KR20210050324A - 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법 - Google Patents

외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법 Download PDF

Info

Publication number
KR20210050324A
KR20210050324A KR1020190134797A KR20190134797A KR20210050324A KR 20210050324 A KR20210050324 A KR 20210050324A KR 1020190134797 A KR1020190134797 A KR 1020190134797A KR 20190134797 A KR20190134797 A KR 20190134797A KR 20210050324 A KR20210050324 A KR 20210050324A
Authority
KR
South Korea
Prior art keywords
ala
gly
leu
methionine
val
Prior art date
Application number
KR1020190134797A
Other languages
English (en)
Other versions
KR102377500B1 (ko
Inventor
최솔
이진남
김희주
노진아
이한형
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to KR1020190134797A priority Critical patent/KR102377500B1/ko
Priority to JP2022523724A priority patent/JP7450712B2/ja
Priority to EP20883239.4A priority patent/EP4032981A4/en
Priority to US17/754,988 priority patent/US20230212623A1/en
Priority to CN202080076044.6A priority patent/CN114729379A/zh
Priority to BR112022007907A priority patent/BR112022007907A2/pt
Priority to PCT/KR2020/014780 priority patent/WO2021085999A1/ko
Publication of KR20210050324A publication Critical patent/KR20210050324A/ko
Application granted granted Critical
Publication of KR102377500B1 publication Critical patent/KR102377500B1/ko
Priority to ZA2022/05485A priority patent/ZA202205485B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/101Plasmid DNA for bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 출원은 metZ 유전자가 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법에 관한 것이다.

