KR20210018057A - 노광 장치 및 물품의 제조 방법 - Google Patents

노광 장치 및 물품의 제조 방법 Download PDF

Info

Publication number
KR20210018057A
KR20210018057A KR1020200089337A KR20200089337A KR20210018057A KR 20210018057 A KR20210018057 A KR 20210018057A KR 1020200089337 A KR1020200089337 A KR 1020200089337A KR 20200089337 A KR20200089337 A KR 20200089337A KR 20210018057 A KR20210018057 A KR 20210018057A
Authority
KR
South Korea
Prior art keywords
substrate
control
exposure
measurement
driving
Prior art date
Application number
KR1020200089337A
Other languages
English (en)
Inventor
타카노리 사토
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20210018057A publication Critical patent/KR20210018057A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

[과제] 주사 노광에 있어서의 기판상에의 패턴 형성 정밀도의 점에서 유리한 기술을 제공한다.
[해결 수단] 노광 광에 대하여 기판을 주사함에 의해 상기 기판의 숏 영역을 노광하는 노광 장치는, 상기 기판의 주사중에, 상기 노광 광에 의한 상기 숏 영역의 노광에 앞서, 복수의 계측점에서 상기 숏 영역의 표면위치를 계측하는 계측부와, 상기 계측부의 계측결과에 근거하여, 상기 기판의 기울기 제어를 행하는 제어부를 포함하고, 상기 기판의 기울기 제어는, 상기 복수의 계측점 중 소정수의 계측점에서 표면위치가 계측되었을 경우에 개시되고, 상기 제어부는, 상기 기판의 기울기 제어의 개시 시각과 상기 노광 광에 의한 상기 숏 영역의 노광 개시 시각과의 시각차에 따라서, 상기 기판의 기울기 제어에 사용하는 제어 프로파일을 결정한다.

