KR20210073378A - 연료전지의 운전 제어시스템 및 제어방법 - Google Patents

연료전지의 운전 제어시스템 및 제어방법 Download PDF

Info

Publication number
KR20210073378A
KR20210073378A KR1020190164166A KR20190164166A KR20210073378A KR 20210073378 A KR20210073378 A KR 20210073378A KR 1020190164166 A KR1020190164166 A KR 1020190164166A KR 20190164166 A KR20190164166 A KR 20190164166A KR 20210073378 A KR20210073378 A KR 20210073378A
Authority
KR
South Korea
Prior art keywords
fuel cell
gas
supply system
air
supplied
Prior art date
Application number
KR1020190164166A
Other languages
English (en)
Inventor
변정연
Original Assignee
현대자동차주식회사
기아 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아 주식회사 filed Critical 현대자동차주식회사
Priority to KR1020190164166A priority Critical patent/KR20210073378A/ko
Publication of KR20210073378A publication Critical patent/KR20210073378A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

수소와 산소를 각각 공급받아 전력을 발전하는 연료전지; 연료전지의 애노드 측에 수소를 공급하는 수소공급계; 연료전지의 캐소드 측에 산소가 포함된 공기를 공급하는 공기공급계; 공기보다 상대적으로 반응성이 낮은 제1기체를 연료전지의 애노드 측에 공급하거나, 또는 공기보다 상대적으로 반응성이 높은 제2기체를 연료전지의 캐소드 측에 공급하는 추가공급계; 및 연료전지의 발전 상태를 기반으로 추가공급계에서 공급된 제1기체의 연료전지 애노드 측으로 공급 또는 추가공급계에서 공급된 제2기체의 연료전지 캐소드 측으로 공급을 허용하거나 차단하는 제어기;를 포함하는 연료전지의 운전 제어시스템이 소개된다.

