정밀도로 압축기 내부의 이상을 평가할 수 없는 경우가 있었다. 이와 같은 과제는, 압축기에 한하지 않고, 미끄럼 이동부를 갖는 산업 기기 전반에 공통적으로 발생한다.
일본 특허 제3325015호 공보 일본 특허 제4809455호 공보
본 발명이 해결하고자 하는 과제는, 고정밀도로 산업 기기의 이상을 평가할 수 있는 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법을 제공하는 것이다.
실시 형태의 상태 평가 시스템은, 센서와, 필터와, 신호 처리부와, 평가부를 갖는다. 센서는, 가동 중인 산업 기기로부터 발생한 탄성파를 검출한다. 필터는, 상기 산업 기기 내부에서 발생하는 마모에 기인하는 주파수 특성을 갖는 탄성파를 통과 가능하다. 신호 처리부는, 상기 필터를 통과한 탄성파를 사용하여 복수의 특징량을 추출한다. 평가부는, 추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가한다.
도 1은 실시 형태의 상태 평가 시스템의 구성을 도시하는 도면.
도 2는 실시 형태에 있어서의 압축기의 A-A 부분의 단면도.
도 3은 실시 형태에 있어서의 마모 기인이 아닌 탄성파 신호의 일례를 도시하는 도면.
도 4는 실시 형태에 있어서의 마모에 기인한다고 상정되는 탄성파 신호의 일례를 도시하는 도면.
도 5는 실시 형태에 있어서의 신호 처리부의 기능을 도시하는 개략 블록도.
도 6은 실시 형태에 있어서의 상태 평가 시스템에 의한 이상 평가 처리의 흐름을 나타내는 시퀀스도.
도 7은 실시 형태에 있어서의 압축기에 이상이 발생하지 않은 경우에 얻어지는 산포도.
도 8은 실시 형태에 있어서의 압축기에 이상이 발생한 경우에 얻어지는 산포도.
도 9는 실시 형태에 있어서의 압축기에 이상이 발생하지 않은 경우에 얻어지는 산포도의 일례를 도시하는 도면.
도 10은 실시 형태에 있어서의 압축기에 이상이 발생한 경우에 얻어지는 산포도의 일례를 도시하는 도면.
도 11은 실시 형태에 있어서의 압축기의 회전수와 평가 결과의 정답율의 관계성을 도시하는 도면.
이하, 실시 형태의 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법을, 도면을 참조하여 설명한다.
도 1은 실시 형태의 상태 평가 시스템(100)의 구성을 도시하는 도면이다. 상태 평가 시스템(100)은, 산업 기기의 이상 평가에 사용된다. 본 실시 형태에서는, 산업 기기의 일례로서 압축기를 예로 들어 설명하지만, 산업 기기는 압축기에 한정될 필요는 없다. 산업 기기는, 미끄럼 이동부를 갖는 산업 기기이면 어떤 기기여도 된다. 예를 들어, 산업 기기는, 원동기, 전동기 및 펌프 등이 있다. 미끄럼 이동부는, 예를 들어 회전체의 축과 베어링의 조합 또는 블레이드와 롤러의 조합과 같이 상대적으로 스치면서 서로 미끄러지는 부분을 나타낸다. 본 실시 형태에 있어서의 산업 기기의 이상이란, 예를 들어 산업 기기 내부에 마련되는 미끄럼 이동부의 손상이다.
상태 평가 시스템(100)은, 압축기(1), 센서(10), 증폭기(11), 필터(12), 증폭기(13), A/D 변환기(14), 신호 처리부(15) 및 상태 평가 장치(20)를 구비한다. 신호 처리부(15)와 상태 평가 장치(20)는, 유선 또는 무선에 의해 통신 가능하게 접속된다. 신호 처리부(15)와 상태 평가 장치(20)가 무선에 의해 접속되는 경우, 무선의 주파수대는, 예를 들어 2.4GHz, 920㎒대(일본 국내에 있어서는 915㎒ 내지 928㎒) 등의 소위 ISM 밴드(Industry Science Medical Band)를 사용할 수 있다.
압축기(1)는, 공기나 가스 등의 기체를 가압 및 압축하는 기기이다. 압축기(1)는, 예를 들어 용적식 압축기 또는 원심식 압축기이다. 본 실시 형태에서는, 압축기(1)가 용적식 압축기인 경우를 예로 들어 설명한다. 용적식에서는, 왕복식, 회전식, 스크롤식, 스크루식 등의 종류가 있다. 압축기(1)는, 예를 들어 회전수 60rps(revolutions per second)로 가동되고 있는 것으로 한다. 압축기(1)는, 산업용의 공조 열원 시스템, 빌딩이나 공장용의 공조 시스템에 이용된다. 압축기(1)는, 케이싱(2) 및 어큐뮬레이터(3)를 구비한다. 케이싱(2)과 어큐뮬레이터(3)는, 파이프를 통해 접속된다. 케이싱(2)은, 토출관(4) 및 아크 스폿(6)을 갖는다. 토출관(4)은, 압축된 기체를 외부로 배출한다. 어큐뮬레이터(3)는, 흡입관(5)으로부터 냉매를 흡입하고, 냉매를 액냉매와 가스 냉매로 분리한다. 압축기(1)에 있어서의 A-A 부분의 단면도를 도 2에 도시한다.
도 2는 실시 형태에 있어서의 압축기(1)의 A-A 부분의 단면도이다.
압축기(1)의 내부에는, 적어도 실린더(7)가 마련된다. 실린더(7)의 내부에는 압축실(8)이 마련된다. 압축기(1)의 외부에는, 센서(10)가 마련된다. 압축실(8)에서는 미끄럼 이동부에 의해 냉매의 압축이 행해진다. 압축기(1) 내부의 미끄럼 이동부에 이상이 발생한 경우에는, 회전체의 축과 베어링이 서로 스침으로써 마모에 기인한다고 상정되는 탄성파가 발생한다. 압축기(1)에서 발생한 탄성파는, 압축기(1)의 케이싱(2)과 실린더(7)를 고정하고 있는 아크 스폿(6) 주변에서 검출되기 쉽다. 그래서, 센서(10)는, 아크 스폿(6) 주변에 설치된다. 센서(10)의 설치 위치는, 아크 스폿(6)의 직경의 소정의 배수(예를 들어, 3배)의 범위 내로 하는 것이 바람직하다. 이에 의해, 탄성파의 검출 정밀도를 높일 수 있다.