Description

노광 장치 및 물품의 제조 방법{EXPOSURE APPARATUS AND METHOD OF MANUFACTURING ARTICLE}
본 발명은, 노광 장치, 및 물품의 제조 방법에 관한 것이다.
반도체 디바이스등의 제조 공정(리소그래피 공정)에서 사용되는 장치의 1개로서, 노광 광에 대하여 기판을 주사 함에 의해 기판의 숏 영역의 주사 노광을 행하는 노광 장치가 알려져 있다. 이러한 노광 장치에서는, 기판의 주사중, 노광 광에서의 숏 영역의 노광에 앞서 기판의 표면위치를 계측(포커스 계측)하고, 그 계측결과에 근거해서 기판의 높이 제어 및 기울기 제어가 행해진다.
최근에는, 수율을 향상시키기 위해서, 기판의 주연부에 배치되어서 원판 패턴의 일부만이 전사되는 불완전 숏 영역에서도 주사 노광이 행해진다. 이러한 불완전 숏 영역에서는, 포커스 계측의 대상이 되는 복수의 계측대상 개소의 일부가 결손하고 있기 때문에, 결손하고 있는 계측대상 개소에서의 포커스 계측의 결과가 사용되면, 기판의 높이 제어 및 기울기 제어를 정밀도 좋게 행하는 것이 곤란해질 수 있다. 특허문헌 1에는, 숏 영역의 레이아웃 정보등으로부터 포커스 계측의 유효/무효판정을 사전에 행하고, 그 판정 결과에 근거하여, 결손하고 있는 계측대상 개소에서의 포커스 계측값을 사용하지 않도록, 기판의 높이 제어 및 기울기 제어를 행하는 방법이 제안되어 있다.
특허문헌1: 일본 특허공개평 10-116877호 공보
예를 들면, 기판의 높이 제어는, 적어도 1개의 계측대상 개소에서의 포커스 계측의 결과를 사용하여 행할 수 있지만, 기판의 기울기 제어는, 적어도 2개의 계측대상 개소에서의 포커스 계측의 결과를 사용하지 않으면 행할 수 없다. 즉, 불완전 숏 영역의 주사 노광에서는, 기판의 기울기 제어가 기판의 높이 제어보다 지연되어서 개시되어, 기판의 기울기 제어의 개시 시각과 노광 개시 시각과의 시각차가 단축되게 된다. 이 경우, 기판의 기울기 제어로 발생해서 노광 개시후도 잔존하는 기판의 진동이, 기판상에의 패턴 형성 정밀도에 영향을 주는 경우가 있다.
그래서, 본 발명은, 주사 노광에 있어서의 기판상에의 패턴 형성 정밀도의 점에서 유리한 기술을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해서, 본 발명의 일측면으로서의 노광 장치는, 노광 광에 대하여 기판을 주사함에 의해 상기 기판의 숏 영역을 노광하는 노광 장치이며, 상기 기판의 주사중에, 상기 노광 광에 의한 상기 숏 영역의 노광에 앞서, 복수의 계측점에서 상기 숏 영역의 표면위치를 계측하는 계측부와, 상기 계측부의 계측결과에 근거하여, 상기 기판의 기울기 제어를 행하는 제어부를 포함하고, 상기 기판의 기울기 제어는, 상기 복수의 계측점 중 소정수의 계측점에서 표면위치가 계측되었을 경우에 개시되고, 상기 제어부는, 상기 기판의 기울기 제어의 개시 시각과 상기 노광 광에 의한 상기 숏 영역의 노광 개시 시각과의 시각차에 따라서, 상기 기판의 기울기 제어에 사용하는 제어 프로파일을 결정하는, 것을 특징으로 한다.
본 발명의 추가의 목적 또는 다른 측면은, 이하, 첨부 도면을 참조하여 설명되는 바람직한 실시 형태에 의해 밝혀질 것이다.
본 발명에 의하면, 예를 들면, 주사 노광에 있어서의 기판상에의 패턴 형성 정밀도의 점에서 유리한 기술을 제공할 수 있다.
[도1] 노광 장치의 구성을 도시한 개략도
[도2] 숏 영역, 조사 영역, 및 계측부에 있어서의 복수의 계측점의 위치 관계를 도시한 도면
[도3] 기판의 높이 및 기울기의 제어 블록도
[도4a] 복수의 숏 영역에 대한 주사 노광을 설명하기 위한 도
[도4b] 복수의 숏 영역에 대한 주사 노광을 설명하기 위한 도
[도4c] 복수의 숏 영역에 대한 주사 노광을 설명하기 위한 도
[도5] 기판의 제어 프로파일, 및 기판W의 진동을 도시한 도면
[도6] 기판의 기울기 제어 프로파일의 결정 예를 도시한 도면
[도7] 주사 노광 처리를 도시한 흐름도
[도8] 기울기 제어 프로파일의 결정 처리를 도시한 흐름도
이하, 첨부 도면을 참조하여 실시 형태를 상세하게 설명한다. 한편, 이하의 실시 형태는 특허청구의 범위에 따른 발명을 한정하는 것이 아니다. 실시 형태에는 복수의 특징이 기재되어 있지만, 이것들의 복수의 특징의 모두가 발명에 필수적인 것으로는 한정하지 않고, 또한, 복수의 특징은 임의로 조합시켜도 좋다. 더욱, 첨부 도면에 있어서는, 동일 또는 같은 구성에 동일한 참조 번호를 첨부하고, 중복된 설명은 생략한다.
<제1실시 형태>
본 발명에 따른 제1실시 형태의 노광 장치(100)에 대해서 설명한다. 본 실시 형태의 노광 장치(100)는, 예를 들면, 투영 광학계로부터 사출된 노광 광(슬릿 광, 패턴 광)에 대하여 기판W를 주사 함에 의해 기판W의 숏 영역의 주사 노광을 행하는, 소위 스캔·앤드·리피트 방식의 노광 장치(주사 노광 장치)이다. 이하의 설명에서는, 투영 광학계의 광축AX에 평행한 축을 Z축으로 하고, Z축에 수직한 평면내에서 서로 직교하는 2개의 축을 X축 및 Y축으로 한다. 또한, 마스크M 및 기판W의 주사 방향(즉, 기판상에 있어서의 조사 영역의 주사 방향)을 Y방향으로 한다.
[노광 장치의 구성]
도1은, 본 실시 형태의 노광 장치(100)의 구성을 도시한 개략도다. 노광 장치(100)는, 예를 들면, 조명계(106)와, 마스크 스테이지(103)와, 투영 광학계(101)와, 기판 스테이지(105)와, 계측부(102)와, 제어부(104)를 포함할 수 있다.
조명계(106)는, 엑시머 레이저 등의 도시되지 않은 광원으로부터 방출된 광을 슬릿 광으로서 정형하여 마스크M(원판)을 조명한다. 마스크M은, 예를 들면 석영 유리 등에 의해 제작되어 있고, 기판 위에 전사되어야 할 패턴(예를 들면, 회로 패턴)이 형성되어 있다. 마스크 스테이지(103)는, 마스크M을 보유하는 척을 포함하고, 적어도 X, Y의 각 축방향으로 이동가능하다. 마스크 스테이지(103)는, 기판W의 노광시에는, 투영 광학계(101)의 광축AX와 수직한 면방향인 Y축방향(화살표103a)으로 일정 속도로 주사한다. 마스크 스테이지(103)의 각 축방향의 위치 정보는, 마스크 스테이지(103)에 설치된 바 미러(120)와, 마스크 스테이지(103)의 위치 검출용의 제1간섭계(121)를 사용하여, 상시 계측될 수 있다.
투영 광학계(101)는, 마스크M을 투과한 광을 소정의 투영 배율로 기판 위에 투영한다. 투영 광학계(101)의 상면(포커스면)은, Z축방향에 대하여 수직이 되는 관계에 있다. 기판W는, 예를 들면 단결정 실리콘 기판이며, 표면상에 레지스트(감광제)가 도포될 수 있다. 기판 스테이지(105)는, 기판W를 보유하는 척을 포함하고, X, Y, Z의 각 축방향, 그 위에 각 축의 회전 방향인 θx, θy, θz방향으로 이동(회전)가능하다. 기판 스테이지(105)는, 기판W의 노광시에는, 투영 광학계(101)의 광축AX와 수직한 면방향인 Y축방향(화살표105a)으로 일정 속도로 주사한다. 기판 스테이지(105)의 각 축방향의 위치 정보는, 기판 스테이지(105)에 설치된 바 미러(123)와, 기판 스테이지(105)의 위치 검출용의 제2간섭계(124)를 사용하여, 상시 계측될 수 있다.
계측부(102)는, 기판 스테이지(105)에 의해 보유되어 있는 기판W의 표면위치 계측(포커스 계측)을 행한다. 제1실시 형태의 계측부(102)는, 기판W에 광을 기울여 조사하는 사입사형이며, 기판W에 계측용의 광속을 투광하는 투광부와, 투광부에 의해 투광되어서 기판W에서 반사한 광속(반사 광속)을 수광하는 수광부와, 처리부(126)를 포함할 수 있다.
투광부는, 예를 들면, 광원(110)과, 콜리메이터 렌즈(111)와, 슬릿 부재(112)와, 투광 광학계(113)와, 미러(114)를 포함할 수 있다. 광원(110)은, 예를 들면 램프나 발광 다이오드등을 갖고, 기판상의 레지스트가 감광하지 않는 파장의 광속을 사출한다. 콜리메이터 렌즈(111)는, 광원(110)으로부터 사출된 광속을, 단면의 광강도 분포가 거의 균일해지는 평행 광으로 한다. 슬릿 부재(112)는, 서로의 경사면이 상대하도록 접합된 한 쌍의 프리즘으로 구성되어 있고, 접합면에는, 복수의 개구(본 실시 형태에서는 9개의 핀홀)가 형성된 크롬 등의 차광 막이 설치되어 있다. 투광 광학계(113)는, 양측 텔레센트릭 광학계이며, 슬릿 부재(112)에 형성된 복수의 개구를 각각 통과함으로써 생성된 복수의 광속(본 실시 형태에서는 9개의 광속)을, 미러(114)를 통해 기판 위에 입사된다.
복수의 개구를 갖는 평면과, 기판W의 표면을 포함하는 평면은, 투광 광학계(113)에 대하여 샤인 프루프의 조건을 만족하도록 구성될 수 있다. 본 실시 형태에서는, 투광부로부터의 각 광속이 기판W에 입사할 때의 입사각(광축과 이루는 각)은, 70°이상이다. 또한, 투광부로부터 사출된 복수의 광속은, 각 광속이 입사한 위치에서의 표면높이를 서로 독립적으로 계측 가능하도록, X방향으로부터 XY평면내에서 θ°(예를 들면 22.5°) 회전한 방향으로부터, 기판상의 서로 다른 위치에 입사한다.
수광부는, 예를 들면, 미러(115)와, 수광광학계(116)와, 보정광학계(117)와, 광전변환부(118)를 포함할 수 있다. 미러(115)는, 기판W에서 반사된 복수의 광속을 수광광학계(116)에 이끈다. 수광광학계(116)는, 양측 텔레센트릭 광학계이며, 복수의 광속에 대하여 공통으로 설치된 스토퍼 조리개에 의해, 기판 위에 형성되어 있는 패턴에 기인하여 발생하는 고차의 회절광(노이즈 광)을 커트한다. 보정광학계(117)는, 복수의 광속에 대응하도록 복수의 렌즈를 갖고 있고, 수광광학계(116)를 통과해서 광축이 서로 평행해져 있는 복수의 광속을, 광전변환부(118)의 수광면에 대하여, 서로 동일한 크기를 가진 스폿 광이 되도록 결상한다. 광전변환부(118)는, 예를 들면, 복수의 광속에 대응하는 수(본 실시 형태에서는 9개)의 광전변환 소자를 포함할 수 있다. 각 광전변환 소자는, CCD라인 센서등을 포함하고, 수광면에 입사한 광속의 강도(광강도)를 검출하고, 처리부(126)(연산 회로)에 출력한다. 처리부(126)는, 예를 들면 CPU나 메모리등을 갖는 컴퓨터로 구성되어, 광전변환부(118)로부터의 출력에 근거해서 각 계측점에서의 기판W의 표면위치를 계측한다(구한다).