Description

연료전지의 운전 제어시스템 및 제어방법 {DRIVING CONTROL SYSTEM AND CONTROL METHOD OF FUEL CELL}
본 발명은 연료전지의 운전 제어시스템 및 제어방법에 관한 것으로, 더 구체적으로는 연료전지의 운전 상태에 따라 공기 중의 질소와 산소를 분리하여 연료전지로 공급하는 제어 기술에 관한 것이다.
연료전지는 수소공급장치 및 공기공급장치에서 각각 공급된 수소와 산소의 산화 환원 반응을 이용하여 화학적 에너지를 전기적 에너지로 변환시키는 것으로 전기 에너지를 생산하는 연료전지 스택 및 이를 냉각시키기 위한 냉각 시스템 등을 포함하고 있다.
즉, 연료전지의 애노드 측에는 수소가 공급되고, 애노드(Anode)에서 수소의 산화반응이 진행되어 수소이온(Proton)과 전자(Electron)가 발생하게 되고, 이때 생성된 수소이온과 전자는 각각 전해질막을 통하여 캐소드(Cathode)로 이동한다. 캐소드에서는 애노드로부터 이동한 수소이온과 전자, 공기중의 산소가 참여하는 전기화학반응을 통하여 전기에너지가 발생한다.
연료전지가 정상적으로 운전되어 전력을 발전하는 상태에서는 애노드 측과 캐소드 측에 각각 수소 및 공기를 공급받아 전력을 발전하지만, 연료전지의 시동 오프에 따라 연료전지의 발전을 정지한 상태로 연료전지를 보관하는 경우, 연료전지의 열화를 방지하기 위한 기술이 요구된다.
특히, 연료전지의 발전이 정지된 상태에서 연료전지 내부에 잔존한 수분이 빙결되거나, 애노드와 캐소드 사이의 기체 확산에 따른 크로스오버에 의해 재기동시 연료전지에 역전압이 형성되는 등 연료전지의 내구성에 악영향을 주는 문제가 있었다.
이러한 문제를 방지하기 위하여, 연료전지의 내구성이 확보되도록 연료전지를 보관하는 기술에 대한 연구가 진행되고 있다.
상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
KR 10-1637478 B KR 10-0985870 B
본 발명은 이러한 문제점을 해결하기 위하여 제안된 것으로, 연료전지의 운전 상태에 따라 공기 중의 질소와 산소를 분리하여 연료전지로 공급하는 연료전지의 운전 제어 기술을 제공하고자 함이다.
상기의 목적을 달성하기 위한 본 발명에 따른 연료전지의 운전 제어시스템은 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지; 연료전지의 애노드 측에 수소를 공급하는 수소공급계; 연료전지의 캐소드 측에 산소가 포함된 공기를 공급하는 공기공급계; 공기보다 상대적으로 반응성이 낮은 제1기체를 연료전지의 애노드 측에 공급하거나, 또는 공기보다 상대적으로 반응성이 높은 제2기체를 연료전지의 캐소드 측에 공급하는 추가공급계; 및 연료전지의 발전 상태를 기반으로 추가공급계에서 공급된 제1기체의 연료전지 애노드 측으로 공급 또는 추가공급계에서 공급된 제2기체의 연료전지 캐소드 측으로 공급을 허용하거나 차단하는 제어기;를 포함한다.
추가공급계는, 공기공급계에 연결되어 공기를 공급받고, 공기 중에서 제1기체와 제2기체를 분리하고, 분리한 제1기체를 연료전지의 애노드 측으로 공급하며, 분리한 제2기체를 연료전지의 캐소드 측으로 공급할 수 있다.
추가공급계는, 제1기체 및 제2기체의 막 투과 속도 차이에 따라 제1기체와 제2기체를 분리하는 막 분리기일 수 있다.
수소공급계에서 공급되는 수소 또는 추가공급계에서 공급되는 제1기체가 선택적으로 연료전지의 애노드 측으로 공급되도록 유로를 전환하는 제1유로전환기구;를 더 포함하고, 제어기는 제1기체를 연료전지의 애노드 측으로 공급하거나 차단하도록 제1유로전환기구를 제어할 수 있다.
공기공급계에서 공급되는 공기가 추가공급계로 공급되거나 추가공급계를 바이패스하여 연료전지의 캐소드 측으로 공급되도록 유로를 전환하는 제2유로전환기구;를 더 포함하고, 제어기는 공기공급계에서 공급되는 공기를 연료전지의 캐소드 측 또는 추가공급계로 공급하거나 차단하도록 제2유로전환기구를 제어할 수 있다.
제2유로전환기구는 추가공급계에서 분리된 제2기체가 배출되는 배출구에 위치되고, 제어기는 추가공급계에서 분리된 제2기체를 연료전지의 캐소드 측으로 공급하거나 차단하도록 제2유로전환기구를 제어할 수 있다.
추가공급계에서 분리된 제2기체가 배출되는 배출구에 위치된 제3유로전환기구;를 더 포함하고, 제어기는 추가공급계에서 분리된 제2기체를 외부로 배출하거나 차단하도록 제3유로전환기구를 제어할 수 있다.
추가공급계에서 분리된 제1기체가 배출되는 배출구에 위치된 제4유로전환기구;를 더 포함하고, 제어기는 추가공급계에서 분리된 제1기체를 외부로 배출하거나 차단하도록 제4유로전환기구를 제어할 수 있다.
제어기는 연료전지의 발전 중지로 진입하는 상태에서, 제1기체의 연료전지 애노드 측으로 공급은 허용하고, 제2기체의 연료전지 캐소드 측으로 공급은 차단할 수 있다.
제어기는 연료전지의 성능을 향상시키거나 진단하는 상태에서, 제1기체의 연료전지 애노드 측으로 공급은 차단하고, 제2기체의 연료전지 캐소드 측으로 공급은 허용할 수 있다.
상기의 목적을 달성하기 위한 본 발명에 따른 연료전지의 운전 제어방법은 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지의 발전 상태를 판단하는 단계; 판단한 연료전지의 발전 상태를 기반으로 공기를 공기보다 상대적으로 반응성이 낮은 제1기체와 공기보다 상대적으로 반응성이 높은 제2기체로 분리하는 추가공급계로 공기공급계의 공기를 공급하는 단계; 및 판단한 연료전지의 발전 상태를 기반으로 분리한 제1기체의 연료전지 애노드 측으로 공급 또는 분리한 제2기체의 연료전지 캐소드 측으로 공급을 허용하거나 차단하는 단계;를 포함한다.