압축기(1)에서 발생하는 탄성파는, 마모에 기인한다고 상정되는 탄성파에 한하지 않고, 하우징의 진동이나 압축 공정의 응력 변형 등과 같이 마모 기인이 아닌 탄성파도 존재한다. 압축기(1)에서 발생하는 탄성파 신호의 일례를 도 3 및 도 4에 도시한다. 도 3은 마모 기인이 아닌 탄성파 신호의 일례를 도시하는 도면이다. 도 4는 마모에 기인한다고 상정되는 탄성파 신호의 일례를 도시하는 도면이다. 도 3 및 도 4에 있어서, 횡축은 시간을 나타내고, 종축은 탄성파 신호의 진폭을 나타낸다. 도 3 및 도 4에 도시한 바와 같이, 마모에 기인한다고 상정되는 탄성파와, 마모 기인이 아닌 탄성파에서는, 신호의 파형이 다르다. 그래서, 본 실시 형태에 있어서의 상태 평가 장치(20)에서는, 이 탄성파의 차이를 검출함으로써 압축기(1)의 이상을 평가한다.
도 1로 되돌아가서 설명을 계속한다.
센서(10)는, 압축기(1)의 아크 스폿(6) 주변에 설치된다. 센서(10)는, 케이싱(2)에 직접 설치되어도 되고, 센서(10)에 있어서의 센서 헤드의 형상에 적합한 마그네트 홀더를 사용하여 케이싱(2)에 설치되어도 된다. 센서(10)가 케이싱(2)에 직접 설치되는 경우, 센서(10)는, 접착제에 의해 케이싱(2)에 접착된다. 센서(10)가 센서 헤드의 형상에 적합한 마그네트 홀더를 사용하여 케이싱(2)에 설치되는 경우, 센서 헤드와 케이싱의 접촉면에 그리스나 탄성체를 통해 설치된다. 센서(10)는, 압축기(1)에서 발생하는 탄성파를 검출한다. 센서(10)는, 검출한 탄성파를 전기 신호로서 증폭기(11)에 출력한다. 센서(10)에는, 예를 들어 10kHz 내지 1㎒의 범위에 감도를 갖는 압전 소자가 사용된다. 센서(10)는, 주파수 범위 내에 공진 피크를 갖는 공진형, 공진을 억제한 광대역형 등이 있지만, 센서(10)의 종류는 어느 것이어도 된다. 센서(10)가 탄성파를 검출하는 방법은, 전압 출력형, 저항 변화형 및 정전 용량형 등이 있지만, 어느 검출 방법이어도 된다.
증폭기(11)는, 센서(10)로부터 출력된 탄성파를 증폭한다. 증폭기(11)는, 증폭 후의 탄성파를 필터(12)에 출력한다. 증폭기(11)는, 예를 들어 필터(12)에 있어서 처리를 할 수 있을 정도로 탄성파를 증폭한다.
필터(12)는, 증폭기(11)로부터 출력된 탄성파를 필터링한다. 필터(12)는, 소정의 주파수 대역의 신호를 통과 가능하게 설정된 대역 통과 필터이다. 예를 들어, 필터(12)는, 마모에 기인하는 주파수 특성을 갖는 탄성파를 통과 가능하게 설정된 필터이다. 필터(12)는, 예를 들어 500kHz보다 높은 주파수의 신호를 통과 가능하게 설정되어 있다. 압축기(1)가 회전식의 압축기인 경우에는, 필터(12)는 520kHz부터 850kHz까지 신호를 통과 가능하게 설정되어 있는 것이 바람직하다.
증폭기(13)는, 필터(12)를 통과한 탄성파를 증폭한다. 증폭기(13)는, 증폭 후의 탄성파를 A/D 변환기(14)에 출력한다. 증폭기(13)는, 예를 들어 필터(12)를 통과한 탄성파를 소정량(예를 들어, 10배 내지 100배) 증폭한다.
A/D 변환기(14)는, 증폭된 탄성파를 양자화하여 디지털 신호로 변환한다. A/D 변환기(14)는, 디지털 신호를 신호 처리부(15)에 출력한다.
신호 처리부(15)는, A/D 변환기(14)로부터 출력된 디지털 신호를 입력으로 한다. 신호 처리부(15)는, 입력된 디지털 신호에 대하여 신호 처리를 행한다. 신호 처리부(15)가 행하는 신호 처리는, 예를 들어 노이즈 제거, 특징량 추출 등이다. 신호 처리부(15)는, 신호 처리 후의 디지털 신호를 포함하는 송신 데이터를 생성한다. 신호 처리부(15)는, 생성한 송신 데이터를 상태 평가 장치(20)에 출력한다. 신호 처리부(15)는, 아날로그 회로 또는 디지털 회로를 사용하여 구성된다. 디지털 회로는, 예를 들어 FPGA(Field Programmable Gate Array)나 마이크로컴퓨터에 의해 실현된다. 디지털 회로는, 전용의 LSI(Large-Scale Integration)에 의해 실현되어도 된다. 신호 처리부(15)는, 플래시 메모리 등의 불휘발 메모리나, 분리 가능한 메모리를 탑재해도 된다.
상태 평가 장치(20)는, 신호 처리부(15)로부터 출력된 송신 데이터에 포함되는 디지털 신호를 사용하여 압축기(1)의 이상을 평가한다. 상태 평가 장치(20)는, 통신부(21), 제어부(22), 기억부(23) 및 표시부(24)를 구비한다.
통신부(21)는, 신호 처리부(15)로부터 출력된 디지털 신호를 수신한다.