수광광학계(116), 보정광학계(117) 및 광전변환부(118)에서는, 기판상의 각 계측점과 광전변환부(118)의 수광면이 서로 공역이 되도록, 미리 경사 보정이 행해지고 있다. 그 때문에, 각 계측점의 국소적인 기울기에 기인해서 발생하는 수광면에서의 핀홀 상(像)의 위치 변화는 없고, 각 계측점의 광축방향AX에서의 높이 변화에 응답하여, 수광면 위에서의 핀홀 상의 위치가 변화된다. 여기에서, 본 실시 형태의 광전변환부(118)는, 1차원CCD라인 센서로 구성되어 있지만, 2차원의 위치 계측소자를 복수배치한 것을 사용해도 좋다.
제어부(104)는, 주 제어부(127)와, 마스크 위치 제어부(122)와, 기판위치 제어부(125)를 포함한다. 각 제어부는, 예를 들면 CPU나 메모리등을 포함하는 컴퓨터로 구성될 수 있다. 주 제어부(127)는, 노광 장치(100)의 각 구성 요소에 회선을 통해서 접속되어서, 프로그램등에 따라서 각 구성 요소의 동작을 총괄 제어한다. 마스크 위치 제어부(122)는, 주 제어부(127)로부터의 지령에 근거하여, 마스크 스테이지(103)의 동작을 제어한다. 기판위치 제어부(125)는, 주 제어부(127)로부터의 지령에 근거하여, 기판 스테이지(105)의 동작을 제어한다.
주 제어부(127)는, 계측부(102)의 계측결과에 근거해서 기판W의 높이 및 기울기를 제어하면서, 기판W의 숏 영역의 주사 노광을 제어한다. 즉, 주 제어부(127)는, 기판W의 높이 및 기울기를 제어하면서, 마스크 스테이지(103) 및 기판 스테이지(105)를, 투영 광학계(101)의 투영 배율에 따른 속도비로 상대적으로 주사한다. 이에 따라, 투영 광학계(101)로부터 노광 광이 조사되는 조사 영역(즉, 투영 광학계(101)에 의해 마스크M의 패턴 상이 투영되는 영역)을 기판 위에서 이동시키고, 마스크M의 패턴을 기판 위의 숏 영역에 전사할 수 있다. 이러한 주사 노광을, 기판 스테이지(105)를 스텝 이동시키면서, 기판W에 있어서의 복수의 숏 영역의 각각에 대해서 순차 행하는 것에 의해, 1매의 기판W에 있어서의 노광 처리를 완료시킬 수 있다.
[숏 영역의 주사 노광]
상술한 노광 장치(100)에 있어서의 기판W의 숏 영역의 주사 노광에 대해서 설명한다. 도2는, 주사 노광을 행하는 대상의 숏 영역(201)과, 투영 광학계(101)로부터 노광 광이 조사되는 조사 영역(202)과, 계측부(102)로 기판W의 표면위치 계측을 행하는 복수의 계측점(본 실시 형태에서는 9개의 계측점)과의 위치 관계를 도시한 도면이다. 도2에 있어서, 조사 영역(202)은, 파선으로 둘러싸여진 직사각형의 영역이다. 계측점 203(203a∼203c)은, 조사 영역(202)의 내측에 있어서 기판W의 표면위치 계측을 행하는 계측점이다. 또한, 계측점 204(204a∼204c), 계측점 205(205a∼205c)는, 조사 영역(202)에서의 노광에 앞서 기판W의 표면위치 계측을 행하는 계측점(예측 계측점)이다. 계측점 204 및 계측점 205는 각각, 조사 영역(202)내의 계측점 203으로부터 주사 방향으로 거리Lp만큼 이격된 위치에 배치된다. 본 실시 형태에서는, 계측점 203, 204, 205는 각각, 주사 방향(Y방향)과 교차하는 방향(X방향)에 배열된 3개의 계측점으로 구성되어 있지만, 거기에 한정되지 않고, 2개의 계측점, 혹은 4개이상의 계측점으로 구성되어도 좋다. 또한, 계측점 203은, 계측점 204 및 계측점 205에서의 계측결과의 교정을 행하기 위해서 사용될 수 있다.
이렇게 구성된 계측부(102)에서는, 조사 영역(202)에서의 노광에 앞서 기판W의 표면위치 계측을 행하기 위해서 사용되는 계측점이, 기판W의 주사 방향(이동 방향)에 따라서 전환된다. 예를 들면, 방향F에 기판W를 이동시켜서 숏 영역(201)의 주사 노광을 행할 경우에는, 계측점 204(204a∼204c)가 사용된다. 이 경우, 주 제어부(127)는, 조사 영역(202)내의 기판표면이 투영 광학계(101)의 베스트 포커스 위치에 배치되도록, 계측점 204에서의 계측결과에 근거하여 기판 스테이지(105)를 구동함에 의해 기판W의 높이 및 기울기를 제어(조정)한다. 한편, 방향R에 기판W를 이동시켜서 숏 영역(201)의 주사 노광을 행할 경우에는, 계측점 205(205a∼205c)가 사용된다. 이 경우, 주 제어부(127)는, 조사 영역(202)내의 기판표면이 투영 광학계(101)의 베스트 포커스 위치에 배치되도록, 계측점 205에서의 계측결과에 근거하여 기판 스테이지(105)를 구동함에 의해 기판W의 높이 및 기울기를 제어(조정)한다. 또한, 베스트 포커스 위치는, 최적 노광 상면(像面) 위치라고도 불린다.
도3은, 기판W의 높이 및 기울기를 제어하기 위한 기판 스테이지(105)의 구동에 관한 제어 블록도의 일례다. 본 제어 블록도에서는, PID(Proportional-Integral-Differential)제어를 적용한 예를 도시하고 있고, 감산기(127a), PID보상기(127b), 필터(127c) 및 제한기(127d)가 포함될 수 있다. 감산기(127a), PID보상기(127b), 필터(127c) 및 제한기(127d)는, 주 제어부(127)의 구성 요소로서 설치될 수 있다. 도3에 있어서, PID보상기(127b)에는, P게인(비례 게인), D게인(미분 게인), I게인(적분 게인)이 설정되어 있다. 필터(127c)는, 예를 들면 로우 패스 필터이며, 필터 정수(컷오프 주파수)가 설정되어 있다. 제한기(127d)에는, 기판 스테이지(105)의 구동량을 제한하기 위한 구동제한 값이 설정되어 있다. 주 제어부(127)는, 계측부(102)로 계측된 기판W의 표면위치와 베스트 포커스 위치(목표위치)와의 편차를 감산기(127a)에 의해 산출하고, 해당 편차에 대하여, PID보상기(127b)(게인), 필터(127c), 제한기(127d)(구동제한 값)를 적용한다. 이에 따라, 기판W의 높이 제어 및 기울기 제어를 행하기 위한 기판 스테이지(105)의 조작량(목표구동량)을 결정할 수 있다.
다음에, 복수의 숏 영역에 대한 주사 노광에 대해서, 도4a∼도4c를 참조하면서 설명한다. 도4a∼도4c에는, 이미 주사 노광이 종료한 숏 영역 201a과, 숏 영역 201a의 다음에 주사 노광이 행해지는 숏 영역 201b와, 숏 영역 201b의 다음에 주사 노광이 행해지는 숏 영역 201c가 도시되어 있다. 숏 영역 201a, 201b는, 기판W의 중앙부에 배치되어서 기판W의 에지를 포함하지 않고, 마스크M의 패턴의 전체가 전사되는 완전 숏 영역이다. 한편, 숏 영역 201c는, 기판W의 주연부에 배치되어서 기판W의 에지를 포함하고, 마스크M의 패턴의 일부만이 전사되는(환언하면, 마스크M의 패턴의 일부가 전사되지 않는) 불완전 숏 영역이다.
도4a∼도4c에 있어서의 동그라미표 및 ×표는, 계측부(102)(각 계측점 203∼205)에 의한 표면위치 계측의 대상이 되는 숏 영역상의 계측대상 개소를 나타내고 있다. 동그라미표는, 기판W의 내측에 위치하는 유효 계측대상 개소를 나타내고 있고, ×표는, 기판W의 외측에 위치하고 있는 무효 계측대상 개소를 나타내고 있다.
도4a∼도4c에 도시하는 예에서는, 숏 영역 201b에 대하여 계측대상 개소 311∼313이 설정되고, 숏 영역 201c에 대하여 계측대상 개소 321∼323이 설정되어 있다. 여기에서, 도4a∼도4c에서는, 도시 및 설명을 이해하기 쉽게 하기 위해서, 주사 방향(Y방향)에 있어서, 계측대상 개소가, 계측부(102)에 있어서의 계측점의 간격(거리Lp)보다 넓은 간격으로 배치되어 있지만, 실제로는, 계측점의 간격보다 좁은 간격으로 배치될 수 있다. 또한, 계측대상 개소는, 기판W에 있어서의 숏 영역의 레이아웃 정보(설계 정보)등에 근거하여 사전에 설정되고, 유효/무효의 판단은, 예를 들면 특허문헌 1에 기재된 방법을 사용해서 행해질 수 있다.
도4a는, 숏 영역 201b의 주사 노광을 개시하기 직전의 상태를 도시하고 있다. 주 제어부(127)는, 숏 영역 201a로부터 조사 영역(202)이 빠져나가서 숏 영역 201a의 주사 노광이 종료한다면, 방향R(+Y방향)에의 기판 스테이지(105)의 구동을 종료하고, 숏 영역 201a의 폭분만큼 -X방향으로 기판 스테이지(105)를 구동한다. 이에 따라 도4a에 도시하는 상태가 된다. 그리고, 주 제어부(127)는, 다음 숏 영역 201b의 주사 노광을 행하기 위해서, 방향F(-Y방향)에의 기판 스테이지(105)의 구동(기판W의 주사)을 개시한다.
숏 영역 201b의 주사 노광에서는, 방향F에의 기판W의 주사중, 도4b에 도시한 바와 같이, 계측점(204)이 계측대상 개소(311)에 배치된 타이밍에서, 계측부(102)(계측점 204)에 의해 계측대상 개소(311)의 표면위치 계측이 행해진다. 주 제어부(127)는, 그 계측결과에 근거하여, 조사 영역(202)내에 계측대상 개소(311)가 배치되었을 때에, 조사 영역(202)내의 기판표면이 베스트 포커스 위치에 배치되도록, 기판 스테이지(105)에 의해 기판W의 높이 제어 및 기울기 제어를 행한다. 숏 영역 201b에 있어서의 다른 계측대상 개소 312, 313...에 대하여도 같은 제어가 행해진다. 숏 영역 201b로부터 조사 영역(202)이 빠져나가서 숏 영역 201b의 주사 노광이 종료하면, 주 제어부(127)는, 방향F에의 기판 스테이지(105)의 구동을 종료하고, 숏 영역 201b의 폭분만큼 -X방향으로 기판 스테이지(105)를 구동한다. 그리고, 다음 숏 영역 201c의 주사 노광을 행하기 위해서, 방향R(+Y방향)에의 기판 스테이지(105)의 구동(기판W의 주사)을 개시한다.
