JP2007227212A - 燃料電池の掃気方法 - Google Patents

燃料電池の掃気方法 Download PDF

Info

Publication number
JP2007227212A
JP2007227212A JP2006048007A JP2006048007A JP2007227212A JP 2007227212 A JP2007227212 A JP 2007227212A JP 2006048007 A JP2006048007 A JP 2006048007A JP 2006048007 A JP2006048007 A JP 2006048007A JP 2007227212 A JP2007227212 A JP 2007227212A
Authority
JP
Japan
Prior art keywords
scavenging
fuel cell
gas
gas flow
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006048007A
Other languages
English (en)
Inventor
Koichiro Miyata
幸一郎 宮田
Kazuhiro Wake
千大 和氣
Hirotsugu Matsumoto
裕嗣 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006048007A priority Critical patent/JP2007227212A/ja
Publication of JP2007227212A publication Critical patent/JP2007227212A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】効率的且つ迅速に燃料電池内の水分を除去することができる燃料電池の掃気方法を提供する。
【解決手段】燃料電池1の発電停止時に燃料電池1の燃料ガス流通路5と酸化剤ガス流通路6に掃気ガスを流通させてこれらガス流通路5,6を掃気する燃料電池1の掃気方法であって、燃料ガス流通路5と酸化剤ガス流通路6のいずれか一方のガス流通路に前記燃料電池1の発電停止前に供給していたガスの圧力よりも高圧の掃気ガスを流通して該一方のガス流通路を掃気する第1の掃気を行った後、他方のガス流通路に掃気ガスを流通して該他方のガス流通路を掃気する第2の掃気を行う。
【選択図】図1