제어부(22)는, 상태 평가 장치(20) 전체를 제어한다. 제어부(22)는, CPU(Central Processing Unit) 등의 프로세서나 메모리를 사용하여 구성된다. 제어부(22)는, 프로그램을 실행함으로써, 취득부(221) 및 평가부(222)로서 기능한다. 취득부(221) 및 평가부(222)를 실현하기 위한 프로그램은, 출하 시에 상태 평가 장치(20)에 인스톨되어 있어도 되고, 별도 인스톨되어도 된다.
취득부(221)는, 신호 처리부(15)로부터 출력된 송신 데이터를 취득한다. 예를 들어, 신호 처리부(15)와 상태 평가 장치(20)가 무선에 의해 통신하고 있는 경우, 취득부(221)는 통신 인터페이스로서 기능하여, 신호 처리부(15)와의 사이에서 무선 통신을 행함으로써 송신 데이터를 취득한다. 예를 들어, 신호 처리부(15)와 상태 평가 장치(20)가 유선에 의해 통신하고 있는 경우, 취득부(221)는 통신 인터페이스로서 기능하여, 신호 처리부(15)와의 사이에서 유선 통신을 행함으로써 송신 데이터를 취득한다.
평가부(222)는, 취득부(221)에 의해 취득된 송신 데이터에 기초하여 압축기(1)의 이상을 평가한다. 구체적으로는, 평가부(222)는, 탄성파로부터 얻어지는 복수의 특징량의 조합에 기초하여 압축기(1)의 이상을 평가한다. 보다 구체적으로는, 평가부(222)는, 복수의 탄성파 각각의 복수의 특징량의 상관 관계가 일탈하는 비율이 역치 이상인 경우에 압축기(1)의 이상으로 평가한다.
기억부(23)는, 취득부(221)에 의해 취득된 송신 데이터를 기억한다. 기억부(23)는, 자기 하드 디스크 장치나 반도체 기억 장치 등의 기억 장치를 사용하여 구성된다.
표시부(24)는, 액정 디스플레이, 유기 EL(Electro Luminescence) 디스플레이 등의 화상 표시 장치이다. 표시부(24)는, 제어부(22)의 제어에 따라서 평가 결과를 표시한다. 표시부(24)는, 화상 표시 장치를 상태 평가 장치(20)에 접속하기 위한 인터페이스여도 된다. 이 경우, 표시부(24)는, 평가 결과를 표시하기 위한 영상 신호를 생성하고, 자신에 접속되어 있는 화상 표시 장치에 영상 신호를 출력한다.
도 5는 실시 형태에 있어서의 신호 처리부(15)의 기능을 도시하는 개략 블록도이다. 도 2에 도시한 바와 같이, 신호 처리부(15)는, 파형 정형 필터(151), 게이트 생성 회로(152), 특징량 추출부(153), 송신 데이터 생성부(154), 메모리(155) 및 출력부(156)를 구비한다.
파형 정형 필터(151)는, 입력된 시계열 데이터의 디지털 신호로부터 소정의 신호 대역 외의 노이즈 성분을 제거한다. 파형 정형 필터(151)는, 예를 들어 디지털 대역 통과 필터(BPF)이다. 파형 정형 필터(151)는, 예를 들어 필터(12)와 동일한 주파수 대역을 통과시키도록 설정되어 있는 것으로 한다. 파형 정형 필터(151)는, 노이즈 성분 제거 후의 신호(이하 「노이즈 제거 탄성파 신호」라 함)를 게이트 생성 회로(152) 및 특징량 추출부(153)에 출력한다.
게이트 생성 회로(152)는, 파형 정형 필터(151)로부터 출력된 노이즈 제거 탄성파 신호를 입력으로 한다. 게이트 생성 회로(152)는, 입력된 노이즈 제거 탄성파 신호의 파형이 지속되고 있는지 여부를 나타내는 게이트 신호를 생성한다. 게이트 생성 회로(152)는, 예를 들어 엔벨로프 검출기 및 비교기에 의해 실현된다. 엔벨로프 검출기는, 노이즈 제거 탄성파 신호의 엔벨로프를 검출한다. 엔벨로프는, 예를 들어 노이즈 제거 탄성파 신호를 제곱한 출력값에 대하여 소정의 처리(예를 들어 저역 통과 필터를 사용한 처리나 힐베르트 변환)를 행함으로써 추출된다. 비교기는, 노이즈 제거 탄성파 신호의 엔벨로프가 소정의 역치 이상인지 여부를 판정한다.
게이트 생성 회로(152)는, 노이즈 제거 탄성파 신호의 엔벨로프가 소정의 역치 이상으로 된 경우, 노이즈 제거 탄성파 신호의 파형이 지속되고 있음을 나타내는 제1 게이트 신호를 특징량 추출부(153)에 출력한다. 한편, 게이트 생성 회로(152)는, 노이즈 제거 탄성파 신호의 엔벨로프가 소정의 역치 미만으로 된 경우, 노이즈 제거 탄성파 신호의 파형이 지속되고 있지 않음을 나타내는 제2 게이트 신호를 특징량 추출부(153)에 출력한다.
특징량 추출부(153)는, 파형 정형 필터(151)로부터 출력된 노이즈 제거 탄성파 신호와, 게이트 생성 회로(152)로부터 출력된 게이트 신호를 입력으로 한다. 특징량 추출부(153)는, 제1 게이트 신호가 입력되고 있는 동안에 입력된 노이즈 제거 탄성파 신호를 사용하여, 노이즈 제거 탄성파 신호의 특징량을 추출한다. 특징량은, 노이즈 제거 탄성파 신호의 특징을 나타내는 정보이다.
특징량은, 예를 들어 파형의 진폭[mV], 파형의 상승 시간[usec], 게이트 신호의 지속 시간[usec], 제로 크로스 카운트수[times], 파형의 에너지[arb.], 주파수[Hz], 도달 시각 및 RMS(Root Mean Square: 제곱 평균 평방근)값 등이다. 특징량 추출부(153)는, 추출한 특징량에 관한 파라미터를 송신 데이터 생성부(154)에 출력한다.