숏 영역 201c의 주사 노광에서는, 방향R에의 기판W의 주사중, 도4c에 도시한 바와 같이, 계측점(205)이 계측대상 개소(321)에 배치된 타이밍에서, 계측부(102)(계측점(205))에 의해 계측대상 개소(321)의 표면위치 계측이 행해진다. 주 제어부(127)는, 그 계측결과에 근거하여, 조사 영역(202)내에 계측대상 개소(321)가 배치되었을 때에, 조사 영역(202)내의 기판표면이 베스트 포커스 위치에 배치되도록, 기판 스테이지(105)에 의해 기판W의 높이 제어 및 기울기 제어를 행한다. 숏 영역 201b에 있어서의 다른 계측대상 개소 322, 323...에 대하여도 같은 제어가 행해진다. 숏 영역 201c로부터 조사 영역(202)이 빠져나가서 숏 영역 201c의 주사 노광이 종료하면, 주 제어부(127)는, 방향F에의 기판 스테이지(105)의 구동을 종료한다.
여기에서, 주사 노광중에 있어서의 기판W의 높이(Z방향위치)는, X방향으로 배열된 복수의 계측대상 개소 중 1이상의 유효 계측대상 개소(동그라미표)가 있으면 제어가능하다. 다시 말해, 기판W의 높이 제어는, 계측부(102)에 있어서의 복수의 계측점(204a∼204c)(또는 205a∼205c) 중 1개의 계측점에서 표면위치 계측이 행해졌을 경우에 개시된다. 한편, 주사 노광중에 있어서의 기판W의 기울기(Y축주변의 틸트)는, X방향으로 배열된 복수의 계측대상 개소 중 2이상의 유효 계측대상 개소(동그라미표)가 없으면 제어할 수 없다. 다시 말해, 기판W의 기울기 제어는, 계측부(102)에 있어서의 복수의 계측점(204a∼204c)(또는 205a∼205c) 중 2개의 계측점에서 표면위치 계측이 행해졌을 경우에 개시된다.
본 실시 형태에서는, 1개의 계측점에서 표면위치 계측이 행해졌을 경우에 기판W의 높이 제어를 개시하는 것으로 했지만, 거기에 한정되지 않고, 미리 설정된 제1의 수의 계측점에서 표면위치 계측이 행해졌을 경우에 기판W의 높이 제어를 개시해도 좋다. 마찬가지로, 2개의 계측점에서 표면위치 계측이 행해졌을 경우에 기판W의 기울기 제어를 개시하는 것으로 했지만, 거기에 한정되지 않고, 미리 설정된 제2의 수(소정수)의 계측점에서 표면위치 계측이 행해졌을 경우에 기판W의 높이 제어를 개시해도 좋다. 단, 제2의 수는, 제1의 수보다 많다.
예를 들면, 불완전 숏 영역인 숏 영역 201c의 주사 노광에 있어서, 계측점(205)에서의 표면위치 계측이 최초에 행해지는 계측대상 개소(321)에서는 유효 계측대상 개소(동그라미표)는 1개뿐이다. 한편, 계측점(205)에서의 표면위치 계측이 다음에 행해지는 계측대상 개소(322)에서는 유효 계측대상 개소(동그라미표)가 2개 있다. 그 때문에, 기판W의 높이 제어는, 최초의 계측대상 개소(321)의 계측시에 개시되는 것에 대해, 기판W의 기울기 제어는, 최초의 계측대상 개소(321)의 계측시에는 개시되지 않고, 다음 계측대상 개소(322)의 계측시에 개시되게 된다. 즉, 불완전 숏 영역의 주사 노광에서는, 완전 숏 영역의 주사 노광과 비교하여, 기판W의 기울기 제어의 개시 시각과 조사 영역(202)에서의 노광 개시 시각까지의 기간이 단축되게 된다.
이러한 불완전 숏 영역의 주사 노광에 있어서, 완전 숏 영역의 주사 노광과 마찬가지로 기판W의 기울기 제어를 행하면, 기판W의 기울기 제어로 발생한 기판W의 진동(진폭)을 노광 개시 시각까지 허용 범위에 들어가는 것이 곤란해진다. 그 결과, 마스크M의 패턴의 전사 정밀도가 저하할 수 있다. 즉, 기판의 기울기 제어로 발생해서 노광 개시후도 잔존하는 기판의 진동이, 기판 위에의 패턴 형성 정밀도에 영향을 주는 경우가 있다. 여기에서, 기판W의 진동(진폭)이란, 기판W의 목표 높이 및 목표 기울기에 대한 제어 편차로서 규정될 수 있다. 또한, 기판W는 기판 스테이지(105)에 의해 보유되어 있고, 기판W와 기판 스테이지(105)를 일체로 하여서 생각할 수 있기 때문에, 기판W의 진동은, 기판 스테이지(105)의 목표 높이 및 목표 기울기에 대한 제어 편차라고 잡을 수도 있다.
상기 사항에 대해서, 도5를 참조하면서 구체적으로 설명한다. 도5는, 기판W의 높이Z(Z방향위치) 및 기울기TiltX(Y축주변의 틸트)의 제어 프로파일과, 그 때의 기판W의 진동(제어 편차Err)을, 도시한 도면이다. 횡축은 시각T를 나타내고 있다. 도5a∼5b는, 완전 숏 영역(예를 들면 숏 영역 201b)의 주사 노광의 경우를 도시하고 있고, 도5a는 기판W의 높이Z 및 기울기TiltX의 제어량을, 도5b는 기판W의 진동을 각각 도시하고 있다. 도5c∼5d는, 불완전 숏 영역(예를 들면 숏 영역 201c)의 주사 노광의 경우를 도시하고 있고, 도5c는 기판W의 높이Z 및 기울기TiltX의 제어량을, 도5d는 기판W의 진동을 각각 도시하고 있다.
또한, 도5에 있어서, 시각t0은, 계측부(102)에 있어서의 복수의 계측점(204a∼204c)(또는 205a∼205c) 중 1개의 계측점에서 표면위치 계측이 행해져서 기판W의 높이 제어가 개시되는 시각이다. 시각t1은, 계측부(102)에 있어서의 복수의 계측점(204a∼204c)(또는 205a∼205c) 중 2개의 계측점에서 표면위치 계측이 행해져서 기판W의 기울기 제어가 개시되는 시각이다. 또한, 시각t2는, 조사 영역(202)이 숏 영역에 도달해서 해당 숏 영역의 노광이 개시되는 시각(노광 개시 시각)이다.
완전 숏 영역(예를 들면 숏 영역 201b)의 주사 노광에서는, 최초의 표면위치 계측이 2개이상의 계측점에서 행해지기 때문에, 도5a에 도시한 바와 같이, 기판W의 높이 제어와 기판W의 기울기 제어와가 같은 타이밍에서 개시될 수 있다(즉, 시각t0≒시각t1). 본 실시 형태에서는, 시각t0(t1)과 노광 개시 시각t2과의 시각차에 있어서 기판W의 진동(제어 편차Err)이 허용 범위에 들어가도록 설정된 제어 프로파일을 사용하여, 기판W의 높이 제어 및 기울기 제어를 행한다. 이에 따라, 도5b에 도시한 바와 같이, 노광 개시 시각t2까지 기판W의 진동을 허용 범위에 들어갈 수 있다. 여기에서, 제어 프로파일은, 기판 스테이지(105)의 구동 프로파일로서 규정할 수 있고, 예를 들면, 기판W의 목표 높이 및 목표 기울기, 기판 스테이지(105)의 구동속도, 구동제한 값, 구동시간등에 의해 결정될 수 있다. 본 실시 형태에 있어서, 기판 스테이지(105)의 구동속도, 구동제한 값 및 구동시간은 각각, 기판W의 높이 방향 및 기울기 방향에의 기판 스테이지(105)의 구동에 관한 것이다.
한편, 불완전 숏 영역(예를 들면 숏 영역 201c)의 주사 노광에서는, 최초의 표면위치 계측에서는 기판W의 기울기 제어가 개시되지 않기 때문에, 도5c에 도시한 바와 같이, 기판W의 기울기 제어의 개시 시각t1과 노광 개시 시각t2와의 시각차가 단축되어버린다. 이 경우에 있어서, 종래에서는, 완전 숏 영역과 마찬가지의 제어 프로파일을 사용해서 기판W의 기울기 제어가 행해지고 있었지만, 그러면, 도5d에 도시한 바와 같이, 기판W의 기울기 제어에 의해 발생한 기판W의 진동이 노광 개시후에 있어서도 잔존할 수 있다. 즉, 기판W의 기울기 제어에 의해 발생한 기판W의 진동을 노광 개시 시각t2까지 허용 범위에 들어가는 것이 곤란해질 수 있다.
그래서, 본 실시 형태의 노광 장치(100)(주 제어부 127)는, 기판W의 기울기 제어의 개시 시각t1과 노광 개시 시각t2와의 시각차(이하에서는, 단지 「시각차」라고 부르는 경우가 있다)에 따라서, 기판W의 기울기 제어에 사용하는 제어 프로파일을 결정(변경)한다. 예를 들면, 주 제어부(127)는, 시각차가 역치보다 작은 경우의 쪽이, 시각차가 해당 역치보다 큰 경우보다, 기판W의 기울기 제어로 발생하는 기판W의 진동이 작아지도록 제어 프로파일을 결정하면 좋다. 또한, 주 제어부(127)는, 시각차가 작을수록, 기판W의 기울기 제어로 생기는 기판W의 진동이 작아지도록 제어 프로파일을 결정해도 좋다. 이에 따라, 예를 들면 불완전 숏 영역의 주사 노광에 있어서, 기판W의 기울기 제어로 발생해서 노광 개시후도 잔존하는 기판W의 진동을 저감할 수 있다. 이하에, 기판W의 기울기 제어의 개시 시각t1과 노광 개시 시각t2와의 시각차에 따른 제어 프로파일의 결정 예에 대해서 설명한다.
[제어 프로파일의 결정 예]
도6은, 본 실시 형태에 있어서, 기판W의 기울기 제어에 사용하는 제어 프로파일(기울기 제어 프로파일)의 결정 예를 도시한 도면이다. 도6에 있어서, 실선(Z)은, 기판W의 높이 제어 프로파일을 나타내고 있고, 파선(TiltX)은, 종래에 있어서의 기판W의 기울기 제어 프로파일을 나타내고 있고, 일점쇄선(TiltX')은, 본 실시 형태에 있어서의 기판W의 기울기 제어 프로파일을 나타내고 있다. 횡축은 시각T를 나타내고 있다. 여기에서, 기판W의 기울기 제어 프로파일은, 상술한 것 같이, 기판 스테이지(105)의 구동 프로파일로서 규정할 수 있고, 예를 들면, 기판W의 목표 기울기, 기판W의 기울기 방향에의 기판 스테이지(105)의 구동속도, 구동제한 값, 구동시간등에 의해 결정될 수 있다.