Description

この発明は、燃料ガスと酸化剤ガスを供給して発電をする燃料電池の掃気方法に関するものである。
一般に、燃料電池では、低温環境下での発電停止期間中に燃料電池内で水が凍結して次の発電時の発電性能が低下するのを防止するために、発電停止時に燃料電池内の燃料ガス流通路と酸化剤ガス流通路に掃気ガスを流通して掃気し、これらガス流通路内に残留する水分を排出している。
従来の掃気方法は、燃料電池の停止時に掃気ガスとしての酸化剤ガスを、燃料電池内の燃料ガス流通路と酸化剤ガス流通路の両方に同時に流通させていた(例えば、特許文献1参照)。
特開2001−351666号公報
しかしながら、従来の掃気方法では、固体高分子電解質膜内に存在する水分も除去しようとすると、燃料ガス流通路と酸化剤ガス流通路に同時に大量の掃気ガスを流通させなければならず、そのためには、大型のコンプレッサが必要になって、システムの大型化、コストアップを招く。
一方、コンプレッサの容量を大きくしないで燃料ガス流通路と酸化剤ガス流通路に同時に掃気ガスを流通させると、各ガス流路に流れる掃気ガス流量を十分に大きくできなくなるため、固体高分子電解質膜内に存在する水分も除去しようとすると、掃気時間を長くしなければならず、電力消費が多くなってしまう。
そこで、この発明は、効率的且つ迅速に燃料電池内の水分を除去することができる燃料電池の掃気方法を提供するものである。
この発明に係る燃料電池の掃気方法は、上記課題を解決するために以下の手段を採用した。
請求項1に係る発明は、燃料電池(例えば、後述する実施例における燃料電池1)の発電停止時に前記燃料電池の燃料ガス流通路(例えば、後述する実施例における燃料ガス流通路5)と酸化剤ガス流通路(例えば、後述する実施例における酸化剤ガス流通路6)に掃気ガスを流通させてこれらガス流通路を掃気する燃料電池の掃気方法であって、前記燃料ガス流通路と前記酸化剤ガス流通路のいずれか一方のガス流通路に前記燃料電池の発電停止前に供給していたガスの圧力よりも高圧の掃気ガスを流通して該一方のガス流通路を掃気する第1の掃気を行った後、他方のガス流通路に掃気ガスを流通して該他方のガス流通路を掃気する第2の掃気を行うことを特徴とする燃料電池の掃気方法である。
燃料電池の固体高分子電解質膜内の水分は、アノードとカソードの水蒸気分圧差に基づき、水蒸気分圧の高い方から低い方へと移動し、水蒸気分圧差が大きいほど移動し易い性質を有している。
請求項1に係る発明では、第1の掃気を実施することによって、一方のガス流通路を掃気することができるとともに、該一方のガス流通路内の水蒸気分圧を高くすることができる。その結果、第1の掃気によって、固体高分子電解質膜のアノードとカソードの間の水蒸気分圧差を大きくすることができ、固体高分子電解質膜内の水分が他方のガス流通路側へ移動するのを促進することができる。この後、第2の掃気を実施することによって、他方のガス流通路を掃気するとともに、前記第1の掃気で前記他方のガス流通路側に移動させておいた固体高分子電解質膜内の水分を前記他方のガス流通路に導出して排出することができる。したがって、燃料ガス流通路、酸化剤ガス流通路、および固体高分子電解質膜内の水分を効率よく迅速に排出することができる。
請求項2に係る発明は、請求項1に記載の発明において、前記第1の掃気では、前記燃料電池の停止前の燃料電池の内部温度よりも高温の掃気ガスを前記一方のガス流通路に供給することを特徴とする。
このように構成することにより、前記一方のガス流通路内の水蒸気分圧をさらに高くすることができるので、固体高分子電解質膜のアノードとカソードの間の水蒸気分圧差をさらに大きくすることができ、固体高分子電解質膜内における水分の移動をさらに促進することができる。
請求項1に係る発明によれば、固体高分子電解質膜内の水分の移動を促進することができるので、掃気ガスの流量を特別に増大させなくても、燃料電池内の水分を効率よく迅速に排出することができ、掃気処理に要する時間を短縮することができる。
請求項2に係る発明によれば、固体高分子電解質膜内の水分の移動をさらに促進することができ、排水性がさらに向上する。
以下、この発明に係る燃料電池の掃気方法の実施例を図1から図3の図面を参照して説明する。
図1は、この発明に係る燃料電池の掃気方法を実施可能な燃料電池システムの一例を示す概略構成図であり、この実施例では燃料電池車両に搭載されている。
燃料電池1は、反応ガスを化学反応させて電力を得るタイプのもので、例えば固体ポリマーイオン交換膜等からなる固体高分子電解質膜2をアノード3とカソード4とで両側から挟み込んで形成されたセルを複数積層して構成されており(図1では単セルのみを示す)、アノード3側の燃料ガス流通路5に燃料ガスとして水素ガスを供給し、カソード4側の酸化剤ガス流通路6に酸化剤ガスとして酸素を含む空気を供給すると、アノード3で触媒反応により発生した水素イオンが、固体高分子電解質膜2を通過してカソード4まで移動して、カソード4で酸素と電気化学反応を起こして発電し、水が生成される。カソード側で生じた生成水の一部は固体高分子電解質膜2を透過してアノード側に逆拡散するため、アノード側にも生成水が存在する。