Description

외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법{A L-methionine-producing microorganism introduced with foreign metZ-encoded protein and a method of preparing methionine using the same}
본 출원은 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법에 관한 것이다.
L-메티오닌 (L-methionine)은 생체내의 필수 아미노산의 한 종류로서, 사료, 수액제, 의약품의 합성 원료 등 의약 원료 및 식품 첨가제로 사용된다. 메티오닌은 생체 내에서 메틸기 전이 반응에 관여하는 중요한 아미노산이며, 황을 제공하는 역할을 한다.
메티오닌의 화학합성은 주로 5-(β-메틸머캅토에틸)하이단토인 (5-(β-methylmercaptoethyl)-hydantoin)을 가수분해시키는 반응을 통하여, L-형과 D-형이 혼합된 형태로 메티오닌을 생산하는 방법이 이용되고 있다. 그러나, 상기 화학합성은 L-형과 D-형이 혼합된 형태로 생산된다.
한편, 생물학적 방법을 이용하여 L-메티오닌을 생산할 수 있다. 보다 구체적으로 미생물이 L-메티오닌을 생산하는 방법 중 하나는 O-아실 호모세린 (O-아세틸 호모세린 또는 O-석시닐 호모세린) 및 황화수소(hydrogen sulfide)를 기질로 사용하는, 다이렉트 설프하이드릴레이션에 의해 메티오닌을 생산하는 것이다. 예를 들면, 코리네형 미생물 내 metY 유전자가 코딩하는 효소가 다이렉트 설프하이드릴레이션 기능을 수행하는 것으로 알려져 있다. 미생물이 L-메티오닌을 생산하는 다른 방법은 O-아실 호모세린 (O-아세틸 호모세린 또는 O-석시닐 호모세린) 및 시스테인을 기질로 사용하는 트랜스 설퓨레이션에 의해 메티오닌을 생산하는 것이다. 예를 들면, 코리네형 미생물 내 metB 유전자가 코딩하는 효소가 트랜스 설퓨레이션 기능을 수행하는 것으로 알려져 있다. 다만, metB 가 코딩하는 효소는 부산물을 많이 생성시키고, metY 유전자는 피드백 저해를 받는다는 단점이 존재하여, 산업적으로 L-메티오닌을 대량 생산하기 위해 적용하기는 어려운 실정이다(Kromer JO et al., J Bacteriol 188(2):609-618, 2006, Yeom HJ et al., J Microbiol Biotechnol 14(2): 373-378, 2004 외).
이에 본 발명자들은 상기 단백질을 대체할 수 있는 단백질을 발굴하고자 예의 노력한 끝에 metZ 유전자에 의해 코딩되는 단백질을 도입한 미생물이 L-메티오닌을 고수율로 생산함을 확인함으로써, 본 출원을 완성하였다.
본 출원의 목적은 외래 metZ 유전자에 의해 코딩되는 단백질을 도입한, L-메티오닌 생산 미생물을 제공하는 것이다.
본 출원의 다른 목적은 상기 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는 L-메티오닌 제조방법을 제공하는 것이다.
본 출원의 다른 목적은 상기 미생물 및 티오설페이트를 포함하는 L-메티오닌 생산용 조성물을 제공하는 것이다.
이를 구체적으로 설명하면 다음과 같다. 한편, 본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.
또한, 당해 기술분야의 통상의 지식을 가진 자는 통상의 실험만을 사용하여 본 출원에 기재된 본 출원의 특정 양태에 대한 다수의 등가물을 인지하거나 확인할 수 있다. 또한, 이러한 등가물은 본 출원에 포함되는 것으로 의도된다.
본 출원의 하나의 양태는 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물을 제공한다.
본 출원의 다른 하나의 양태는 상기 L-메티오닌 생산 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, L-메티오닌 제조방법을 제공한다.
본 출원의 용어 'metZ 유전자' 는, 아실호모세린을 기질로 설프하이드레이션(sulfhydration)에 관여하는 효소를 코딩하는 유전자이다.
본 출원에서 "아실호모세린"은 호모세린(homoserine)에 아실기(acyl)가 결합한 화합물을 의미하며, 숙시닐호모세린 및 아세틸호모세린을 모두 포함한다. 일 예로, 상기 아실호모세린은 O-숙시닐호모세린 또는 O-아세틸호모세린일 수 있으나 이에 제한되지 않는다.
본 출원에서, 상기 metZ 유전자가 코딩하는 효소는 숙시닐호모세린 설프히드릴라아제(succinylhomoserine sulfhydrylase), 아세틸호모세린 설프히드릴라아제(acetylhomoserine sulfhydrylase), 또는 O-숙시닐호모세린을 기질로 설프하이드레이션에 관여하는 효소를 코딩하는 것으로 알려진 유전자일 수 있으나 이에 제한되지 않는다.
본 출원에서 용어 "설프하이드레이션(sulfhydration)"은 용어 "설프하이드릴레이션(sulfhydrylation)"과 상호교환적으로 사용되며, 설프하이드릴(-SH)작용기를 특정 분자에 제공하는 반응을 의미한다. 상기 용어는 본 출원의 목적상 메티오닌 합성과정에서의 반응을 의미하는 것일 수 있으나 이에 제한되지 않는다. 상기 "설프하이드레이션" 에 관여하는 효소는 "설프히드릴라아제(sulfhydrylase)" 로 명명할 수 있으나 이에 제한되지 않는다.
종래에 메티오닌 발효반응에 있어서 metZ 유전자가 발현하는 효소는, in vitro 내 아래와 같은 반응에 사용되었다:
CH3SH + O-아세틸-L-호모세린 => 아세테이트 + 메티오닌
CH3SH + O-석시닐-L-호모세린 => 석시네이트 + 메티오닌
즉, 미생물을 이용하여 메티오닌 전구체를 제조하는 1단계; 및 메티오닌 전구체를 포함하는 발효액에 메칠머캅탄 및 메티오닌 전환 효소를 첨가하여 in vitro에서 효소반응을 수행하는 2단계의 반응으로 포함하는 메티오닌 제조방법에 있어서, metZ 유전자가 발현하는 효소는 in vitro 에서 메티오닌 전환효소로 사용되었었다 (한국등록특허 KR10-0905381 참조)
한편, 코리네박테리움 속 미생물에서의 메티오닌 발효는 두 종류의 설프하이드레이션 경로(sulfhydrylation step)를 사용한다. (Hwang BJ et al., J Bacteriol 184(5):1277-1286, 2002) 하나는 metB 라는 유전자에 의해 코딩되는 효소를 이용하여, O-아세틸호모세린(acetyl homoserine: AH)를 시스타티오닌(cystationine)으로 전환하는 것으로서, 이 경우에 시스테인(cysteine)을 황원으로 사용한다. 즉 아실호모세린과 시스테인을 반응물로 하여 시스타티오닌으로 전환하는 반응을 "트랜스설퓨레이션(transsulfuration)"이라 지칭하며, 이에 관여하는 효소를 "트랜스설퓨레이즈(transsulfurase)"라고 명명하기도 한다. 다른 하나는 metY라는 유전자에 의해 코딩되는 효소를 이용해서 O-아세틸 호모세린을 호모시스테인(homocysteine)으로 전환하는 것으로서, 이 경우에 하이드로겐 설파이드(hydrogen sulfide) 등 무기(inorganic) 황 화합물을 황원으로 사용한다. 이와 같이 아실호모세린과 하이드로겐 설파이드를 반응물로 하여 호모시스테인으로 전환하는 반응은, 전술한 트랜스설퓨레이션과 달리 메티오닌의 전구체인 호모시스테인이 생성되는 과정에서 중간산물인 시스타티오닌이 생성되지 않으므로, 이를 다이렉트 설프하이드레이션(direct sulfhydrylation)이라 지칭한다.
즉, 상기 설프하이드레이션 경로는 아실호모세린과 황원의 반응을 통해 다른 물질로 전환하는 반응 경로를 의미할 수 있고, 크게 트랜스설퓨레이션과 다이렉트 설프하이드레이션으로 나눌 수 있다.
하지만 코리네박테리움 균주에서 상기 설프하이드레이션에 관여하는 두 효소 모두 단점을 가지고 있다. 예를 들면 metB유전자에 의해 코딩되는 단백질은 시스타티오닌 이외에, 아세틸호모세린과 호모시스테인을 이용해서 호모란티오닌(homolanthionine) 이라는 부산물을 생성한다 (Kromer JO et al., J Bacteriol 188(2):609-618, 2006) 또한, metY 유전자는 메티오닌에 의해 피드백 저해(feedback inhibition)를 많이 받는다고 알려져 있다 (Yeom HJ et al., J Microbiol Biotechnol 14(2): 373-378, 2004).
본 출원은 상기 외래 metZ 유전자를 코리네박테리움 균주에 도입하여, 단일단계 반응만으로 메티오닌을 생물학적으로 제조하는 데에 상기 metZ 유전자 도입이 메티오닌 발효에 유용하게 사용될 수 있음을 규명한 것에 특징이 있다.
본 출원의 metZ 유전자에 의해 코딩되는 단백질이 관여하는 메티오닌 합성 경로에서는 부산물 생성량이 감소될 수 있다. 상기 부산물은 호모란티오닌일 수 있다. 상기 부산물 생성량의 감소는, 야생형 미생물에 비해, 또는 metB에 의해 코딩되는 단백질이 관여하는 합성 경로에서의 부산물 생성량과 비교하여 감소된 것을 의미할 수 있으나 이에 제한되지 않는다.
따라서, 본 출원의 외래 metZ 유전자가 도입된 미생물 및 이를 배양하는 것을 포함하는 메티오닌 생산 방법은, 외래 metZ 유전자가 도입되지 않은 메티오닌 생산 미생물 및 이를 이용한 메티오닌 생산 방법에 비해 부산물 생성량이 감소된 것일 수 있다. 본 출원의 metZ 유전자에 의해 코딩되는 단백질은 메티오닌에 의해 피드백 저해를 받지 않는 것일 수 있다.
본 출원의 metZ 유전자에 의해 코딩되는 단백질은 O-아실호모세린 설프히드릴라아제(acylhomoserine sulfhydrylase)로서, 하이드로겐 설파이드(hydrogen sulfide)를 황원으로 사용할 수 있을 뿐 아니라, O-아실호모세린 트랜스설퓨레이즈(acylhomoserine transsulfurase)로서, cysteine을 황원으로 사용할 수 있는 것일 수 있다. 보다 구체적으로, 상기 단백질은, O-아세틸호모세린 설프히드릴라아제, O-아세틸호모세린 트랜스설퓨레이즈, O-석시닐호모세린 설프히드릴라아제 또는 O-석시닐호모세린 트랜스설퓨레이즈일 수 있다. 따라서 본 출원에서 metZ 유전자에 의해 코딩되는 단백질은, O-아실호모세린 설프히드릴라아제 활성을 갖는 단백질일 수 있고, 구체적으로, O-아세틸호모세린 설프히드릴라아제, O-아세틸호모세린 트랜스설퓨레이즈, O-석시닐호모세린 설프히드릴라아제 및 O-석시닐호모세린 트랜스설퓨레이즈 중 1 이상의 활성을 갖는 단백질 일 수 있다.
일 예로, 본 출원의 외래 metZ 유전자는, 상기 유전자가 도입되는 L-메티오닌 생산 미생물과는 상이한 유래의 유전자이거나, 또는 상기 유전자가 도입되는 L-메티오닌 생산 미생물에 내재적으로 존재하는 유전자와 상이한 것일 수 있다. 구체적으로, 상기 유전자는 크로모박테리움 비오라슘 (Chromobacterium violaceum), 하이호모나스 넵튜니윰 (Hyphomonas neptunium) 또는 로도박터 스페로이드 (Rhodobacter sphaeroides) 유래의 metZ로 명명된 유전자일 수 있으나 이에 제한되지 않으며, 본 출원의 목적상 상기 유전자는 L-메티오닌 생산능을 강화할 수 있는 것이면 제한되지 않고 어느 것이든 포함될 수 있다. 상기 metZ 유전자는 공지의 데이터 베이스인 NCBI의 GenBank에서 그 서열을 얻을 수 있으며, 해당 서열을 확보하는 방법은 당해 분야에서 잘 알려진 다양한 방법이 적용 가능하다.
본 출원에서 외래 metZ에 의해 코딩되는 단백질은 서열번호 60, 61 및 62 중 어느 하나의 폴리펩티드 서열 및 이와 90% 이상의 상동성 또는 동일성을 갖는 폴리펩티드 서열로 이루어지는 군에서 선택되는 어느 하나 이상의 아미노산 서열(폴리펩티드 서열)을 포함하는 것일 수 있으나 이에 제한되지 않는다. 예를 들어, 상기 단백질은 서열번호 60, 61 및 62 중 어느 하나의 폴리펩티드 서열과 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 97.7%, 97.8%, 98%, 98.5%, 98.7%, 98.8%, 99%, 99.5%, 99.7%, 99.8% 또는 그 이상 100% 미만 상동성 또는 동일성을 갖는 폴리펩티드 서열을 포함할 수 있고, 일 예로 서열번호 66 내지 71 중 어느 하나의 폴리펩티드 서열 및 이와 90% 이상의 상동성 또는 동일성을 갖는 폴리펩티드 서열 중에서 선택되는 서열을 포함하는 것일 수 있으나, 이에 제한되지 않는다.
본 출원의 metZ 유전자는 서열번호 63, 64 및 65 중에서 선택되는 어느 하나 이상의 폴리뉴클레오티드 서열과 90% 이상의 상동성 또는 동일성을 갖는 폴리뉴클레오티드 서열을 포함하는 것일 수 있다. 예를 들어, 상기 유전자는 서열번호 63, 64 및 65 중에서 선택되는 어느 하나 이상의 폴리뉴클레오티드 서열과 91%, 92%, 93%, 94%, 95%, 96%, 97%, 97.5%, 97.7%, 97.8%, 98%, 98.5%, 98.7%, 98.8%, 99%, 99.5%, 99.7%, 99.8% 또는 그 이상 100% 미만 상동성 또는 동일성을 갖는 폴리뉴클레오티드 서열을 포함할 수 있다.
본 출원에서 용어, "폴리뉴클레오티드"는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 가닥이다.
본 출원에서 metZ 유전자가, 서열번호 63, 64 및 65 중에서 선택되는 어느 하나 이상의 폴리뉴클레오티드 서열에 의해 코딩되는 단백질, 또는 서열번호 60, 61 및 62 중 어느 하나 이상의 아미노산 서열을 갖는 단백질과 상응하는 효과를 갖는 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 경우라면, 상기 서열의 일부가 결실, 변형, 치환 또는 부가된 아미노산 서열을 코딩하는 폴리뉴클레오티드를 포함하더라도 본 출원의 범위 내에 포함됨은 자명하다.
예를 들어, 상기 metZ 유전자는, 상기 서열번호 60, 61 및 62 중 어느 하나의 아미노산 서열의 일부, 예를 들어 1 내지 20개의 아미노산이 치환된 아미노산 서열을 코딩하는 것일 수 있다. 다른 구현예로, 상기 metZ 유전자는, 상기 아미노산 서열의 앞뒤로 20개, 19개, 18개, 17개, 16개, 15개, 14개, 13개, 12개 또는 11개 이하의 아미노산 서열이 부가된 서열을 코딩하는 서열일 수 있다. 또 다른 구현예로, 상기 metZ 유전자는 전술한 치환 및 부가를 모두 포함하는 아미노산 서열을 코딩하는 서열 일 수 있으나 이에 제한되지 않는다.
더불어, 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 폴리뉴클레오티드 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이브리드화되는 폴리뉴클레오티드도 제한 없이 포함될 수 있다.
즉, 본 출원에서 특정 서열번호의 염기서열을 포함하는 폴리뉴클레오티드, 특정 서열번호의 염기서열로 이루어진 폴리뉴클레오티드, 특정 서열번호의 염기서열을 갖는 폴리뉴클레오티드로 기재되어 있다고 하더라도, 상기 서열번호의 폴리뉴클레오티드로 구성되는 염기서열에 의해 코딩되는 폴리펩타이드와 동일 혹은 상응하는 활성을 가지는 경우라면, 일부 서열이 결실, 변형, 치환, 보존적 치환 또는 부가된 아미노산 서열을 코딩하는 폴리뉴클레오티드도 본 출원의 범위에 포함되는 것은 자명하다. 예를 들어, 상기 아미노산 서열 N-말단 그리고/또는 C-말단에 단백질의 기능을 변경하지 않는 서열 추가, 자연적으로 발생할 수 있는 돌연변이, 이의 잠재성 돌연변이 (silent mutation) 또는 보존적 치환을 가지는 경우이다.
상기 "보존적 치환(conservative substitution)"은 한 아미노산을 유사한 구조적 및/또는 화학적 성질을 갖는 또 다른 아미노산으로 치환시키는 것을 의미한다. 이러한 아미노산 치환은 일반적으로 잔기의 극성, 전하, 용해도, 소수성, 친수성 및/또는 양친매성(amphipathic nature)에서의 유사성에 근거하여 발생할 수 있다. 예를 들면, 양으로 하전된 (염기성) 아미노산은 알지닌, 라이신, 및 히스티딘을 포함하고; 음으로 하전된 (산성) 아미노산은 글루탐산 및 아스파르트산을 포함하고; 방향족 아미노산은 페닐알라닌, 트립토판 및 타이로신을 포함하고, 소수성 아미노산은 알라닌, 발린, 이소류신, 류신, 메티오닌, 페닐알라닌, 타이로신 및 트립토판을 포함한다.
상동성(homology) 및 동일성(identity)은 두 개의 주어진 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드하는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 이진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 "상동성" 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
또한, 본 출원의 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 폴리뉴클레오티드를 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 폴리펩티드 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 또한 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 도입하고자 하는 미생물 내에 자연적으로 존재하는 서열이 아니면서 L-메티오닌 생산능을 증가시킬 수 있는 폴리뉴클레오티드 서열이라면 제한 없이 포함할 수 있다. 상기 "엄격한 조건(stringent condition)"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 여러 문헌 (예컨대, J. Sambrook et al., Molecular Cloning, A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York, 1989)에 구체적으로 기재되어 있고, 당업계에 잘 알려져 있다. 예를 들어, 상동성(homology) 또는 동일성(identity)이 높은 유전자끼리, 40% 이상, 구체적으로는 70% 이상, 80% 이상, 85% 이상, 90% 이상, 보다 구체적으로는 95% 이상, 더욱 구체적으로는 97% 이상, 특히 구체적으로는 99% 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화(southern hybridization)의 세척 조건인 60℃, 1XSSC, 0.1% SDS, 구체적으로는 60℃, 0.1XSSC, 0.1% SDS, 보다 구체적으로는 68℃, 0.1XSSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다.
혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치 (mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다.
구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다.
폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원의 용어 "단백질의 도입"은 특정 단백질 활성이 없는 미생물에 단백질의 활성이 도입되는 것을 의미한다. 이는 특정 단백질 활성이 없는 미생물에서의 단백질의 활성 강화로도 표현할 수 있다.
상기 단백질의 도입은, 상기 단백질과 동일/유사한 활성을 나타내는 단백질을 암호화하는 외래 폴리뉴클레오티드, 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드를 숙주세포 내로 도입하여 수행될 수 있다. 상기 외래 폴리뉴클레오티드는 상기 단백질과 동일/유사한 활성을 나타내는 한 그 유래나 서열에 제한 없이 사용될 수 있다. 또한 도입된 상기 외래 폴리뉴클레오티드가 숙주세포 내에서 최적화된 전사, 번역이 이루어지도록 이의 코돈을 최적화하여 숙주세포 내로 도입할 수 있다. 상기 도입은 공지된 형질전환 방법을 당업자가 적절히 선택하여 수행될 수 있으며, 숙주 세포 내에서 상기 도입된 폴리뉴클레오티드가 발현됨으로써 단백질이 생성되어 그 활성이 증가될 수 있다.
상기 도입된 단백질의 활성 강화는,
1) 상기 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가,
2) 상기 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형,
3) 상기 단백질의 활성이 강화되도록 염색체 상의 폴리뉴클레오티드 서열의 변형, 또는
4) 이의 조합에 의해 강화되도록 변형하는 방법 등에 의하여 수행될 수 있으나, 이에 제한되지 않는다.
상기 1) 폴리뉴클레오티드의 카피수 증가는, 특별히 이에 제한되지 않으나, 벡터에 작동 가능하게 연결된 형태로 수행되거나, 숙주세포 내의 염색체 내로 삽입됨으로써 수행될 수 있다. 구체적으로, 숙주와 무관하게 복제되고 기능할 수 있는 벡터에 본원의 단백질을 암호화하는 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 수행될 수 있거나, 숙주세포 내의 염색체 내로 상기 폴리뉴클레오티드를 삽입시킬 수 있는 벡터에 상기 폴리뉴클레오티드가 작동 가능하게 연결되어 숙주세포 내에 도입됨으로써 상기 숙주세포의 염색체 내 상기 폴리뉴클레오티드의 카피수를 증가시키는 방법으로 수행될 수 있다.
다음으로, 2) 폴리뉴클레오티드의 발현이 증가하도록 발현조절 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 발현조절 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 가지는 핵산 서열로 교체함에 의하여 수행될 수 있다. 상기 발현조절 서열은, 특별히 이에 제한되지 않으나 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 전사 및 해독의 종결을 조절하는 서열 등을 포함할 수 있다.
상기 폴리뉴클레오티드 발현 단위의 상부에는 본래의 프로모터 대신 강력한 이종 프로모터가 연결될 수 있는데, 상기 강력한 프로모터의 예로는 CJ7 프로모터(대한민국 등록특허 제0620092호 및 WO2006/065095), lysCP1 프로모터(WO2009/096689), spl1 프로모터, spl7 프로모터, spl13 프로모터 (대한민국 등록특허 제1783170호) EF-Tu 프로모터, groEL 프로모터, aceA 혹은 aceB 프로모터 등이 있으나, 이에 한정되지 않는다. 아울러, 3) 염색체 상의 폴리뉴클레오티드 서열의 변형은, 특별히 이에 제한되지 않으나, 상기 폴리뉴클레오티드 서열의 활성을 더욱 강화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 강한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함에 의하여 수행될 수 있다.
마지막으로, 상기 방법들의 조합에 의해 강화되도록 변형하는 방법은, 상기 도입된 단백질을 암호화하는 폴리뉴클레오티드의 카피수 증가, 이의 발현이 증가하도록 발현조절 서열의 변형, 염색체에 삽입된 상기 폴리뉴클레오티드 서열의 변형 및 상기 단백질의 활성을 나타내는 외래 폴리뉴클레오티드 또는 이의 코돈 최적화된 변이형 폴리뉴클레오티드의 변형 중 하나 이상의 방법을 함께 적용하여 수행될 수 있다.
본 출원의 용어 "벡터"는 적합한 숙주 내에서 목적 유전자를 도입할 수 있도록, 적합한 조절 서열에 작동 가능하게 연결된 목적 폴리뉴클레오티드 서열을 함유하는 DNA 제조물을 의미한다. 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합부위를 코딩하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 벡터는 적당한 숙주세포 내로 형질전환된 후, 숙주 게놈과 무관하게 복제되거나 기능할 수 있으며, 게놈 그 자체에 통합될 수 있다. 일례로 세포 내 염색체 삽입용 벡터를 통해 염색체 내에 목적 폴리뉴클레오티드를 변이된 폴리뉴클레오티드로 교체시킬 수 있다. 상기 폴리뉴클레오티드의 염색체 내로의 삽입은 당업계에 알려진 임의의 방법, 예를 들면, 상동재조합에 의하여 이루어질 수 있으나, 이에 한정되지는 않는다.
본 출원의 벡터는 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 통상 사용되는 벡터의 예로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, MBL3, MBL4, IXII, ASHII, APII, t10, t11, Charon4A, 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 구체적으로는 pDZ, pACYC177, pACYC184, pCL, pECCG117, pUC19, pBR322, pMW118, pCC1BAC 벡터 등을 사용할 수 있다.
본 출원의 용어 "형질전환"은 표적 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 벡터를 숙주세포 내에 도입하여 숙주세포 내에서 상기 폴리뉴클레오티드가 코딩하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오티드는 숙주세포 내에서 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하거나 상관없이 이들 모두를 포함할 수 있다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 코딩하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오티드는 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트 (expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터 (promoter), 전사 종결신호, 리보좀 결합부위 및 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으며, 이에 한정되지 않는다.
또한, 본 출원의 용어 "작동 가능하게 연결"된 것이란 본원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 벡터를 형질전환 시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌 글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다.
본 출원의 용어 "L-메티오닌 생산 미생물"은, 야생형 미생물이나 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 불활성화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물로서, 목적하는 L-메티오닌 생산을 위하여 유전적 변이가 일어나거나 활성을 강화시킨 미생물일 수 있다.
본 출원의 목적상, 상기 L-메티오닌 생산 미생물은, 형질 변화 전 모균주 또는 비변형 미생물보다 L-메티오닌 생산능이 향상된 미생물을 의미한다. 상기 '비변형 미생물'은 미생물에 자연적으로 발생할 수 있는 돌연변이를 포함하는 균주를 제외하는 것이 아니며, 천연형 미생물 자체이거나, 야생형 미생물 자체이거나, 또는 L-메티오닌 생합성 경로에 관여하는 유전자의 발현량이 조절되기 전의 미생물일 수 있으며, 또는, 내재적으로 존재하지 않는 metZ 유전자가 도입되기 전의 미생물일 수 있다.
상기 L-메티오닌 생산 미생물은, L-메티오닌 생합성 경로 내 단백질 일부의 활성이 강화되거나, L-메티오닌 분해 경로 내 단백질 일부의 활성이 약화되어 L-메티오닌 생산능이 강화된 미생물일 수 있다. 구체적으로, 상기 미생물은 metZ 도입 이외에도, 시스타티오닌 감마 신타아제의 활성 약화 또는 불활성; O-아세틸호모세린 설피드릴라제의 활성 약화 또는 불활성; 메티오닌-시스테인 생합성 억제인자의 활성 약화 또는 불활성; 메티오닌 합성 효소의 활성 강화; 및 설파이트 환원 효소의 활성 강화로 이루어진 군에서 선택되는 하나 이상의 유전적 변형을 포함하는 것일 수 있다. 또는, 상기 유전적 변형은 metB 유전자의 결실/발현 억제; metY 유전자의 결실; mcbR 유전자의 결실/발현 억제; 및 metH 발현 강화 및 cysI 유전자 발현 강화로 이루어진 군에서 선택되는 하나 이상의 변이가 추가로 도입된 것일 수 있으며, 일 예로, 상기 metB 유전자는 서열번호 25, metY 유전자는 서열번호 26, mcbR 유전자는 서열번호 1, metH 유전자는 서열번호 39, cysI 유전자는 서열번호 40의 폴리뉴클레오티드 서열과 적어도 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% 또는 99% 상동성 또는 동일성을 가지는 폴리뉴클레오티드 서열을 포함할 수 있으나, 이에 제한되지 않는다. 상기 상동성 또는 동일성에 대한 설명은, metB, metY, mcbR, metH 및 cysI 유전자에 대해서도 동일하다.
다만 상기 유전자들은 한 가지 예이며 이에 제한되지 않고, 다양한 공지의 L-메티오닌 생합성경로의 단백질 활성을 강화시키거나 분해경로의 단백질 활성을 불활성화/약화시킨 미생물일 수 있다.
단백질의 활성 강화는 전술한 바와 같이, 해당 단백질을 코딩하는 유전자의 세포 내 카피수 증가, 단백질을 암호화하는 염색체상 유전자 및/또는 이의 발현 조절 서열에 변이 도입, 단백질을 암호화하는 염색체상의 유전자 발현 조절 서열을 활성이 강력한 서열로 교체, 단백질을 암호화하는 염색체상의 유전자를 단백질 활성이 증가되도록 돌연변이된 유전자로 대체, 단백질의 도입 및 이를 조합한 방법으로 이루어질 수 있으나 이에 제한되지 않는다.
본 출원의 용어 "단백질 활성의 약화/불활성화"는 효소 또는 단백질의 발현이 천연의 야생형 균주, 모균주 또는 해당 단백질이 비변형된 균주에 비하여 전혀 발현이 되지 않거나 또는 발현이 되더라도 그 활성이 없거나 감소된 것을 의미한다. 이때, 상기 감소는 상기 단백질을 암호화하는 유전자의 변이, 발현조절서열의 변형, 유전자 일부 또는 전체의 결손 등으로 단백질의 활성이 본래 미생물이 가지고 있는 단백질의 활성에 비해 감소한 경우와, 이를 암호화하는 유전자의 발현 저해 또는 번역(translation) 저해 등으로 세포 내에서 전체적인 단백질의 활성 정도가 천연형 균주 또는 변형전의 균주에 비하여 낮은 경우, 이들의 조합 역시 포함하는 개념이다. 본 출원에 있어서, 상기 불활성화는 당해 분야에 잘 알려진 다양한 방법의 적용으로 달성될 수 있다. 상기 방법의 예로, 1) 상기 단백질을 암호화하는 상기 유전자의 전체 또는 일부를 결실시키는 방법; 2) 상기 단백질을 암호화하는 상기 유전자의 발현이 감소하도록 발현 조절 서열의 변형, 3) 상기 단백질의 활성이 제거 또는 약화되도록 단백질을 암호화하는 상기 유전자 서열의 변형, 4) 상기 단백질을 암호화하는 상기 유전자의 전사체에 상보적으로 결합하는 안티센스 올리고뉴클레오티드(예컨대, 안티센스 RNA)의 도입; 5) 상기 단백질을 암호화하는 상기 유전자의 사인-달가르노(Shine-Dalgarno) 서열 앞단에 사인-달가르노 서열과 상보적인 서열을 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착을 불가능하게 만드는 방법; 6) 상기 단백질을 암호화하는 상기 유전자의 폴리뉴클레오티드 서열의 ORF(open reading frame)의 3' 말단에 반대 방향으로 전사되는 프로모터를 부가하는 방법(Reverse transcription engineering, RTE) 등이 있으며, 이들의 조합으로도 달성할 수 있으나, 이에 특별히 제한되는 것은 아니다.
다만 전술한 방법은 하나의 예시로, 단백질의 활성 강화 또는 불활성화 방법 및 유전자 조작 방법은 당업계에 공지되어 있는바, 상기 L-메티오닌 생산 미생물은 공지의 다양한 방법을 적용하여 제조될 수 있다.
상기 미생물은 코리네박테리움 속 미생물일 수 있다.
본 출원에서 "코리네박테리움 속 미생물"은 모든 코리네박테리움 속 미생물을 포함할 수 있다. 구체적으로, 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데세르티(Corynebacterium deserti), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 칼루내(Corynebacterium callunae), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있고, 더욱 구체적으로 코리네박테리움 글루타미쿰일 수 있다.
본 출원의 미생물의 배양에 사용되는 배지 및 기타 배양 조건은 통상의 코리네박테리움속 미생물의 배양에 사용되는 배지라면 특별한 제한 없이 어느 것이나 사용될 수 있으며, 구체적으로는 본 출원의 미생물을 적당한 탄소원, 질소원, 인원, 무기화합물, 아미노산 및/또는 비타민 등을 함유한 통상의 배지 내에서 호기성 또는 혐기성 조건 하에서 온도, pH 등을 조절하면서 배양할 수 있다.
본 출원에서 상기 탄소원으로는 글루코오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 글루코오스, 프룩토오스, 수크로오스, 말토오스 등과 같은 탄수화물; 만니톨, 소르비톨 등과 같은 당 알코올, 피루브산, 락트산, 시트르산 등과 같은 유기산; 글루탐산, 메티오닌, 리신 등과 같은 아미노산 등이 포함될 수 있다. 또한, 전분 가수분해물, 당밀, 블랙스트랩 당밀, 쌀겨울, 카사버, 사탕수수 찌꺼기 및 옥수수 침지액 같은 천연의 유기 영양원을 사용할 수 있으며, 구체적으로는 글루코오스 및 살균된 전처리 당밀(즉, 환원당으로 전환된 당밀) 등과 같은 탄수화물이 사용될 수 있으며, 그 외의 적정량의 탄소원을 제한 없이 다양하게 이용할 수 있다. 이들 탄소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으며, 이에 한정되는 것은 아니다.
상기 질소원으로는 암모니아, 황산암모늄, 염화암모늄, 초산암모늄, 인산암모늄, 탄산안모늄, 질산암모늄 등과 같은 무기질소원; 글루탐산, 메티오닌, 글루타민 등과 같은 아미노산, 펩톤, NZ-아민, 육류 추출물, 효모 추출물, 맥아 추출물, 옥수수 침지액, 카세인 가수분해물, 어류 또는 그의 분해생성물, 탈지 대두 케이크 또는 그의 분해 생성물 등과 같은 유기 질소원이 사용될 수 있다. 이들 질소원은 단독으로 사용되거나 2 종 이상이 조합되어 사용될 수 있으나, 이에 제한되지 않는다.
상기 인원으로는 인산 제1칼륨, 인산 제2칼륨, 또는 이에 대응되는 소디움-함유 염 등이 포함될 수 있다. 무기화합물로는 염화나트륨, 염화칼슘, 염화철, 황산마그네슘, 황산철, 황산망간, 탄산칼슘 등이 사용될 수 있다.
상기 황원으로는, 메탄설포네이트(methanesulfonate), 에탄설포네이트(ethanesulfonate)를 포함하는 알칸설포네이트(alkanesulfonate), 황산염, 아황산염(sulfite), H2S와 같은 하이드로겐 설파이드, 설파이드, 설파이드 유도체, 티오글리콜라이트, 티오시아네이트 및/또는 티오유레아와 같은 유기 및 무기 황 함유성 화합물과 티오설페이트의 혼합물 형태이거나, 또는 황원으로서 티오설페이트 이외의 물질은 포함하지 않을 수 있으나, 이에 제한되지 않는다.
본 출원의 목적상, 상기 L-메티오닌 제조 방법은 티오설페이트를 포함하는 배지에서 상기 미생물을 배양하는 것을 포함할 수 있고, 구체적으로, 상기 티오설페이트는 미생물의 황원으로 사용되는 것일 수 있으나 이에 제한되지 않는다.