도6a는, 기판 스테이지(105)의 구동제한 값을 변경 함에 의해 기판W의 기울기 제어 프로파일을 결정하는 예를 도시한 도면이다. 예를 들면, 종래(TiltX)에서는, 시각차가 역치tlim보다 작을 경우(불완전 숏 영역)이여도, 기판 스테이지(105)의 구동제한 값으로서, 완전 숏 영역의 주사 노광에서 사용된 값Limit를 사용하여, 기판W의 기울기 제어를 행하였다. 한편, 본 실시 형태(TiltX')에서는, 주 제어부(127)는, 시각차가 역치tlim보다 작을 경우, 기판 스테이지(105)의 구동제한 값을, 완전 숏 영역의 주사 노광에서 사용된 값Limit보다 작은 값Limit'으로 변경하고, 기판W의 기울기 제어를 행한다. 이에 따라, 기판W의 기울기를 완만하게 변화시킬 수 있기 때문에, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감하고, 노광 개시후에 있어서 잔존하는 기판W의 진동을 저감할 수 있다.
또한, 주 제어부(127)는, 시각차가 역치tlim보다 작을 경우, 기판W의 목표 기울기를 변경해도 좋다. 구체적으로는, 기판W의 목표 기울기를, 완전 숏 영역의 주사 노광에서 사용된 값Target보다 작은 값Target'으로 변경해도 좋다. 이것에 의해서도, 기판W의 기울기를 완만하게 변화시킬 수 있기 때문에, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감할 수 있다.
도6b는, 기판W의 기울기 제어의 개시 타이밍에 있어서의 기판 스테이지(105)의 구동속도(이하에서는, 「초기 구동속도」라고 부르는 경우가 있다)를 변경함에 의해 기판W의 기울기 제어 프로파일을 결정하는 예를 도시한 도면이다. 예를 들면, 종래(TiltX)에서는, 시각차가 역치tlim보다 작을 경우(불완전 숏 영역)이여도, 기판 스테이지(105)의 초기 구동속도로서, 완전 숏 영역의 주사 노광에서 사용된 값Vd를 사용하여, 기판W의 기울기 제어를 행하였다. 한편, 본 실시 형태(TiltX')에서는, 주 제어부(127)는, 시각차가 역치tlim보다 작을 경우, 기판 스테이지(105)의 초기 구동속도를, 완전 숏 영역의 주사 노광에서 사용된 값Vd보다 작은 값Vd'로 변경하고, 기판W의 기울기 제어를 행한다. 이 경우, 기판 스테이지(105)의 구동시간이 종래의 기울기 제어와 마찬가지로 되도록, 기판W가 목표 기울기Target가 될 때까지의 기판 스테이지(105)의 구동속도를 제어하면 좋다(도6b에 도시하는 예에서는 구동속도를 값Vd'로 일정하게 하고 있다). 이것에 의해서도, 기판W의 기울기를 완만하게 변화시킬 수 있기 때문에, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감할 수 있다.
또한, 주 제어부(127)는, 기판 스테이지(105)의 초기 구동속도 대신에, 기판W가 목표 기울기Target가 될 때까지의 기판 스테이지(105)의 평균 구동속도를 변경해도 좋다. 구체적으로는, 주 제어부(127)는, 시각차가 역치tlim보다 작을 경우, 기판 스테이지(105)의 평균 구동속도를, 완전 숏 영역의 주사 노광에서 사용된 값보다 작은 값으로 변경하고, 기판W의 기울기 제어를 행해도 좋다.
도6c는, 기판W가 목표 기울기Target가 될 때까지의 기판 스테이지(105)의 구동시간을 변경함에 의해 기판W의 기울기 제어 프로파일을 결정하는 예를 도시한 도면이다. 예를 들면, 종래(TiltX)에서는, 시각차가 역치tlim보다 작을 경우(불완전 숏 영역)이여도, 기판 스테이지(105)의 구동시간으로서, 완전 숏 영역의 주사 노광에서 사용된 값Td를 사용하여, 기판W의 기울기 제어를 행하였다. 한편, 본 실시 형태(TiltX')에서는, 주 제어부(127)는, 시각차가 역치tlim보다 작을 경우, 기판 스테이지(105)의 구동시간을, 완전 숏 영역의 주사 노광에서 사용된 값Td보다 긴 값Td'로 변경하고, 기판W의 기울기 제어를 행한다. 이것에 의해서도, 기판W의 기울기를 완만하게 변화시킬 수 있기 때문에, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감할 수 있다.
또한, 필터(127c)의 필터 정수(컷오프 주파수)를 변경해도, 동일한 효과를 얻을 수 있다. 구체적으로는, 주 제어부(127)는, 필터(127c)의 필터 정수(컷오프 주파수)를, 완전 숏 영역의 주사 노광에서 사용된 값보다 작은 값으로 변경함으로써, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감할 수 있다.
여기에서, 기판 스테이지(105)등의 장치구성에 따라서는, 도6d에 도시한 바와 같이, 기판 스테이지(105)의 구동시간을, 완전 숏 영역의 주사 노광에서 사용된 값보다 짧은 값으로 변경해도 좋다. 또는, 기판 스테이지(105)의 구동속도(초기 구동속도, 평균 구동속도)를, 완전 숏 영역의 주사 노광에서 사용된 값보다 큰 값으로 변경해도 좋다. 이 경우, 기판W의 기울기를 목표 기울기에 단시간에 도달시킬 수 있기 때문에, 기판W의 기울기 제어를 위한 기판 스테이지(105)의 구동의 종료 시각부터 노광 개시 시각t2까지의 기간을 연장할 수 있다. 즉, 이 경우, 기판W의 기울기 제어로 발생하는 기판W의 진동은 증가할 수 있지만, 노광 개시 시각t2까지의 기간이 연장되기 때문에, 노광 개시 시각t2까지의 기판W의 진동의 저감량을 늘리고, 노광 개시후에 있어서 잔존하는 기판W의 진동을 저감할 수 있다. PID보상기(127b)의 제어 게인을 변경해도, 마찬가지의 효과를 얻을 수 있다.
상술한 것 같이, 본 실시 형태의 노광 장치(100)는, 기판W의 기울기 제어의 개시 시각t1과 노광 개시 시각t2와의 시각차에 따라서, 기판W의 기울기 제어 프로파일을 결정(변경)한다. 이에 따라, 예를 들면 불완전 숏 영역의 주사 노광등, 해당 시각차가 단축되었을 경우에 있어서도, 기판W의 기울기 제어로 발생하는 기판W의 진동을 저감하고, 노광 개시후에 잔존하는 기판W의 진동을 저감할 수 있다.
<제2실시 형태>
본 발명에 따른 제2실시 형태에 대해서 설명한다. 여기에서는, 본 발명에 따른 주사 노광 처리의 플로우에 대해서 설명한다. 도7은, 주사 노광 처리를 도시하는 흐름도다. 해당 흐름도의 각 공정은, 주 제어부(127)에 의해 제어될 수 있다. 또한, 본 실시 형태는, 제1실시 형태를 기본적으로 이어받는 것으로, 장치구성이나 주사 노광의 내용등은 제1실시 형태에서 설명한 대로다.
S1에서는, 주 제어부(127)는, 도시되지 않은 기판 반송 기구를 사용하여, 기판W를 기판 스테이지(105) 위에 반입하고, 척에 보유시킨다. S2에서는, 주 제어부(127)는, 후술하는 S6의 글로벌 얼라인먼트 공정을 위한 사전계측 및 보정을 실행한다(프리얼라인먼트 공정). 구체적으로는, 주 제어부(127)는, 글로벌 얼라인먼트에서 사용하는 도시되지 않은 고배율의 얼라인먼트 스코프의 시야에 기판의 마크가 들어가도록, 도시되지 않은 저배율의 얼라인먼트 스코프를 사용해서 기판W의 위치나 회전 등의 어긋남양을 계측해서 보정한다. S3에서는, 주 제어부(127)는, 예를 들면 계측부(102)를 사용해서 기판의 복수개소의 표면높이를 계측하고, 기판W의 전체적인 기울기를 산출해서 보정한다(글로벌 틸트 공정). 본 공정에서는, 기판W에 있어서의 복수의 숏 영역 중 몇개인가의 숏 영역(샘플 숏 영역)이, 표면높이를 계측하는 복수 개소로서 선택될 수 있다.
S4에서는, 주 제어부(127)는, 주사 노광에 사용되는 기판W의 높이 제어 프로파일 및 기울기 제어 프로파일을 결정하기 위한 결정 처리를 행한다. 높이 제어 프로파일이 사전에 결정되어 있고 변경할 필요가 없을 경우에는, 본 공정에 있어서, 기울기 제어 프로파일만이 결정될 수 있다. 해당 결정 처리는, 예를 들면, 같은 이전의 처리가 행해진 복수의 기판W를 포함하는 로트의 선두기판이나 더미 기판을 사용해서 행해지고, 기울기 제어 프로파일을 결정한 후의 기판W에 대해서는 본 공정이 생략될 수 있다. 여기에서, 기울기 제어 프로파일의 결정 처리는, 기판W(예를 들면 선두기판이나 더미 기판)의 숏 영역마다 행해져도 좋지만, 예를 들면, 같은 형상을 갖는 숏 영역을 그룹화하고, 각 그룹의 대표 숏 영역에 대해서만 행해져도 좋다. 본 공정의 상세에 대해서는 후술한다.
S5에서는, 주 제어부(127)는, 투영 광학계(101)내의 투영 렌즈의 기울기나 상면 만곡 등의 보정값을 산출해서 보정한다(투영 렌즈 보정공정). 보정값의 산출에는, 기판 스테이지(105) 위에 설치된 광량 센서 및 기준 마크와, 마스크 스테이지(103) 위에 설치된 기준 플레이트가, 사용될 수 있다. 구체적으로는, 주 제어부(127)는, 광량 센서에, 기판 스테이지(105)를 XYZ의 각 축 방향으로 주사했을 때의 노광 광의 광량변화를 계측시킨다. 그리고, 주 제어부(127)는, 광량 센서의 출력인 광량 변화량에 근거하여, 기준 플레이트에 대한 기준 마크의 어긋남 양을 구하고, 어긋남 양을 보정하기 위한 보정값을 산출한다.
S6에서는, 도시되지 않은 고배율의 얼라인먼트 스코프를 사용하여, 기판W상의 얼라인먼트 마크를 계측하고, 기판W 전체의 위치 어긋남 양(회전 어긋남 양도 포함한다) 및 각 숏 영역 공통의 위치 어긋남 양을 산출해서 보정한다(글로벌 얼라인먼트 공정). 여기에서, 얼라인먼트 마크를 정밀도 좋게 계측하기 위해서는, 얼라인먼트 마크의 콘트라스트가 베스트 콘트라스트 위치(높이)에 없으면 안된다. 이 베스트 콘트라스트 위치의 계측에는, 계측부(102)와 얼라인먼트 스코프가 사용될 수 있다. 구체적으로는, 주 제어부(127)는, 미리 정해진 높이(Z방향)로 기판 스테이지(105)를 이동시키고, 얼라인먼트 스코프에 콘트라스트를 계측시킴과 동시에, 계측부(102)에 표면높이를 계측시키는 공정을 수회 되풀이한다. 이 때, 주 제어부(127)는, 표면높이의 계측결과와 각 표면 높이에 따른 콘트라스트의 계측결과를 관련시켜서 보존한다. 그리고, 주 제어부(127)는, 얻어진 복수의 콘트라스트의 계측결과에 근거하여, 가장 콘트라스트가 높은 표면높이를 구하고, 베스트 콘트라스트 위치(높이)로 결정한다.