파형의 진폭은, 예를 들어 노이즈 제거 탄성파 신호 중에서 최대 진폭의 값이다. 파형의 상승 시간은, 예를 들어 게이트 신호의 상승 개시로부터 노이즈 제거 탄성파 신호가 최댓값에 도달할 때까지의 시간 T1이다. 게이트 신호의 지속 시간은, 예를 들어 게이트 신호의 상승 개시로부터 진폭이 미리 설정되는 값보다도 작아질 때까지의 시간이다. 제로 크로스 카운트수는, 예를 들어 제로값을 통과하는 기준선을 노이즈 제거 탄성파 신호가 가로지르는 횟수이다. 파형의 에너지는, 예를 들어 각 시점에 있어서 노이즈 제거 탄성파 신호의 진폭을 제곱한 것을 시간 적분한 값이다. 또한, 에너지의 정의는, 상기 예에 한정되지 않고, 예를 들어 파형 포락선을 사용하여 근사된 것이어도 된다. 주파수는, 노이즈 제거 탄성파 신호의 주파수이다. 도달 시각은, 탄성파가 검출된 시각이다. RMS값은, 예를 들어 각 시점에 있어서 노이즈 제거 탄성파 신호의 진폭을 제곱하여 평방근에 의해 구한 값이다.
송신 데이터 생성부(154)는, 특징량에 관한 파라미터를 입력으로 한다. 송신 데이터 생성부(154)는, 입력된 특징량에 관한 파라미터를 포함하는 송신 데이터를 생성한다.
메모리(155)는, 송신 데이터를 기억한다. 메모리(155)는, 예를 들어 듀얼 포트 RAM(Random Access Memory)이다.
출력부(156)는, 메모리(155)에 기억되어 있는 송신 데이터를 상태 평가 장치(20)에 축차적으로 출력한다.
도 6은 실시 형태에 있어서의 상태 평가 시스템(100)에 의한 이상 평가 처리의 흐름을 나타내는 시퀀스도이다. 도 6에 도시한 예에서는, 압축기(1)가 가동 중이며, 센서 등에, 센서(10), 증폭기(11), 필터(12), 증폭기(13) 및 A/D 변환기(14)가 포함되는 것으로서 설명한다.
센서(10)는, 가동 중인 압축기(1)로부터 발생한 탄성파를 검출한다(스텝 S101). 센서(10)는, 검출한 탄성파를 증폭기(11)에 출력한다. 증폭기(11)는, 센서(10)로부터 출력된 탄성파를 증폭한다(스텝 S102). 증폭기(11)는, 증폭 후의 탄성파를 필터(12)에 출력한다. 증폭기(11)로부터 출력된 증폭 후의 신호는 필터(12)에 의해 필터링된다(스텝 S103). 이에 의해, 가동 중인 압축기(1)로부터 검출되는 탄성파 중, 마모 기인이 아닌 신호를 제외한 마모에 기인한다고 상정되는 탄성파를 추출할 수 있다.
필터(12)에 의해 필터링된 탄성파는, 증폭기(13)에 입력된다. 증폭기(13)는, 입력된 탄성파를 증폭한다(스텝 S104). 증폭기(13)는, 증폭 후의 신호를 A/D 변환기(14)에 출력한다. A/D 변환기(14)는, 입력된 탄성파를 양자화하여 디지털 신호로 변환한다(스텝 S105). A/D 변환기(14)는, 디지털 신호를 신호 처리부(15)에 출력한다(스텝 S106).
신호 처리부(15)는, A/D 변환기(14)로부터 출력된 디지털 신호를 입력한다. 신호 처리부(15)는, 입력한 디지털 신호를 사용하여, 탄성파의 특징량을 추출한다(스텝 S107). 구체적으로는, 특징량 추출부(153)는, 제1 게이트 신호가 입력되고 있는 동안에 입력된 디지털 신호인 노이즈 제거 탄성파 신호를 사용하여, 노이즈 제거 탄성파 신호의 특징량을 추출한다. 신호 처리부(15)는, 추출한 특징량에 관한 파라미터를 송신 데이터 생성부(154)에 출력한다. 송신 데이터 생성부(154)는, 특징량에 관한 파라미터를 포함하는 송신 데이터를 생성한다(스텝 S108). 출력부(156)는, 송신 데이터를 상태 평가 장치(20)에 축차적으로 출력한다(스텝 S109).
상태 평가 장치(20)의 통신부(21)는, 신호 처리부(15)로부터 출력된 송신 데이터를 수신하고, 취득부(221)는, 통신부(21)에 의해 수신된 송신 데이터를 취득한다. 취득부(221)는, 취득한 송신 데이터를 기억부(23)에 기록한다(스텝 S110). 평가부(222)는, 기억부(23)에 소정의 수의 송신 데이터가 기억된 경우에, 복수의 송신 데이터를 사용하여, 복수의 특징량의 상관 관계를 나타내는 산포도를 생성한다(스텝 S111). 구체적으로는, 먼저 평가부(222)는, 복수의 송신 데이터 각각으로 부터 복수의 특징량을 취득한다. 예를 들어, 평가부(222)는, 복수의 송신 데이터 각각으로부터, 복수의 특징량으로서 파형의 에너지와 게이트 신호의 지속 시간을 취득한다. 다음에, 평가부(222)는, 취득한 파형의 에너지와 게이트 신호의 지속 시간을 사용하여, 횡축을 지속 시간, 종축을 에너지로 하여 상관 관계를 나타내는 산포도를 생성한다.