空気はスーパーチャージャーなどのコンプレッサ7により所定圧力に加圧され、空気供給流路8を通って燃料電池1の酸化剤ガス流通路6に供給される。空気供給流路8は、冷却装置11と、この冷却装置11を迂回して空気を流通させるバイパス通路12と、三方弁型の流路切替弁13とを備え、コンプレッサ7で昇圧された空気を、冷却装置11を流通させるか、あるいはバイパス通路12を流通させるかを、流路切替弁13によって切り換え可能になっている。燃料電池1に供給された空気は発電に供された後、燃料電池1からカソード側の生成水と共に空気排出流路9に排出され、圧力制御弁10を介して図示しない排気処理装置へ排出される。
一方、水素タンク15から供給される水素ガスは水素ガス供給流路17、遮断弁20を流通し、レギュレータ16によって所定圧力に減圧され、エゼクタ19を通って燃料電池1の燃料ガス流通路5に供給される。そして、消費されなかった未反応の水素ガスは、燃料電池1からアノードオフガスとして排出され、アノードオフガス流路18を通ってエゼクタ19に吸引され、水素タンク15から供給される新鮮な水素ガスと合流し再び燃料電池1の燃料ガス流通路5に供給される。すなわち、燃料電池1から排出されるアノードオフガスは、アノードオフガス流路18、およびエゼクタ19よりも下流の水素ガス供給流路17を通って、燃料電池1を循環する。
アノードオフガス流路18からは、排出弁21を備えたアノードオフガス排出流路22が分岐している。排気弁21は、燃料電池1を循環する水素ガス中の不純物(水分や窒素等)の濃度が高くなったときなど必要に応じて開いてアノードオフガスを排出する。排出弁21から排出されたアノードオフガスは前記排気処理装置へ排出され、排気処理装置においてアノードオフガスはカソードオフガスによって希釈される。
冷却装置11およびバイパス通路12よりも下流の空気供給流路8と、エゼクタ19よりも下流の水素ガス供給流路17は、第1掃気弁23を備えた掃気流路24によって接続されている。
圧力制御弁10よりも上流の空気排出流路9と、排出弁21よりも上流のアノードオフガス排出流路22は、第2掃気弁25を備えた掃気流路26によって接続されている。
この燃料電池システムでは、発電停止時に燃料電池1内の燃料ガス流通路5と酸化剤ガス流通路6に掃気ガス(空気)を流通して掃気し、これらガス流通路5,6内に残留する水分を排出して、低温環境下での凍結等による発電性能の低下を防止する。
特に、この燃料電池システムにおける掃気処理では、初めに、発電停止前に燃料電池1に酸化剤ガスとして供給していた空気よりも高温・高圧の空気を掃気ガスとして酸化剤ガス流通路6に流通させて酸化剤ガス流通路6の掃気を行い(以下、第1の掃気という)、その後、燃料ガス流通路5に掃気ガスとしての空気を流通させて燃料ガス流通路5の掃気を行う(以下、第2の掃気という)。
図2は掃気の原理を説明する模式図である。図2(A)は発電停止時(掃気前)の水分分布を示しており、燃料ガス流通路5、酸化剤ガス流通路6、固体高分子電解質膜2に水分が存在していて、特に固体高分子電解質膜2内には水分が分散して存在している。
図2(B)は第1の掃気の初期段階を示し、図2(C)は第1の掃気の終期段階を示しており、高温・高圧の掃気ガス(空気)を酸化剤ガス流通路6に流すと、酸化剤ガス流通路6内の水分が系外に排出されるとともに、固体高分子電解質膜2内に存在する水分がアノード3側に移動せしめられる。
図2(D)は第2の掃気のときを示しており、固体高分子電解質膜2のアノード3側に移動した水分が燃料ガス流通路5に導出され、燃料ガス流通路5内の水分とともに系外に排出される。
第1の掃気により固体高分子電解質膜2内に存在する水分がアノード3側に移動する原理を詳しく説明する。
燃料電池1の固体高分子電解質膜2内の水分は、アノード3とカソード4の水蒸気分圧差に基づき、水蒸気分圧の高い方から低い方へと移動し、水蒸気分圧差が大きいほど移動し易い性質を有している。
水蒸気は気体であるので、圧縮・膨張などを行った際に、気相の全圧に対する水蒸気分圧の分圧比は一定に保たれる(水蒸気分圧/全圧=一定)。つまり、飽和蒸気圧以下の領域においては、全圧を2倍にすれば水蒸気分圧も2倍になる。
いま、大気圧P(kPa)下で水蒸気分圧W(kPa)の水蒸気を含む空気を燃料電池の一方の極のガス通路(この実施例では酸化剤ガス流通路6)に供給するとする。他方の極のガス通路(この実施例では燃料ガス流通路5)内の水蒸気分圧をY(kPa)とすると、前記一方のガス通路に供給する空気の圧力が大気圧P(kPa)と等しい場合には、固体高分子電解質膜2の両極(アノード3とカソード4)間の蒸気圧差ΔP(kPa)は、ΔP=W−Yとなる。
これに対して、前記一方のガス通路に供給する空気の圧力を大気圧P(kPa)の2倍に加圧した場合には、前記分圧比一定の特性から、両ガス通路間の蒸気圧差ΔPは、ΔP=2W−Yとなる。
なお、2Wが飽和蒸気圧Z(kPa)を越えている場合にはΔP=Z−Yとなるが、それでも飽和蒸気圧Zは大気圧W以上であるので(Z≧W)、供給する空気の圧力が大気圧P(kPa)と等しい場合よりは大きな蒸気圧差ΔPを発生させることができる。