S7에서는, 주 제어부(127)는, 노광 대상이 되는 숏 영역의 표면위치를 계측부(102)에 계측시키면서, 주사 노광을 행한다(주사 노광 공정). 이 공정은, 제1실시 형태에서 설명한 방법에 따라서 행해질 수 있다. 구체적으로는, 주 제어부(127)는, 기판W(숏 영역)를 주사하면서, 조사 영역(202)에서의 노광에 앞서 계측부(102)의 계측점(204 또는 205)에서 숏 영역의 표면위치 계측을 행하고, 그 계측결과에 근거하여 기판W의 높이 제어 및 기울기 제어를 행한다. 본 공정에 있어서의 기판W의 높이 제어 및 기울기 제어에서는, 노광 대상의 숏 영역에 대하여 S4에서 결정된 높이 제어 프로파일 및 기울기 제어 프로파일이 적용될 수 있다. 본 공정에서는, 기판W에 있어서의 모든 숏 영역에 대하여 주사 노광이 행해질 수 있다. 또한, S8에서는, 주 제어부(127)는, 기판 스테이지(105)에 의한 기판W의 보유를 종료시켜, 도시되지 않은 기판 반송 기구를 사용해서 기판 스테이지(105) 위로부터 기판W를 반출한다. 이렇게 하여, 1매의 기판W에 대한 일련의 노광 공정이 종료한다. 다른 기판W가 있을 경우에는, 상기한 주사 노광 처리가 반복하여 행해질 수 있다.
다음에, 도7에 도시하는 흐름도의 S4에서 행해지는 기울기 제어 프로파일의 결정 처리에 대해서 설명한다. 도8은, 기울기 제어 프로파일의 결정 처리를 도시하는 흐름도다. 해당 흐름도의 각 공정은, 주 제어부(127)에 의해 제어될 수 있다. 본 실시 형태에서는, 구동 파라미터가 서로 다른 복수의 구동조건에서 기판 스테이지(105)를 구동하고, 해당 복수의 구동조건 중 기판W의 진동(제어 편차)의 최대치가 가장 작아지는 구동조건을 적용해서 기울기 제어 프로파일을 결정하는 예를 설명한다. 구동 파라미터로서는, 예를 들면, 제1실시 형태에서 설명한 바와 같이, 기판 스테이지(105)의 구동제한 값, 구동속도, 구동시간등이 사용될 수 있다. 이하의 설명에서는, 구동 파라미터로서 기판 스테이지(105)의 구동시간을 사용하여, 복수의 구동조건으로서, 구동시간이 8ms로부터 5ms까지의 사이에서 1ms씩 상이한 4종류의 구동조건을 사용하는 예에 대해서 설명한다.
S4-1에서는, 주 제어부(127)는, 복수의 구동조건 중 1개의 구동조건을 설정한다. S4-2에서는, 주 제어부(127)는, S4-1에서 설정된 1개의 구동조건을 사용해서 기판 스테이지(105)를 구동한다. 본 공정에서는, S7의 공정에서의 주사 노광과 마찬가지의 기판 스테이지(105)의 구동을, 노광 광을 기판W에 조사하지 않는 상태에서 행하는 것이 바람직하다. 또한, 본 공정에서는, 기판 스테이지(105)의 구동중, 계측부(102)(계측점 203∼205의 어느 것이여도 좋다)에 의해 기판W의 표면위치 계측이 행해질 수 있다.
S4-3에서는, 주 제어부(127)는, S4-2에 있어서의 기판 스테이지(105)의 구동중에 계측부(102)에서 행해진 기판표면 계측의 결과에 근거하여, 기판W의 진동(제어 편차)을 취득한다(산출한다). S4-4에서는, 주 제어부(127)는, 복수의 구동조건의 모두에 있어서 기판W의 진동을 취득한 것인가 아닌가를 판단한다. 본 실시 형태에서는, 상술한 것 같이, 8ms, 7ms, 6ms, 5ms의 4종류의 구동시간의 각각에 대해서 기판W의 진동을 취득한 것인가 아닌가를 판단한다. 모든 구동조건에서 기판W의 진동을 취득하지 않고 있을 경우에는 S4-1에 되돌아가고, 구동조건을 바꾸어서 S4-1∼S4-3을 되풀이한다. 한편, 모든 구동조건에서 기판W의 진동을 취득했을 경우에는 S4-5에 진행된다.
S4-5에서는, 주 제어부(127)는, 기울기 제어 프로파일을 결정한다. 예를 들면, 주 제어부(127)는, 복수의 구동조건 중에서, 기판W의 진동(제어 편차)의 최대치가 가장 작아진 구동조건을 선택하고, 선택한 구동조건을 기판 스테이지(105)의 구동 프로파일에 적용 함에 의해 기울기 제어 프로파일을 결정한다. 또한, 주 제어부(127)는, 기판W의 진동의 최대치가 아니고, 기판W의 진동(제어 편차)의 표준편차가 가장 작아진 구동조건을 기판 스테이지(105)의 구동 프로파일에 적용함에 의해 기울기 제어 프로파일을 결정해도 좋다. 이러한 기울기 제어 프로파일의 결정 처리는, 숏 영역마다(또는 대표 숏 영역마다) 행해질 수 있다.
여기에서는, 기판 스테이지(105)의 구동시간을 구동 파라미터로서 사용했지만, 기판 스테이지(105)의 구동제한 값이나 구동속도를 구동 파라미터로서 사용해도 좋다. 예를 들면, 베스트 포커스 위치에 기판W의 표면을 배치하기 위한 기판 스테이지(105)의 구동량은, 기판W의 평탄도에 따라서 다르다. 기판W의 평탄도가 낮으면, 그 만큼 기판 스테이지(105)의 구동량이 커지고, 기판 스테이지(105)의 구동성능을 초과하는 구동을 행했을 경우등에서는, 기판W의 진동이 커질 수 있다. 그 때문에, 기판W의 평탄도가 낮은 로트에 대하여 노광 처리를 행할 경우에는, 기판 스테이지(105)의 구동제한 값을 구동 파라미터로서 사용하면 좋다. 기판W의 평탄도는, 예를 들면 외부의 계측장치등에 의해 사전에 계측될 수 있다.
또한, 기판 스테이지(105)의 구동제한 값을 구동 파라미터로서 사용하면, 기판W의 기울기가 초기의 목표 기울기(Target)에 도달하지 않고 제어 잔차가 발생하고, 기판상에의 패턴 형성 정밀도의 점에서 불리해질 수 있다. 그 때문에, 높은 패턴 형성제도를 요구하는 기판W(로트)의 주사 노광을 행할 경우나, 투영 광학계(101)의 초점심도가 작을 경우등에는, 기판 스테이지(105)의 구동시간 및 구동속도의 적어도 한쪽을 구동 파라미터로서 사용하면 좋다.
또한, 기판 스테이지(105)의 구동을 개시하는 시각과 조사 영역(202)에서의 숏 영역의 노광 개시 시각과의 시간간격은, 주사 노광시의 기판W(기판 스테이지(105))의 주사 속도에 따라서 상이하다. 즉, 기판W의 주사 속도가 느릴수록, 해당 시간간격이 길어지는 경향에 있다. 따라서, 해당 시간간격이 비교적 (소정의 간격보다) 길면, 다시 말해, 기판W의 주사 속도가 비교적 (소정의 속도보다) 느리면, 기판 스테이지(105)의 구동시간 및 구동속도의 적어도 한쪽을 구동 파라미터로서 사용하는 것이 효과적이다. 예를 들면, 기판W의 주사 속도가 비교적 느린 기판W(로트)에 대하여 노광 처리를 행할 경우에는, 기판 스테이지(105)의 구동시간 및 구동속도의 적어도 한쪽을 구동 파라미터로서 사용하면 좋다. 또한, PID보상기(127b)의 제어 게인을 변경해도, 마찬가지의 효과를 얻을 수 있다.
<물품의 제조 방법의 실시 형태>
본 발명의 실시 형태에 따른 물품의 제조 방법은, 예를 들면, 반도체 디바이스 등의 마이크로디바이스나 미세구조를 갖는 소자등의 물품을 제조하는데 적합하다. 본 실시 형태의 물품의 제조 방법은, 기판에 도포된 감광제에 상기한 노광 장치를 사용해서 잠상 패턴을 형성하는 공정(기판을 노광하는 공정)과, 이러한 공정으로 잠상 패턴이 형성된 기판을 현상(가공)하는 공정을 포함한다. 더욱, 이러한 제조 방법은, 다른 주지의 공정(산화, 성막, 증착, 도핑, 평탄화, 에칭, 레지스트 박리, 다이싱, 본딩, 패키징 등)을 포함한다. 본 실시 형태의 물품의 제조 방법은, 종래의 방법과 비교하여, 물품의 성능·품질·생산성·생산 코드 중 적어도 1개에 있어서 유리하다.
그 밖의 실시예
또한, 본 발명의 실시예(들)는, 기억매체(보다 완전하게는 '비일시적 컴퓨터 판독 가능한 기억매체'라고도 함)에 레코딩된 컴퓨터 실행가능한 명령들(예를 들면, 하나 이상의 프로그램)을 판독하고 실행하여 상술한 실시예(들)의 하나 이상의 기능을 수행하는 것 및/또는 상술한 실시예(들)의 하나 이상의 기능을 수행하기 위한 하나 이상의 회로(예를 들면, 특정 용도 지향 집적회로(ASIC))를 구비하는 것인, 시스템 또는 장치를 갖는 컴퓨터에 의해 실현되고, 또 예를 들면 상기 기억매체로부터 상기 컴퓨터 실행가능한 명령을 판독하고 실행하여 상기 실시예(들)의 하나 이상의 기능을 수행하는 것 및/또는 상술한 실시예(들)의 하나 이상의 기능을 수행하는 상기 하나 이상의 회로를 제어하는 것에 의해 상기 시스템 또는 상기 장치를 갖는 상기 컴퓨터에 의해 행해지는 방법에 의해 실현될 수 있다. 상기 컴퓨터는, 하나 이상의 프로세서(예를 들면, 중앙처리장치(CPU), 마이크로처리장치(MPU))를 구비하여도 되고, 컴퓨터 실행 가능한 명령을 판독하여 실행하기 위해 별개의 컴퓨터나 별개의 프로세서의 네트워크를 구비하여도 된다. 상기 컴퓨터 실행가능한 명령을, 예를 들면 네트워크나 상기 기억매체로부터 상기 컴퓨터에 제공하여도 된다. 상기 기억매체는, 예를 들면, 하드 디스크, 랜덤액세스 메모리(RAM), 판독전용 메모리(ROM), 분산형 컴퓨팅 시스템의 스토리지, 광디스크(콤팩트 디스크(CD), 디지털 다기능 디스크(DVD) 또는 블루레이 디스크(BD)TM등), 플래시 메모리 소자, 메모리 카드 등 중 하나 이상을 구비하여도 된다.
발명은 상기 실시 형태에 제한되는 것이 아니고, 발명의 정신 및 범위로부터 이탈하지 않고, 여러 가지 변경 및 변형이 가능하다. 따라서, 발명의 범위를 밝히기 위해서 청구항을 첨부한다.
100: 노광 장치, 101: 투영 광학계, 102: 계측부, 103: 마스크 스테이지, 104: 제어부, 105: 기판 스테이지, 106: 조명 광학계, 201: 숏 영역, 202: 조사 영역, 203∼205: 계측점