연료전지의 발전 상태를 판단하는 단계에서, 연료전지의 발전 중지로 진입하는 상태로 판단한 경우, 추가공급계로 공기공급계의 공기를 공급하는 단계에서는, 공기공급계의 공기를 추가공급계로 공급하고, 공급을 허용하거나 차단하는 단계에서는, 제1기체의 연료전지 애노드 측으로 공급은 허용하고, 제2기체의 연료전지 캐소드 측으로 공급은 차단할 수 있다.
연료전지의 발전 상태를 판단하는 단계에서, 연료전지의 성능을 향상시키거나 진단하는 상태로 판단한 경우, 추가공급계로 공기공급계의 공기를 공급하는 단계에서는, 공기공급계의 공기를 추가공급계로 공급하고, 공급을 허용하거나 차단하는 단계에서는, 제1기체의 연료전지 애노드 측으로 공급은 차단하고, 제2기체의 연료전지 캐소드 측으로 공급은 허용할 수 있다.
본 발명의 연료전지의 운전 제어시스템 및 제어방법에 따르면, 연료전지의 발전 상태를 기반으로 애노드에 반응성이 낮은 질소 가스를 공급하거나, 캐소드에 반응성이 높은 산화 가스를 공급하도록 제어하여 연료전지의 발전을 효과적으로 제어할 수 있는 효과를 갖는다.
또한, 이에 따라 연료전지 스택의 내구성을 향상시키고, 연료전지의 발전 효율을 증대시킴으로써 연비가 향상되는 효과를 갖는다.
도 1은 본 발명의 일 실시예에 따른 연료전지의 운전 제어시스템을 도시한 것이다.
도 2 내지 4는 본 발명의 다양한 연료전지의 발전 상태에 따른 연료전지의 운전 제어시스템의 제어도를 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 연료전지의 성능을 진단하는 그래프를 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 연료전지의 운전 제어방법의 순서도이다.
본 명세서 또는 출원에 개시되어 있는 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명에 따른 실시 예들은 다양한 형태로 실시될 수 있으며 본 명세서 또는 출원에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명에 따른 실시 예는 다양한 변경을 가할 수 있고 여러가지 형태를 가질 수 있으므로 특정실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미이다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미인 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 연료전지(10)의 운전 제어시스템을 도시한 것이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 연료전지(10)의 운전 제어시스템은 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지(10); 연료전지(10)의 애노드 측에 수소를 공급하는 수소공급계(20); 연료전지(10)의 캐소드 측에 산소가 포함된 공기를 공급하는 공기공급계(30); 공기보다 상대적으로 반응성이 낮은 제1기체를 연료전지(10)의 애노드 측에 공급하거나, 또는 공기보다 상대적으로 반응성이 높은 제2기체를 연료전지(10)의 캐소드 측에 공급하는 추가공급계(40); 및 연료전지(10)의 발전 상태를 기반으로 추가공급계(40)에서 공급된 제1기체의 연료전지(10) 애노드 측으로 공급 또는 추가공급계(40)에서 공급된 제2기체의 연료전지(10) 캐소드 측으로 공급을 허용하거나 차단하는 제어기(50);를 포함한다.
연료전지(10)는 수소공급계(20)로부터 수소를 공급받고, 공기공급계(30)로부터 공기를 공급받아 내부에서 화학 반응을 통하여 전력을 발전한다. 구체적으로, 연료전지(10)는 단위셀이 복수 개로 적층된 연료전지 스택(10, Stack)일 수 있다.
일반적으로, 연료전지(10)는 연료전지(10)와 연결된 모터와 같은 구동계 또는 보기류(BOP: Balance Of Plants) 등으로부터 요구되는 요구 전력을 기반으로 운전될 수 있다. 또한, 연료전지(10)의 발전 전력에 의해 충전되는 고전압배터리는 방전됨에 따라 연료전지(10)의 요구 전력을 보조할 수 있다.
연료전지(10)는 요구 전력이 기설정된 전력 이하이면서 고전압배터리의 충전량(SOC: State Of Charge)이 기설정된 SOC 이상인 경우와 같이 기설정된 발전 중지 조건을 만족하거나, 연료전지(10)의 시동 오프 신호를 입력 받는 경우에는 연료전지(10)의 발전을 중단할 수 있다.
또는, 연료전지(10)는 전력 발전을 지속함에 따라 막-전극 접합체에 구비된 촉매에 산화물들이 흡착되어 연료전지(10)의 발전 성능이 저하될 수 있다. 이러한 경우에는 연료전지(10)의 발전 성능을 향상시키도록 연료전지(10)를 운전하거나, 연료전지(10)의 발전 성능을 진단하도록 연료전지(10)를 운전할 수 있다.
수소공급계(20)에는 연료전지(10)의 애노드 입구로 연결된 수소공급라인(21) 및 수소공급라인(21)에 수소를 공급하는 수소탱크(22)가 구비되고, 수소탱크(22)와 수소공급라인(21) 사이에는 수소 공급을 제어하는 연료공급밸브(FSV: Fuel Supply Valve)가 더 포함될 수 있다.
수소공급라인(21)은 연료전지(10)의 애노드 출구에서 다시 연료전지(10)의 애노드 입구로 순환되도록 연결될 수 있고, 수소공급계(20)에는 수소공급라인(21)의 수소를 재순환시키는 이젝터(Ejector)가 더 포함될 수 있다.
공기공급계(30)에는 연료전지(10)의 캐소드 입구로 연결된 공기공급라인(31)이 포함되고, 공기공급라인(31)은 외기를 흡입하여 내부로 유동시킬 수 있다. 공기공급계(30)에는 공기공급라인(31)의 연료전지(10) 입구 측에 구비된 공기압축기 또는 공기블로어(32)가 포함되고, 공기공급라인(31)의 연료전지(10) 출구 측에 구비된 압력조절밸브(미도시)가 포함될 수 있다.