したがって、第1の掃気において空気(掃気ガス)を発電停止前の空気圧力(酸化剤ガス圧力)よりも高圧にして供給することにより、両極間の蒸気圧差をより大きくすることができ、固体高分子電解質膜2内における水分の移動を促進することができる。
さらに、これに加えて供給する空気の温度を高くすることにより、飽和蒸気圧を上げることができるので、より大きな蒸気圧差ΔPを発生させることができ、固体高分子電解質膜2内の水分移動をさらに促進することができる。
その結果、掃気ガスとしての空気の流量を特別に増大させなくても、燃料ガス流通路5、酸化剤ガス流通路6、および固体高分子電解質膜2内の水分を効率よく迅速に排出することができ、掃気処理に要する時間を短縮することができる。
そして、発電停止時に燃料電池1内の水分を十分に除去することができるので、低温環境下でも良好な発電性能を維持することができる。
この掃気処理は、イグニッションスイッチ(IGSW)31のOFF信号が電子制御ユニット(以下、ECUと略す)30に入力されたのを開始条件として、ECU30が、コンプレッサ7、流路切替弁13、圧力制御弁10、排出弁21、第1掃気弁23、第2掃気弁25を制御することにより実行される。
この実施例における掃気処理について、図3のフローチャートに従って説明する。
図3に示すフローチャートは、掃気処理ルーチンを示すものであり、この掃気処理ルーチンは、ECU30によって一定時間毎に実行される
まず、ステップS101において、イグニッションスイッチがOFFされたか否か、換言すると発電停止か否かを判定する。ステップS101における判定結果が「NO」(IGSW:ON)である場合は本ルーチンの実行を終了する。
ステップS101における判定結果が「YES」(IGSW:OFF)である場合は、ステップS102に進み、まず酸化剤ガス流通路6に対する掃気、すなわち第1の掃気を行う。
第1の掃気では、ECU30は、コンプレッサ7を運転し、圧力制御弁10を開き、第1,第2掃気弁23,25を閉じ、さらに空気が冷却装置11を迂回してバイパス通路12を流れるように流路切替弁13を切り換える。つまり、コンプレッサ7で昇圧された空気を冷却装置11を迂回して流すことにより、酸化剤ガス流通路6に供給すべき空気の温度を燃料電池1の内部温度よりも高温にし、コンプレッサ7と圧力制御弁10を所定に制御することにより、発電時よりも高圧の空気を酸化剤ガス流通路6に流す。
次に、ステップS103に進み、所定時間経過したか否かを判定する。ステップS103における判定結果が「NO」(所定時間未経過)である場合は、ステップS102に戻り、酸化剤ガス流通路6の掃気を継続する。
ステップS103における判定結果が「YES」(所定時間経過)である場合は、酸化剤ガス流通路6に対する掃気は完了と判断して、ステップS104に進み、燃料ガス流通路5に対する掃気、すなわち第2の掃気を行う。
第2の掃気では、ECU30は、コンプレッサ7の運転を継続し、圧力制御弁10と排出弁21と第1,第2掃気弁23,25をいずれも開くように制御する。なお、第2の掃気では、掃気ガスの温度に制約はなく、ステップS104における流路切替弁13に対する制御は、空気が冷却装置11に流れるように流路切替弁13を切り換え制御してもよいし、あるいは空気がバイパス通路12を流れるように流路切替弁13を切り換え制御してもよい。
これにより、この実施例における第2の掃気では、コンプレッサ7で昇圧された空気の一部が燃料ガス流通路5を流通して燃料ガス流通路5を掃気し、残りの空気が酸化剤ガス流通路6を流通する。
次に、ステップS105に進み、所定時間経過したか否かを判定する。ステップS105における判定結果が「NO」(所定時間未経過)である場合は、ステップS104に戻り、燃料ガス流通路5の掃気を継続する。
ステップS105における判定結果が「YES」(所定時間経過)である場合は、燃料ガス流通路5に対する掃気は完了と判断して、ステップS106に進み、第1,第2掃気弁23,25を閉じてコンプレッサ7を停止することにより掃気を終了し、本ルーチンの実行を終了する。
なお、ステップS103における判定処理は、時間経過に基づく判定に代えて、酸化剤ガス流通路6の上流と下流との差圧に基づく判定にしてもよい。酸化剤ガス流通路6内の水が少なくなるにしたがって差圧が小さくなるので、所定の差圧を閾値にすることにより酸化剤ガス流通路6の掃気完了を判断することができるからである。ステップS105における判定処理についても同様であり、時間経過に基づく判定に代えて、燃料ガス流通路5の上流と下流との差圧に基づく判定にしてもよい。
〔他の実施例〕
なお、この発明は前述した実施例に限られるものではない。
例えば、前述した実施例では、第1の掃気において掃気ガス(空気)を酸化剤ガス流通路6に流通し、第2の掃気において掃気ガスを燃料ガス流通路5に流通したが、この順番を逆にして、第1の掃気において掃気ガスを燃料ガス流通路5に流通し、第2の掃気において掃気ガスを酸化剤ガス流通路6に流通させてもよい。
この発明に係る燃料電池の掃気方法を実施可能な燃料電池システムの一例を示す概略構成図である。 この発明に係る掃気の原理を説明する模式図である。 掃気処理の一実施例におけるフローチャートである。
符号の説明
1 燃料電池
5 燃料ガス流通路
6 酸化剤ガス流通路