무기화합물로는 염화나트륨, 염화칼슘, 염화철, 탄산칼슘 등이 사용될 수 있고, 그 외에 상기 배지에는 비타민 및/또는 적절한 전구체 등이 포함될 수 있다. 상기 배지 또는 전구체는 배양물에 회분식 또는 연속식으로 첨가될 수 있으며, 이에 제한되지 않는다.
본 출원에서는 미생물의 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산, 황산 등과 같은 화합물을 배양물에 적절한 방식으로 첨가하여, 배양물의 pH를 조정할 수 있다. 또한, 배양 중에는 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 또한, 배양물의 호기 상태를 유지하기 위하여, 배양물 내로 산소 또는 산소 함유 기체를 주입하거나 혐기 및 미호기 상태를 유지하기 위해 기체의 주입 없이 혹은 질소, 수소 또는 이산화탄소 가스를 주입할 수 있으나, 이에 제한되지 않는다.
배양물의 온도는 25℃내지 40℃일 수 있으며, 보다 구체적으로는 28℃ 내지 37℃일 수 있으나 이에 제한되지 않는다. 배양 기간은 원하는 유용 물질의 생성량이 수득될 때까지 계속될 수 있으며, 구체적으로는 1 시간 내지 100 시간일 수 있으나 이에 제한되지 않는다.
본 출원의 메티오닌 제조방법은 상기 미생물 또는 배지로부터 L-메티오닌을 회수하는 것을 포함할 수 있다.
본 출원의 미생물의 배양 방법, 예를 들어 회분식, 연속식 또는 유가식 배양 방법 등에 따라 당해 기술 분야에 공지된 적합한 방법을 이용하여 배지로부터 목적하는 황 함유 아미노산 또는 황 함유 아미노산 유도체를 회수할 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있으나, 이들 예에 한정되는 것은 아니다.
상기 방법은 추가적인 정제 공정을 포함할 수 있다. 상기 정제공정은 당해 기술분야에 공지된 적합한 방법을 이용할 수 있다.
본 출원의 다른 하나의 양태는 상기 미생물 및 티오설페이트를 포함하는 L-메티오닌 생산용 조성물을 제공한다.
본 출원의 조성물은 L-메티오닌 생산용 조성물에 통상 사용되는 임의의 적합한 부형제를 추가로 포함할 수 있으며, 이러한 부형제는, 예를 들어 보존제, 습윤제, 분산제, 현탁화제, 완충제, 안정화제 또는 등장화제 등일 수 있으나, 이에 한정되는 것은 아니다.
본 출원의 metZ에 의해 코딩되는 단백질 활성이 도입된 미생물은, metY에 비해 부산물이 적게 생성되어 수율이 높으며, 메티오닌에 의해 피드백저해를 받는metB와 달리 피드백 저해를 받지 않으므로, 고수율로 L-메티오닌을 생산할 수 있어 L-메티오닌의 산업적 생산에 유용하게 이용될 수 있다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: mcbR 유전자 결손을 위한 제조합 벡터 제작
본 실시 예에서는 메티오닌 생산 균주를 제작하기 위해, 야생형 ATCC13032 균주를 가지고, 기 공지된 메티오닌-시스테인 생합성 억제인자를 코딩하는 mcbR (J. Biotechnol. 103:51-65, 2003) 의 불활성화를 위해 벡터를 제작하였다.
구체적으로, mcbR 유전자를 코리네박테리움 ATCC13032 염색체 상에서 결손시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 mcbR 유전자 및 주변서열(서열번호 1)을 확보하였다.
결손된 mcbR 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 2 및 서열번호 3, 서열번호 4 및 서열번호 5의 프라이머를 이용하여 PCR을 수행하였다(표 1).
서열번호 서열(5'-3')
2 TCGAGCTCGGTACCCCTGCCTGGTTTGTCTTGTA
3 CGGAAAATGAAGAAAGTTCGGCCACGTCCTTTCGG
4 AGGACGTGGCCGAACTTTCTTCATTTTCCGAAGGG
5 CTCTAGAGGATCCCCGTTTCGATGCCCACTGAGCA
PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 700bp DNA 단편들을 수득하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 mcbR 유전자 단편들을 염색체 도입용 제한효소 smaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△mcbR 이라 명명하였다.
실시예 2: mcbR 유전자 결손된 균주 제작 및 배양
실시예 1에서 제작된 pDC-△mcbR, 벡터를 염색체 상에서의 상동 재조합에 의해 ATCC13032 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 6, 7 (표 2)을 이용하여 PCR법을 통하여 mcbR 유전자가 결손된 균주를 확인하였고, 본 재조합 균주를 코리네박테리움 글루타미쿰 CM02-0618이라 명명하였다.
상기 CM02-0618은 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 1월 4일자로 기탁하여 수탁번호 KCCM12425P를 부여받았다.
서열번호 서열(5'-3')
6 AATCTGGATTTCCGCCAGGT
7 CTTCCTAACTCCTGAGGAAG
상기 제작된 CM02-0618의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 ATCC13032 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 ATCC13032과 발명 균주 코리네박테리움 글루타미쿰 CM02-0618를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다. 생산 배지에서 황원으로는 티오설페이트의 일종인 (NH4)2S2O3를 이용하였다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍, (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 시아노코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액의 중의 L-메티오닌 농도를 분석하여 표 3에 나타내었다.
야생형 및 mcbR이 제거된 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
Corynebacterium glutamicum ATCC 13032 (야생형) 0.00
CM02-0618 0.04
그 결과, mcbR 단독 제거 균주에서 L-메티오닌이 생산되는 것을 확인할 수 있었다.
실시예 3-1: 외래 3종 metZ 유전자 도입을 위한 벡터 제작
코리네박테리움 균주에 외래 metZ를 도입하여 기존 메티오닌 생합성 방법의 단점을 보완하면서 메티오닌 생산을 강화하고자 하였다. 구체적으로, 크로모박테리움 비오라슘 (Chromobacterium Violaceum), 하이호모나스 넵튜니윰 (Hyphomonas Neptunium), 로도박터 스페로이드 (Rhodobacter sphaeroides) 유래 metZ를 도입하기 위한 벡터를 제작하였다.
구체적으로, 3종의 외래 metZ 유전자를 각각 코리네박테리움 ATCC13032 염색체 상에서 추가 삽입시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다.
먼저 metZ를 삽입하기 위해 Ncgl1021 (Transposase)를 제거하기 위한 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 Ncgl1021 및 주변 서열 (서열변호 8)을 확보하였다. 결손된 Ncgl1021 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 9 및 서열번호 10, 서열번호 11 및 서열번호 12의 프라이머(표 4)를 이용하여 PCR을 수행하였다.
서열번호 서열(5'-3')
9 ACCCGGGGATCCTCTAGAATGTTTGTGATGCGCAG
10 GTCAGAGAGTACTTACGCTGATCGGGAGGGAAAGC
11 ATCAGCGTAAGTACTCTCTGACTAGCGTCACCCTC
12 CTGCAGGTCGACTCTAGAAAAGGGATTGGAGTGTT
PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 DNA 단편들을 수득하였다. 코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 Ncgl1021 유전자 단편들을 염색체 도입용 제한효소 smaI 으로 처리한 뒤, isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1021 이라 명명하였다.
metZ (크로모박테리움 비오라슘 (Chromobacterium Violaceum), 하이호모나스 넵튜니윰 (Hyphomonas Neptunium), 로도박터 스페로이드 (Rhodobacter sphaeroides) 유래) 유전자들을 획득하기 위한 목적으로, 각각 크로모박테리움 비오라슘, 하이호모나스 넵튜니윰, 로도박터 스페로이드의 염색체 DNA를 주형으로 하여 서열번호 13 및 14, 15 및 16, 17 및 18 이용하여 PCR을 수행하였다. 또한 3종의 metZ 유전자를 각각 발현하기 위해 Pspl1 프로모터를 사용하였으며, Pspl1은 기 공지된 spl1-GFP (KR 10-1783170 B1) 벡터 DNA를 주형으로 하여 각각 서열번호 19 및 20, 19 및 21, 19 및 22 를 이용하여 PCR을 수행하였다(표 5). PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다.
서열번호 서열(5'-3')
13 ATCAAAACAGATATCATGGCATCCGACGCGCCGCA
14 CGCTAGTCAGAGAGTTTAGTCAAGGCCCCGCAACA
15 ATCAAAACAGATATCATGGCGGATGCACCCGGCGG
16 CGCTAGTCAGAGAGTTCACAAGCTGTTAAGCGAAG
17 ATCAAAACAGATATCATGACGAAGGACTGGAAGAC
18 CGCTAGTCAGAGAGTTCAGATCACCGCGAGCGCCT
19 CCGATCAGCGTAAGTGGCGCTTCATGTCAACAATC
20 CGCGTCGGATGCCATGATATCTGTTTTGATCTCCT
21 GGGTGCATCCGCCATGATATCTGTTTTGATCTCCT
22 CCAGTCCTTCGTCATGATATCTGTTTTGATCTCCT
그 결과 3종의 외래 metZ 유전자 단편 및 3종의 metZ 유전자를 발현하기 위한 각각의 spl1 프로모터 단편을 획득할 수 있었다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1021 벡터를 제한효소 scaI 으로 처리한 뒤, 균주별로 상기 증폭한 spl1 promoter 단편 및 metZ 단편들과 같이 isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 총 3종의 플라스미드를 획득하였고 각각 pDZ-△Ncgl1021-PsplCvimetZ (크로모박테리움 비오라슘(Chromobacterium Violaceum) metZ), pDZ-△Ncgl1021-PsplHnemetZ (하이호모나스 넵튜니윰 (Hyphomonas Neptunium) metZ), pDZ-△Ncgl1021-PsplRspmetZ (로도박터 스페로이드 (Rhodobacter sphaeroides) metZ) 라 명명하였다.
실시예 3-2: metZ 유전자 도입을 위한 벡터 제작
종래에 알려진, 로도박터 스페로이드 유래 metZ 유전자 6개의 서열에 대한 벡터를 추가로 제작하였다. (KR10-1250651B1 및 KR10-1836719B1 참조) 전술된 실시예 3-1의 방법과 동일한 방법으로 서열번호 66 내지 71의 아미노산 서열을 코딩하는 metZ 유전자가 각각 도입된 벡터를 제작하였다. 각 metZ 유전자는, RspmetZ_long, RspmetZ_3, RspmetZ_65, RspmetZ_104, RspmetZ_196, RspmetZ_3_65_104 로 명명되었으며, 각 유전자 도입을 위하여 사용된 프라이머는 다음과 같다.
프라이머 서열(5'-3')
RspmetZ 서열번호 72 ATCAAAACAGATATCATGGGTATCGCGTTTCGTGA
RspmetZ_3 서열번호 73 CCTTCACGAAACGCGtTACCCATGATATCTG
RspmetZ_3 서열번호 74 CAGATATCATGGGTAaCGCGTTTCGTGAAGG
RspmetZ_65 서열번호 75 TAGCGGGCATAGATGtATTCGTCGGCGCCGG
RspmetZ_65 서열번호 76 CCGGCGCCGACGAATaCATCTATGCCCGCTA
RspmetZ_104 서열번호 77 ACGATCGAGGTGAGCgCGCCGTGGATCGCGG
RspmetZ_104 서열번호 78 CCGCGATCCACGGCGcGCTCACCTCGATCGT
RspmetZ_196 서열번호 79 CGGGCGTCGCGAAGAtATTGTCCACGATGAC
RspmetZ_196 서열번호 80 GTCATCGTGGACAATaTCTTCGCGACGCCCG
먼저 RspmetZ_long 을 획득하기 위한 목적으로 로도박터 스페로이드의 염색체 DNA를 이용하여 서열번호 19 및 22, 72 및 18을 이용하여 PCR을 수행하였다.
그 결과 유전자 단편 및 spl1 프로모터 단편을 획득할 수 있었다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1021 벡터를 제한효소 scaI 으로 처리한 뒤, 균주별로 상기 증폭한 spl1 promoter 단편 및 metZ 단편을 같이 isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1021-PsplRspmetZ_long라 명명하였다.
RspmetZ_3, RspmetZ_65, RspmetZ_104, RspmetZ_196, RspmetZ_3_65_104을 획득하기 위한 목적으로, 각각 pDZ-△Ncgl1021-PsplRspmetZ_long 벡터를 DNA를 주형으로 하여 서열번호 72 및 73, 74 및 18 (RspmetZ_3), 서열번호 72 및 75, 76 및 18 (RspmetZ_65), 서열번호 72 및 77, 78 및 18 (RspmetZ_104), 서열번호 71 및 79, 80 및 18 (RspmetZ_196), 서열번호 72 및 73, 74 및 75. 76 및 77, 77 및 18 (RspmetZ_3_65_104) 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다.
그 결과 총 10개의 단편을 획득할 수 있었다.
단편 1 서열번호 72, 73
단편 2 서열번호 74, 18
단편 3 서열번호 72, 75
단편 4 서열번호 76, 18
단편 5 서열번호 72, 77
단편 6 서열번호 78, 18
단편 7 서열번호 72, 79
단편 8 서열번호 80, 18
단편 9 서열번호 74, 75
단편10 서열번호 76, 77
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1021 벡터를 제한효소 scaI 으로 처리한 뒤, 각각 RspmetZ_3은 단편 1, 단편 2, RspmetZ_65는 단편 3, 단편 4, RspmetZ_104는 단편 5, 단편 6, RspmetZ_196은 단편 7, 단편 8, RspmetZ_3_65_104는 단편 1, 단편 11, 단편 12, 단편 6과 같이 isothermal assembly cloning 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 총 6종의 플라스미드를 획득하였고 각각 pDZ-△Ncgl1021-PsplRspmetZ_long, pDZ-△Ncgl1021-PsplRspmetZ_3, pDZ-△Ncgl1021-PsplRspmetZ_65, pDZ-△Ncgl1021-PsplRspmetZ_104, pDZ-△Ncgl1021-PsplRspmetZ_196, pDZ-△Ncgl1021-PsplRspmetZ_3_65_104 라 명명하였다.
실시예 4: 외래 metZ가 도입된 균주 제작 및 배양
실시예 2에서 제작한 메티오닌 생산균주인 CM02-0618 균주에 9종의 외래 metZ를 도입하였다.
구체적으로, 실시예 3에서 제작한 pDZ-△Ncgl1021, pDZ-△Ncgl1021-PsplCvimetZ pDZ-△Ncgl1021-PsplHnemetZ, pDZ-△Ncgl1021-PsplRspmetZ, pDZ-△Ncgl1021-PsplRspmetZ_long, pDZ-△Ncgl1021-PsplRspmetZ_3, pDZ-△Ncgl1021-PsplRspmetZ_65, pDZ-△Ncgl1021-PsplRspmetZ_104, pDZ-△Ncgl1021-PsplRspmetZ_196, 및 pDZ-△Ncgl1021-PsplRspmetZ_3_65_104 벡터를 염색체 상에서의 상동 재조합에 의해 실시예 2에서 제작한 메티오닌 생산균주인 CM02-0618 균주에 각각 전기천공법으로 형질전환시켰다. (van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999).
그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 23, 24을 이용하여 PCR법을 통하여 Ncgl1021이 결손된 균주 및 Ncgl1021이 결손되면서 metZ 유전자가 삽입된 균주를 확인하였다. CM02-0618 에 상기 9종의 벡터가 각각 도입된 재조합 균주를 CM02-0618/ΔNcgl021 및 CM02-0757, CM02-0758, CM02-0759-1, CM02-0759-2, CM02-0759-3, CM02-0759-4, CM02-0759-5, CM02-0759 라 명명하였다.
상기 제작된 균주들의 L-메티오닌 생산능을 분석하기 위해 모균주인 CM02-0618균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 상기 균주들을 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
또한, 종래의 메티오닌 효소전환에서 사용된 황원과의 비교를 위하여, 상기 생산배지에서 황원을 티오설페이트(S2O3) 에서 메칠머캅탄(CH3SH)으로 변경한 후, 상기 균주들을 동일한 방법으로 배양하였다. 각각 배양이 완료된 후, 배양액 내 L-메티오닌 농도를 분석하여 표 8에 나타내었다.
metZ의 발현이 증가된 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
(황원: S2O3)
L-메티오닌(g/L)
(황원: CH3SH)
CM02-0618 0.04 0.01
CM02-0618ΔNcgl021 0.04 0.01
CM02-0757 (CvimetZ) 0.13 0.02
CM02-0758 (HnemetZ) 0.12 0.01
CM02-0759-1 (RspmetZ) 0.13 0.02
CM02-0759-2 (RspmetZ_long) 0.13 0.02
CM02-0759-3 (RspmetZ_3) 0.13 0.02
CM02-0759-4 (RspmetZ_65) 0.13 0.02
CM02-0759-5 (RspmetZ_104) 0.13 0.02
CM02-0759-6 (RspmetZ_196) 0.13 0.02
CM02-0759 (RspmetZ_3_65_104) 0.14 0.02
그 결과, 9종의 metZ 유전자가 각각 도입됨에 따라 대조군 균주 대비 L-메티오닌 생산능이 266% 이상 증가하는 것을 확인할 수 있었다. 이를 통하여, 본 출원의 외래 metZ가 sulfhydrylation를 통해 메티오닌 생산능을 크게 증가시키며, 특히 메칠머캅탄을 황원으로 사용하는 종래의 방법에 비해 효율이 우수한 것임을 확인하였다. 이는 코리네박테리움 글루타미쿰 metB 및 metY와 달리 본 출원의 외래 metZ는 피드백 저해를 받지 않아 메티오닌 수율이 증가한 것으로 해석할 수 있다.
상기 CM02-0757, CM02-0758, CM02-0759 균주는 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 5월 2일자로 기탁하여 각각 수탁번호 KCCM12506P, KCCM12507P, KCCM12508P를 부여받았다.
실시예 5: metB 및 metY 유전자 결손을 위한 재조합 벡터 제작
본 출원의 metZ 가 코딩하는 단백질의 기능(활성)을 확인하고 이를 metY 및 metB 활성과 비교하기 위하여, C.gl이 가지고 있는 metB 및 metY를 각각 deletion 하였다. 구체적으로, metB 및 metY 유전자를 각각 결손시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 metB metY 유전자 및 주변서열(서열번호 25, 26)을 확보하였다.
결손된 metB metY 유전자를 각각 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 27 및 28, 서열번호 29 및 30의 프라이머와 (metB), 서열번호 31 및 32, 서열번호 33 및 34 (metY) 의 프라이머를 이용하여 PCR을 수행하였다(표 9).
서열번호 서열(5'-3')
27 GAATTCGAGCTCGGTACCCGGGCCAGTAAGGTGTTACCCATGC
28 CTGCTTGCCGCCAAATAGTTTAGTACTGGTAGATCAACTCCTGTAATCAGAATTCTA
29 TAGAATTCTGATTACAGGAGTTGATCTACCAGTACTAAACTATTTGGCGGCAAGCAG
30 TCGACTCTAGAGGATCCCCGGGCGATCTCAATTCCCATGCCTC
31 TCGAGCTCGGTACCCCTGCAATAGCTGCAAAGTGG
32 TGAGTCTATTTAAAGCGGGTAATTTTCTTGACTTT
33 CAAGAAAATTACCCGCTTTAAATAGACTCACCCCA
34 CTCTAGAGGATCCCCGCCTTAATTTGGGCGGATTG
PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 700bp DNA 단편들을 수득하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 metB metY 유전자 단편들을 각각 염색체 도입용 제한효소 smaI 으로 처리한 뒤, DNA 접합 효소를 이용하여 연결한 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고, 획득한 플라스미드를 각각 pDZ-△metB 및 pDZ-△metY 라 명명하였다.
실시예 6: 3종의 metZ가 각각 강화된 균주에서 metB 및 metY 유전자를 각각 제거한 균주 제작 및 배양
상기에서 제작된 pDZ-△metB 및 pDZ-△metY 벡터를 염색체 상에서의 상동 재조합에 의해 CM02-0618, CM02-0757, CM02-0758, CM02-0759 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 각각 서열번호 35 및 36 (metB), 서열번호 37 및 38 (metY) 를 이용하여 metB 및 metY가 유전자가 각각 결손됐는지 확인하였다(표 10).
서열번호 서열(5'-3')
35 TTCCTGGTCTGACGACAGTG
36 GATGTCTTCAGCTTCACCCTG
37 CCGAGGATAATCCACAAGGT
38 CGAAGCGTTCGTCGATTTCT
본 재조합 균주들은 각각 코리네박테리움 글루타미쿰 CM02-0618/ΔmetB CM02-0757/ΔmetB, CM02-0758/ΔmetB, CM02-0759/ΔmetB, CM02-0618/ΔmetY, CM02-0757/ΔmetY, CM02-0758/ΔmetY, CM02-0759/ΔmetY 이라 명명하였다.
상기 제작된 CM02-0618/ΔmetB, CM02-0757/ΔmetB, CM02-0758/ΔmetB, CM02-0759/ΔmetB, CM02-0618/ΔmetY, CM02-0757/ΔmetY, CM02-0758/ΔmetY, CM02-0759/ΔmetY 균주의 L-메티오닌 생산능을 분석하기 위해 아래와 같은 방법으로 배양하였다.
하기의 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 모균주인 CM02-0618, CM02-0757, CM02-0758, CM02-0759 와 상기 제작된 CM02-0618/ΔmetB, CM02-0757/ ΔmetB, CM02-0758/ΔmetB, CM02-0759/ΔmetB, CM02-0618/ΔmetY, CM02-0757/ΔmetY, CM02-0758/ΔmetY, CM02-0759/ΔmetY 를 각각 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액의 중의 L-메티오닌 및 부산물인 호모란티오닌 농도를 분석하여 표 11에 나타내었다.
metY 및 metB가 각각 제거된 균주의 L-메티오닌 및 호모란티오닌 생산능 확인
균주 L-메티오닌(g/L) 호모란티오닌 (g/L)
CM02-0618 0.04 0.82
CM02-0618/ΔmetB 0.03 0
CM02-0618/ΔmetY 0.02 0.81
CM02-0757 0.13 0.17
CM02-0758 0.12 0.17
CM02-0759 0.13 0.18
CM02-0757/ΔmetB 0.13 0
CM02-0758/ΔmetB 0.12 0
CM02-0759/ΔmetB 0.13 0
CM02-0757/ΔmetY 0.08 0.19
CM02-0758/ΔmetY 0.07 0.18
CM02-0759/ΔmetY 0.08 0.19
이를 통해, 외래 metZ는 metB와 같은 Function을 하는 것, 즉 시스테인(cysteine)을 황원으로 하여 트랜스설퓨레이션(transsulfuration)을 통해 메티오닌(methionine)을 생산함을 확인할 수 있다. 즉 metB나 metY가 결실되어 있어도 metZ를 이용해 메티오닌 생산이 고수율로 유지되는 것이 가능하므로 기존 코리네박테리움의 metB 및/또는 metY의 단점을 보완하기 위해 상기 유전자를 외래 metZ로 대체할 수 있다.
또한 metB가 존재하고 외래 metZ가 도입된 균주에서 메티오닌 생산량은 강화되고 호모란티오닌 생성량은 대조군(CM02-0618) 대비 20% 정도에 그쳐, metZ 강화 시 부산물인 호모란티오닌 생성량이 감소하는 것을 확인할 수 있었다. 호모란티오닌은 O-아세틸호모세린을 소모하여 합성되는 물질로, 호모란티오닌의 생성은 메티오닌 생산을 감소시키는 바, 이러한 부산물 생성을 억제하는 외래 metZ는 metB의 단점을 보완하여 부산물 생성을 억제하고 메티오닌 합성량을 강화하는 것임을 알 수 있다.
상기 결과를 통해 처음으로 본 출원의 metZ가 시스테인을 이용해서 트랜스설퓨레이션 할 수 있다라는 사실을 밝혔으며, 메티오닌 생산 증가 뿐 아니라 코리네박테리움 속 균주의 metB의 단점을 보완하기 위해 본 출원의 metZ를 사용할 수 있는 것임을 확인하였다.
실시예 7: metH, cysI 를 동시에 강화하는 재조합 벡터 제작
본 실시 예에서는 mcbR이 결손되지 않은 메티오닌 생산 균주를 제작하기 위해, 메티오닌 합성 효소를 코딩하는 metH (Ncgl1450), 설파이트 환원 효소를 코딩하는 cysI (Ncgl2718)를 동시에 강화하기 위해 벡터를 제작하였다.
구체적으로, metH cysI 유전자를 코리네박테리움 ATCC13032 염색체 상에서 추가 삽입시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 metH 유전자 및 주변서열(서열번호 39)과 cysI 유전자 및 주변서열(서열번호 40)을 확보하였다.
다음 metH cysI 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 41 및 서열번호 42, 서열번호 43 및 서열번호 44의 프라이머를 이용하여 PCR을 수행하였고, 또한 metH 유전자의 발현 강화를 위해 Pcj7 프로모터가 사용되고, cysI 유전자의 발현 강화를 위해 Pspl1 프로모터를 사용하였다. 각 프로모터를 획득하기 위해, Pcj7의 경우 코리네박테리움 암모니아게네스 ATCC 6872 염색체 DNA를 주형으로 하여 서열번호 45, 46를 이용하여 PCR을 수행하였고, Pspl1은 기 공지된 spl1-GFP (KR 10-1783170 B1) 벡터 DNA를 주형으로 하여 서열번호 47, 48을 이용하여 PCR을 수행하였다. 사용한 프라이머 서열을 하기 표 12에 나타내었다.
서열번호 서열(5'-3')
41 CAACGAAAGGAAACAATGTCTACTTCAGTTACTTC
42 TAGTCAGAGAGTGATTTAGACGTTAAAGTACTTTG
43 ATCAAAACAGATATCATGACAACAACCACCGGAAG
44 CGCTAGTCAGAGAGTTCACACCAAATCTTCCTCAG
45 CCGATCAGCGTAAGTAGAAACATCCCAGCGCTACT
46 AACTGAAGTAGACATTGTTTCCTTTCGTTGGGTAC
47 TACTTTAACGTCTAAGGTACCGGCGCTTCATGTCA
48 GGTGGTTGTTGTCATGATATCTGTTTTGATCTCCT
PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 4분 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 metH 유전자 및 cysI, Pcj7 프로모터 및 Pspl1 프로모터 DNA 단편을 확보하였다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl1021 벡터를 제한효소 scaI 으로 처리한 뒤, 상기 증폭한 4개의 DNA 단편들을 염색체 도입용 제한효소 scaI 으로 처리한 뒤, IST 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl1021-Pcj7metH-Pspl1cysI 라 명명하였다.
실시예 8: metH, cysI 를 동시에 강화하는 균주 제작 및 이를 이용한 L-메티오닌 생산
상기에서 제작된 pDZ-△Ncgl1021 및 pDZ-△Ncgl1021-Pcj7metH-Pspl1cysI 벡터를 염색체 상에서의 상동 재조합에 의해 ATCC13032 균주에 각각 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 23, 24를 이용하여 Ncgl1021 유전자가 결손되고 Pcj7-metH-Pspl1cysI 유전자가 잘 삽입됐는지 확인하였다. 본 재조합 균주들은 13032/ΔNcgl1021, CM02-0753으로 명명하였다.
상기 제작된 13032/ΔNcgl1021, CM02-0753 균주의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 ATCC13032 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 코리네박테리움 글루타미쿰 ATCC13032과 상기 제조한 균주 13032/ΔNcgl1021, CM02-0753 를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액의 중의 L-메티오닌 농도를 분석하여 표 13에 나타내었다.
mcbR이 존재하는 균주의 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
Corynebacterium glutamicum ATCC 13032 (야생형) 0
13032/ΔNcgl1021 0
CM02-0753 0.03
그 결과, mcbR은 그대로 존재하고, metH 및 cysI 과발현 균주는 대조군 균주 대비 L-메티오닌 생산능이 0.03 g/l 향상되었음을 확인 할 수 있었다.
실시예 9-1: Ncgl1021 site가 아닌 다른 site에 metZ 유전자들 강화를 위한 벡터 제작
3종의 외래 metZ 유전자를 각각 코리네박테리움 ATCC13032 염색체 상에서 기존과 다른 위치에 삽입시키기 위하여 하기의 방법으로 재조합 플라스미드 벡터를 제작하였다.
먼저 metZ를 삽입하기 위해 Ncgl2748 (Transposase)를 제거하기 위한 벡터를 제작하였다. 미국 국립보건원의 유전자은행(NIH Genbank)에 보고된 염기서열에 근거하여 코리네박테리움 글루타미쿰의 Ncgl2748 및 주변 서열 (서열번호 49)을 확보하였다. 결손된 Ncgl2748 유전자를 획득하기 위한 목적으로, 코리네박테리움 글루타미쿰 ATCC 13032의 염색체 DNA를 주형으로 하여 서열번호 50 및 서열번호 51, 서열번호 52 및 서열번호 53의 프라이머(표 14)를 이용하여 PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 30초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 각각 DNA 단편들을 수득하였다.
서열번호 서열(5'-3')
50 GTACCCGGGGATCCTCTAGACCTGGGTAACTTCCTGTCCA
51 CAGGTTAGCAGTACTTCTCAAGTTTCTCGGCGGTG
52 AACTTGAGAAGTACTGCTAACCTGCAGAAACCTTG
53 GCCTGCAGGTCGACTCTAGACTCCGCAGAAATCGTGGGGC
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 특허 등록번호 제10-0924065호)와 상기 증폭한 Ncgl2748 유전자 단편들을 염색체 도입용 제한효소 smaI 으로 처리한 뒤, IST 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자들의 결손된 단편이 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 pDZ-△Ncgl2748 이라 명명하였다.
다음 3종의 metZ (크로모박테리움 비오라슘 (Chromobacterium Violaceum), 하이호모나스 넵튜니윰 (Hyphomonas Neptunium), 로도박터 스페로이드 (Rhodobacter sphaeroides) 유전자들을 획득하기 위한 목적으로, 각각 상기에서 제작한 pDZ-△Ncgl1021-PsplCvimetZ (크로모박테리움 비오라슘(Chromobacterium Violaceum) metZ), pDZ-△Ncgl1021-PsplHnemetZ (하이호모나스 넵튜니윰 (Hyphomonas Neptunium) metZ), pDZ-△Ncgl1021-PsplRspmetZ (로도박터 스페로이드 (Rhodobacter sphaeroides) metZ) 벡터를 주형으로 하여 서열번호 54 및 55, 54 및 56, 54 및 57을 이용하여(표 15) PCR을 수행하였다. PCR 조건은 95 ℃에서 5분간 변성 후, 95℃ 30초 변성, 53℃ 30초 어닐링, 72℃ 60초 중합을 30회 반복한 후, 72℃에서 7분간 중합반응을 수행하였다. 그 결과 3종의 PCR 단편을 획득할 수 있었다.
서열번호 서열(5'-3')
54 CGCCGAGAAACTTGAGAAGTGGCGCTTCATGTCAA
55 CTGCAGGTTAGCAGTTTAGTCAAGGCCCCGCAACA
56 CTGCAGGTTAGCAGTTCACAAGCTGTTAAGCGAAG
57 CTGCAGGTTAGCAGTTCAGATCACCGCGAGCGCCT
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ-△Ncgl2748 벡터를 제한효소 scaI 으로 처리한 뒤, 균주별로 상기 증폭한 단편들과 같이 IST 반응 후, 대장균 DH5α에 형질전환하고 카나마이신(25mg/ℓ)이 포함된 LB 고체배지에 도말하였다. PCR을 통해 목적한 유전자가 삽입된 벡터로 형질 전환된 콜로니를 선별한 후 플라스미드 추출법을 이용하여 총 3종의 플라스미드를 획득하였고 각각 pDZ-△Ncgl2748-PsplCvimetZ (크로모박테리움 비오라슘 (Chromobacterium Violaceum) metZ), pDZ-△Ncgl2748-PsplHnemetZ (하이호모나스 넵튜니윰 (Hyphomonas Neptunium) metZ), pDZ-△Ncgl2748-PsplRspmetZ (로도박터 스페로이드 (Rhodobacter sphaeroides) metZ) 라 명명하였다.
실시예 9-2: Ncgl1021 site가 아닌 다른 site에 metZ 유전자들 강화를 위한 벡터 제작
추가적으로, 서열 상동성 99%이상을 갖는 metZ 유전자가 도입된 균주에서도 메티오닌이 생산량이 증가되는지 확인하고자, 실시예 3-2의 metZ 유전자 5개에 대한 벡터를 추가로 제작하였다.
전술된 실시예 9-1의 방법과 동일한 방법으로 상기 6개의 metZ 유전자가 각각 도입된 벡터를 제작하였다.
총 6개의 벡터를 제작하였으며, 그 내용은 다음과 같다. pDZ-△Ncgl2748-PsplRspmetZ_long, △Ncgl2748-PsplRspmetZ_3, pDZ-△Ncgl2748-PsplRspmetZ_65, pDZ-△Ncgl2748-PsplRspmetZ_104, pDZ-△Ncgl2748-PsplRspmetZ_196, 및 pDZ-△Ncgl2748-PsplRspmetZ_3_65_104라 명명하였으며, 위 벡터들을 만들기 위해 DNA 주형은 각각 실시예 4에서 제작된 △Ncgl1021-PsplRspmetZ_long pDZ-△Ncgl1021-PsplRspmetZ_3, pDZ-△Ncgl1021-PsplRspmetZ_65, pDZ-△Ncgl1021-PsplRspmetZ_104, pDZ-△Ncgl1021-PsplRspmetZ_196, 및 pDZ-△Ncgl1021-PsplRspmetZ_3_65_104 를 사용하였고, 프라이머는 공통으로 서열번호 54, 57을 이용하였다. 나머지 과정은 실시예 9-1과 동일하다.
실시예 10: mcbR이 존재하는 L-메티오닌 생산주 기반 외래 metZ 강화균주 개발 및 이를 이용한 L-메티오닌 생산
상기에서 제작된 pDZ-△Ncgl2748, pDZ-△Ncgl2748-PsplCvimetZ, pDZ-△Ncgl2748-PsplHnemetZ, pDZ-△Ncgl2748-PsplRspmetZ, pDZ-△Ncgl2748-PsplRspmetZ_long, pDZ-△Ncgl2748-PsplRspmetZ_3, pDZ-△Ncgl2748-PsplRspmetZ_65, pDZ-△Ncgl2748-PsplRspmetZ_104, pDZ-△Ncgl2748-PsplRspmetZ_196, 및 pDZ-△Ncgl2748-PsplRspmetZ_3_65_104 벡터를 염색체 상에서의 상동 재조합에 의해 CM02-0753 균주에 전기천공법으로 형질전환시켰다(van der Rest et al., Appl Microbiol Biotechnol 52:541-545, 1999). 그 후, 수크로오즈를 포함하고 있는 고체배지에서 2차 재조합을 하였다. 2차 재조합이 완료된 상기 코리네박테리움 글루타미쿰 형질전환주를 대상으로 서열번호 58, 59(표 16)를 이용하여 Ncgl2748 자리에 각각 외래 metZ 유전자가 잘 삽입됐는지 확인하였다.
서열번호 서열(5'-3')
58 TTCTCCGTGCCGAGAAAATC
59 GTAGATGATCTCGCCATTTG
본 재조합 균주를 각각 코리네박테리움 글루타미쿰 13032/△Ncgl2748, CM02-0765, CM02-0766, CM02-0767-1, CM02-0767-2, CM02-0767-3, CM02-0767-4, CM02-0767-5, CM02-0767-6, CM02-0767 라 명명하였다.
상기 제작된 균주들의 L-메티오닌 생산능을 분석하기 위해 모균주인 코리네박테리움 글루타미쿰 CM02-0753 균주와 함께 아래와 같은 방법으로 배양하였다.
하기의 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각각의 균주를 접종하고, 30 ℃에서 20 시간 동안, 200 rpm으로 진탕 배양하였다. 그런 다음, 생산 배지 24 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 1 ㎖의 종 배양액을 접종하고 30 ℃에서 48시간 동안, 200 rpm에서 진탕 배양하였다. 상기 종 배지와 생산 배지의 조성은 각각 하기와 같다.
<종배지 (pH 7.0)>
포도당 20 g, 펩톤 10 g, 효모추출물 5 g, 요소 1.5 g, KH2PO4 4 g, K2HPO4 8 g, MgSO4 ·7H2O 0.5 g, 바이오틴 100 ㎍, 티아민 HCl 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
<생산배지 (pH 8.0)>
포도당 50 g, (NH4)2S2O3 12 g, Yeast extract 5 g, KH2PO4 1 g, MgSO4·7H2O 1.2 g, 바이오틴 100 ㎍, 티아민 염산염 1000 ㎍, 칼슘-판토텐산 2000 ㎍, 니코틴아미드 3000 ㎍, CaCO3 30 g, 코발라민 (Vitamin B12) 1 ㎍ (증류수 1리터 기준).
상기 배양 방법으로 배양하여 배양액의 중의 L-메티오닌 농도를 분석하여 표 17에 나타내었다.
mcbR이 존재하는 균주에 외래 metZ 과발현 시 L-메티오닌 생산능 확인
균주 L-메티오닌(g/L)
CM02-0753 0.03
CM02-0753/△Ncgl2748 0.03
CM02-0765 (CvimetZ) 0.10
CM02-0766 (HnemetZ) 0.09
CM02-0767-1(RspmetZ) 0.10
CM02-0767-2(RspmetZ_long) 0.10
CM02-0767-3 (RspmetZ_3) 0.10
CM02-0767-4 (RspmetZ_65) 0.10
CM02-0767-5 (RspmetZ_104) 0.10
CM02-0767-6 (RspmetZ_196) 0.10
CM02-0767(RspmetZ_3_65_104) 0.11
그 결과, mcbR이 존재하는 메티오닌 생산 균주에서도 외래 metZ를 각각 도입하였을 때, 메티오닌 수율이 증가하는 것을 확인 할 수 있었다.
상기 CM02-0765, CM02-0766, CM02-0767은 부다페스트조약 하의 수탁기관인 한국미생물보존센터에 2019년 5월 2일자로 기탁하여 각각 수탁번호 KCCM12509P, KCCM12510P, KCCM12511P를 부여받았다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
한국미생물보존센터(국외) KCCM12425P 20190104 한국미생물보존센터(국외) KCCM12506P 20190502 한국미생물보존센터(국외) KCCM12507P 20190502 한국미생물보존센터(국외) KCCM12508P 20190502 한국미생물보존센터(국외) KCCM12509P 20190502 한국미생물보존센터(국외) KCCM12510P 20190502 한국미생물보존센터(국외) KCCM12511P 20190502
<110> CJ CheilJedang Corporation <120> A L-methionine-producing microorganism introduced with foreign metZ-encoded protein and a method of preparing methionine using the same <130> KPA190405-KR <160> 80 <170> KoPatentIn 3.0 <210> 1 <211> 2642 <212> DNA <213> Corynebacterium glutamicum <400> 1 ctcccgcgca ctgctgcaat ccgcaccgtg cccaatgatg gtggttcgcc cacctgagaa 60 gattaagaag tagtttcttt taagtttcga tgccccggtt tcctgatttt gtgcagggag 120 gccggggcat tggtgtttgc gggttagttc gggccattcg aaagggagaa accaagggca 180 gccagacaga cgtgccaaga atctggattt ccgccaggtt ttggcacgcc cgtctggttt 240 aggcaatgag ataccgaaca cacgtgccaa aagttcggct ttttcgccga tcttgtcacg 300 cctgcctggt ttgtcttgta aagagtgatt tcatggccga gactcctaaa agtttgacct 360 cacaggattg cttctaaggg cctctccaat ctccactgag gtacttaatc cttccgggga 420 attcgggcgc ttaaatcgag aaattaggcc atcacctttt aataacaata caatgaataa 480 ttggaatagg tcgacacctt tggagcggag ccggttaaaa ttggcagcat tcaccgaaag 540 aaaaggagaa ccacatgctt gccctaggtt ggattacatg gatcattatt ggtggtctag 600 ctggttggat tgcctccaag attaaaggca ctgatgctca gcaaggaatt ttgctgaaca 660 tagtcgtcgg tattatcggt ggtttgttag gcggctggct gcttggaatc ttcggagtgg 720 atgttgccgg tggcggcttg atcttcagct tcatcacatg tctgattggt gctgtcattt 780 tgctgacgat cgtgcagttc ttcactcgga agaagtaatc tgctttaaat ccgtagggcc 840 tgttgatatt tcgatatcaa caggcctttt ggtcattttg gggtggaaaa agcgctagac 900 ttgcctgtgg attaaaacta tacgaaccgg tttgtctata ttggtgttag acagttcgtc 960 gtatcttgaa acagaccaac ccgaaaggac gtggccgaac gtggctgcta gcgcttcagg 1020 caagagtaaa acaagtgccg gggcaaaccg tcgtcgcaat cgaccaagcc cccgacagcg 1080 tctcctcgat agcgcaacca accttttcac cacagaaggt attcgcgtca tcggtattga 1140 tcgtatcctc cgtgaagctg acgtggcgaa ggcgagcctc tattcccttt tcggatcgaa 1200 ggacgccttg gttattgcat acctggagaa cctcgatcag ctgtggcgtg aagcgtggcg 1260 tgagcgcacc gtcggtatga aggatccgga agataaaatc atcgcgttct ttgatcagtg 1320 cattgaggaa gaaccagaaa aagatttccg cggctcgcac tttcagaatg cggctagtga 1380 gtaccctcgc cccgaaactg atagcgaaaa gggcattgtt gcagcagtgt tagagcaccg 1440 cgagtggtgt cataagactc tgactgattt gctcactgag aagaacggct acccaggcac 1500 cacccaggcg aatcagctgt tggtgttcct tgatggtgga cttgctggat ctcgattggt 1560 ccacaacatc agtcctcttg agacggctcg cgatttggct cggcagttgt tgtcggctcc 1620 acctgcggac tactcaattt agtttcttca ttttccgaag gggtatcttc gttgggggag 1680 gcgtcgataa gccccttctt tttagcttta acctcagcgc gacgctgctt taagcgctgc 1740 atggcggcgc ggttcatttc acgttgcgtt tcgcgcctct tgttcgcgat ttctttgcgg 1800 gcctgttttg cttcgttgat ttcggcagta cgggttttgg tgagttccac gtttgttgcg 1860 tgaagcgttg aggcgttcca tggggtgaga atcatcaggg cgcggttttt gcgtcgtgtc 1920 cacaggaaga tgcgcttttc tttttgtttt gcgcggtaga tgtcgcgctg ctctaggtgg 1980 tgcactttga aatcgtcggt aagtgggtat ttgcgttcca aaatgaccat catgatgatt 2040 gtttggagga gcgtccacag gttgttgctg acccaataga gtgcgattgc tgtggggaat 2100 ggtcctgtga ggccaaggga cagtgggaag atcggcgcga ggatcgacat cacgatcatg 2160 aacttcagca tgccgttaga gaatccggat gcgtaatcgt tggtttggaa gctgcggtac 2220 atggacatcg ccatgttgat tgcggtgagg attgcggctg tgatgaacag tggcaaaacg 2280 aaactaagaa cttccgcctg cgtggtgctc aaatatttta gctgctcagt gggcatcgaa 2340 acataagcgg gcagaggcac attgctcacg cgaccagcga ggaaagattc cacttcctca 2400 ggagttagga agccgatcga ctggaagacg ggattttcca aaccaccttc agggcgagcc 2460 atgcggagaa gtgcccagta aagaccaagg acaatcggta tctggatcag cccaggcaca 2520 caacctgcca gcgggttaat gccgtattcc ttattcaaat cattctggcg cttctgcaac 2580 tcccgaatgg acgcttcatc gtactttccc ttgtattctt cccggagcgc agcgcggtga 2640 gg 2642 <210> 2 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 tcgagctcgg tacccctgcc tggtttgtct tgta 34 <210> 3 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cggaaaatga agaaagttcg gccacgtcct ttcgg 35 <210> 4 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 aggacgtggc cgaactttct tcattttccg aaggg 35 <210> 5 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 ctctagagga tccccgtttc gatgcccact gagca 35 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aatctggatt tccgccaggt 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 cttcctaact cctgaggaag 20 <210> 8 <211> 3311 <212> DNA <213> Corynebacterium glutamicum <400> 8 ctcattccag cgtcacgacg ttccgaaggt actggttacc tggcattggg cactaccgtt 60 tctgcagcac ttggaccagc cctagcactt tttgtcctag gaacatttga ttacgacatg 120 ctgtttatcg tggtcttggc aacctcggtc atctctttga tcgccgtcgt gttcatgtac 180 tttaagacca gcgaccctga gccttctggg gaaccagcca agttcagctt caaatctatt 240 atgaacccaa agatcatccc catcggcatc tttatcttgc ttatttgctt tgcttactct 300 ggcgtcattg cctacatcaa cgcatttgct gaagaacgcg atctgattac gggtgctgga 360 ttgttcttca ttgcctacgc agtatcaatg tttgtgatgc gcagcttcct tggcaaactg 420 caggaccgtc gcggagacaa cgtcgttatt tactttggat tgttcttctt cgttatttcc 480 ttgacgattt tgtcctttgc cacttccaac tggcacgttg tgttgtccgg agtcattgca 540 ggtctgggat acggcacttt gatgccagca gtgcagtcca tcgctgttgg tgtagtagac 600 aaaaccgaat tcggtacggc cttctccact ttgttcctgt ttgtggactt aggttttggc 660 tttggaccta ttatcctggg agcagtttct gcggcaattg gtttcggacc tatgtatgca 720 gcactggcag gtgtgggtgt gattgccgga atcttctacc tgttcacaca cgctcgcacc 780 gatcgagcta agaatggctt tgttaaacac ccagagcctg tcgctttagt tagctagttc 840 tttcagcttt ccctcccgat cagcgtaaac cggcccttcc ggttttgggg tacatcacag 900 aacctgggct agcggtgtag acccgaaaat aaacgagcct tttgtcaggg ttaaggttta 960 ggtatctaag ctaaccaaac accaacaaaa ggctctaccc atgaagtcta ccggcaacat 1020 catcgctgac accatctgcc gcactgcgga actaggactc accatcaccg gcgcttccga 1080 tgcaggtgat tacaccctga tcgaagcaga cgcactcgac tacacctcca cctgcccaga 1140 atgctcccaa cctggggtgt ttcgtcatca cacccaccgg atgctcattg atttacccat 1200 cgtcgggttt cccaccaaac tgtttatccg tctacctcgc taccgctgca ccaaccccac 1260 atgtaagcaa aagtatttcc aagcagaact aagctgcgct gaccacggta aaaaggtcac 1320 ccaccgggtc acccgctgga ttttacaacg ccttgctatt gaccggatga gtgttcacgc 1380 aaccgcgaaa gcacttgggc tagggtggga tttaacctgc caactagccc tcgatatgtg 1440 ccgtgagctg gtctataacg atcctcacca tcttgatgga gtgtatgtca ttggggtgga 1500 tgagcataag tggtcacata atagggctaa gcatggtgat gggtttgtca ccgtgattgt 1560 cgatatgacc gggcatcggt atgactcacg gtgtcctgcc cggttattag atgtcgtccc 1620 aggtcgtagt gctgatgctt tacggtcctg gcttggctcc cgcggtgaac agttccgcaa 1680 tcagatacgg atcgtgtcca tggatggatt ccaaggctac gccacagcaa gtaaagaact 1740 cattccttct gctcgtcgcg tgatggatcc attccatgtt gtgcggcttg ctggtgacaa 1800 gctcaccgcc tgccggcaac gcctccagcg ggagaaatac cagcgtcgtg gtttaagcca 1860 ggatccgttg tataaaaacc ggaagacctt gttgaccacg cacaagtggt tgagtcctcg 1920 tcagcaagaa agcttggagc agttgtgggc gtatgacaaa gactacgggg cgttaaagct 1980 tgcgtggctt gcgtatcagg cgattattga ttgttatcag atgggtaata agcgtgaagc 2040 gaagaagaaa atgcggacca ttattgatca gcttcgggtg ttgaaggggc cgaataagga 2100 actcgcgcag ttgggtcgta gtttgtttaa acgacttggt gatgtgttgg cgtatttcga 2160 tgttggtgtc tccaacggtc cggtcgaagc gatcaacgga cggttggagc atttgcgtgg 2220 gattgctcta ggtttccgta atttgaacca ctacattctg cggtgcctta tccattcagg 2280 gcagttggtc cataagatca atgcactcta aaacaggaag agcccgtaaa cctctgacta 2340 gcgtcaccct ctgattaagg cgaccgcgga tttaagagca gaggctgcca cgagcgcatc 2400 ttcacggctg tgtgttgtac taaaagtaca gcgcacagcc gttcgtgctt gatcctcctc 2460 aagccccaac gccagcaaca catgggatac ctctccggaa ccacaggcag aaccagggga 2520 gcacacaatg ccttggcgtt ccaattccag aagaacagtt tcagatccta tgctgtcgaa 2580 gagaaaagat gcgtgtccat caatgcgcat cctaggatgt ccagtcaggt gtgctcccgg 2640 gatagtgaga acttcctcga tgaattcgcc aagatctgga taggattccg ccctggccaa 2700 ttccaaggca gtggcaaagg cgatagcccc cgcaacgttt tccgtgccac tacgccgccc 2760 tttttcctgg ccgccgccat ggattaccgg ctccagggga agctttgacc ataacactcc 2820 aatcccttta ggcgcaccga atttatgacc cgacaaactt aacgcgtcaa ctcccaagtc 2880 aaaggttaaa tgtgcagctt gcactgcatc ggtgtgaaaa ggcgtactgc ttaccgccgc 2940 caactcagct atcggctgaa tggttcccac ctcattgttg gcataaccaa tgctgatcaa 3000 tgtggtgtcc ggcctgactg ctttgcggag accctccggg gagatcagcc cagtgtgatc 3060 gggggatagg taggtgatct cgaaatcatg aaacctttca agataagcag cagtttctag 3120 gacactgtca tgctcgatcg gggtggtgat gaggtgccgg ccacgaggat tagctaagca 3180 cgctcctttg atagcgaggt tgttggcttc tgatccaccc gacgtaaacg tcacctgtgt 3240 ggggcgtcct ccgataatgc gggccacccg agttcgagca tcctccagcc ccgcagaggc 3300 gagtcttccc a 3311 <210> 9 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acccggggat cctctagaat gtttgtgatg cgcag 35 <210> 10 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gtcagagagt acttacgctg atcgggaggg aaagc 35 <210> 11 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 atcagcgtaa gtactctctg actagcgtca ccctc 35 <210> 12 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 ctgcaggtcg actctagaaa agggattgga gtgtt 35 <210> 13 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 atcaaaacag atatcatggc atccgacgcg ccgca 35 <210> 14 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 cgctagtcag agagtttagt caaggccccg caaca 35 <210> 15 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 atcaaaacag atatcatggc ggatgcaccc ggcgg 35 <210> 16 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 cgctagtcag agagttcaca agctgttaag cgaag 35 <210> 17 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 atcaaaacag atatcatgac gaaggactgg aagac 35 <210> 18 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 cgctagtcag agagttcaga tcaccgcgag cgcct 35 <210> 19 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ccgatcagcg taagtggcgc ttcatgtcaa caatc 35 <210> 20 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 cgcgtcggat gccatgatat ctgttttgat ctcct 35 <210> 21 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gggtgcatcc gccatgatat ctgttttgat ctcct 35 <210> 22 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 ccagtccttc gtcatgatat ctgttttgat ctcct 35 <210> 23 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 aatggtccag gagctcat 18 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gatcacctac ctatcccc 18 <210> 25 <211> 3161 <212> DNA <213> Corynebacterium glutamicum <400> 25 cggtggacga tgagggaaaa cgtttcctcg ccgcccacag aatcataaaa attttctgag 60 gttgtcatgg gtaccagtct aagccctggc cttacgccag taaggtgtta cccatgcgcg 120 aactagcact caacatggcc ggcgtcaccg tgcggcgcgg cgagaaattg cttctcgacg 180 atatctccct ctcaattccg caagggtcgc actgggccgt acttggtcca aatggcgccg 240 gtaaaaccac catgctgaag atcgcagcca ccttgctgta cccatcggaa ggcaccgtgg 300 acatcctggg gcatcgcttt ggtcgggtgg atactcgtga gctgcggaaa acaatcggcc 360 tggtggaccc gaagcaaaga tttaccaacc tgccggccca cgaaattgtg ctgtcggggt 420 taaccgcctc caacgggttg ttgccacggt ggtcggcttc ggcttcggag ttggagcggt 480 gcgctttgat gttggagttg gtgggcatga cagcgcgtgc cgatcgttac tgggccgata 540 tgagccaggg cgaaaaagcc cgcaccctga ttgctcgtgc gctgattatc tcaccgaccc 600 tactgctgct tgatgaaccc accaccggcc ttgacctgcc cggacgtgaa actttgctca 660 gtgtgattga tggtttgcga gccgctcttc ctggtctgac gacagtgatg atcacccacc 720 acgtcgaaga gatcgccgcc tccacgacag atatcctcat gatcaaggac gcccgcatac 780 tggcttcggg gactgtttca gaagtgatga ctcctgaaaa tttgggcgcg ctgtatgaca 840 tgtcggtgtc gttggaaact gtgcgcagcc ggtggttcgc gttcgatgct ctgcattaaa 900 aggggctagt tttacacaaa agtggacagc ttggtctatc attgccagaa gaccggtcct 960 tttagggcca tagaattctg attacaggag ttgatctacc ttgtcttttg acccaaacac 1020 ccagggtttc tccactgcat cgattcacgc tgggtatgag ccagacgact actacggttc 1080 gattaacacc ccaatctatg cctccaccac cttcgcgcag aacgctccaa acgaactgcg 1140 caaaggctac gagtacaccc gtgtgggcaa ccccaccatc gtggcattag agcagaccgt 1200 cgcagcactc gaaggcgcaa agtatggccg cgcattctcc tccggcatgg ctgcaaccga 1260 catcctgttc cgcatcatcc tcaagccggg cgatcacatc gtcctcggca acgatgctta 1320 cggcggaacc taccgcctga tcgacaccgt attcaccgca tggggcgtcg aatacaccgt 1380 tgttgatacc tccgtcgtgg aagaggtcaa ggcagcgatc aaggacaaca ccaagctgat 1440 ctgggtggaa accccaacca acccagcact tggcatcacc gacatcgaag cagtagcaaa 1500 gctcaccgaa ggcaccaacg ccaagctggt tgttgacaac accttcgcat ccccatacct 1560 gcagcagcca ctaaaactcg gcgcacacgc agtcctgcac tccaccacca agtacatcgg 1620 aggacactcc gacgttgttg gcggccttgt ggttaccaac gaccaggaaa tggacgaaga 1680 actgctgttc atgcagggcg gcatcggacc gatcccatca gttttcgatg catacctgac 1740 cgcccgtggc ctcaagaccc ttgcagtgcg catggatcgc cactgcgaca acgcagaaaa 1800 gatcgcggaa ttcctggact cccgcccaga ggtctccacc gtgctctacc caggtctgaa 1860 gaaccaccca ggccacgaag tcgcagcgaa gcagatgaag cgcttcggcg gcatgatctc 1920 cgtccgtttc gcaggcggcg aagaagcagc taagaagttc tgtacctcca ccaaactgat 1980 ctgtctggcc gagtccctcg gtggcgtgga atccctcctg gagcacccag caaccatgac 2040 ccaccagtca gctgccggct ctcagctcga ggttccccgc gacctcgtgc gcatctccat 2100 tggtattgaa gacattgaag acctgctcgc agatgtcgag caggccctca ataaccttta 2160 gaaactattt ggcggcaagc agcttttcaa tataagcaat gcgagcctcc accatgtagc 2220 cgaagagttc gtcagaagtt gagacggact cttcgactgc tttacgggtc agtggcgctt 2280 ccacatctgg gttctcatca agccatggct taggaaccgg agcaaacaca tccggctttt 2340 cgccctctgg acgattgtca aaggtgtagt cagaagtcag ggtgaagctg aagacatcag 2400 ccatcatcat ctcccggatg atggttgctt ccttgaggga cagcccgata tcagtcaaga 2460 acttcaagga ctcctccgca cccgcgattc gcagtgggga agtgccctga gtagagatct 2520 gttcatccag cgcgaccaga agaacacgtg gagtctcacg gaattggtcg cgcaatgagc 2580 tccacagcgt atgaatagat tgccgccaat tgtccggatc aagatcgggc accttgatat 2640 catcgatgat gcgcacccag acgcgatcaa tgatttcttg acgatttagc acatggttat 2700 acagtgcgcg aggggtgaca cccatgtctc gggcgaggcg gttcatggtc acggcagcga 2760 atccttcgcg gccggcaatg tttaaagtgc gctccactat ggattcgacg gaaaggatac 2820 gttgggtggg gcgtccagga cgacgtcccg tggaagtggc cgccagagtt gacgctacgg 2880 ctggtttcat agtttcgcta ggcatgttat atgacgttac gcctttttct acaagacaac 2940 cagcgttttc agcgagatac tggacatatc aactaaaatc cctgaataaa acatctaaca 3000 tgggttttat acagaaaatt catacgaaag gttgatcatg aagaagaaga ttgcggtcgt 3060 taccggagcg accggaggca tgggaattga gatcgtcaaa gacctctccc gcgaccacat 3120 tgtctacgcc ttgggccgaa atccagagca tctggcagct c 3161 <210> 26 <211> 3314 <212> DNA <213> Corynebacterium glutamicum <400> 26 gataccggca gctccaccga ccgtgcccat ttcatcacga accatctggc caagtgagcg 60 tccacgccta cgagtagaca cccacagcac taggtagtcc tgcactgcac cggcgaaaat 120 cacaccgagg ataatccaca aggtgcctgg caggtagccc atctgcgcgg ccatgacagg 180 tccaaccaat ggaccggcac ctgcaatagc tgcaaagtgg tggccaaaaa gcacacgacg 240 atccgttggg acatagtcct tgccgtcatt aacgtattcc gccggggttg ctcgctgatc 300 tttcggctta acaactttgt attcaatcag tcgggcatag aaagaaaacg caatgatata 360 ggaaccaact gccgccaaaa ccagccacac agagttgatt gtttcgccac gggagaaagc 420 gattgctccc caacccaccg ccgcgataac cccaaagaca aggagaccaa cgcgggcggt 480 cggtgacatt ttaggggact tcttcacgcc tactggaagg tcagtagcgt tgctgtacac 540 caaatcatcg tcattgatgt tgtcagtctg ttttatggtc acgatcttta ctgttttctc 600 ttcgggtcgt ttcaaagcca ctatgcgtag aaacagcggg cagaaactgt gtgcagaaat 660 gcatgcagaa aaaggaaagt tcggccagat gggtgtttct gtatgccgat gatcggatct 720 ttgacagctg ggtatgcgac aaatcaccga gagttgttaa ttcttaacaa tggaaaagta 780 acattgagag atgatttata ccatcctgca ccatttagag tggggctagt cataccccca 840 taaccctagc tgtacgcaat cgatttcaaa tcagttggaa aaagtcaaga aaattacccg 900 agaataaatt tataccacac