추가공급계(40)는 제1기체를 연료전지(10)의 애노드 측으로 공급하거나, 제2기체를 연료전지(10)의 캐소드 측으로 공급할 수 있다.
구체적으로, 제1기체는 공기보다 상대적으로 반응성이 낮은 기체로, 공기의 평균 반응성보다 반응성이 낮을 수 있다. 제1기체는 공기 중에 포함된 기체일 수 있고, 일 실시예로 질소일 수 있다.
또한, 제2기체는 공기보다 상대적으로 반응성이 높은 기체로, 공기의 평균 반응성보다 반응성이 높을 수 있다. 제2기체는 공기 중에 포함된 기체로, 산화가스일 수 있고, 일 실시예로 산소일 수 있다.
추가공급계(40)는 별도로 외부로부터 충전된 탱크일 수 있고, 또는 연료전지(10)의 캐소드로 공급되어 캐소드에서 산소를 소모하고 배출된 질소를 공급하는 장치일 수 있다.
본 발명의 예시적인 실시예에 따른 제어기(50)는 차량의 다양한 구성 요소의 동작을 제어하도록 구성된 알고리즘 또는 상기 알고리즘을 재생하는 소프트웨어 명령어에 관한 데이터를 저장하도록 구성된 비휘발성 메모리(도시되지 않음) 및 해당 메모리에 저장된 데이터를 사용하여 이하에 설명되는 동작을 수행하도록 구성된 프로세서(도시되지 않음)를 통해 구현될 수 있다. 여기서, 메모리 및 프로세서는 개별 칩으로 구현될 수 있다. 대안적으로는, 메모리 및 프로세서는 서로 통합된 단일 칩으로 구현될 수 있다. 프로세서는 하나 이상의 프로세서의 형태를 취할 수 있다.
구체적으로, 제어기(50)는 연료전지(10)의 발전 상태를 판단할 수 있고, 판단한 연료전지(10)의 발전 상태를 기반으로 제1기체 또는 제2기체의 연료전지(10)로 공급을 허용하거나 차단할 수 있다.
이에 따라, 본 발명에 따르면 연료전지(10)의 발전 상태를 기반으로 연료전지(10)의 애노드에 반응성이 낮은 기체를 공급하거나, 연료전지(10)의 캐소드에 반응성이 높은 산화 가스를 공급하도록 제어하여 연료전지(10)의 발전을 효과적으로 제어할 수 있는 효과를 갖는다.
구체적으로 추가공급계(40)는, 공기공급계(30)에 연결되어 공기를 공급받고, 공기 중에서 제1기체와 제2기체를 분리하고, 분리한 제1기체를 연료전지(10)의 애노드 측으로 공급하며, 분리한 제2기체를 연료전지(10)의 캐소드 측으로 공급할 수 있다.
추가공급계(40)는 공기공급계(30)로부터 공급된 공기를 제1기체와 제2기체로 분리할 수 있다. 즉, 공기공급계(30)로부터 공급된 공기는 외기일 수 있고, 제1기체 및 제2기체는 공기 중에 포함된 기체일 수 있다.
추가공급계(40)는 분리한 제1기체가 연료전지(10)의 애노드 측으로 합류되도록 수소공급계(20)의 수소공급라인(21)에 연결되고, 분리한 제2기체가 연료전지(10)의 캐소드 측으로 합류되도록 공기공급계(30)의 공기공급라인(31)에 연결될 수 있다.
특히 추가공급계(40)는, 제1기체 및 제2기체의 막 투과 속도 차이에 따라 제1기체와 제2기체를 분리하는 막 분리기일 수 있다.
막 분리기는 별도의 동력원이 요구되지 않고, 공기공급계(30)에 따라 공급되는 공기의 압력에 의해 제1기체와 제2기체로 분리될 수 있다. 막 분리기는 다수의 중공사 다발(hollow fibers) 또는 나권형 타입(Spiral-wound type)의 분리막으로 이루어질 수 있다.
구체적으로, 중공사는 기체의 분압차 현상을 이용하여 질소와 산소를 분리할 수 있다. 산소 분자는 질소 분자보다 작을 수 있고, 이에 따라 산소는 질소보다 높은 기체 투과율을 가질 수 있다. 기체 투과율이 낮은 질소는 기체 투과율이 높은 산소보다 더 많이 중공사를 길이방향으로 통과할 수 있다. 따라서, 중공사는 공기공급계(30)로부터 공급된 공기 중에서 산소 가스와 질소 가스를 분리할 수 있다.
즉, 추가공급계(40)는 공기공급계(30)로부터 공급받은 공기를 제1기체와 제2기체로 각각 분리하며, 제1기체가 배출되는 배출구는 수소공급라인(21) 또는 외부로 연결되고, 제2기체가 배출되는 배출구는 공기공급라인(31) 또는 외부로 연결될 수 있다.
수소공급계(20)에서 공급되는 수소 또는 추가공급계(40)에서 공급되는 제1기체가 선택적으로 연료전지(10)의 애노드 측으로 공급되도록 유로를 전환하는 제1유로전환기구(60);를 더 포함하고, 제어기(50)는 제1기체를 연료전지(10)의 애노드 측으로 공급하거나 차단하도록 제1유로전환기구(60)를 제어할 수 있다.
일 실시예로, 제1유로전환기구(60)는 입구가 2개이고 출구가 1개인 3-Way 밸브일 수 있다. 제1유로전환기구(60)는 수소공급라인(21)에 구비되고, 수소공급계(20)로부터 공급되는 수소와 추가공급계(40)에서 공급되는 제1기체가 선택적으로 연료전지(10)의 애노드 측으로 공급되도록 유로를 전환할 수 있다.
제어기(50)는 제1유로전환기구(60)를 제어함으로써 연료전지(10)의 애노드 측에 수소공급계(20)에서 공급되는 수소를 차단하고 제1기체를 공급하거나, 또는 수소공급계(20)에서 공급되는 수소를 공급하고 제1기체를 차단할 수 있다.
공기공급계(30)에서 공급되는 공기가 추가공급계(40)로 공급되거나 추가공급계(40)를 바이패스하여 연료전지(10)의 캐소드 측으로 공급되도록 유로를 전환하는 제2유로전환기구(70);를 더 포함하고, 제어기(50)는 공기공급계(30)에서 공급되는 공기를 연료전지(10)의 캐소드 측 또는 추가공급계(40)로 공급하거나 차단하도록 제2유로전환기구(70)를 제어할 수 있다.
제2유로전환기구(70)는 공기공급계(30)에서 공급되는 공기가 연료전지(10)의 캐소드 측으로 바로 공급되거나 추가공급계(40)로 공급되도록 유로를 전환할 수 있다. 일 실시예로, 제2유로전환기구(70)는 3-Way 밸브일 수 있다.
다른 실시예로, 제2유로전환기구(70)는 추가공급계(40)에서 분리된 제2기체가 배출되는 배출구에 위치되고, 제어기(50)는 추가공급계(40)에서 분리된 제2기체를 연료전지(10)의 캐소드 측으로 공급하거나 차단하도록 제2유로전환기구(70)를 제어할 수 있다.