산포도의 일례를 도 7 및 도 8에 도시한다. 도 7은 압축기(1)에 이상이 발생하지 않은 경우에 얻어지는 산포도의 일례를 도시하는 도면이다. 도 8은 압축기(1)에 이상이 발생한 경우에 얻어지는 산포도의 일례를 도시하는 도면이다. 도 7 및 도 8에 도시한 점(30)은, 탄성파로부터 얻어지는 복수의 특징량에 기초하여 플롯되는 점이다. 도 7 및 도 8에 있어서의 점(30)은, 탄성파로부터 얻어지는 파형의 에너지와 게이트 신호의 지속 시간에 기초하여 플롯된다. 압축기(1) 내부의 미끄럼 이동부에 손상이 없는 압축기(1)에서는, 도 7에 도시된 바와 같이, 계측되는 탄성파의 에너지가 신호의 지속 시간에 비례하여 증가하는 경향을 나타낸다. 한편, 압축기(1) 내부의 미끄럼 이동부에 이상이 있는 경우에는, 도 8의 영역(31)에 나타내는 바와 같이, 탄성파의 에너지와 지속 시간의 관계로부터 일탈하는 점(30)이 빈발한다. 평가부(222)는, 일탈한 점(30)의 비율에 기초하여 압축기(1) 내부의 이상을 평가한다(스텝 S112). 구체적으로는, 평가부(222)는, 생성한 산포도 상에서 근사 직선을 그리고, 근사 직선으로부터 소정의 거리 떨어진 점(30)의 비율(모든 점(30)에 있어서의 비율)이 역치 이상인 경우에 압축기(1) 내부의 이상으로 평가한다. 평가부(222)는, 평가 결과를 표시부(24)에 출력한다. 표시부(24)는, 평가부(222)로부터 출력된 평가 결과를 표시한다(스텝 S113). 표시부(24)는, 평가 결과로서, 산포도를 표시해도 되고, 이상의 유무를 표시해도 된다.
이상과 같이 구성된 상태 평가 시스템(100)에서는, 압축기(1)의 케이싱(2)에 설치한 센서(10)로부터 얻어지는 탄성파를 필터(12)에 의해 필터링하여, 가동 중인 압축기(1) 내부에서 발생하는 마모 기인의 탄성파(진폭이 작고, 비교적 높은 주파수 특성을 갖는 탄성파)를 추출한다. 그리고, 상태 평가 장치(20)에 있어서, 탄성파로부터 얻어지는 복수의 특징량의 조합에 기초하여 압축기(1)의 이상을 평가한다. 이에 의해, 진동이나 압축 공정의 응력 변형에 기인하는 탄성파를 제외하고 평가할 수 있다. 따라서, 진동이나 압축 공정의 응력 변형에 기인하는 탄성파와, 압축기(1)의 이상에 의해 발생한 탄성파를 판별하지 않아도 된다. 그 때문에, 고정밀도로 압축기 내부의 이상을 평가하는 것이 가능해진다.
평가부(222)는, 복수의 탄성파 각각의 복수의 특징량의 상관 관계로부터 도출되는 근사 직선으로부터 일탈하는 비율이 역치 이상인 경우에 압축기(1)의 이상으로 평가한다. 일탈하는 탄성파가 있다고 하는 것은, 장치 내부에서 무엇인가의 이상이 발생하고 있을 가능성이 있다. 그러나, 일탈하고 있는 비율이 적은 경우(예를 들어, 역치 미만)에는, 우연히 발생한 탄성파일 가능성도 있다. 한편, 일탈하고 있는 비율이 역치 이상인 경우에 우연히 발생한 탄성파가 아니라, 장치 내부의 이상의 발생에 의해 통상 발생할 수 없는 현상으로 되어 있는 것이 상정된다. 그래서, 평가부(222)가, 일탈하는 비율이 역치 이상인 경우에 압축기(1)의 이상으로 평가함으로써, 장치 내부에 센서 등을 설치하지 않아도 이상을 찾을 수 있다.
이하, 상태 평가 시스템(100)의 변형예에 대하여 설명한다.
증폭기(11), 필터(12), 증폭기(13) 및 A/D 변환기(14) 중 적어도 하나가, 신호 처리부(15)와 일체화되어 구성되어도 된다. 신호 처리부(15)는, 상태 평가 장치(20)에 구비되어도 된다.
상태 평가 장치(20)가 구비하는 각 기능부는, 일부 또는 모두가 다른 하우징에 구비되어 있어도 된다. 예를 들어, 상태 평가 장치(20)가 통신부(21), 제어부(22) 및 기억부(23)를 구비하고, 표시부(24)가 다른 하우징에 구비되어도 된다. 이와 같이 구성되는 경우, 제어부(22)는, 통신부(21)를 제어하여, 평가 결과를 다른 하우징이 구비하는 표시부(24)에 출력한다.
본 실시 형태에서는, 복수의 특징량으로서, 파형의 에너지와 지속 시간을 사용하는 구성을 나타냈지만, 평가부(222)가 평가에 사용하는 복수의 특징량은 이것에 한정되지 않는다. 평가부(222)는, 탄성파로부터 얻어지는 특징량이면, 어느 특징량을 조합하여 평가해도 된다. 예를 들어, 평가부(222)는, 복수의 특징량으로서 파형의 에너지와 파형의 진폭을 사용해도 된다. 이 경우에도, 산포도의 생성에 사용하는 특징량이 다른 점을 제외하고, 산포도의 생성에 대해서는 상기 실시 형태와 마찬가지이다. 도 9 및 도 10을 사용하여, 그 밖의 특징량의 조합(예를 들어, 파형의 에너지와 파형의 진폭)에 기초하는 평가에 대하여 설명한다. 이 경우, 평가부(222)는, 취득한 파형의 에너지와 파형의 진폭을 사용하여, 횡축을 파형의 에너지, 종축을 파형의 최대 진폭으로 하여 산포도를 생성한다.
도 9는 압축기(1)에 이상이 발생하지 않은 경우에 얻어지는 산포도의 일례를 나타내고, 도 10은 압축기(1)에 이상이 발생한 경우에 얻어지는 산포도의 일례를 나타낸다. 도 9 및 도 10에 도시한 점(30)은, 탄성파로부터 얻어지는 복수의 특징량에 기초하여 플롯되는 점이다. 도 9 및 도 10에 있어서의 점(30)은, 탄성파로부터 얻어지는 파형의 에너지와 파형의 진폭에 기초하여 플롯된다. 압축기(1) 내부의 미끄럼 이동부에 이상이 있는 압축기(1)에서는, 압축기(1) 내부의 미끄럼 이동부에 손상이 없는 경우에 비해, 계측되는 탄성파의 에너지가 커진다. 그래서, 평가부(222)는, 생성된 산포도에 있어서, 역치 Th로서 설정된 어떤 에너지 이상의 플롯이 소정의 수 이상 있는 경우에 압축기(1) 내부의 이상으로 평가한다. 한편, 평가부(222)는, 생성된 산포도에 있어서, 역치 Th로서 설정된 어떤 에너지 이상의 플롯이 소정의 수 미만인 경우에 압축기(1) 내부의 이상이 없다고 평가한다. 또한, 역치 Th는, 미리 설정되는 값이며, 압축기(1)의 종류에 따라서 달라도 되고, 동일해도 된다.