Claims (10)

  1. 노광 광에 대하여 기판을 주사함에 의해 상기 기판의 숏 영역을 노광하는 노광 장치로서,
    상기 기판의 주사중에, 상기 노광 광에 의한 상기 숏 영역의 노광에 앞서, 복수의 계측점에서 상기 숏 영역의 표면위치를 계측하는 계측부와,
    상기 계측부의 계측결과에 근거하여, 상기 기판의 기울기 제어를 행하는 제어부를 포함하고,
    상기 기판의 기울기 제어는, 상기 복수의 계측점 중 소정수의 계측점에서 표면위치가 계측되었을 경우에 개시되고,
    상기 제어부는, 상기 기판의 기울기 제어의 개시 시각과 상기 노광 광에 의한 상기 숏 영역의 노광 개시 시각과의 시각차에 따라서, 상기 기판의 기울기 제어에 사용하는 제어 프로파일을 결정하는, 것을 특징으로 하는 노광 장치.
  2. 제 1 항에 있어서,
    상기 제어부는, 상기 시각차가 역치보다 작은 경우의 쪽이, 상기 시각차가 상기 역치보다 큰 경우보다, 상기 기판의 기울기 제어로 발생하는 상기 기판의 진동이 작아지도록, 상기 제어 프로파일을 결정하는, 것을 특징으로 하는 노광 장치.
  3. 제 1 항에 있어서,
    상기 제어부는, 상기 시각차가 작을수록, 상기 기판의 기울기 제어로 발생하는 상기 기판의 진동이 작아지도록, 상기 제어 프로파일을 결정하는, 것을 특징으로 하는 노광 장치.
  4. 제 1 항에 있어서,
    상기 제어부는, 상기 계측부의 계측결과에 근거하여, 상기 기판의 높이 제어를 더욱 행하고,
    상기 기판의 높이 제어는, 상기 복수의 계측점 중 제1의 수의 계측점에서 표면위치가 계측되었을 경우에 개시되고,
    상기 기판의 기울기 제어는, 상기 복수의 계측점 중, 상기 제1의 수보다 많은 제2의 수인 상기 소정수의 계측점에서 표면위치가 계측되었을 경우에 개시되는, 것을 특징으로 하는 노광 장치.
  5. 제 1 항에 있어서,
    상기 기판을 보유해서 이동가능한 스테이지를 더욱 포함하고,
    상기 제어부는, 상기 스테이지의 구동에 의해 상기 기판의 기울기를 제어하고, 상기 제어 프로파일로서 상기 스테이지의 구동 프로파일을 상기 시각차에 따라서 결정하는, 것을 특징으로 하는 노광 장치.
  6. 제 5 항에 있어서,
    상기 제어부는, 상기 스테이지의 구동속도, 상기 스테이지의 구동량을 제한하기 위한 구동제한 값, 및 상기 스테이지의 구동시간 중 적어도 1개를 변경함에 의해, 상기 구동 프로파일을 결정하는, 것을 특징으로 하는 노광 장치.
  7. 제 1 항에 있어서,
    상기 복수의 계측점은, 상기 기판의 주사 방향과 교차하는 방향을 따라서 배열되어 있는, 것을 특징으로 하는 노광 장치.
  8. 제 1 항에 있어서,
    상기 제어부는, 원판 패턴의 일부만이 전사되는 불완전 숏 영역을 노광할 경우에, 상기 시각차에 따라서 상기 제어 프로파일을 결정하는, 것을 특징으로 하는 노광 장치.
  9. 제 1 항에 있어서,
    상기 기판은, 복수의 숏 영역을 포함하고,
    상기 제어부는, 상기 제어 프로파일을 숏 영역마다 결정하는, 것을 특징으로 하는 노광 장치.
  10. 청구항 1 내지 9 중 어느 한 항에 기재된 노광 장치를 사용해서 기판을 노광하는 노광 공정과,
    상기 노광 공정으로 노광된 상기 기판을 가공하는 가공 공정을 포함하고,
    상기 가공 공정으로 가공된 상기 기판으로부터 물품을 제조하는 것을 특징으로 하는 물품의 제조 방법.
KR1020200089337A 2019-08-05 2020-07-20 노광 장치 및 물품의 제조 방법 KR20210018057A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2019-143917 2019-08-05
JP2019143917A JP7312053B2 (ja) 2019-08-05 2019-08-05 露光装置、および物品の製造方法