agtctattgc aatagaccaa gctgttcagt agggtgcatg 960 ggagaagaat ttcctaataa aaactcttaa ggacctccaa atgccaaagt acgacaattc 1020 caatgctgac cagtggggct ttgaaacccg ctccattcac gcaggccagt cagtagacgc 1080 acagaccagc gcacgaaacc ttccgatcta ccaatccacc gctttcgtgt tcgactccgc 1140 tgagcacgcc aagcagcgtt tcgcacttga ggatctaggc cctgtttact cccgcctcac 1200 caacccaacc gttgaggctt tggaaaaccg catcgcttcc ctcgaaggtg gcgtccacgc 1260 tgtagcgttc tcctccggac aggccgcaac caccaacgcc attttgaacc tggcaggagc 1320 gggcgaccac atcgtcacct ccccacgcct ctacggtggc accgagactc tattccttat 1380 cactcttaac cgcctgggta tcgatgtttc cttcgtggaa aaccccgacg accctgagtc 1440 ctggcaggca gccgttcagc caaacaccaa agcattcttc ggcgagactt tcgccaaccc 1500 acaggcagac gtcctggata ttcctgcggt ggctgaagtt gcgcaccgca acagcgttcc 1560 actgatcatc gacaacacca tcgctaccgc agcgctcgtg cgcccgctcg agctcggcgc 1620 agacgttgtc gtcgcttccc tcaccaagtt ctacaccggc aacggctccg gactgggcgg 1680 cgtgcttatc gacggcggaa agttcgattg gactgtcgaa aaggatggaa agccagtatt 1740 cccctacttc gtcactccag atgctgctta ccacggattg aagtacgcag accttggtgc 1800 accagccttc ggcctcaagg ttcgcgttgg ccttctacgc gacaccggct ccaccctctc 1860 cgcattcaac gcatgggctg cagtccaggg catcgacacc ctttccctgc gcctggagcg 1920 ccacaacgaa aacgccatca aggttgcaga attcctcaac aaccacgaga aggtggaaaa 1980 ggttaacttc gcaggcctga aggattcccc ttggtacgca accaaggaaa agcttggcct 2040 gaagtacacc ggctccgttc tcaccttcga gatcaagggc ggcaaggatg aggcttgggc 2100 atttatcgac gccctgaagc tacactccaa ccttgcaaac atcggcgatg ttcgctccct 2160 cgttgttcac ccagcaacca ccacccattc acagtccgac gaagctggcc tggcacgcgc 2220 gggcgttacc cagtccaccg tccgcctgtc cgttggcatc gagaccattg atgatatcat 2280 cgctgacctc gaaggcggct ttgctgcaat ctagctttaa atagactcac cccagtgctt 2340 aaagcgctgg gtttttcttt ttcagactcg tgagaatgca aactagacta gacagagctg 2400 tccatataca ctggacgaag ttttagtctt gtccacccag aacaggcggt tattttcatg 2460 cccaccctcg cgccttcagg tcaacttgaa atccaagcga tcggtgatgt ctccaccgaa 2520 gccggagcaa tcattacaaa cgctgaaatc gcctatcacc gctggggtga ataccgcgta 2580 gataaagaag gacgcagcaa tgtcgttctc atcgaacacg ccctcactgg agattccaac 2640 gcagccgatt ggtgggctga cttgctcggt cccggcaaag ccatcaacac tgatatttac 2700 tgcgtgatct gtaccaacgt catcggtggt tgcaacggtt ccaccggacc tggctccatg 2760 catccagatg gaaatttctg gggtaatcgc ttccccgcca cgtccattcg tgatcaggta 2820 aacgccgaaa aacaattcct cgacgcactc ggcatcacca cggtcgccgc agtacttggt 2880 ggttccatgg gtggtgcccg caccctagag tgggccgcaa tgtacccaga aactgttggc 2940 gcagctgctg ttcttgcagt ttctgcacgc gccagcgcct ggcaaatcgg cattcaatcc 3000 gcccaaatta aggcgattga aaacgaccac cactggcacg aaggcaacta ctacgaatcc 3060 ggctgcaacc cagccaccgg actcggcgcc gcccgacgca tcgcccacct cacctaccgt 3120 ggcgaactag aaatcgacga acgcttcggc accaaagccc aaaagaacga aaacccactc 3180 ggtccctacc gcaagcccga ccagcgcttc gccgtggaat cctacttgga ctaccaagca 3240 gacaagctag tacagcgttt cgacgccggc tcctacgtct tgctcaccga cgccctcaac 3300 cgccacgaca ttgg 3314 <210> 27 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gaattcgagc tcggtacccg ggccagtaag gtgttaccca tgc 43 <210> 28 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ctgcttgccg ccaaatagtt tagtactggt agatcaactc ctgtaatcag aattcta 57 <210> 29 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 tagaattctg attacaggag ttgatctacc agtactaaac tatttggcgg caagcag 57 <210> 30 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 tcgactctag aggatccccg ggcgatctca attcccatgc ctc 43 <210> 31 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 tcgagctcgg tacccctgca atagctgcaa agtgg 35 <210> 32 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 tgagtctatt taaagcgggt aattttcttg acttt 35 <210> 33 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 caagaaaatt acccgcttta aatagactca cccca 35 <210> 34 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ctctagagga tccccgcctt aatttgggcg gattg 35 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 ttcctggtct gacgacagtg 20 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 gatgtcttca gcttcaccct g 21 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 ccgaggataa tccacaaggt 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 cgaagcgttc gtcgatttct 20 <210> 39 <211> 5666 <212> DNA <213> Corynebacterium glutamicum <400> 39 tgtcatgctt ccggaggtgc gcagggctcg agactccgga aagctatttg ccactccgat 60 gtttgggtca ctcgacgaga tacgtgctga tcacctaatt tggtgcacag ggtttcggcc 120 ggcgattagg ccagttcgtc aacttctcaa acacggacaa ccaaaggttc ctggtcttta 180 tttagtaggc tacggagatt ggacgggacc tgggtctgcg actatcacag gggtcgggct 240 ttatgccaag cgagcagcca aagagattgc cgcgtcagtc ggcaaagtcg ttaaatagtt 300 tgaaggctaa gaacttaatg ttaaagcgaa aattgttttg acacctcaac taatgcagcg 360 atgcgttctt tccagaatgc tttcatgaca gggatgctgt cttgatcagg caggcgtctg 420 tgctggatgc cgaagctgga tttattgtcg cctttggagg tgaagttgac gctcactcga 480 gaatcatcgg ccaaccattt ggcattgaat gttctaggtt cggaggcgga ggttttctca 540 attagtgcgg gatcgagcca ctgcgcccgc aggtcatcgt ctccgaagag cttccacact 600 ttttcgaccg gcaggttaag ggttttggag gcattggccg cgaacccatc gctggtcatc 660 ccgggtttgc gcatgccacg ttcgtattca taaccaatcg cgatgccttg agcccaccag 720 ccactgacat caaagttgtc cacgatgtgc tttgcgatgt gggtgtgagt ccaagaggtg 780 gcttttacgt cgtcaagcaa ttttagccac tcttcccacg gctttccggt gccgttgagg 840 atagcttcag gggacatgcc tggtgttgag ccttgcggag tggagtcagt catgcgaccg 900 agactagtgg cgctttgcct gtgttgctta ggcggcgttg aaaatgaact acgaatgaaa 960 agttcgggaa ttgtctaatc cgtactaagc tgtctacaca atgtctactt cagttacttc 1020 accagcccac aacaacgcac attcctccga atttttggat gcgttggcaa accatgtgtt 1080 gatcggcgac ggcgccatgg gcacccagct ccaaggcttt gacctggacg tggaaaagga 1140 tttccttgat ctggaggggt gtaatgagat tctcaacgac acccgccctg atgtgttgag 1200 gcagattcac cgcgcctact ttgaggcggg agctgacttg gttgagacca atacttttgg 1260 ttgcaacctg ccgaacttgg cggattatga catcgctgat cgttgccgtg agcttgccta 1320 caagggcact gcagtggcta gggaagtggc tgatgagatg gggccgggcc gaaacggcat 1380 gcggcgtttc gtggttggtt ccctgggacc tggaacgaag cttccatcgc tgggccatgc 1440 accgtatgca gatttgcgtg ggcactacaa ggaagcagcg cttggcatca tcgacggtgg 1500 tggcgatgcc tttttgattg agactgctca ggacttgctt caggtcaagg ctgcggttca 1560 cggcgttcaa gatgccatgg ctgaacttga tacattcttg cccattattt gccacgtcac 1620 cgtagagacc accggcacca tgctcatggg ttctgagatc ggtgccgcgt tgacagcgct 1680 gcagccactg ggtatcgaca tgattggtct gaactgcgcc accggcccag atgagatgag 1740 cgagcacctg cgttacctgt ccaagcacgc cgatattcct gtgtcggtga tgcctaacgc 1800 aggtcttcct gtcctgggta aaaacggtgc agaataccca cttgaggctg aggatttggc 1860 gcaggcgctg gctggattcg tctccgaata tggcctgtcc atggtgggtg gttgttgtgg 1920 caccacacct gagcacatcc gtgcggtccg cgatgcggtg gttggtgttc cagagcagga 1980 aacctccaca ctgaccaaga tccctgcagg ccctgttgag caggcctccc gcgaggtgga 2040 gaaagaggac tccgtcgcgt cgctgtacac ctcggtgcca ttgtcccagg aaaccggcat 2100 ttccatgatc ggtgagcgca ccaactccaa cggttccaag gcattccgtg aggcaatgct 2160 gtctggcgat tgggaaaagt gtgtggatat tgccaagcag caaacccgcg atggtgcaca 2220 catgctggat ctttgtgtgg attacgtggg acgagacggc accgccgata tggcgacctt 2280 ggcagcactt cttgctacca gctccacttt gccaatcatg attgactcca ccgagccaga 2340 ggttattcgc acaggccttg agcacttggg tggacgaagc atcgttaact ccgtcaactt 2400 tgaagacggc gatggccctg agtcccgcta ccagcgcatc atgaaactgg taaagcagca 2460 cggtgcggcc gtggttgcgc tgaccattga tgaggaaggc caggcacgta ccgctgagca 2520 caaggtgcgc attgctaaac gactgattga cgatatcacc ggcagctacg gcctggatat 2580 caaagacatc gttgtggact gcctgacctt cccgatctct actggccagg aagaaaccag 2640 gcgagatggc attgaaacca tcgaagccat ccgcgagctg aagaagctct acccagaaat 2700 ccacaccacc ctgggtctgt ccaatatttc cttcggcctg aaccctgctg cacgccaggt 2760 tcttaactct gtgttcctca atgagtgcat tgaggctggt ctggactctg cgattgcgca 2820 cagctccaag attttgccga tgaaccgcat tgatgatcgc cagcgcgaag tggcgttgga 2880 tatggtctat gatcgccgca ccgaggatta cgatccgctg caggaattca tgcagctgtt 2940 tgagggcgtt tctgctgccg atgccaagga tgctcgcgct gaacagctgg ccgctatgcc 3000 tttgtttgag cgtttggcac agcgcatcat cgacggcgat aagaatggcc ttgaggatga 3060 tctggaagca ggcatgaagg agaagtctcc tattgcgatc atcaacgagg accttctcaa 3120 cggcatgaag accgtgggtg agctgtttgg ttccggacag atgcagctgc cattcgtgct 3180 gcaatcggca gaaaccatga aaactgcggt ggcctatttg gaaccgttca tggaagagga 3240 agcagaagct accggatctg cgcaggcaga gggcaagggc aaaatcgtcg tggccaccgt 3300 caagggtgac gtgcacgata tcggcaagaa cttggtggac atcattttgt ccaacaacgg 3360 ttacgacgtg gtgaacttgg gcatcaagca gccactgtcc gccatgttgg aagcagcgga 3420 agaacacaaa gcagacgtca tcggcatgtc gggacttctt gtgaagtcca ccgtggtgat 3480 gaaggaaaac cttgaggaga tgaacaacgc cggcgcatcc aattacccag tcattttggg 3540 tggcgctgcg ctgacgcgta cctacgtgga aaacgatctc aacgaggtgt acaccggtga 3600 ggtgtactac gcccgtgatg ctttcgaggg cctgcgcctg atggatgagg tgatggcaga 3660 aaagcgtggt gaaggacttg atcccaactc accagaagct attgagcagg cgaagaagaa 3720 ggcggaacgt aaggctcgta atgagcgttc ccgcaagatt gccgcggagc gtaaagctaa 3780 tgcggctccc gtgattgttc cggagcgttc tgatgtctcc accgatactc caaccgcggc 3840 accaccgttc tggggaaccc gcattgtcaa gggtctgccc ttggcggagt tcttgggcaa 3900 ccttgatgag cgcgccttgt tcatggggca gtggggtctg aaatccaccc gcggcaacga 3960 gggtccaagc tatgaggatt tggtggaaac tgaaggccga ccacgcctgc gctactggct 4020 ggatcgcctg aagtctgagg gcattttgga ccacgtggcc ttggtgtatg gctacttccc 4080 agcggtcgcg gaaggcgatg acgtggtgat cttggaatcc ccggatccac acgcagccga 4140 acgcatgcgc tttagcttcc cacgccagca gcgcggcagg ttcttgtgca tcgcggattt 4200 cattcgccca cgcgagcaag ctgtcaagga cggccaagtg gacgtcatgc cattccagct 4260 ggtcaccatg ggtaatccta ttgctgattt cgccaacgag ttgttcgcag ccaatgaata 4320 ccgcgagtac ttggaagttc acggcatcgg cgtgcagctc accgaagcat tggccgagta 4380 ctggcactcc cgagtgcgca gcgaactcaa gctgaacgac ggtggatctg tcgctgattt 4440 tgatccagaa gacaagacca agttcttcga cctggattac cgcggcgccc gcttctcctt 4500 tggttacggt tcttgccctg atctggaaga ccgcgcaaag ctggtggaat tgctcgagcc 4560 aggccgtatc ggcgtggagt tgtccgagga actccagctg cacccagagc agtccacaga 4620 cgcgtttgtg ctctaccacc cagaggcaaa gtactttaac gtctaacacc tttgagaggg 4680 aaaactttcc cgcacattgc agatcgtgcc actttaacta aggttgacgg catgattaag 4740 gcgattttct gggacatgga cggcacgatg gtggactctg agccacagtg gggcattgct 4800 acctacgagc tcagcgaagc catgggccgc cgcctcaccc cggagctccg ggaactcacc 4860 gtcggctcga gcctgccgcg caccatgcgc ttatgcgcag agcacgcagg cattacattg 4920 agcgacgcgg actacgagcg ctaccgggct ggcatgttcg cccgggtcca tgagcttttc 4980 gacgaatccc tcgtcccaaa tccaggcgtc accgaactcc tgacagagtt gaaggccctc 5040 gagatcccca tgttggtcac caccaacaca gagcgcgatc tcgcgacccg ttcagtcgca 5100 gccgtgggaa atgagttctt catcggttct atcgctggtg atgaagtccc aacagcaaag 5160 ccagcccccg acatgtacct cgaagcagca cgacgtgtgg gctttgaccc atcagagtgc 5220 ctcgtgttcg aagattccta caacggcatg ctgggcgctg ttactgcagg ttgccgcgtc 5280 attggtctgc acccagaaga agtccaagcg ccagaaggtg tagtgccttt gcgttccctc 5340 cacggtaaaa actctttcga aggtgtcacc gctgagatgg tcactgcctg gtaccaccag 5400 atcgagccgg caggtgtcgc aaaataaaac caggtggggg agtgaaatta ttcgactaat 5460 atcctccccc aaacacacat tgataactgt tgtgtggaag aatgtaccga gtgaagacat 5520 ttgactcgct gtacgaagaa cttcttaacc gtgctcagac ccgccctgaa gggtctggaa 5580 ccgtggccgc cttggataaa ggcatccatc atctaggtaa gaaggtcatc gaagaagccg 5640 gagaggtctg gattgcagcc gagtat 5666 <210> 40 <211> 3613 <212> DNA <213> Corynebacterium glutamicum <400> 40 tcctgtgggg tgaacttgac ctgtgctggg ccacgacgtc cgaaaacgtg cacttcagtg 60 gccttgtttt ctttgaggga gtcgtagacg ttgtcggaaa tttcggtgac tttgagctcg 120 tcgcctgtct tagccaggat gcgggctacg tcgaggccga cgttaccaac gccgataaca 180 gcgacggact gtgcagacag atcccaggag cgctcgaagc gtgggttgcc gtcgtagaag 240 ccaacgaact cgccggcacc gaaggagcct tctgcttcaa ttccggggat gttgaggtcg 300 cggtctgcaa ctgcgccggt ggagaacacg actgcatcgt agtagtcgcg gagttcttcg 360 acggtgatgt ctttgccgat ttcaatgtta ccgagcaggc gcaggcgtgg cttgtccaac 420 acgttgtgca gggacttaac gatgcccttg atgcgtgggt ggtctggagc aacgccgtaa 480 cggatgagtc cgaacggtgc aggcatttgc tcgaaaaggt caacgaacac ttcgcgctct 540 tcattgcgga tgaggaggtc ggatgcgtaa atgccagcag ggccagctcc gatgacggct 600 acgcgcaggg gagttgtcat gtgtttgaag ttgcctttcg tgagcccttt tatggaaaca 660 agggtgtgaa aatcaagtag ttaaaggtgt ttcaagtcca ggctgtttaa cactcctaga 720 ccgcttggtc tgtaaacgta gcagcgaaat gcgacaatgc gaagactttt gcttaattaa 780 attcaaactc catgaaaaaa ctagacagat cggtctatta tattcacggt gaacctaacc 840 taatatcccc aggttaattc atttaaacgg gcattaggtg actccattgc tttcagtctc 900 atgaatctaa tggttggtct agacagagcg gtacgtctaa gtttgcggat agatcaaacc 960 gagtgacatg tacttcacta gctctttaag gattaactcc ccatgacaac aaccaccgga 1020 agtgcccggc cagcacgtgc cgccaggaag cctaagcccg aaggccaatg gaaaatcgac 1080 ggcaccgagc cgcttaacca tgccgaggaa attaagcaag aagaacccgc ttttgctgtc 1140 aagcagcggg tcattgatat ttactccaag cagggttttt cttccattgc accggatgac 1200 attgccccac gctttaagtg gttgggcatt tacacccagc gtaagcagga tctgggcggt 1260 gaactgaccg gtcagcttcc tgatgatgag ctgcaggatg agtacttcat gatgcgtgtg 1320 cgttttgatg gcggactggc ttcccctgag cgcctgcgtg ccgtgggtga aatttctagg 1380 gattatgctc gttccaccgc ggacttcacc gaccgccaga acattcagct gcactggatt 1440 cgtattgaag atgtgcctgc gatctgggag aagctagaaa ccgtcggact gtccaccatg 1500 cttggttgcg gtgacgttcc acgtgttatc ttgggctccc cagtttctgg cgtagctgct 1560 gaagagctga tcgatgccac cccggctatc gatgcgattc gtgagcgcta cctagacaag 1620 gaagagttcc acaaccttcc tcgtaagttt aagactgcta tcactggcaa ccagcgccag 1680 gatgttaccc acgaaatcca ggacgtttcc ttcgttcctt cgattcaccc agaattcggc 1740 ccaggatttg agtgctttgt gggcggtggc ctgtccacca acccaatgct tgctcagcca 1800 cttggttctt ggattccact tgatgaggtt ccagaagtgt gggctggcgt cgccggaatt 1860 ttccgcgact acggcttccg acgcctgcgt aaccgtgctc gcctcaagtt cttggtggca 1920 cagtggggta ttgagaagtt ccgtgaagtt cttgagaccg aatacctcga gcgcaagctg 1980 atcgatggcc cagttgttac caccaaccct ggctaccgtg accacattgg cattcaccca 2040 caaaaggacg gcaagttcta cctcggtgtg aagccaaccg ttggacacac caccggtgag 2100 cagctcattg ccattgctga tgttgcagaa aagcacggca tcaccaggat tcgtaccacg 2160 gcggaaaagg aactgctctt cctcgatatt gagagaaaga accttactac cgttgcacgc 2220 gacctggatg aaatcggact gtactcttca ccttccgagt tccgccgcgg catcatttcc 2280 tgcaccggct tggagttctg caagcttgcg cacgcaacca ccaagtcacg agcaattgag 2340 cttgtcgacg aactggaaga gcgcctcggc gatttggatg ttcccatcaa gattgcactg 2400 aacggttgcc ctaactcttg tgcacgcacc caggtttccg acatcggatt caagggacag 2460 accgtcactg atgctgacgg caaccgcgtt gaaggtttcc aggttcacct gggcggttcc 2520 atgaacttgg atccaaactt cggacgcaag ctcaagggcc acaaggttat tgccgatgaa 2580 gtgggagagt acgtcactcg cgttgttacc cacttcaagg aacagcgcca cgaggacgag 2640 cacttccgcg attgggtcca gcgggccgct gaggaagatt tggtgtgagt cttcggagga 2700 aacccaatcc caaccgcaac caccctctgt actgcccata ctgcgcggga gaagttcttt 2760 tccccgatga gcaaacagaa ttcgcgtggt tgtgtgcgga ttgcaccaga gtttttgaag 2820 tgaaatatca cggccaggac gatccagtgc acaggccagc accagcaaag tccacatcgc 2880 aagcattaaa agaatctctc gaaagacaca aaagaggtga gtcgcaacaa tgagctttca 2940 actagttaac gccctgaaaa atactggttc ggtaaaagat cccgagatct cacccgaagg 3000 acctcgcacg accacaccgt tgtcaccaga ggtagcaaaa cataacgagg aactcgtcga 3060 aaagcatgct gctgcgttgt atgacgccag cgcgcaagag atcctggaat ggacagccga 3120 gcacgcgccg ggcgctattg cagtgacctt gagcatggaa aacaccgtgc tggcggagct 3180 ggctgcgcgg cacctgccgg aagctgattt cctctttttg gacaccggtt accacttcaa 3240 ggagaccctt gaagttgccc gtcaggtaga tgagcgctat tcccagaagc ttgtcaccgc 3300 gctgccgatc ctcaagcgca cggagcagga ttccatttat ggtctcaacc tgtaccgcag 3360 caacccagcg gcgtgctgcc gaatgcgcaa agttgaaccg ctggcggcgt cgttaagccc 3420 atacgctggc tggatcaccg gcctgcgccg cgctgatggc ccaacccgtg ctcaagcccc 3480 tgcgctgagc ttggatgcca ccggcaggct caagatttct ccaattatca cctggtcatt 3540 ggaggaaacc aacgagttca ttgcggacaa caacctcatc gatcacccac ttacccatca 3600 gggttatcca tca 3613 <210> 41 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 caacgaaagg aaacaatgtc tacttcagtt acttc 35 <210> 42 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 tagtcagaga gtgatttaga cgttaaagta ctttg 35 <210> 43 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 atcaaaacag atatcatgac aacaaccacc ggaag 35 <210> 44 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 cgctagtcag agagttcaca ccaaatcttc ctcag 35 <210> 45 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 ccgatcagcg taagtagaaa catcccagcg ctact 35 <210> 46 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 aactgaagta gacattgttt cctttcgttg ggtac 35 <210> 47 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 tactttaacg tctaaggtac cggcgcttca tgtca 35 <210> 48 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 48 ggtggttgtt gtcatgatat ctgttttgat ctcct 35 <210> 49 <211> 3261 <212> DNA <213> Corynebacterium glutamicum <400> 49 cctcactggc gaacacggcc gactcctgga acagcgcaac atggcatgga cgaaactcaa 60 cgaaatccca ggtgtcagct gtgtgaaacc aatgggagct ctatacgcgt tccccaagct 120 cgaccccaac gtgtacgaaa tccacgacga cacccaactc atgctggatc ttctccgtgc 180 cgagaaaatc ctcatggttc agggcactgg cttcaactgg ccacatcacg atcacttccg 240 agtggtcacc ctgccatggg catcccagtt ggaaaacgca attgagcgcc tgggtaactt 300 cctgtccact tacaagcagt agtagttgtt aggattcacc acgaatctca ggatttttga 360 gattcgtggt gaatttttgc gttttccagt caggctcctg caactttcgg accgatttca 420 gaggggcgga gctggtttgt ggtggatcct tgaaatggaa cctcgcagga agctttcagg 480 aagaccaagt tgggcctagg ggtggcggga ttgcaaaaat ccgtccccgg ttcgccatga 540 aatgctgatt ttgatcgaat ctttgcgcta actgtagggc gggttcaggg ggtgaatgca 600 ccacgagcaa cccgaagggt gcgaagtggg cattcgtaga acaatcccag aggaaagccg 660 tacggctttc ctcgacatga tcaatcaagg tatgtcaggt cttgctgcgt ctacagcggt 720 cggggtcagt gaattcaccg ggcgaaagtg ggcgaaggcc gccggggtga aactgacccg 780 cggcccgcga ggtggcaatg cttttgacac cgccgagaaa cttgagattg cagccagcat 840 gctagagaaa ggatgcctac cccgagaaat cggcgagtat gtcggcatga ctcgggccaa 900 tatatcccta tggcgcaaac aaggcccaga caagcttcgc caacgcgcag ccaccttgcg 960 caccggcaag cgagcagctg aattcatcca cgccccggtg atgggccctt attatgggcc 1020 acgcacactc catcaagtgt tgcgtgagga ctacacaaca ctgtttgacg agttatctgc 1080 gttggggttg ccagcacagg tgtgtggggc cttacttcat cttgctccac caccatcatt 1140 acgcttttct tatatgtcgt gtgtagtgcc gttatttgct gatgaaatca aagtcgtagg 1200 acaaggcaca cgattatcgt tagaagagaa aatgatgatc caacgtttcc atgacaccgg 1260 ggtcagtgca gcagaaatcg gtcgacgcct gggtcggtgt cggcaaacaa tttccaggga 1320 acttcgacgt ggtcaagatg atgatggacg ttatcgtgca cgcgactcct atgaaggtgc 1380 gatcaggaaa ctagcgcgtc cgaaaacacc gaaacttgat gccaatcgta ggcttcgggc 1440 tgtggtggtc gaggcgttga ataataaatt atctccggag cagatttctg gtcttttagc 1500 caccgagcat gctaacgata gctctatgca gattagtcat gaaactattt accaggcgtt 1560 atatgttcaa ggtaaagggg cgttgcgtga tgaattgaag gtggagaaat ttcttcgtac 1620 cggtcggaag ggacgtaaac cgcagtcgaa gttgccatcg agaggtaagc cgtgggtgga 1680 gggtgcgttg attagtcaac gcccagcaga agttgctgat cgtgctgtgc ctgggcactg 1740 ggagggcgat ttagtaattg gtggtgaaaa ccaagcgaca gcgttggtga cgttggtgga 1800 gcgcacgagc cggttgacgt tgattaagcg gttgggggtt aatcatgagg cgtcgactgt 1860 gacggatgcg ttggtggaga tgatgggtga tttgccgcag gcgttgcgtc ggagtttgac 1920 gtgggatcag ggtgtggaga tggcagagca tgcgcggttt agcgtggtga ccaagtgtcc 1980 ggtgtttttc tgtgatcctc attcgccgtg gcagcgtggg tcgaatgaga atacgaatgg 2040 attggtcagg gattttttcc cgaagggcac taattttgct aaagtaagtg acgaagaagt 2100 tcagcgggca caggatctgc tgaattaccg gccgcggaaa atgcatggtt ttaaaagcgc 2160 gacgcaggta tatgaaaaaa tcgtagttgg tgcatccacc gattgaattc gcctaggaga 2220 ttgtacgaaa attcgttcgg ctttcggatt tcctggcgat ctgagacgag aagttgaaca 2280 gctaacctgc agaaaccttg caagaatcac aacagcccca atggcctcaa aagtcacgcc 2340 ctcagaatcg ctgccaggcg tctaaatccc ctaaaacggg acaataggtc actgggcgat 2400 cccaagccct taaaacgtga tccttaaata cccactgtcc tctattctgg gttaggcttc 2460 actgggtaaa agtgcctgcc tatgcctgaa acttgagcat ggcaacagca aggagacacc 2520 gtgggaaaac atgcagctga aacatcggaa ccgaagaaaa attcaccgtg gcgcattggt 2580 ttgttgacgt ttttgatttc ttcagttgtc gtgacgctgg tgggcatggt gatgctgtgg 2640 ccggattctg atgatgtggt gttggcggat aacttttcgc agacgtttgc gggaaatcat 2700 gagcaggtgg atggaacgat cacgctcgtt gataattctg cgtgtaattc gccagacacc 2760 ggccgagttt ttgcggaaag ccccacgatt tctgcggagc cggcaacgtt ggagtgcgtg 2820 cgtgcactcg tagacatcac atcgggtgcc aatgaggggc agaaaactca gctgatcact 2880 tacgcgcaac ctggtgatcc ggagttttcc gagggcgaca agatccgcat ggtggaaaca 2940 ccggatacaa atggcgagat catctacacc tttgctgatt accagcgcgg accggcgttg 3000 atcatttggg gtgtggttct cattgtggcg atgggagctt tcgcggcgtg gcgaggtgtg 3060 cgtgcgctgg ttggtttggt cgtcaccttg ggaattgttg gtattttctt gctgccagga 3120 ttggccagcg ggcacgatgc gatgtggttg gcgctggtgt gtggcgcggc gatcttgttg 3180 attgtggtgc cgatggttca cggaatcaac tggaaatcgg cagctgcgtt ggcgggcacg 3240 ctggtggcat tgttgttgtc g 3261 <210> 50 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 50 gtacccgggg atcctctaga cctgggtaac ttcctgtcca 40 <210> 51 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 51 caggttagca gtacttctca agtttctcgg cggtg 35 <210> 52 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 52 aacttgagaa gtactgctaa cctgcagaaa ccttg 35 <210> 53 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 53 gcctgcaggt cgactctaga ctccgcagaa atcgtggggc 40 <210> 54 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 54 cgccgagaaa cttgagaagt ggcgcttcat gtcaa 35 <210> 55 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 55 ctgcaggtta gcagtttagt caaggccccg caaca 35 <210> 56 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 ctgcaggtta gcagttcaca agctgttaag cgaag 35 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 ctgcaggtta gcagttcaga tcaccgcgag cgcct 35 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 ttctccgtgc cgagaaaatc 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 gtagatgatc tcgccatttg 20 <210> 60 <211> 394 <212> PRT <213> Chromobacterium violaceum <400> 60 Met Ala Ser Asp Ala Pro His Leu Pro Leu His Pro Glu Thr Leu Ala 1 5 10 15 Ile Arg Ala Gly Leu Glu Thr Ser Gln Phe Asn Glu His Ser Gln Gly 20 25 30 Leu Phe Leu Thr Ser Ser Phe Thr Tyr Glu Ser Ala Ala Gln Ala Ala 35 40 45 Ala Met Phe Leu Gly Glu Ile Asp Gly Tyr Thr Tyr Ser Arg Phe Thr 50 55 60 Asn Pro Thr Val Ala Ala Phe Gln His Arg Leu Ala Gln Met Glu Gly 65 70 75 80 Gly Glu Arg Ala Ile Ala Thr Ala Thr Gly Met Ala Ala Ile Gln Ala 85 90 95 Ile Met Met Thr Leu Leu Gln Ala Gly Asp His Ile Val Ser Ser Gln 100 105 110 Ser Leu Phe Gly Ser Thr Thr Asn Leu Phe Ala Asn Gln Leu Ala Lys 115 120 125 Phe Ala Val Ala Thr Asp Phe Val Asp Ala Arg Asp Leu Ser Ala Trp 130 135 140 Arg Glu Ala Leu Arg Pro Asn Thr Lys Leu Leu Phe Leu Glu Thr Pro 145 150 155 160 Ser Asn Pro Leu Thr Glu Val Ala Asp Ile Ala Ala Ile Ala Asp Ile 165 170 175 Ala His Ala His Gly Ala Leu Leu Val Val Asp Asn Ser Phe Cys Ser 180 185 190 Pro Ala Leu Gln Gln Pro Leu Lys Leu Gly Ala Asp Leu Val Met His 195 200 205 Ser Ala Thr Lys Phe Ile Asp Gly His Gly Arg Val Met Gly Gly Ala 210 215 220 Val Val Gly Ser Asp Lys Leu Val Glu Gln Val Tyr Leu His Val Arg 225 230 235 240 Ala Ala Gly Pro Ser Leu Ala Pro Phe Asn Ala Trp Thr Leu Leu Ser 245 250 255 Gly Leu Glu Thr Leu His Leu Arg Met Glu Lys His Ser Ala Asn Ala 260 265 270 Leu Glu Leu Ala Arg Trp Leu Glu Ala Gln Pro Asn Val Glu Arg Val 275 280 285 Tyr Tyr Pro Gly Leu Glu Ser His Pro Gln His Glu Leu Ala Leu Arg 290 295 300 Gln Gln Lys Ser Gly Gly Ala Val Val Ser Phe Val Val Lys Gly Gly 305 310 315 320 Arg Lys Ala Ala Trp Lys Val Val Asp Ala Val Arg Val Ile Ser Arg 325 330 335 Thr Ala Asn Leu Gly Asp Val Lys Thr Thr Leu Thr His Pro Ala Ser 340 345 350 Thr Thr His Ala Arg Val Thr Gln Glu Ala Arg Glu Arg Ala Gly Ile 355 360 365 Val Glu Gly Leu Leu Arg Val Ser Val Gly Leu Glu Asn Val Arg Asp 370 375 380 Leu Gln Gln Asp Leu Leu Arg Gly Leu Asp 385 390 <210> 61 <211> 399 <212> PRT <213> Unknown <220> <223> Hyphomonas neptunium <400> 61 Met Ala Asp Ala Pro Gly Gly Asp Lys Lys Gly Trp Lys Pro Ala Thr 1 5 10 15 Gln Ala Val Arg Gly Gly Leu Met Arg Ser Gln His Gly Glu Ile Ser 20 25 30 Glu Ala Leu Tyr Leu Thr Ser Gly Tyr Ala Tyr Asp Ser Ala Glu Gln 35 40 45 Ala Met Arg Arg Met Ala Gly Glu Glu Glu Gly Phe Val Tyr Ser Arg 50 55 60 Tyr Gly Ser Pro Thr Asn Glu Met Leu Gln Gln Arg Leu Ala Leu Ile 65 70 75 80 Glu Gly Ala Glu Ala Cys Arg Val Thr Gly Ser Gly Met Gly Ala Ile 85 90 95 Ser Ser Ala Ile Leu Ala Pro Leu Lys Ala Gly Asp Arg Val Val Ala 100 105 110 Ala Thr Ala Leu Phe Gly Ser Cys Arg Trp Ile Ile Ala Asn Gln Met 115 120 125 Pro Lys Phe Gly Ile Glu Ala Val Phe Val Asp Gly Ala Asp Leu Asp 130 135 140 Ala Trp Lys Arg Glu Ile Asp Lys Gly Cys Gln Leu Val Leu Ile Glu 145 150 155 160 Ser Pro Ala Asn Pro Leu Leu Asp Gly Val Asp Ile Glu Ala Val Ala 165 170 175 Arg Leu Ala Lys Ala Ala Gly Ala Leu Leu Val Val Asp Asn Val Phe 180 185 190 Ala Thr Pro Val Leu Gln Arg Pro Leu Glu Met Gly Ala Asp Val Ile 195 200 205 Ala Tyr Ser Ala Thr Lys His Met Asp Gly Gln Gly Arg Val Leu Leu 210 215 220 Gly Ala Ile Leu Thr Asp Ala Lys Arg Met Ser Asp Val Tyr Asp Pro 225 230 235 240 Trp Leu Arg His Met Gly Pro Ala Ala Ser Pro Phe Asn Ala Trp Val 245 250 255 Val Leu Lys Gly Leu Glu Thr Met Gln Leu Arg Val Glu Ala Gln Ser 260 265 270 Arg Thr Ala Ala Arg Leu Ala Asp Val Leu Ala Asp His Pro Ala Val 275 280 285 Asn Ala Val Arg Tyr Pro His Arg Lys Asp His Pro His Tyr Glu Val 290 295 300 His Lys Arg Gln Met Lys Ser Gly Gly Thr Leu Leu Ala Leu Ser Leu 305 310 315 320 Lys Gly Gly Gln Asp Ala Ala Phe Arg Phe Leu Asn Gly Leu Gln Leu 325 330 335 Val Asp Ile Cys Asn Asn Leu Gly Asp Thr Lys Ser Leu Ala Cys His 340 345 350 Pro Ser Thr Thr Thr His Arg Ala Leu Ser Asp Glu Asp Gln Ala Ala 355 360 365 Met Gly Leu Asp Arg Ser Trp Val Arg Leu Ser Val Gly Leu Glu Asp 370 375 380 Ala Asp Asp Leu Glu Ala Asp Leu Leu Ala Ser Leu Asn Ser Leu 385 390 395 <210> 62 <211> 393 <212> PRT <213> Rhodobacter sphaeroides <400> 62 Met Thr Lys Asp Trp Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser 1 5 10 15 Arg Arg Ser Gln Tyr Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln 20 25 30 Gly Phe Val Tyr Asp Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu 35 40 45 Thr Gly Ala Asp Glu Phe Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr 50 55 60 Arg Met Phe Glu Glu Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala 65 70 75 80 Phe Ala Thr Ala Ser Gly Met Ala Ala Ile His Gly Val Leu Thr Ser 85 90 95 Ile Val Arg Ala Gly Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly 100 105 110 Ser Cys Ile Tyr Ile Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu 115 120 125 Val Thr Phe Val Asp Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val 130 135 140 Arg Pro Gly Thr Lys Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr 145 150 155 160 Leu Glu Val Ala Asp Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val 165 170 175 Gly Ala Leu Val Ile Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser 180 185 190 Thr Ala Val Arg Gln Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys 195 200 205 His Ile Asp Gly Gln Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser 210 215 220 Gln Ala Phe Ile Arg Lys Val Leu Glu Pro Phe Met Lys His Thr Gly 225 230 235 240 Gly Ser Met Ser Pro Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala 245 250 255 Thr Leu Asp Leu Arg Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile 260 265 270 Ala Arg Ala Leu Glu Gly His Pro Gln Leu Gly Arg Val Ile His Pro 275 280 285 Ala Leu Glu Ser His Pro Gln His Glu Met Ala Lys Ala Gln Met Glu 290 295 300 Arg Pro Gly Thr Met Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala 305 310 315 320 Ala Phe Arg Phe Leu Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn 325 330 335 Leu Gly Asp Ala Arg Ser Ile Ala Thr His Pro Ala Thr Thr Thr His 340 345 350 Gln Arg Leu Ser Asp Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly 355 360 365 Leu Val Arg Leu Ser Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala 370 375 380 Asp Leu Lys Gln Ala Leu Ala Val Ile 385 390 <210> 63 <211> 1185 <212> DNA <213> Chromobacterium violaceum <400> 63 atggcatccg acgcgccgca tcttccgctg caccctgaaa ccctggccat ccgggccggg 60 ttggaaacca gccagttcaa cgagcacagc cagggcctgt tcctgacgtc cagcttcacc 120 tacgaatcgg ccgcgcaggc ggcggcgatg ttcctgggcg agatcgacgg ctacacctat 180 tcccgcttca ccaatccgac cgtcgccgcg ttccagcata ggctggcgca gatggagggc 240 ggggagcgcg ccatcgccac cgccaccggc atggcggcga tccaggccat catgatgact 300 ttgctgcagg ctggcgacca catcgtgtcg tcgcaaagcc tgttcggctc caccaccaat 360 ctgttcgcca accagttggc caagttcgcc gtggccaccg acttcgtcga cgcgcgcgac 420 ctgtccgcct ggcgggaggc gctgcggccg aacaccaagc tgctgttcct ggagacgccg 480 tccaatccct tgaccgaagt ggccgacatc gcggccatcg ccgacatcgc ccacgcgcat 540 ggcgcgctgc tggtggtgga caacagcttc tgttcgccgg ccttgcagca gccgttgaaa 600 ctgggcgccg atctggtcat gcattccgcc accaagttca tcgacggcca tggccgggtg 660 atgggcgggg cggtggtcgg cagcgacaag ctggtcgagc aggtctattt gcacgtgcgc 720 gccgccggtc cctcgctggc gccgttcaat gcctggacgc tgctgtccgg tttggagacg 780 ctgcacctgc ggatggagaa gcacagcgcc aacgcgctgg agctggcgcg ctggctggag 840 gcgcagccca atgtggagcg cgtctattac ccgggcctgg agagccaccc ccagcacgag 900 ctggcgctgc gccagcagaa gagcggcgga gcggtggtgt ccttcgtggt caagggcggc 960 cgcaaggccg cgtggaaagt ggtggacgcg gtcagggtga tctcgcgcac cgccaatctg 1020 ggcgatgtga aaaccaccct cactcatccg gccagcacca cccacgcccg cgtgacgcag 1080 gaggcgcgcg agcgcgccgg catcgtcgag gggctgttgc gcgtcagcgt cggcctggaa 1140 aatgtacggg accttcaaca agatctgttg cggggccttg actaa 1185 <210> 64 <211> 1200 <212> DNA <213> Unknown <220> <223> Hyphomonas neptunium <400> 64 atggcggatg cacccggcgg cgacaagaag ggctggaagc ctgcgaccca ggcggtacgc 60 ggcggcctga tgcggtccca gcatggggag atttccgagg cgctgtatct gacctccggc 120 tacgcttacg actcggccga gcaggcgatg cgccggatgg cgggcgagga agaaggcttc 180 gtctattccc gctatggcag cccgaccaat gagatgctgc aacagcgcct cgcgctgatt 240 gaaggcgccg aagcgtgccg ggtgacgggc tctggcatgg gcgcgatttc gtcggccatc 300 ctggcgccgc ttaaagcggg cgaccgggtg gtggcggcga ccgcgctgtt tggctcgtgc 360 cgctggatca ttgccaacca gatgccgaag tttggcatcg aggcagtgtt cgtggacggg 420 gccgatcttg atgcttggaa gcgcgagatc gacaagggct gccagctggt gctgatcgaa 480 agcccggcca atccgttgct cgacggcgtg gacatcgaag cggtcgccag gctcgccaag 540 gcggcgggcg cgctgctggt ggtggacaat gtgtttgcca cgccggtgct tcagcggccg 600 ctggaaatgg gcgccgatgt gatcgcctat tcggccacca aacatatgga cgggcagggc 660 cgcgttctgc tgggcgcgat cctgacggac gccaagcgga tgagtgatgt gtatgatccg 720 tggctgcgcc atatggggcc ggcggcctcg ccgtttaacg cctgggtagt gctgaagggc 780 cttgagacga tgcagctgcg cgtggaagcg cagagccgca cggcggcgcg gctggcggat 840 gttctggccg atcatccggc ggtcaatgcc gtgcgctatc cccaccgcaa ggatcacccg 900 cattatgagg tgcacaagcg ccagatgaaa tcgggcggca cgctgctcgc gctgtcgctc 960 aagggcgggc aggacgcggc gttccgcttc ctcaacgggc tgcagctggt cgacatctgc 1020 aacaaccttg gcgatacgaa atcgctggcc tgtcatccct ccaccacgac gcaccgcgcg 1080 ttgagtgatg aggatcaggc ggcgatgggg cttgaccgca gctgggtccg gctctctgtt 1140 ggtcttgaag acgcagatga tctggaagct gatcttctcg cttcgcttaa cagcttgtga 1200 1200 <210> 65 <211> 1182 <212> DNA <213> Rhodobacter sphaeroides <400> 65 atgacgaagg actggaagac aaggacgcaa ctcgtccacg ggggcagccg ccggagccag 60 tatggcgaaa tggccgaggc gatcttcctg acccagggct tcgtctacga ctcggccgaa 120 caggccgaag cgcgcttcat cgagaccggc gccgacgaat tcatctatgc ccgctacggc 180 aaccccacga cgcgcatgtt cgaagagcgc atcgcggccg tcgagggcac cgaggatgcg 240 ttcgccaccg cctcgggcat ggccgcgatc cacggcgtgc tcacctcgat cgtgcgggcg 300 ggcgatcatc tggtggcggc gcgcgctctg ttcggctcct gcatctacat cctcgaggag 360 gtgctgggcc gattcggcgt cgaggtgacc ttcgtcgacg gcaccgatct cgatcagtgg 420 cgcgcggcgg tgcggcccgg cacgaaggcc gtgttcttcg agtcggtctc gaatccgacg 480 ctcgaggtgg ccgatatcgg cgccatcgcc gagatcgccc atgccgtggg cgcgctcgtc 540 atcgtggaca atgtcttcgc gacgcccgtc ttctcgacgg cggtgcggca gggcgcggat 600 gtggtgatct attcggccac caagcacatc gacgggcaag ggcgcgcgct cggcggcgtg 660 gtctgcgcct cgcaggcctt catccgcaag gtgctcgaac ccttcatgaa gcacaccggc 720 ggctcgatga gccccttcaa cgcctggctc atgctgaacg ggatggcgac gctcgacctg 780 cgctgccgcg cgatggccga cacggccgag aagatcgccc gcgcgctcga gggccatccg 840 cagctcggcc gcgtgatcca tcccgcgctg gaaagccacc cgcagcacga gatggccaag 900 gcgcagatgg agcgtcccgg cacgatgatc gcgctcgacc tcgccggggg caaggaggcg 960 gccttccgct tcctcgacgc cctgaggatc gtgaagatct ccaacaatct gggcgatgcc 1020 cgctcgatcg cgacccaccc ggcaacgacc acccaccagc gtctttccga cgcgcagaag 1080 gcccatctcg gcatcacgcc cgggctcgtg cggctgtcgg tggggctcga ggatgcggac 1140 gacctgatcg ccgatctgaa acaggcgctc gcggtgatct ga 1182 <210> 66 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_long <400> 66 Met Gly Ile Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Phe Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Val Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 67 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_3 <400> 67 Met Gly Asn Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Phe Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Val Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 68 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_65 <400> 68 Met Gly Ile Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Tyr Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Val Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 69 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_104 <400> 69 Met Gly Ile Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Phe Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Ala Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 70 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_196 <400> 70 Met Gly Ile Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Phe Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Val Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Ile Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 71 <211> 404 <212> PRT <213> Artificial Sequence <220> <223> RspmetZ_3_65_104 <400> 71 Met Gly Asn Ala Phe Arg Glu Gly Arg Thr Gly Met Thr Lys Asp Trp 1 5 10 15 Lys Thr Arg Thr Gln Leu Val His Gly Gly Ser Arg Arg Ser Gln Tyr 20 25 30 Gly Glu Met Ala Glu Ala Ile Phe Leu Thr Gln Gly Phe Val Tyr Asp 35 40 45 Ser Ala Glu Gln Ala Glu Ala Arg Phe Ile Glu Thr Gly Ala Asp Glu 50 55 60 Tyr Ile Tyr Ala Arg Tyr Gly Asn Pro Thr Thr Arg Met Phe Glu Glu 65 70 75 80 Arg Ile Ala Ala Val Glu Gly Thr Glu Asp Ala Phe Ala Thr Ala Ser 85 90 95 Gly Met Ala Ala Ile His Gly Ala Leu Thr Ser Ile Val Arg Ala Gly 100 105 110 Asp His Leu Val Ala Ala Arg Ala Leu Phe Gly Ser Cys Ile Tyr Ile 115 120 125 Leu Glu Glu Val Leu Gly Arg Phe Gly Val Glu Val Thr Phe Val Asp 130 135 140 Gly Thr Asp Leu Asp Gln Trp Arg Ala Ala Val Arg Pro Gly Thr Lys 145 150 155 160 Ala Val Phe Phe Glu Ser Val Ser Asn Pro Thr Leu Glu Val Ala Asp 165 170 175 Ile Gly Ala Ile Ala Glu Ile Ala His Ala Val Gly Ala Leu Val Ile 180 185 190 Val Asp Asn Val Phe Ala Thr Pro Val Phe Ser Thr Ala Val Arg Gln 195 200 205 Gly Ala Asp Val Val Ile Tyr Ser Ala Thr Lys His Ile Asp Gly Gln 210 215 220 Gly Arg Ala Leu Gly Gly Val Val Cys Ala Ser Gln Ala Phe Ile Arg 225 230 235 240 Lys Val Leu Glu Pro Phe Met Lys His Thr Gly Gly Ser Met Ser Pro 245 250 255 Phe Asn Ala Trp Leu Met Leu Asn Gly Met Ala Thr Leu Asp Leu Arg 260 265 270 Cys Arg Ala Met Ala Asp Thr Ala Glu Lys Ile Ala Arg Ala Leu Glu 275 280 285 Gly His Pro Gln Leu Gly Arg Val Ile His Pro Ala Leu Glu Ser His 290 295 300 Pro Gln His Glu Met Ala Lys Ala Gln Met Glu Arg Pro Gly Thr Met 305 310 315 320 Ile Ala Leu Asp Leu Ala Gly Gly Lys Glu Ala Ala Phe Arg Phe Leu 325 330 335 Asp Ala Leu Arg Ile Val Lys Ile Ser Asn Asn Leu Gly Asp Ala Arg 340 345 350 Ser Ile Ala Thr His Pro Ala Thr Thr Thr His Gln Arg Leu Ser Asp 355 360 365 Ala Gln Lys Ala His Leu Gly Ile Thr Pro Gly Leu Val Arg Leu Ser 370 375 380 Val Gly Leu Glu Asp Ala Asp Asp Leu Ile Ala Asp Leu Lys Gln Ala 385 390 395 400 Leu Ala Val Ile <210> 72 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 atcaaaacag atatcatggg tatcgcgttt cgtga 35 <210> 73 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 ccttcacgaa acgcgttacc catgatatct g 31 <210> 74 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 cagatatcat gggtaacgcg tttcgtgaag g 31 <210> 75 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 tagcgggcat agatgtattc gtcggcgccg g 31 <210> 76 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 76 ccggcgccga cgaatacatc tatgcccgct a 31 <210> 77 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 77 acgatcgagg tgagcgcgcc gtggatcgcg g 31 <210> 78 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 78 ccgcgatcca cggcgcgctc acctcgatcg t 31 <210> 79 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 79 cgggcgtcgc gaagatattg tccacgatga c 31 <210> 80 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 80 gtcatcgtgg acaatatctt cgcgacgccc g 31

Claims (18)

  1. 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 미생물을 티오설페이트를 포함하는 배지에서 배양하는 것을 포함하는, L-메티오닌 제조방법.
  2. 제1항에 있어서, 상기 단백질은 O-아실호모세린 트랜스설퓨레이즈(acylhomoserine transsulfurase)활성을 갖는 것인, L-메티오닌 제조방법.
  3. 제1항에 있어서, 상기 단백질은 크로모박테리움 비오라슘 (Chromobacterium violaceum), 하이호모나스 넵튜니윰 (Hyphomonas neptunium) 또는 로도박터 스페로이드 (Rhodobacter sphaeroides)유래인 것인, L-메티오닌 제조방법.
  4. 제1항에 있어서, 상기 단백질은 서열번호 60, 61 및 62 중 어느 하나의 폴리펩티드 서열 및 이와 90% 이상의 상동성 또는 동일성을 갖는 폴리펩티드 서열로 이루어지는 군에서 선택되는 어느 하나 이상을 포함하는, L-메티오닌 제조방법.
  5. 제1항에 있어서, 상기 미생물은, 시스타티오닌 감마 신타아제의 활성 약화 또는 불활성; O-아세틸호모세린 설피드릴라제의 활성 약화 또는 불활성; 메티오닌-시스테인 생합성 억제인자의 활성 약화 또는 불활성; 메티오닌 합성 효소의 활성 강화; 및 설파이트 환원 효소의 활성 강화로 이루어진 군에서 선택되는 하나 이상의 유전적 변형을 포함하는, L-메티오닌 제조방법.
  6. 제1항에 있어서, 상기 미생물은 코리네박테리움 속 미생물인, L-메티오닌 제조방법.
  7. 제6항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, L-메티오닌 제조방법.
  8. 제1항에 있어서, 상기 제조방법은 L-메티오닌을 상기 미생물 또는 배지로부터 회수하는 것을 포함하는, L-메티오닌 제조방법.
  9. 제1항에 있어서, 상기 방법은 호모란티오닌 생성량이 감소되는 것인, L-메티오닌 제조방법.
  10. 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된, L-메티오닌 생산 미생물.
  11. 제10항에 있어서, 상기 단백질은 O-아실호모세린 트랜스설퓨레이즈(acylhomoserine transsulfurase)활성을 갖는 것인, L-메티오닌을 생산하는 미생물.
  12. 제10항에 있어서, 상기 단백질은 크로모박테리움 비오라슘 (Chromobacterium violaceum), 하이호모나스 넵튜니윰 (Hyphomonas neptunium) 또는 로도박터 스페로이드 (Rhodobacter sphaeroides)유래인 것인, L-메티오닌을 생산하는 미생물.
  13. 제10항에 있어서, 상기 단백질은 서열번호 60, 61 및 62 중 어느 하나의 폴리펩티드 서열 및 이와 90% 이상의 상동성 또는 동일성을 갖는 폴리펩티드 서열로 이루어지는 군에서 선택되는 어느 하나 이상을 포함하는, L-메티오닌을 생산하는 미생물.
  14. 제10항에 있어서, 상기 미생물은, 시스타티오닌 감마 신타아제의 활성 약화 또는 불활성; O-아세틸호모세린 설피드릴라제의 활성 약화 또는 불활성; 메티오닌-시스테인 생합성 억제인자의 활성 약화 또는 불활성; 메티오닌 합성 효소의 활성 강화; 및 설파이트 환원 효소의 활성 강화로 이루어진 군에서 선택되는 하나 이상의 유전적 변형을 포함하는, L-메티오닌을 생산하는 미생물.
  15. 제10항에 있어서, 상기 미생물은 코리네박테리움 속 미생물인, L-메티오닌을 생산하는 미생물.
  16. 제10항에 있어서, 상기 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, L-메티오닌을 생산하는 미생물.
  17. 제10항에 있어서, 상기 미생물은 호모란티오닌 생성량이 감소된 것인, L-메티오닌 생산 미생물.
  18. 제10항 내지 제17항 중 어느 한 항의 미생물 및 티오설페이트를 포함하는, L-메티오닌 생산용 조성물.
KR1020190134797A 2019-10-28 2019-10-28 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법 KR102377500B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020190134797A KR102377500B1 (ko) 2019-10-28 2019-10-28 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
JP2022523724A JP7450712B2 (ja) 2019-10-28 2020-10-28 外来metZ遺伝子によりコードされるタンパク質が導入されたL-メチオニン生産微生物及びそれを用いたL-メチオニン生産方法
EP20883239.4A EP4032981A4 (en) 2019-10-28 2020-10-28 L-METHIONINE-PRODUCING MICROORGANISM INTO WHICH A PROTEIN ENCODED BY A FOREIGN METZ GENE IS INTRODUCED AND METHOD FOR PRODUCING L-METHIONINE USING THE SAME
US17/754,988 US20230212623A1 (en) 2019-10-28 2020-10-28 L-methionine producing microorganism to which protein encoded by foreign metz gene is introduced and method for producing l-methionine using same
CN202080076044.6A CN114729379A (zh) 2019-10-28 2020-10-28 引入外源metZ基因编码蛋白的L-蛋氨酸生产微生物及利用其生产L-蛋氨酸的方法
BR112022007907A BR112022007907A2 (pt) 2019-10-28 2020-10-28 Método de produção de l-metionina, micro-organismo que produz l-metionina, composição para produzir l-metionina, e, uso de um micro-organismo
PCT/KR2020/014780 WO2021085999A1 (ko) 2019-10-28 2020-10-28 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
ZA2022/05485A ZA202205485B (en) 2019-10-28 2022-05-18 L-methionine producing microorganism to which protein encoded by foreign metz gene is introduced and method for producing l-methionine using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190134797A KR102377500B1 (ko) 2019-10-28 2019-10-28 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법

Publications (2)

Publication Number Publication Date
KR20210050324A true KR20210050324A (ko) 2021-05-07
KR102377500B1 KR102377500B1 (ko) 2022-03-23

Family

ID=75715363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190134797A KR102377500B1 (ko) 2019-10-28 2019-10-28 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법

Country Status (8)

Country Link
US (1) US20230212623A1 (ko)
EP (1) EP4032981A4 (ko)
JP (1) JP7450712B2 (ko)
KR (1) KR102377500B1 (ko)
CN (1) CN114729379A (ko)
BR (1) BR112022007907A2 (ko)
WO (1) WO2021085999A1 (ko)
ZA (1) ZA202205485B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088503B (zh) * 2021-04-27 2023-01-10 浙江工业大学 一种o-琥珀酰巯基转移酶突变体及其在l-甲硫氨酸合成中的应用
CN113215124A (zh) * 2021-04-27 2021-08-06 浙江工业大学 一种o-琥珀酰巯基转移酶在l-甲硫氨酸合成中的应用
CA3223003A1 (en) * 2021-12-24 2023-06-29 Cj Cheiljedang Corporation 5'utr variant sequence of gene encoding phosphoenolpyruvate carboxylase, and uses thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120108844A (ko) * 2011-03-25 2012-10-05 씨제이제일제당 (주) 신규 o-아세틸호모세린 설피드릴라아제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
KR101250651B1 (ko) * 2010-12-21 2013-04-03 씨제이제일제당 (주) 신규 o-아세틸호모세린 설피드릴라제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
KR101836719B1 (ko) * 2015-10-13 2018-04-20 씨제이제일제당 (주) O-아세틸호모세린 설피드릴라제 변이체 및 이를 이용한 l-메치오닌 제조 방법
US20180223319A1 (en) * 2015-08-07 2018-08-09 Evonik Degussa Gmbh Protein thiocarboxylate-dependent l-methionine production by fermentation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030049804A1 (en) * 1999-06-25 2003-03-13 Markus Pompejus Corynebacterium glutamicum genes encoding metabolic pathway proteins
EP1345714A1 (en) 2000-12-22 2003-09-24 Basf Aktiengesellschaft Genes of corynebacterium
KR100620092B1 (ko) 2004-12-16 2006-09-08 씨제이 주식회사 코리네박테리움 속 세포로부터 유래된 신규한 프로모터서열, 그를 포함하는 발현 카세트 및 벡터, 상기 벡터를포함하는 숙주 세포 및 그를 이용하여 유전자를 발현하는방법
KR20080036608A (ko) 2005-07-18 2008-04-28 바스프 에스이 메티오닌 생산 재조합 미생물
EP1945043B1 (en) * 2005-10-31 2011-01-19 Evonik Degussa GmbH Microorganism and process for the preparation of l-methionine
CN101454460A (zh) * 2006-05-24 2009-06-10 赢创德固赛有限责任公司 制备l-甲硫氨酸的方法
KR100905381B1 (ko) * 2006-07-28 2009-06-30 씨제이제일제당 (주) L-메치오닌 전구체 생산 균주 및 상기 l-메치오닌전구체로부터의 l-메치오닌 및 유기산의 생산방법
EP2808382B1 (en) * 2007-04-11 2016-03-16 CJ CheilJedang Corporation Compositions and methods of producing methionine
KR101632642B1 (ko) 2015-01-29 2016-06-22 씨제이제일제당 주식회사 신규한 프로모터 및 그의 용도
PL3508580T3 (pl) 2016-08-31 2022-04-25 Cj Cheiljedang Corporation Nowy promotor i jego zastosowanie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250651B1 (ko) * 2010-12-21 2013-04-03 씨제이제일제당 (주) 신규 o-아세틸호모세린 설피드릴라제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
KR20120108844A (ko) * 2011-03-25 2012-10-05 씨제이제일제당 (주) 신규 o-아세틸호모세린 설피드릴라아제 또는 변이체 및 이를 이용한 메치오닌 전환 방법
US20180223319A1 (en) * 2015-08-07 2018-08-09 Evonik Degussa Gmbh Protein thiocarboxylate-dependent l-methionine production by fermentation
KR101836719B1 (ko) * 2015-10-13 2018-04-20 씨제이제일제당 (주) O-아세틸호모세린 설피드릴라제 변이체 및 이를 이용한 l-메치오닌 제조 방법

Also Published As

Publication number Publication date
ZA202205485B (en) 2024-01-31
EP4032981A4 (en) 2023-05-17
CN114729379A (zh) 2022-07-08
BR112022007907A2 (pt) 2022-07-26
EP4032981A1 (en) 2022-07-27
KR102377500B1 (ko) 2022-03-23
WO2021085999A1 (ko) 2021-05-06
US20230212623A1 (en) 2023-07-06
JP2022553354A (ja) 2022-12-22
JP7450712B2 (ja) 2024-03-15

Similar Documents

Publication Publication Date Title
US11667936B2 (en) Modified polypeptide with attenuated activity of citrate synthase and method for producing L-amino acid using the same
JP6759484B1 (ja) 新規なアスパルトキナーゼ変異体及びそれを用いたl−アミノ酸の製造方法
EP3647417A2 (en) Atp phosphoribosyltransferase mutant and l-histidine production method using same
KR102377500B1 (ko) 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
KR102182497B1 (ko) 내막 단백질의 변이체 및 이를 이용한 목적 산물 생산 방법
KR102277407B1 (ko) 신규한 글루타메이트 합성 효소 서브 유니트 알파 변이체 및 이를 이용한 l-글루탐산 생산 방법
KR102274484B1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102273638B1 (ko) 신규한 포스포글리세린산 디하이드로게나제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
CN115135759B (zh) 新型葡萄糖胺-6-磷酸脱氨酶变体及使用其生产l-谷氨酸的方法
KR102279696B1 (ko) 신규한 l-세린 암모니아 분해 효소 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102273640B1 (ko) 신규한 f0f1 atp 합성효소 서브유닛 감마 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102273639B1 (ko) 신규한 이중기능성 메틸렌테트라히드로폴레이트 탈수소효소/메테닐테트라하이드로폴레이트 사이클로하이드롤라아제 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
EP4276107A2 (en) Glxr protein variant or threonine production method using same
KR20220083464A (ko) 신규한 분지 연쇄 아미노산 아미노트렌스퍼라아제 변이체 및 이를 이용한 이소류신 생산 방법
JP2018517411A (ja) O−アセチルホモセリンを生産する微生物及びそれを用いてo−アセチルホモセリンを生産する方法
KR20220000705A (ko) L-쓰레오닌 디하이드라타아제의 신규 변이체 및 이를 이용한 l-이소류신 생산 방법
KR102472558B1 (ko) 황 함유 아미노산 또는 그 유도체 제조방법
KR102464883B1 (ko) 신규한 감마-아미노부티르산 퍼미에이즈 변이체 및 이를 이용한 이소류신 생산 방법
JP7407941B2 (ja) O-ホスホセリン排出タンパク質変異体、並びにそれを用いたo-ホスホセリン、システイン及びその誘導体の生産方法
KR102472559B1 (ko) 황 함유 아미노산 또는 그 유도체의 제조방법
TWI832275B (zh) 新穎YhhS變異體及使用其生產O-磷絲胺酸、半胱胺酸及半胱胺酸之衍生物的方法
RU2814546C2 (ru) Способ продуцирования серосодержащей аминокислоты или ее производного
KR102611978B1 (ko) 숙신산 생산성이 향상된 미생물 및 이를 이용한 숙신산 생산 방법
CN114829596B (zh) 新糖磷酸异构酶/差向异构酶变体及使用其生产l-赖氨酸的方法
TW202307201A (zh) 具有減弱之LacI家族DNA結合性轉錄調節子之活性之微生物及使用其之L-麩胺酸之生產方法

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)