본 실시 형태에서는, 압축기(1)의 회전수로서 60rps를 예로 들어 설명하였지만, 압축기(1)의 회전수는 이것에 한정되지 않는다. 예를 들어, 압축기(1)의 회전수는, 회전수 30rps 내지 70rps의 범위 내인 것이 바람직하다. 이 이유에 대하여 도 11을 사용하여 설명한다. 도 11은 압축기(1)의 회전수와, 평가부(222)에 의한 평가 결과의 정답율의 관계성을 도시하는 도면이다. 도 11에 있어서, 횡축은 회전 속도를 나타내고, 종축은 정답율을 나타낸다. 정답율은, 평가부(222)에 의한 평가 정밀도를 나타내는 지표이다. 도 11에 있어서의 역치는, 평가부(222)에 의한 평가 정밀도를 나타내는 기준이 되는 값이다. 정답율이 역치 이상인 경우에 평가부(222)에 의한 평가 정밀도가 좋은 것을 나타내고, 정답율이 역치 미만인 경우에 평가부(222)에 의한 평가 정밀도가 나쁜 것을 나타낸다. 도 11에 도시한 바와 같이, 회전수 30rps 내지 70rps의 범위 내에서는 정답율이 역치 이상인 것에 반해, 회전수 30rps 미만 및 70rps보다도 많은 경우에는, 정답율이 현저하게 저하되어 있다. 회전수가 적은(30rps 미만) 경우에는, 탄성파가 별로 검출되지 않기 때문에 평가 정밀도가 나빠져 있는 것으로 생각된다. 한편, 회전수가 많은(70rps보다도 많음) 경우에는 마모에 기인한다고 상정되는 탄성파 이외에도 내부의 기기끼리의 충돌 등에 의해 발생하는 탄성파가 많이 검출되어 버리기 때문에 평가 정밀도가 나빠져 있는 것으로 생각된다. 그래서, 고정밀도로 압축기(1) 내부의 손상을 검출하기 위해서는, 압축기(1)의 회전수가 회전수 30rps 내지 70rps의 범위 내인 것이 바람직하다고 생각된다.
본 실시 형태에서는, 평가부(222)는, 압축기(1)의 이상을, 복수의 특징량의 상관 관계로부터 도출되는 근사 직선으로부터 일탈하는 비율에 기초하여 평가하는 구성을 나타냈다. 평가부(222)는, 복수의 특징량의 상관 관계에 기초하여, 다른 방법을 사용하여 압축기(1)의 이상을 평가해도 된다. 예를 들어, 평가부(222)는, 복수의 특징량의 상관 관계에 기초하는 상관 계수나 잔차로부터 압축기(1)의 이상을 평가해도 된다. 이하, 구체적으로 설명한다.
(상관 계수를 사용하는 경우)
평가부(222)는, 복수의 특징량으로서 게이트 신호의 지속 시간과 파형의 에너지를 사용하는 경우, 게이트 신호의 지속 시간과 파형의 에너지의 상관 계수 R을 이하의 식 (1)에 기초하여 산출한다. 식 (1)에 있어서 게이트 신호의 지속 시간을 x로 하고, 파형의 에너지를 y로 하고 있다.
Figure pct00001
식 (1)에 있어서의 Sxy는, 게이트 신호의 지속 시간(x)과 파형의 에너지(y)의 공분산을 나타낸다. 식 (1)에 있어서의 Sx는, 게이트 신호의 지속 시간의 표준 편차를 나타낸다. 식 (1)에 있어서의 Sy는, 파형의 에너지의 표준 편차를 나타낸다. 손상이 진행되어 일탈점이 증가할수록 복수의 특징량의 상관 관계가 무너져, 상관 계수가 감소된다. 그래서, 평가부(222)는, 산출한 상관 계수 R이 역치 미만인 경우에 압축기(1) 내부에 이상이 발생하였다고 평가한다. 평가부(222)는, 산출한 상관 계수 R이 역치 이상인 경우에 압축기(1) 내부에 이상이 발생하지 않았다고 평가한다.
(잔차를 사용하는 경우)
평가부(222)는, 복수의 특징량으로서 게이트 신호의 지속 시간과 파형의 에너지를 사용하는 경우, 게이트 신호의 지속 시간과 파형의 에너지의 상관 관계를 최소 제곱법에 의해 직선 근사로 나타냈을 때의 잔차 제곱 평균 평방근 r을 이하의 식 (2)에 기초하여 산출한다.
Figure pct00002
식 (2)에 있어서의 f(x)는 근사 직선을 나타낸다. 식 (2)에 있어서의 N은 데이터의 수를 나타낸다. 데이터의 수는, 예를 들어 도 7 및 도 8에 도시한 점(30)의 수이다. 평가부(222)는, 산출한 제곱 평균 평방근 r이 역치 이상인 경우에 압축기(1) 내부에 이상이 발생하였다고 평가한다. 평가부(222)는, 산출한 제곱 평균 평방근 r이 역치 미만인 경우에 압축기(1) 내부에 이상이 발생하지 않았다고 평가한다.
이상 설명한 적어도 하나의 실시 형태에 따르면, 센서와, 필터와, 신호 처리부와, 평가부를 갖는다. 센서는, 가동 중인 산업 기기로부터 발생한 탄성파를 검출한다. 필터는, 상기 산업 기기 내부에서 발생하는 마모에 기인하는 주파수 특성을 갖는 탄성파를 통과시킨다. 신호 처리부는, 상기 필터를 통과한 탄성파를 사용하여 복수의 특징량을 추출한다. 평가부는, 추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가한다. 이에 의해, 고정밀도로 산업 기기의 이상을 평가할 수 있다.
본 발명의 몇 가지의 실시 형태를 설명하였지만, 이들 실시 형태는, 예로서 제시한 것이며, 발명의 범위를 한정하는 것은 의도하고 있지 않다. 이들 실시 형태는, 그 밖의 다양한 형태로 실시되는 것이 가능하고, 발명의 요지를 일탈하지 않는 범위에서, 다양한 생략, 치환, 변경을 행할 수 있다. 이들 실시 형태나 그 변형은, 발명의 범위나 요지에 포함되는 것과 마찬가지로, 특허 청구 범위에 기재된 발명과 그 균등의 범위에 포함되는 것이다.

Claims (8)

  1. 가동 중인 산업 기기로부터 발생한 탄성파를 검출하는 센서와,
    상기 산업 기기 내부에서 발생하는 손상에 기인하는 주파수 특성을 갖는 탄성파를 통과 가능한 필터와,
    상기 필터를 통과한 탄성파를 사용하여 복수의 특징량을 추출하는 신호 처리부와,
    추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가하는 평가부를 구비하는, 상태 평가 시스템.
  2. 제1항에 있어서,
    상기 평가부는, 복수의 탄성파 각각의 복수의 특징량의 상관 관계에 기초하여 상기 산업 기기의 이상으로 평가하는, 상태 평가 시스템.
  3. 제2항에 있어서,
    상기 평가부는, 복수의 탄성파를 사용하여, 복수의 탄성파 각각으로부터 얻어지는 복수의 특징량의 상관 관계로부터 도출되는 근사 직선으로부터 일탈하는 비율이 역치 이상인 경우에 상기 산업 기기의 이상으로 평가하는, 상태 평가 시스템.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 평가부는, 상기 복수의 특징량으로서, 상기 탄성파의 에너지와 지속 시간을 사용하는 경우, 상기 탄성파의 에너지와 지속 시간의 상관 관계를 나타내는 산포도를 생성하고, 생성한 상기 산포도 상에서 근사 직선을 그리고, 상기 근사 직선으로부터 소정의 거리 떨어진 점의 비율이 역치 이상인 경우에 상기 산업 기기의 이상으로 평가하는, 상태 평가 시스템.
  5. 제2항에 있어서,
    상기 평가부는, 복수의 탄성파를 사용하여, 복수의 탄성파 각각으로부터 얻어지는 복수의 특징량에 의해 도출되는 상관 계수가 역치 미만인 경우에 상기 산업 기기의 이상으로 평가하는, 상태 평가 시스템.
  6. 제2항에 있어서,
    상기 평가부는, 복수의 탄성파를 사용하여, 복수의 탄성파 각각으로부터 얻어지는 복수의 특징량의 상관 관계로부터 도출되는 근사 직선에 있어서의 잔차의 제곱 평균 평방근이 역치 이상인 경우에 상기 산업 기기의 이상으로 평가하는, 상태 평가 시스템.
  7. 가동 중인 산업 기기로부터 발생한 탄성파를 검출하는 센서에 의해 검출된 탄성파로서, 손상에 기인하는 주파수 특성을 갖는 탄성파를 사용하여 추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가하는 평가부를 구비하는, 상태 평가 장치.
  8. 가동 중인 산업 기기로부터 발생한 탄성파를 검출하는 센서에 의해 검출된 탄성파로서, 손상에 기인하는 주파수 특성을 갖는 탄성파를 사용하여 추출된 복수의 특징량의 조합에 기초하여, 상기 산업 기기의 이상을 평가하는, 상태 평가 방법.
KR1020217026865A 2020-02-28 2020-08-24 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법 KR102715650B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2020-033336 2020-02-28
JP2020033336A JP7285797B2 (ja) 2020-02-28 2020-02-28 状態評価システム、状態評価装置及び状態評価方法
PCT/JP2020/031830 WO2021171656A1 (ja) 2020-02-28 2020-08-24 状態評価システム、状態評価装置及び状態評価方法

Publications (2)

Publication Number Publication Date
KR20210118144A true KR20210118144A (ko) 2021-09-29
KR102715650B1 KR102715650B1 (ko) 2024-10-11

Family

ID=77490907

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217026865A KR102715650B1 (ko) 2020-02-28 2020-08-24 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법

Country Status (6)

Country Link
US (1) US12001195B2 (ko)
EP (1) EP4113074A4 (ko)
JP (1) JP7285797B2 (ko)
KR (1) KR102715650B1 (ko)
CN (1) CN113677975A (ko)
WO (1) WO2021171656A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489455Y1 (ko) 1969-10-17 1973-03-13
JP3325015B2 (ja) 2000-04-18 2002-09-17 エルジー電子株式会社 空気調和機の異常有無検出方法並びに装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994019A (ja) * 1982-11-22 1984-05-30 Mitsubishi Electric Corp 異常検出装置
JPH0748070B2 (ja) * 1989-03-15 1995-05-24 株式会社日立製作所 摺動運動部の信頼性評価システム
JP3348182B2 (ja) * 1995-03-15 2002-11-20 オムロン株式会社 異常振動検出装置
KR0156352B1 (ko) 1995-06-29 1998-10-15 정몽원 쇽업소버의 유량감응형 피스톤밸브
KR100192251B1 (ko) * 1997-05-22 1999-06-15 구자홍 압축기의 이상상태 감지시스템
JP4592235B2 (ja) 2001-08-31 2010-12-01 株式会社東芝 生産装置の故障診断方法及び生産装置の故障診断システム
US7640139B2 (en) 2004-10-18 2009-12-29 Nsk Ltd. Abnormality diagnosing system for mechanical equipment
JP4232162B2 (ja) * 2004-12-07 2009-03-04 三菱電機株式会社 圧縮機検査装置
JP2007003299A (ja) 2005-06-22 2007-01-11 Kansai Electric Power Co Inc:The 摩耗検出装置
JP5028028B2 (ja) 2006-05-24 2012-09-19 株式会社ジェイテクト アコースティックエミッション検出装置および制御装置
US8355882B2 (en) * 2008-02-08 2013-01-15 International Business Machines Corporation Method for detecting high impedance faults by analyzing a local deviation from a regularization
JP4809455B2 (ja) 2009-05-18 2011-11-09 日本フィジカルアコースティクス株式会社 溶接状態の異常判別装置