추가공급계(40)의 유입구는 제2유로전환기구(70)를 통해 공기공급계(30)와 연결될 수 있고, 추가공급계(40)의 배출구 또한 제2유로전환기구(70)로 연결될 수 있다. 특히, 추가공급계(40)에 의해 분리된 제2기체는 제2유로전환기구(70)를 통해 공기공급계(30)의 공기공급라인(31)으로 연결될 수 있다.
즉, 제2유로전환기구(70)는 4-Way 밸브일 수 있고, 특히 4-Way Diagonal Flow 타입의 밸브일 수 있다. 따라서, 제2유로전환기구(70)는 공기공급계(30)의 공기가 추가공급계(40)의 유입구로 연결됨과 동시에, 추가공급계(40)의 배출구가 연료전지(10)의 캐소드 측으로 연결되도록 유로를 전환할 수 있다.
또 다른 실시예로, 제2유로전환기구(70)는 공기공급계(30)에서 공급되는 공기가 연료전지(10)의 캐소드 측으로 바로 공급되거나 추가공급계(40)로 공급되도록 유로를 전환하는 밸브와 추가공급계(40)의 배출구에서 연료전지(10)의 캐소드 측으로 연결되는 공기공급라인(31)으로 연결되는 위치에 마련된 밸브가 별도로 구비될 수도 있다.
제2유로전환기구(70)를 통과한 공기공급계(30)의 공기공급라인(31)에는 가습기가 구비될 수 있다. 즉, 공기공급계(30)에서 직접 공급된 공기 또는 추가공급계(40)를 통과하여 공급된 제2기체는 모두 가습기에 의해 가습될 수 있다.
추가공급계(40)에서 분리된 제2기체가 배출되는 배출구에 위치된 제3유로전환기구(80);를 더 포함하고, 제어기(50)는 추가공급계(40)에서 분리된 제2기체를 외부로 배출하거나 차단하도록 제3유로전환기구(80)를 제어할 수 있다.
제3유로전환기구(80)는 추가공급계(40)에서 분리된 제2기체를 외부로 배출하거나 차단하는 구성이다. 제3유로전환기구(80)는 개폐가 제어되는 2-Way 밸브일 수 있고, 개방됨에 따라 제2기체를 외부로 배출할 수 있다.
즉, 추가공급계(40)에서 제2기체를 분리하여 배출하는 배출구는 분기되어 제2유로전환기구(70) 및 제3유로전환기구(80)로 연결될 수 있다. 추가공급계(40)에서 분리된 제2기체는 제2유로전환기구(70)를 통해 연료전지(10)의 캐소드 측으로 공급되거나, 제3유로전환기구(80)를 통해 외부로 배출될 수 있다.
다른 실시예로, 제3유로전환기구(80)는 추가공급계(40)를 외부로 연결하거나 차단함과 동시에 공기공급라인(31)을 연료전지(10)의 캐소드 측으로 연결하거나 차단하는 4-Way 밸브일 수 있다.
추가공급계(40)에서 분리된 제1기체가 배출되는 배출구에 위치된 제4유로전환기구(90);를 더 포함하고, 제어기(50)는 추가공급계(40)에서 분리된 제1기체를 외부로 배출하거나 차단하도록 제4유로전환기구(90)를 제어할 수 있다.
제4유로전환기구(90)는 제1기체가 배출되는 배출구를 외부로 연결하거나 차단하도록 개폐가 제어되는 2-Way 밸브일 수 있다. 특히, 제1기체가 배출되는 배출구는 공기공급라인(31)의 배출구에 연결될 수 있다.
도 2 내지 4는 본 발명의 다양한 연료전지(10)의 발전 상태에 따른 연료전지(10)의 운전 제어시스템의 제어도를 도시한 것이다.
도 2 내지 4를 더 참조하면, 도 2에 도시한 것과 같이 연료전지(10)의 발전 상태가 정상 발전 상태인 경우, 제어기(50)는 수소공급계(20)로부터 공급된 수소를 연료전지(10)의 애노드 측으로 공급하고, 공기공급계(30)로부터 공급된 공기를 연료전지(10)의 캐소드 측으로 공급할 수 있다.
특히, 제어기(50)는 정상 발전 상태에서 추가공급계(40)로 공기를 공급하지 않고, 이에 따라 추가공급계(40)는 공기를 제1기체와 제2기체로 분리하지 않을 수 있다.
더 구체적으로, 제1유로전환기구(60)는 수소공급계(20)의 수소를 연료전지(10)의 애노드 측에 공급하도록 연결하고, 제2유로전환기구(70)는 공기공급계(30)의 공기를 바로 연료전지(10)의 캐소드 측에 공급하도록 연결하며, 제3유로전환기구(80)는 공기공급라인(31)의 공기를 연료전지(10)의 캐소드 측으로 공급하도록 연결할 수 있다.
도 3에 도시한 것과 같이 제어기(50)는 연료전지(10)의 발전 중지로 진입하는 상태에서, 제1기체의 연료전지(10) 애노드 측으로 공급은 허용하고, 제2기체의 연료전지(10) 캐소드 측으로 공급은 차단할 수 있다.
특히, 연료전지(10)의 시동 오프에 따른 셧다운(Shut Down) 제어에서는 상대적으로 반응성이 낮은 제1기체를 연료전지(10)의 애노드 측으로 공급할 수 있다.
구체적으로, 제어기(50)는 연료전지(10)의 셧다운 제어에서 연료전지(10) 내부에 포함된 산소를 제거하면서 연료전지(10)의 전압을 하강시킬 수 있고, 연료전지(10) 내부의 산소를 제거한 이후에 반응성이 낮은 제1기체를 연료전지(10)의 애노드 측으로 공급하여 연료전지(10) 내부의 액적을 제거한 상태로 연료전지(10)를 보관할 수 있다.
제어기(50)는 수소공급계(20)에서 공급된 수소를 연료전지(10)의 애노드로 공급하면서 연료전지(10)의 캐소드로 공기공급계(30)의 공기 공급을 차단할 수 있다. 특히, 제어기(50)는 제2유로전환기구(70)를 통하여 공기공급계(30)의 공기를 추가공급계(40)로 공급하고, 제3유로전환기구(80)를 통하여 공기공급계(30)의 제2기체를 외부로 배출할 수 있다. 동시에, 제어기(50)는 연료전지(10)를 COD 저항에 연결하는 COD(Cathode Oxygen Depletion) 제어를 통하여 연료전지(10)의 전압을 하강시킬 수 있다.