Claims (2)

  1. 燃料電池の発電停止時に前記燃料電池の燃料ガス流通路と酸化剤ガス流通路に掃気ガスを流通させてこれらガス流通路を掃気する燃料電池の掃気方法であって、
    前記燃料ガス流通路と前記酸化剤ガス流通路のいずれか一方のガス流通路に前記燃料電池の発電停止前に供給していたガスの圧力よりも高圧の掃気ガスを流通して該一方のガス流通路を掃気する第1の掃気を行った後、他方のガス流通路に掃気ガスを流通して該他方のガス流通路を掃気する第2の掃気を行うことを特徴とする燃料電池の掃気方法。
  2. 前記第1の掃気では、前記燃料電池の停止前の燃料電池の内部温度よりも高温の掃気ガスを前記一方のガス流通路に供給することを特徴とする請求項1に記載の燃料電池の掃気方法。
JP2006048007A 2006-02-24 2006-02-24 燃料電池の掃気方法 Withdrawn JP2007227212A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006048007A JP2007227212A (ja) 2006-02-24 2006-02-24 燃料電池の掃気方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006048007A JP2007227212A (ja) 2006-02-24 2006-02-24 燃料電池の掃気方法

Publications (1)

Publication Number Publication Date
JP2007227212A true JP2007227212A (ja) 2007-09-06

Family

ID=38548825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006048007A Withdrawn JP2007227212A (ja) 2006-02-24 2006-02-24 燃料電池の掃気方法

Country Status (1)

Country Link
JP (1) JP2007227212A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003412A (ja) * 2008-06-18 2010-01-07 Honda Motor Co Ltd 燃料電池システム
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003412A (ja) * 2008-06-18 2010-01-07 Honda Motor Co Ltd 燃料電池システム
US8524403B2 (en) 2008-12-26 2013-09-03 Toyota Jidosha Kabushiki Kaisha Water content estimation apparatus for fuel cell and fuel cell system
JP5310738B2 (ja) * 2008-12-26 2013-10-09 トヨタ自動車株式会社 燃料電池の水分量推定装置及び燃料電池システム
US8691458B2 (en) 2008-12-26 2014-04-08 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8916303B2 (en) 2008-12-26 2014-12-23 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Similar Documents

Publication Publication Date Title
JP4996493B2 (ja) H2/n2の貯蔵により始動および停止時の電池劣化を緩和するための方策
JP4644064B2 (ja) 燃料電池システム
US7875399B2 (en) Stop method for fuel cell system
US7585578B2 (en) Fuel cell system
JP6112882B2 (ja) 燃料電池システムの起動方法
US7993787B2 (en) Method for fast and reliable fuel cell system start-ups
US7662494B2 (en) Fuel cell system
JP2013037790A (ja) 燃料電池システム
JP2014216214A (ja) 燃料電池システム、及び燃料電池システムの制御方法
JP2013149538A (ja) 燃料電池システムの運転停止方法および燃料電池システム
JP2005032652A (ja) 燃料電池システム
JP2007227212A (ja) 燃料電池の掃気方法
JP2011086474A (ja) 燃料電池システムおよびその停止方法
JP2007294291A (ja) 燃料電池システム
JP4699010B2 (ja) 燃料電池システム
JP5722669B2 (ja) 燃料電池システムの制御方法
JP5872315B2 (ja) 燃料電池システムの起動方法および起動装置
JP4495575B2 (ja) 燃料電池システムおよびその制御方法
JP4397686B2 (ja) 燃料電池の反応ガス供給装置
JP2017152174A (ja) 燃料電池システムの停止制御方法
JP2005108698A (ja) 燃料電池システム
KR20210073378A (ko) 연료전지의 운전 제어시스템 및 제어방법
JP4602052B2 (ja) 燃料電池システム及び燃料電池の掃気方法。
JP2004071348A (ja) 燃料循環式燃料電池システム
JP2007059105A (ja) 開閉手段を設けた燃料電池スタック

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512