JP5143863B2 (ja) 2010-06-01 2013-02-13 Jfeアドバンテック株式会社 軸受状態監視方法及び軸受状態監視装置
US9423334B2 (en) * 2013-08-27 2016-08-23 Fisher Controls International Llc Method of cavitation/flashing detection in or near a process control valve
CN104595112B (zh) * 2013-10-30 2018-01-16 通用电气公司 风力涡轮机及评估其上叶片健康状态的方法
WO2015104809A1 (ja) * 2014-01-09 2015-07-16 富士通株式会社 分析方法、分析プログラム、および分析装置
JP2015220379A (ja) * 2014-05-20 2015-12-07 ルネサスエレクトロニクス株式会社 集積回路デバイスの潜在不良検査装置、方法およびプログラム
KR101645605B1 (ko) * 2014-09-05 2016-08-05 국방과학연구소 패턴 인식을 이용한 평판 구조물의 결함 위치 탐지 방법 및 그 장치
JP6567268B2 (ja) * 2014-11-18 2019-08-28 株式会社東芝 信号処理装置、サーバ装置、検知システム及び信号処理方法
JP6486739B2 (ja) * 2015-03-23 2019-03-20 株式会社東芝 検知システム、検知方法及び信号処理装置
JP6803161B2 (ja) * 2015-07-07 2020-12-23 日本電産シンポ株式会社 金型の異常予測システム、それを備えたプレス機及び金型の異常予測方法
JP6385911B2 (ja) 2015-11-12 2018-09-05 株式会社東芝 検出システム、情報処理装置、および検出方法
JP6539594B2 (ja) * 2016-01-18 2019-07-03 株式会社神戸製鋼所 回転機異常検出装置および該方法ならびに回転機
CN105676082B (zh) * 2016-01-19 2018-06-05 华北电力大学(保定) 气体绝缘组合电器盆式绝缘子内部缺陷检测系统和方法
US10613060B2 (en) * 2016-06-15 2020-04-07 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10345275B2 (en) * 2016-06-15 2019-07-09 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
WO2018051534A1 (ja) 2016-09-15 2018-03-22 株式会社東芝 構造物評価システム、構造物評価装置及び構造物評価方法
JP6895816B2 (ja) * 2017-06-15 2021-06-30 株式会社 日立産業制御ソリューションズ 異常診断装置、異常診断方法及び異常診断プログラム
DE102017124281A1 (de) 2017-08-14 2019-02-14 Schaeffler Technologies AG & Co. KG Verfahren und Überwachungseinrichtung zur Überwachung eines Betriebszustands einer Vorrichtung
CN109973325B (zh) * 2017-12-20 2020-09-29 北京金风科创风电设备有限公司 识别异常振动的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489455Y1 (ko) 1969-10-17 1973-03-13
JP3325015B2 (ja) 2000-04-18 2002-09-17 エルジー電子株式会社 空気調和機の異常有無検出方法並びに装置

Also Published As

Publication number Publication date
EP4113074A4 (en) 2024-03-13
US12001195B2 (en) 2024-06-04
JP7285797B2 (ja) 2023-06-02
EP4113074A1 (en) 2023-01-04
KR102715650B1 (ko) 2024-10-11
WO2021171656A1 (ja) 2021-09-02
US20210397161A1 (en) 2021-12-23
CN113677975A (zh) 2021-11-19
JP2021135233A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
CN107076155B (zh) 用于通过手持通信装置检测泵组件中的故障的方法和系统
US10385853B2 (en) Rotary machine abnormality detection device and method thereof and rotary machine
CN106662504B (zh) 旋转机械异常检测装置及其方法以及旋转机
KR101482509B1 (ko) 베어링 결함 진단 시스템 및 그 진단 방법
US8214160B2 (en) State detection device, state detection method, state detection program, and information recording medium
CN109690279B (zh) 旋转机异常检测装置及其方法和旋转机
CN108139367B (zh) 旋转机的异常检测装置、旋转机的异常检测方法以及旋转机
EA027452B1 (ru) Способ и система для выполнения анализа состояния вращающейся части машины
US20170199164A1 (en) Malfunction diagnosing apparatus, malfunction diagnosing method, and recording medium
US20140216159A1 (en) Method and arrangement for determining and/or monitoring the state of a roller bearing
CN114391091A (zh) 振动检测装置、振动检测方法及异常判定系统
KR20210118144A (ko) 상태 평가 시스템, 상태 평가 장치 및 상태 평가 방법
Verma et al. Statistical approach for finding sensitive positions for condition based monitoring of reciprocating air compressors
Huchel et al. Diagnostics for periodically excited actuators
JP2013160749A (ja) 回転機械の設備診断方法及び設備診断装置
TW201437580A (zh) 冷凍機狀態判定裝置及冷凍機狀態判定方法
JP2006189333A (ja) 軸受の異常診断装置
JP6977364B2 (ja) 回転機構の異常検知感度設定装置および異常検知感度設定方法
CN110537082B (zh) 振动检测装置及异常判定系统
Minemura et al. Acoustic feature representation based on timbre for fault detection of rotary machines
CN114600470A (zh) 信号处理装置、信号处理方法及程序
JP4511886B2 (ja) スクリュー圧縮機の異常診断装置および異常診断システム
JPH0692913B2 (ja) 摺動運動部の異常診断システム
JP4209793B2 (ja) 音響信号に基づく異常診断方法及び該方法を実行するために用いるプログラム
JP6878057B2 (ja) 絶縁診断装置および絶縁診断方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right