연료전지(10)의 전압을 완전히 소진시킨 이후에, 제어기(50)는 수소공급계(20)의 수소 공급을 차단할 수 있다. 특히, 제1유로전환기구(60)를 통하여 수소공급계(20)의 수소 공급을 차단하면서 추가공급계(40)에서 분리한 제1기체를 연료전지(10)의 애노드 측으로 공급할 수 있다.
연료전지(10)의 애노드 입구로 재순환되는 수소공급라인(21)에는 퍼지밸브 및 드레인밸브가 구비될 수 있고, 제어기(50)는 퍼지밸브 및 드레인밸브의 개방 및 폐쇄를 제어함으로써 수소공급라인(21)으로 공급된 제1기체를 외부로 배출시키면서 연료전지(10)의 애노드에 잔존한 수분을 외부로 배출시킬 수 있다. 특히, 제1기체는 수소보다 상대적으로 분자량이 크기 대문에 효과적으로 수분을 배출시킬 수 있다.
연료전지(10) 애노드에서 수분을 충분히 제거한 이후에, 제어기(50)는 공기공급계(30)의 공기 공급을 중단할 수 있고, 연료전지(10)의 애노드에 제1기체가 잔존한 상태로 연료전지(10)를 보관할 수 있다.
도 4에 도시한 것과 같이, 제어기(50)는 연료전지(10)의 성능을 향상시키거나 진단하는 상태에서, 제1기체의 연료전지(10) 애노드 측으로 공급은 차단하고, 제2기체의 연료전지(10) 캐소드 측으로 공급은 허용할 수 있다.
도 5는 본 발명의 일 실시예에 따른 연료전지(10)의 성능을 진단하는 그래프를 도시한 것이다.
도 5를 더 참조하면, Oxygen gain 이란 연료전지(10)의 캐소드에 공기 대신 산소를 주입한 경우에 공기를 주입한 경우에 대비하여 증가하는 연료전지(10)의 발전 성능을 의미한다. 여기서, 발전 성능이란 연료전지(10)의 출력 전류 또는 전력을 의미할 수 있다.
도 5에 도시한 것과 같이, 연료전지(10)의 초기 상태(Initial)에는 전류 밀도에 따른 Oxygen gain이 상대적으로 낮게 진단되나, 연료전지(10)의 내구가 진행됨에 따라(100, 200, 500, 1000) 전류 밀도에 따른 Oxygen gain이 점차적으로 증가된다.
즉, 제어기(50)는 연료전지(10)의 성능을 진단하기 위하여 연료전지(10)의 캐소드에 공기 대신 산소를 주입할 수 있고, 전류 밀도에 따른 Oxygen gain을 측정함에 따라 연료전지(10)의 성능을 진단할 수 있다.
또한, 제어기(50)는 연료전지(10)의 성능을 향상시키는 상태에서 연료전지(10)의 캐소드에 공기 대신 산소를 주입할 수 있다. 특히, 연료전지(10)의 내구가 진행되어 연료전지(10)의 발전 성능이 기준치 이하로 하락하거나 또는 요구 전력만큼 연료전지(10)의 발전 성능이 발현되지 못할 때 일시적으로 연료전지(10)의 캐소드에 공기 대신 산소를 주입하여 연료전지(10)의 성능을 향상시킬 수 있다.
구체적으로, 제어기(50)는 수소공급계(20)의 수소가 연료전지(10)의 애노드 측으로 공급되도록 제1유로전환기구(60)를 제어하고, 공기공급계(30)의 공기가 추가공급계(40)로 공급되면서 추가공급계(40)에서 분리된 제2기체가 공기공급라인(31)으로 공급되도록 제2유로전환기구(70)를 제어하며, 공기공급라인(31)으로 유동되는 제2기체가 연료전지(10)의 캐소드로 연결되도록 제3유로전환기구(80)를 제어할 수 있다. 추가로, 제어기(50)는 추가공급계(40)에서 분리된 제1기체가 외부로 배출되도록 제4유로전환기구(90)를 제어할 수 있다.
도 6은 본 발명의 일 실시예에 따른 연료전지(10)의 운전 제어방법의 순서도이다.
도 6을 더 참조하면, 본 발명의 일 실시예에 따른 연료전지(10)의 운전 제어방법은 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지(10)의 발전 상태를 판단하는 단계(S100); 판단한 연료전지(10)의 발전 상태를 기반으로 공기를 공기보다 상대적으로 반응성이 낮은 제1기체와 공기보다 상대적으로 반응성이 높은 제2기체로 분리하는 추가공급계(40)로 공기공급계(30)의 공기를 공급하는 단계(S200); 및 판단한 연료전지(10)의 발전 상태를 기반으로 분리한 제1기체의 연료전지(10) 애노드 측으로 공급 또는 분리한 제2기체의 연료전지(10) 캐소드 측으로 공급을 허용하거나 차단하는 단계(S300);를 포함한다.
구체적으로, 연료전지(10)의 발전 상태를 판단하는 단계(S100)에서, 연료전지(10)의 발전 중지로 진입하는 상태로 판단한 경우(S110), 추가공급계(40)로 공기공급계(30)의 공기를 공급하는 단계(S200)에서는, 공기공급계(30)의 공기를 추가공급계(40)로 공급하고, 공급을 허용하거나 차단하는 단계(S300)에서는, 제1기체의 연료전지(10) 애노드 측으로 공급은 허용하고, 제2기체의 연료전지(10) 캐소드 측으로 공급은 차단할 수 있다(S310).
또한, 연료전지(10)의 발전 상태를 판단하는 단계(S100)에서, 연료전지(10)의 성능을 향상시키거나 진단하는 상태로 판단한 경우(S120), 추가공급계(40)로 공기공급계(30)의 공기를 공급하는 단계(S200)에서는, 공기공급계(30)의 공기를 추가공급계(40)로 공급하고, 공급을 허용하거나 차단하는 단계(S300)에서는, 제1기체의 연료전지(10) 애노드 측으로 공급은 차단하고, 제2기체의 연료전지(10) 캐소드 측으로 공급은 허용할 수 있다(S320).
연료전지(10)의 발전 상태를 판단하는 단계(S100)에서, 연료전지(10)의 발전 중지로 진입하는 상태 또는 연료전지(10)의 성능을 향상시키거나 진단하는 상태가 아닌 경우라면 제1기체와 제2기체의 분리 없이 애노드에는 수소를 공급하면서 캐소드에는 공기를 공급할 수 있다(S330).
본 발명의 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
10 : 연료전지 20 : 수소공급계
30 : 공기공급계 40 : 추가공급계
50 : 제어기 60 : 제1유로전환기구
70 : 제2유로전환기구 80 : 제3유로전환기구
90 : 제4유로전환기구

Claims (13)

  1. 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지;
    연료전지의 애노드 측에 수소를 공급하는 수소공급계;
    연료전지의 캐소드 측에 산소가 포함된 공기를 공급하는 공기공급계;
    공기보다 상대적으로 반응성이 낮은 제1기체를 연료전지의 애노드 측에 공급하거나, 또는 공기보다 상대적으로 반응성이 높은 제2기체를 연료전지의 캐소드 측에 공급하는 추가공급계; 및
    연료전지의 발전 상태를 기반으로 추가공급계에서 공급된 제1기체의 연료전지 애노드 측으로 공급 또는 추가공급계에서 공급된 제2기체의 연료전지 캐소드 측으로 공급을 허용하거나 차단하는 제어기;를 포함하는 연료전지의 운전 제어시스템.
  2. 청구항 1에 있어서,
    추가공급계는, 공기공급계에 연결되어 공기를 공급받고, 공기 중에서 제1기체와 제2기체를 분리하고, 분리한 제1기체를 연료전지의 애노드 측으로 공급하며, 분리한 제2기체를 연료전지의 캐소드 측으로 공급하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  3. 청구항 2에 있어서,
    추가공급계는, 제1기체 및 제2기체의 막 투과 속도 차이에 따라 제1기체와 제2기체를 분리하는 막 분리기인 것을 특징으로 하는 연료전지의 운전 제어시스템.
  4. 청구항 1에 있어서,
    수소공급계에서 공급되는 수소 또는 추가공급계에서 공급되는 제1기체가 선택적으로 연료전지의 애노드 측으로 공급되도록 유로를 전환하는 제1유로전환기구;를 더 포함하고,
    제어기는 제1기체를 연료전지의 애노드 측으로 공급하거나 차단하도록 제1유로전환기구를 제어하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  5. 청구항 2에 있어서,
    공기공급계에서 공급되는 공기가 추가공급계로 공급되거나 추가공급계를 바이패스하여 연료전지의 캐소드 측으로 공급되도록 유로를 전환하는 제2유로전환기구;를 더 포함하고,
    제어기는 공기공급계에서 공급되는 공기를 연료전지의 캐소드 측 또는 추가공급계로 공급하거나 차단하도록 제2유로전환기구를 제어하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  6. 청구항 5에 있어서,
    제2유로전환기구는 추가공급계에서 분리된 제2기체가 배출되는 배출구에 위치되고,
    제어기는 추가공급계에서 분리된 제2기체를 연료전지의 캐소드 측으로 공급하거나 차단하도록 제2유로전환기구를 제어하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  7. 청구항 2에 있어서,
    추가공급계에서 분리된 제2기체가 배출되는 배출구에 위치된 제3유로전환기구;를 더 포함하고,
    제어기는 추가공급계에서 분리된 제2기체를 외부로 배출하거나 차단하도록 제3유로전환기구를 제어하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  8. 청구항 2에 있어서,
    추가공급계에서 분리된 제1기체가 배출되는 배출구에 위치된 제4유로전환기구;를 더 포함하고,
    제어기는 추가공급계에서 분리된 제1기체를 외부로 배출하거나 차단하도록 제4유로전환기구를 제어하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  9. 청구항 1에 있어서,
    제어기는 연료전지의 발전 중지로 진입하는 상태에서, 제1기체의 연료전지 애노드 측으로 공급은 허용하고, 제2기체의 연료전지 캐소드 측으로 공급은 차단하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  10. 청구항 1에 있어서,
    제어기는 연료전지의 성능을 향상시키거나 진단하는 상태에서, 제1기체의 연료전지 애노드 측으로 공급은 차단하고, 제2기체의 연료전지 캐소드 측으로 공급은 허용하는 것을 특징으로 하는 연료전지의 운전 제어시스템.
  11. 수소와 산소를 각각 공급받아 전력을 발전하는 연료전지의 발전 상태를 판단하는 단계;
    판단한 연료전지의 발전 상태를 기반으로 공기를 공기보다 상대적으로 반응성이 낮은 제1기체와 공기보다 상대적으로 반응성이 높은 제2기체로 분리하는 추가공급계로 공기공급계의 공기를 공급하는 단계; 및
    판단한 연료전지의 발전 상태를 기반으로 분리한 제1기체의 연료전지 애노드 측으로 공급 또는 분리한 제2기체의 연료전지 캐소드 측으로 공급을 허용하거나 차단하는 단계;를 포함하는 연료전지의 운전 제어방법.
  12. 청구항 11에 있어서,
    연료전지의 발전 상태를 판단하는 단계에서, 연료전지의 발전 중지로 진입하는 상태로 판단한 경우,
    추가공급계로 공기공급계의 공기를 공급하는 단계에서는, 공기공급계의 공기를 추가공급계로 공급하고,
    공급을 허용하거나 차단하는 단계에서는, 제1기체의 연료전지 애노드 측으로 공급은 허용하고, 제2기체의 연료전지 캐소드 측으로 공급은 차단하는 것을 특징으로 하는 연료전지의 운전 제어방법.
  13. 청구항 11에 있어서,
    연료전지의 발전 상태를 판단하는 단계에서, 연료전지의 성능을 향상시키거나 진단하는 상태로 판단한 경우,
    추가공급계로 공기공급계의 공기를 공급하는 단계에서는, 공기공급계의 공기를 추가공급계로 공급하고,
    공급을 허용하거나 차단하는 단계에서는, 제1기체의 연료전지 애노드 측으로 공급은 차단하고, 제2기체의 연료전지 캐소드 측으로 공급은 허용하는 것을 특징으로 하는 연료전지의 운전 제어방법.
KR1020190164166A 2019-12-10 2019-12-10 연료전지의 운전 제어시스템 및 제어방법 KR20210073378A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190164166A KR20210073378A (ko) 2019-12-10 2019-12-10 연료전지의 운전 제어시스템 및 제어방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190164166A KR20210073378A (ko) 2019-12-10 2019-12-10 연료전지의 운전 제어시스템 및 제어방법

Publications (1)

Publication Number Publication Date
KR20210073378A true KR20210073378A (ko) 2021-06-18

Family

ID=76623501

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190164166A KR20210073378A (ko) 2019-12-10 2019-12-10 연료전지의 운전 제어시스템 및 제어방법

Country Status (1)

Country Link
KR (1) KR20210073378A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707911A (zh) * 2021-08-25 2021-11-26 中国第一汽车股份有限公司 一种燃料电池的供气系统及供气方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985870B1 (ko) 2008-05-15 2010-10-08 주식회사 시노펙스케미코아 공기에서 산소와 질소를 분리/추출하는 장치
KR101637478B1 (ko) 2014-07-30 2016-07-08 서울대학교산학협력단 연료전지 시스템 및 그의 제어방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985870B1 (ko) 2008-05-15 2010-10-08 주식회사 시노펙스케미코아 공기에서 산소와 질소를 분리/추출하는 장치
KR101637478B1 (ko) 2014-07-30 2016-07-08 서울대학교산학협력단 연료전지 시스템 및 그의 제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113707911A (zh) * 2021-08-25 2021-11-26 中国第一汽车股份有限公司 一种燃料电池的供气系统及供气方法
WO2023025001A1 (zh) * 2021-08-25 2023-03-02 中国第一汽车股份有限公司 一种燃料电池的供气系统及供气方法

Similar Documents

Publication Publication Date Title
WO2008050881A1 (en) Fuel cell system
JP5504293B2 (ja) 燃料電池システムの運転停止方法および燃料電池システム
JP2006179472A (ja) 燃料電池システム及び蓄電装置の充電制御方法
JP2003115317A (ja) 燃料電池の発電停止方法
JP2005302422A (ja) 燃料電池システム
JP2007184196A (ja) 燃料電池システム
KR100962382B1 (ko) 수소 재순환 장치를 구비한 연료전지 시스템
JP3905748B2 (ja) 燃料電池発電システムの運転方法及び燃料電池発電システム
JP2014035822A (ja) 燃料電池システム
JP2007294291A (ja) 燃料電池システム
JP4699010B2 (ja) 燃料電池システム
JP2010086853A (ja) 燃料電池システム及びその運転停止方法
JP2004071349A (ja) 燃料循環式燃料電池システム
JP2009140757A (ja) 燃料電池システム
JP4814493B2 (ja) 燃料電池システム
KR20210073378A (ko) 연료전지의 운전 제어시스템 및 제어방법
JP5783974B2 (ja) 燃料電池システムの起動方法および燃料電池システム
JP2006086015A (ja) 燃料電池システム
JP5560308B2 (ja) 燃料電池システムの停止方法
JP4008848B2 (ja) 燃料電池のパージ装置
EP2056387B1 (en) Fuel cell system and scavenging method therefor
JP2007227212A (ja) 燃料電池の掃気方法
JP5151185B2 (ja) 燃料電池システムおよびその掃気処理方法
JP4602052B2 (ja) 燃料電池システム及び燃料電池の掃気方法。
JP4397686B2 (ja) 燃料電池の反応ガス供給装置

Legal Events

Date Code Title Description
A201 Request for examination