Publications (1)

Publication Number Publication Date
KR20210018057A true KR20210018057A (ko) 2021-02-17

Family

ID=74303604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200089337A KR20210018057A (ko) 2019-08-05 2020-07-20 노광 장치 및 물품의 제조 방법

Country Status (3)

Country Link
JP (1) JP7312053B2 (ko)
KR (1) KR20210018057A (ko)
CN (1) CN112327579B (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116877A (ja) 1996-10-14 1998-05-06 Canon Inc 面位置検出装置および方法、それを用いた露光方式、ならびにデバイス製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003871A (ja) * 1999-06-14 2000-01-07 Nikon Corp 露光方法
JP3278061B2 (ja) * 1999-06-14 2002-04-30 株式会社ニコン 走査露光方法、走査型露光装置、及び前記方法を用いるデバイス製造方法
JP2001168024A (ja) * 1999-09-29 2001-06-22 Nikon Corp 露光装置及びデバイス製造方法
JP2002270498A (ja) * 2001-03-14 2002-09-20 Nikon Corp 露光装置及び露光方法
JP2003203855A (ja) * 2002-01-10 2003-07-18 Nikon Corp 露光方法及び露光装置、並びにデバイス製造方法
JP4840958B2 (ja) * 2003-10-21 2011-12-21 キヤノン株式会社 走査露光装置及びデバイス製造方法
JP4746081B2 (ja) * 2008-09-29 2011-08-10 キヤノン株式会社 走査露光装置およびデバイス製造方法
JP4869425B2 (ja) * 2010-06-21 2012-02-08 キヤノン株式会社 走査型露光装置及びデバイス製造方法
JP6364059B2 (ja) * 2016-11-18 2018-07-25 キヤノン株式会社 露光装置、露光方法、および物品の製造方法
JP6882091B2 (ja) * 2017-06-21 2021-06-02 キヤノン株式会社 露光装置及び物品の製造方法
JP6952590B2 (ja) * 2017-11-30 2021-10-20 キヤノン株式会社 露光装置、露光方法、および物品の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116877A (ja) 1996-10-14 1998-05-06 Canon Inc 面位置検出装置および方法、それを用いた露光方式、ならびにデバイス製造方法

Also Published As

Publication number Publication date
JP7312053B2 (ja) 2023-07-20
CN112327579A (zh) 2021-02-05
JP2021026113A (ja) 2021-02-22
CN112327579B (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
JP4315455B2 (ja) 露光装置及びデバイス製造方法
JP7147738B2 (ja) 計測装置及び計測方法、並びに露光装置
JP6267530B2 (ja) 露光装置、および物品の製造方法
JP5137879B2 (ja) 露光装置及びデバイス製造方法
US10488764B2 (en) Lithography apparatus, lithography method, and method of manufacturing article
JP6806509B2 (ja) 露光装置及び物品の製造方法
JP2019008029A (ja) 露光装置及び物品の製造方法
JP6436856B2 (ja) 露光装置、露光方法、および物品の製造方法
KR20210018057A (ko) 노광 장치 및 물품의 제조 방법
KR102523304B1 (ko) 노광 장치 및 물품의 제조 방법
KR102347699B1 (ko) 노광 장치, 노광 방법, 및 물품의 제조 방법
JP7022611B2 (ja) 露光装置の制御方法、露光装置、及び物品製造方法
JP7336343B2 (ja) 露光装置、露光方法、および物品の製造方法
KR20220117808A (ko) 노광 장치, 및 물품의 제조 방법
JP2007184649A (ja) 露光方法、露光装置およびデバイス製造方法
JPH07321014A (ja) 投影露光装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal