KR20210006440A - 안경 렌즈 - Google Patents

안경 렌즈 Download PDF

Info

Publication number
KR20210006440A
KR20210006440A KR1020207035199A KR20207035199A KR20210006440A KR 20210006440 A KR20210006440 A KR 20210006440A KR 1020207035199 A KR1020207035199 A KR 1020207035199A KR 20207035199 A KR20207035199 A KR 20207035199A KR 20210006440 A KR20210006440 A KR 20210006440A
Authority
KR
South Korea
Prior art keywords
film
spectacle lens
lens
convex portion
base material
Prior art date
Application number
KR1020207035199A
Other languages
English (en)
Other versions
KR102501016B1 (ko
Inventor
화 치
다카코 이시자키
시게토시 고노
Original Assignee
호야 렌즈 타일랜드 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호야 렌즈 타일랜드 리미티드 filed Critical 호야 렌즈 타일랜드 리미티드
Publication of KR20210006440A publication Critical patent/KR20210006440A/ko
Application granted granted Critical
Publication of KR102501016B1 publication Critical patent/KR102501016B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/24Myopia progression prevention

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Eyeglasses (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

물체측의 면(3)으로부터 입사한 광선을 안구측의 면(4)으로부터 출사시켜 소정의 위치(A)에 수속시키는 안경 렌즈(1)에 있어서, 물체측의 면(3)과 안구측의 면(4) 중 적어도 일방의 면에 기재 볼록부(6)를 복수 가지는 렌즈 기재(2)와, 기재 볼록부(6)를 가지는 면을 가리는 피막을 구비하며, 기재 볼록부(6)를 가지는 측의 안경 렌즈(1)의 최표면에 있는 볼록부와, 기재 볼록부(6)와는, 공통된 광선 수속 특성을 가지는 안경 렌즈(1)를 제공한다.

Description

안경 렌즈
본 발명은, 안경 렌즈에 관한 것이다.
특허 문헌 1(미국출원공개 제2017/131567호)에는, 근시 등의 굴절 이상(異常)의 진행을 억제하는 안경 렌즈가 기재되어 있다. 구체적으로는, 안경 렌즈의 물체측의 면인 볼록면에 대해, 예를 들면, 직경 1mm 정도인 구(球) 형상의 미소(微小) 볼록부(본 명세서에서의 기재 볼록부)를 형성하고 있다. 안경 렌즈에서는, 통상, 물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 착용자의 망막 상(上)(본 명세서에서는 소정의 위치(A))에 초점을 맺는다. 그 한편, 상기의 미소 볼록부를 통과한 광은, 입사한 광선을 소정의 위치(A)보다도 물체측 근처의 위치(B)에서 초점을 맺는다. 그 결과, 근시의 진행이 억제된다.
특허 문헌 1 : 미국출원공개 제2017/131567호
특허 문헌 1에 기재된 안경 렌즈에서 미소 볼록부가 마련된 면(물체측의 면인 볼록면)에 대해, 피막(被膜)(예:하드 코트막 또는 반사 방지막)을 종래와 동일하게 한 경우, 근시의 진행 억제 작용이 저하될 우려가 있다고 하는 지견(知見)이, 본 발명자에 의해 얻어졌다.
본 발명의 일 실시예는, 렌즈 기재에 대해서 피막을 형성한 후에도 근시 억제 효과를 충분히 발휘할 수 있는 기술을 제공하는 것을 목적으로 한다.
본 발명자는 상기 과제를 해결할 수 있도록 예의(銳意) 검토를 행했다. 상기 피막은, 기재 볼록부를 가지는 면을 덮는다. 그렇게 되면, 피막의 최표면(最表面) 형상은, 기재(基材) 볼록부에 유래하는 피막 볼록부를 가진다.
발명자는, 이 피막 볼록부가, 렌즈 기재에서의 기재 볼록부의 형상을 충실히 추종하고 있는지 여부에 대해서 주목했다. 환언하면, 피막 볼록부와 기재 볼록부와의 사이의 형상의 상사성(相似性)에 주목했다. 이 상사성이 높게 유지되면, 피막을 통과한 광선이, 기재 볼록부에 의해 초점이 맺어지는 물체측의 위치(B)에 가까운 위치에서 초점을 맺게 된다. 이 상사성을 높게 할 수 있는 규정을 행하는 것에 의해, 근시 억제 효과를 충분히 발휘할 수 있게 된다고 하는 지견을 얻었다.
본 발명은, 상기 지견을 기본으로 고안된 것이다.
본 발명의 제1 형태는,
물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 소정의 위치(A)에 수속(收束)시키는 안경 렌즈에 있어서,
상기 물체측의 면과 상기 안구측의 면 중 적어도 일방의 면에 기재(基材) 볼록부를 복수 가지는 렌즈 기재와,
상기 기재 볼록부를 가지는 면을 덮는 피막을 구비하며,
상기 피막은 3.0μm 이하인 안경 렌즈이다.
본 발명의 제2 형태는,
물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 소정의 위치(A)에 수속시키는 안경 렌즈에 있어서,
상기 물체측의 면과 상기 안구측의 면 중 적어도 일방의 면에 기재 볼록부를 복수 가지는 렌즈 기재와,
상기 기재 볼록부를 가지는 면을 덮는 피막을 구비하며,
상기 기재 볼록부를 가지는 측의 안경 렌즈의 최표면에 있는 볼록부와, 상기 기재 볼록부는, 공통된 광선 수속 특성을 가지는 안경 렌즈이다.
본 발명의 제3 형태는, 제1 또는 제2 형태에 기재된 형태로서,
상기 피막의 최표면 형상은, 상기 기재 볼록부에 유래하는 피막 볼록부를 가지고,
상기 피막 볼록부는, 상기 안경 렌즈에 입사한 광선을, 상기 소정의 위치(A)보다도 물체측 근처의 위치(B)에 수속시키고,
상기 피막 볼록부 형상과 상기 기재 볼록부 형상과의 사이의 렌즈 두께 방향에서의 차이의 절대값의 최대값이 0.1μm 이하인 안경 렌즈이다.
본 발명의 제4 형태는, 제3 형태에 기재된 형태로서,
상기 피막 볼록부는, 상기 안경 렌즈에 입사한 광선을, 상기 소정의 위치(A)보다도 물체측에 0mm를 초과하고 또한 10mm 이하의 범위에서 가깝게 한 위치(B)에 수속시킨다.
본 발명의 제5 형태는, 제3 또는 제4 형태에 기재된 형태로서,
광선 추적 계산에 의해 얻어지는, 상기 안경 렌즈의 상기 물체측의 면의 소정 범위 내에 균등하게 입사하여 상기 피막을 통과하는 다수의 광선 중, 상기 소정의 위치(A) 근방을 통과하지 않고, 또한, 상기 물체측 근처의 위치(B) 근방도 통과하지 않는 미광(迷光) 광선의 갯수는 입사 광선 갯수의 30% 이하이다.
본 발명의 제6 형태는, 제3 ~ 제5 중 어느 하나의 형태에 기재된 형태로서,
상기 피막 볼록부의 돌출 거리 Lc와, 상기 기재 볼록부의 돌출 거리 Ll과의 관계가 이하의 식 (1)을 만족한다.
0.6≤Lc/Ll≤1.5 … 식 (1)
본 발명의 제7 형태는, 제3 ~ 제6 중 어느 하나의 형태에 기재된 형태로서,
상기 피막의 최표면 형상에 대한 비점수차 분포에서의 상기 피막 볼록부의 근원에서의 비점수차의 단면 곡선의 반값폭이 0.20mm 이하이다.
본 발명의 제8 형태는, 제1 ~ 제7 어느 하나의 형태에 기재된 형태로서,
상기 피막은, 상기 렌즈 기재와 접하는 λ/4막과, 상기 λ/4막 상에 형성된 하드 코트막과, 상기 하드 코트막 상에 형성된 반사 방지막을 가진다.
본 발명의 제9 형태는, 제8 형태에 기재된 형태로서,
상기 렌즈 기재의 굴절률은 상기 λ/4막보다도 높고, 상기 λ/4막의 굴절률은 상기 하드 코트막보다도 높다.
본 발명의 일 실시예에 의하면, 렌즈 기재에 대해서 피막을 형성한 후에도 근시 억제 효과를 충분히 발휘할 수 있게 된다.
도 1은, 본 발명의 일 형태에 관한 안경 렌즈의 일 예를 나타내는 단면도이다.
도 2는, 본 발명의 일 형태에 관한 안경 렌즈가 피막 볼록부 이외의 부분(즉 베이스 부분)에 의해, 물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜, 안구의 막망 상에서의 소정의 위치(A)에 수속시키는 모습을 나타내는 개략 측단면도이다.
도 3은, 본 발명의 일 형태에 관한 안경 렌즈가 피막 볼록부에 의해, 물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 소정의 위치(A)보다도 물체측 근처의 위치(B)에 수속시키는 모습을 나타내는 개략 측단면도이다.
도 4의 (a)는, 실제의 안경 렌즈의 피막 볼록부와 기재 볼록부를 나타내는 개략 단면도이고, 도 4의 (b)는, 피막 볼록부의 정점과 기재 볼록부의 정점을 일치시킨 개략 단면도이다.
도 5는, 본 발명의 일 형태에 의한 안경 렌즈의 검사 방법의 흐름을 나타내는 플로우차트이다.
도 6은, 광선이 집광하는 위치를 특정하는 방법을 설명하기 위한 도면(방법 1)이다.
도 7은, 광선이 집광하는 위치를 특정하는 방법을 설명하기 위한 도면(방법 2)이다.
도 8은, 광선이 집광하는 위치를 특정하는 방법을 설명하기 위한 도면(방법 3)이다.
도 9는 광선이 집광하는 위치를 특정하는 방법을 나타내는 플로우차트이다.
도 10은, 설계값(즉 피막 없음)으로서, 기재 볼록부 및 그 근방에 대한 비점수차 분포에서의, 기재 볼록부의 정점(頂点)(즉 평면에서 볼 때의 기재 볼록부의 중심)을 통과하는 단면에서의 비점수차 분포(즉 비점수차 단면 곡선)의 플롯(실선)을 나타내는 도면이다.
도 11은, 실제의 피막 볼록부 및 그 근방에 대한 비점수차 분포에서의, 피막 볼록부의 정점(즉 평면에서 볼 때의 피막 볼록부의 중심)을 통과하는 단면에서의 비점수차 분포(즉 비점수차 단면 곡선)의 플롯(실선)을 나타내는 도면이다.
이하, 본 발명의 실시 형태에 대해 서술한다. 이하에서의 도면에 근거하는 설명은 예시로서, 본 발명은 예시된 형태에 한정되는 것은 아니다.
도 1은, 본 발명의 일 형태에 관한 안경 렌즈(1)의 일 예를 나타내는 단면도이다.
도 1에서는, 물체측의 면(3)이 볼록면이며, 안구측의 면(4)이 오목면인 예(이른바 메니스커스 렌즈(Meniscus lens)의 예)를 든다.
본 발명의 일 형태에 관한 안경 렌즈(1)는, 물체측의 면(3)과 안구측의 면(4)을 가진다. 「물체측의 면(3)」은, 안경 렌즈(1)를 구비한 안경이 착용자에게 착용되었을 때에 물체측에 위치하는 표면이며, 「안구측의 면(4)」은, 그 반대, 즉 안경 렌즈(1)를 구비한 안경이 착용자에게 착용되었을 때에 안구측에 위치하는 표면이다.
본 발명의 일 형태에 관한 안경 렌즈(1)는, 특허 문헌 1에 기재된 미소 볼록부(즉 후술의 기재 볼록부(6) 나아가서는 그 위의 피막 볼록부(11))를 제외한 베이스 부분은, 종래의 안경 렌즈(1)와 마찬가지로, 물체측의 면(3)으로부터 입사한 광선을 안구측의 면(4)으로부터 출사시켜 소정의 위치(A)에 수속시키는 기능을 나타낸다.
도 2는, 본 발명의 일 형태에 관한 안경 렌즈(1)가 피막 볼록부(11) 이외의 부분(즉 베이스 부분)에 의해, 물체측의 면(3)으로부터 입사한 광선을 안구측의 면(4)으로부터 출사시켜, 안구(20)의 망막(20A) 상에서의 소정의 위치(A)에 수속시키는 모습을 나타내는 개략 측단면도이다.
본 발명의 일 형태에 관한 안경 렌즈(1)는 렌즈 기재(2)를 구비한다. 렌즈 기재(2)도 물체측의 면(3)과 안구측의 면(4)을 가진다. 렌즈 기재(2)의 양면의 형상은, 안경 렌즈(1)의 종류에 따라서 결정해도 좋고, 볼록면, 오목면, 평면 중 어느 하나 또는 그들의 조합이라도 괜찮다.
렌즈 기재(2)의 물체측의 면과 안구측의 면 중 적어도 일방을 덮도록, 피막이 형성되어, 안경 렌즈(1)가 구성된다.
본 발명의 일 형태에 관한 렌즈 기재(2)에서는, 물체측의 면(3)과 안구측의 면(4) 중 적어도 일방의 면에 기재 볼록부(6)가 복수 형성된다. 이 기재 볼록부(6) 상에 피막이 형성되고, 피막의 최표면 형상으로, 기재 볼록부(6)에 유래하는 피막 볼록부(11)가 형성된 상태에서, 이 피막 볼록부(11)는, 안경 렌즈(1)에 입사한 광선을 소정의 위치(A)보다도 물체측 근처의 위치(B)에 수속시킨다.
도 3은, 본 발명의 일 형태에 관한 안경 렌즈(1)가 피막 볼록부(11)에 의해, 물체측의 면(3)으로부터 입사한 광선을 안구측의 면(4)으로부터 출사시켜 소정의 위치(A)보다도 물체측 근처의 위치(B)에 수속시키는 모습을 나타내는 개략 측단면도이다. 또, 이 수속 위치(B)는, 복수의 피막 볼록부(11)의 각각에 따라 배치(B1, B2, B3, … BN)로서 존재한다. 본 명세서에서의 수속 위치(B)는, 배치(B1, B2, B3, … BN)를 합친 표현이다.
본 발명의 일 형태에서는, 피막 볼록부 형상과 기재 볼록부 형상과의 사이의 렌즈 두께 방향에서의 차이의 절대값의 최대값이 0.1μm 이하(바람직하게는 0.06μm 이하)로 한다.
이하, 상기 차이를 규정하는 것의 메리트에 대해 설명한다.
피막이 없는 상태라면 기재 볼록부(6)는 대략 부분 구면(球面) 형상이며, 소정의 위치(A)보다도 물체측 근처의 위치에서 초점이 맺어진다. 아무리, 렌즈 기재(2) 상에 피막이 형성되고, 피막 볼록부(11)가 기재 볼록부(6)에 비해 무딘 형상으로 되었다고 해도, 적어도 피막 볼록부(11)의 정점 부분은, 기재 볼록부(6)에 추종한 형상을 가지고 있다.
즉, 본 발명의 일 형태에서는, 실제의 피막 볼록부(11)의 대략 부분 구면 형상과, 실제의 렌즈 기재(2)의 부분 구면 형상을 대비한다.
도 4의 (a)는, 실제의 안경 렌즈(1)의 피막 볼록부(11)와 기재 볼록부(6)를 나타내는 개략 단면도이다. 도 4의 (b)는, 피막 볼록부(11)의 정점과 기재 볼록부(6)의 정점을 일치시킨 개략 단면도이다. 실선이 실제의 안경 렌즈(1)의 피막 볼록부(11)를 나타내고, 파선이 기재 볼록부(6)를 나타내며, 종선(縱線) 부분이, 피막 볼록부 형상과 기재 볼록부 형상과의 사이의 렌즈 두께 방향에서의 차이를 나타낸다.
도 4의 (b)에서, 피막 볼록부(11)의 정점과 기재 볼록부(6)의 정점을 일치시킨 상태에서, 기재 볼록부(6)의 베이스 부분의 형상으로부터 기립 개시하여 정점을 향한 후에 기립이 종료하는 부분까지의 실제의 기재 볼록부(6)와, 실제의 안경 렌즈(1)의 피막 볼록부(11)와의 사이의 렌즈 두께 방향(광축 방법)에서의 차이를 조사한다.
이 차이의 절대값의 최대값이 0.1μm 이하(바람직하게는 0.06μm 이하)이면, 피막 아래에 존재하고 있는 기재 볼록부(6)의 형상을 충실히 추종할 수 있다고 간주한다. 그 결과로서 근시 억제 효과를 충분히 발휘할 수 있다고 하는 지견이 얻어지고 있다. 이 규정을 적용하는 것에 의해, 근시 억제 효과를 충분히 발휘할 수 있게 된다. 또, 피막 볼록부 형상과 기재 볼록부 형상과의 상사율을 규정해도 괜찮다.
이하, 본 발명의 일 형태의 구체예, 적합예 및 변형예에 대해 한층 더 설명한다.
본 발명의 일 형태에서는, 광선 추적 계산에 의해 얻어지는, 안경 렌즈의 물체측의 면의 소정 범위 내에 균등하게 입사하여 피막을 통과하는 다수의 광선 중, 소정의 위치(A) 근방을 통과하지 않고, 또한, 물체측 근처의 위치(B) 근방도 통과하지 않는 미광 광선의 갯수는 입사 광선 갯수의 30% 이하로 설정하는 것이 바람직하다.
이하, 미광 광선, 및 미광 광선의 비율을 줄이는 것의 메리트에 대해 설명한다.
미광 광선은, 안경 렌즈(1)의 물체측의 면(3)으로부터 입사하여 안구측의 면(4)으로부터 출사하는 광선으로서, 안경 렌즈(1) 자체에 의해서 광선이 수속(收束)하는 소정의 위치(A) 근방도 통과하지 않고, 기재 볼록부(6) 나아가서는 피막 볼록부(11)에 의해서 광선이 수속하는 위치(B) 근방도 통과하지 않는 광선을 가리킨다. 미광 광선에 의해 착용자의 시야에 흐려짐이 초래된다. 그 때문에, 안경 렌즈(1)의 물체측의 면(3)으로부터 입사하여 안구측의 면(4)으로부터 출사하는 광선에서의 미광 광선의 비율을 줄이는 것이 바람직하다.
미광 광선이 생기는 이유 중 하나는 피막이다. 피막 볼록부(11)의 근원에서, 베이스가 되는 물체측의 면(3)인 볼록면으로부터의 형상의 변화가 너무 완만하면, 기재 볼록부(6)의 구 형상으로부터 벗어난 형상이 되고 또한 물체측의 면(3)인 볼록면과도 벗어난 형상이 된다. 그렇게 되면, 착용자의 망막(20A) 상(본 명세서에서는 소정의 위치(A) 근방)에도 초점을 맺지 않고, 상기의 물체측 근처의 위치(B) 근방에도 초점을 맺지 않게 된다.
그 한편, 상기의 본 발명의 일 형태의 안경 렌즈(1)와 같이, 미광 광선의 비율을 30% 이하로 설정하는 것에 의해, 렌즈 기재(2)에 대해서 피막을 형성한 후에도 근시 억제 효과를 충분히 발휘할 수 있게 된다.
미광 광선의 비율의 설정에는 광선 추적 계산을 사용한다. 그 계산시에는, 안경 렌즈의 물체측의 면의 소정 범위 내에 균등하게 입사하여 피막을 다수의 광선이 통과하는 상황(이른바 안경 렌즈를 착용하여 외계(外界)를 보는 상황)을 상정(想定)한다. 이 「소정 범위」란, 물체측의 면에서의 광학 영역이면 좋다. 이 광학 영역과는 물체측의 면 및 그것에 대향하는 안구측의 면에서 착용자마다 설정된 도수를 실현하는 곡면 형상을 가지는 부분을 가리킨다.
미광 광선이 생기는 이유 중 하나가 피막이며, 본 발명의 일 형태의 안경 렌즈(1)에서는 피막을 필수로 하는 점을 고려하면, 미광 광선의 비율을 0% 초과하고(또는 1% 이상, 또는 3% 이상) 또한 30% 이하로 설정해도 상관없다. 또, 미광 광선의 비율을 줄이는 것이 바람직하기 때문에, 20% 이하로 설정하는 것이 바람직하고, 15% 이하로 설정하는 것이 보다 바람직하다.
여기서 미광 광선의 비율을 결정할 때의 조건을 이하에 서술한다.
도 5는, 본 발명의 일 형태에 의한 안경 렌즈의 검사 방법의 흐름을 나타내는 플로우차트이다.
도 5에 나타내는 바와 같이, 먼저, 스텝 101에서, 실제의 안경 렌즈(1)의 물체측의 면(이후, '볼록면'이라고도 칭함)의 형상을 측정하고, 볼록면(3)의 형상을 나타내는 곡면 데이터를 작성한다(형상 측정 스텝). 볼록면(3)의 형상은, 예를 들면, 광의 간섭을 이용하여 측장(測長, 거리 측정)을 행하는 비접촉 3차원 현미경에 의해 측정한다. 볼록면(3)의 3차원 형상은, 예를 들면, 이산(離散) 3차원 데이터(x, y, z)로서 취득된다.
다음으로, 스텝 102에서, 얻어진 안경 렌즈(1)의 볼록면 형상을 나타내는 데이터로부터 곡면 데이터를 생성한다(곡면 데이터 생성 스텝). 또, 안경 렌즈(1)의 볼록면 형상을 나타내는 데이터로서, 이산 3차원 데이터를 이용한 경우에는, 예를 들면, B-스플라인 곡선의 집합을 생성하면 좋다. 또, 측정한 이산 3차원 데이터에 노이즈가 있는 경우에는, 예를 들면, 이동 평균 처리를 행하여 평균값을 이용해도 괜찮다.
다음으로, 스텝 103에서, 상기 곡면 데이터에 근거하여 실제의 안경 렌즈(1)의 모델을 설정한다(모델 설정 스텝).
실제의 안경 렌즈(1)의 모델을 설정함과 아울러, 안구 모델도 설정한다. 안구 모델은 착용자에 관한 정보(예를 들면 안축(眼軸) 길이나 눈의 조절량 등)를 사용하면 좋다. 그 때에, 프레임에 장착되었을 때의 안경 렌즈의 경사(전방 경사각 및 프레임 틸팅각)를 고려하여, 안구 모델(32)에 대한 안경 렌즈 모델(30)을 배치해도 괜찮다.
다음으로, 스텝 104에서, 광선 추적 처리에 의해, 실제의 안경 렌즈(1)를 광선이 통과했을 때에 광선이 가장 수속하는 위치를 특정한다(수속 위치 특정 스텝). 구체적으로는, 실제의 안경 렌즈(1)의 곡면 데이터에 근거하는 모델에 대해, 무한원(無限遠)의 점광원으로부터 출사한 광선이 통과한 후의, 광선에 의한 휘도 분포를 나타내는 PSF(Point spread function:점 확산 함수)를 구한다.
PSF는 점광원으로부터 발사된 다수의 광선을 추적하고, 임의의 면(面) 상의 스폿의 밀도를 계산함으로써 얻어진다. 그리고, 복수의 임의의 면의 PSF를 비교하여, 복수의 임의의 면 내, 가장 광선이 집광하는 위치(면)를 특정한다. 또, 광선의 직경은 동향(動向) 지름에 근거하여 설정하면 되며, 예를 들면 4φ로 해도 좋다.
여기서, 스텝 104에서 가장 광선이 집광하는 위치를 특정하는 방법을 보다 상세하게 설명한다. 도 6~도 8은, 광선이 집광하는 위치를 특정하는 방법을 설명하기 위한 도면이다. 또, 도 9는, 광선이 집광하는 위치를 특정하는 방법을 나타내는 플로우차트이다.
먼저, 도 6에 나타내는 바와 같이, 스텝 201에서, 모델 상에서의 물체측의 면(볼록면)(33)에서의 모델 상에서의 피막 볼록부(36)를 광선이 통과하는 상황을 상정한다. 그 다음으로, 안구 모델(32)의 망막(32A) 상의 0mm 위치로부터, 소정의 거리(예를 들면, 안구의 유리체의 두께인 16mm 정도의 위치)로부터 망막(32A)까지 소정의 이간 간격 Δd(예를 들면, 0.1mm) 간격으로, 측정면(P1, 1) ~ 측정면(P1, n)을 설정한다. 또, 이간 간격 Δd는 0.2mm 간격으로 해도 좋고, 안축 길이의 1/50로 해도 좋다.
다음으로, 스텝 202에서, 광선 추적 처리를 행하고, 각 측정면(P1, 1) ~ 측정면(P1, n)에서의 광선의 밀도를 계산한다. 광선의 밀도의 계산은, 예를 들면, 각 측정면에 격자 모양의 그리드(예를 들면 0.1mm×0.1mm)를 설정해 두고, 각 그리드를 통과하는 광선의 수를 계산하면 좋다.
다음으로, 스텝 203에서, 볼록부에 입사한 광선이 최대 밀도가 되는 측정면을 특정하기 위해, 측정면(P1, 1) ~ 측정면(P1, n) 중에서 상기의 소정의 거리로부터 최초의 극대(極大) 밀도의 측정면(P1, i)을 특정한다. 계산을 줄이기 위해, 측정면(P1)으로부터 광선의 밀도의 계산을 시작하여, 최초의 극대값 검출 후, 측정면(P1)에서의 값과 최초의 극대값과의 중간값 정도까지 광선의 밀도의 계산값이 저하된 곳에서, 본 스텝의 계산을 중지해도 괜찮다.
다음으로, 도 7에 나타내는 바와 같이, 스텝 204에서, 최대 밀도의 측정면(P1, i)의 전후의 이간 거리 Δd/2의 위치에 측정면(P2, 1) 및 측정면(P2, 2)을 설정한다. 그리고, 스텝 205에서, 측정면(P2, 1) 및 측정면(P2, 2)에서의 광선의 밀도를 계산한다. 다음으로, 스텝 206에서, 측정면(P2, 1)과, 측정면(P2, 2)과, 측정면(P1, i)에서의 최대 밀도의 측정면을 특정한다.
그 후, 스텝 207에서, 이간 거리가 충분히 작게 될 때까지, 스텝 204~206과 동일한 공정을 반복한다. 즉, 도 8에 나타내는 바와 같이, 직전에 최대 밀도가 된 측정면(도 8에서는 측정면(P2, 2))의 전후에, 직전의 이간 거리의 절반의 새로운 이간 거리(도 8에서는 Δd/4)의 위치에 새로운 측정면(도 8에서는 측정면(P3, 1) 및 측정면(P3, 2))을 설정하는 공정과, 새로운 측정면의 광선의 밀도를 계산하는 공정과, 직전에 최대 밀도가 된 측정면 및 새로운 측정면 중에서 최대가 된 측정면을 특정하는 공정을 반복한다.
이상의 공정에 의해, 광축 방향(렌즈 두께 방향, Z축)에서의, 광선이 집광하는 위치를 특정할 수 있게 된다.
다음으로, 광축 방향에 수직인 면 상(즉 특정된 상기 측정면 상)에서의, 광선의 수속 위치를 특정한다. 이 특정에는 방금 전 서술한 PSF를 사용한다. PSF에 의해, 가장 광선(상기 측정면 상에서는 점)이 밀집한 개소를, 상기 측정면 상에서의 광선의 수속 위치(B)로 한다.
그리고, 상기 측정면 상에서의 광선의 수속 위치(B)로부터 예를 들면 반경 0.1mm의 범위 외에 있는 광선수(光線數)를 산출한다. 본 명세서에서는 수속 위치(B)로부터 예를 들면 반경 0.1mm의 범위 내를 상기 「위치(B) 근방」으로 한다.
상기 범위 외에 있는 광선 중, 안경 렌즈(1) 자체에서 광선이 수속하는 소정의 위치(A)의 반경 0.1mm의 범위 내에 있는 광선(즉 위치(A)에서 수속하는 정상적인 광선)을 뺀다. 본 명세서에서는 수속 위치(A)로부터 예를 들면 반경 0.1mm의 범위 내를 상기 「위치(A) 근방」으로 한다.
빼내어진 후의 갯수의 광선은, 안경 렌즈(1) 자체에 의해 광선이 수속하는 위치(A) 근방에는 수속하지 않고, 피막 볼록부(11)에 의해 광선이 수속하는 물체측 근처의 위치(B) 근방에도 수속하지 않는다. 이러한 광선을 본 명세서에서는 미광으로 하고 있다. 그리고 이 미광 광선의 비율을 30% 이하로 설정하는 것에 의해, 렌즈 기재(2)에 대해서 피막을 형성한 후에도 근시 억제 효과를 충분히 발휘할 수 있게 된다.
피막 볼록부(11)는, 안경 렌즈(1)에 입사한 광선을, 소정의 위치(A)보다도 물체측으로 0mm를 초과하고 또한 10mm 이하의 범위에서 가깝게 한 위치(B)에 수속시키는 것이 바람직하다. 환언하면, 본 발명의 일 형태의 안경 렌즈(1)의 최표면(즉 피막의 최표면)은, 안경 렌즈(1)에 입사한 광선을, 소정의 위치(A)보다도 물체측에 0mm를 초과하고 또한 10mm 이하의 범위에서 가깝게 한 위치(B)에 수속시키는 형상을 가진다. 또, 상기 범위는 0.1~7mm가 바람직하고, 0.1~5mm가 보다 바람직하고, 0.3~3mm가 보다 더 바람직하다.
상기 피막 볼록부(11)의 돌출 거리 Lc와, 상기 기재 볼록부(6)의 돌출 거리 Ll과의 관계가 이하의 식 (1)을 만족하는 것이 바람직하다.
0.6≤Lc/Ll≤1.5 … 식 (1)
이 조건을 만족하면, 기재 볼록부(6)에 피막이 형성되었다고 해도, 기재 볼록부(6)에 유래하는 피막 볼록부(11)는, 안경 렌즈(1)에 입사한 광선의 수속 위치(B)를, 상기 소정의 위치(A)보다도 물체측에 충분히 가깝게 할 수 있다. 이것은, 피막 볼록부(11) 나아가서는 본 발명의 일 형태의 안경 렌즈(1)가, 충분한 근시 억제 효과를 발휘할 수 있는 것을 의미한다.
또, 돌출 거리는, 안경 렌즈(1)의 최표면 형상의 베이스 부분으로부터 피막 볼록부(11)의 정점(頂点)까지의 광축 방향(렌즈 두께 방향, Z축)의 거리이다.
상기 피막의 최표면 형상에 대한 비점수차 분포에서의 상기 피막 볼록부(11)의 근원에서의 비점수차의 단면 곡선의 반값폭이 0.20mm 이하인 것이 바람직하다.
도 10은, 설계값(즉 피막 없음)으로서, 기재 볼록부(6) 및 그 근방에 대한 비점수차 분포에서의, 기재 볼록부(6)의 정점(즉 평면에서 볼 때의 기재 볼록부(6)의 중심)을 통과하는 단면에서의 비점수차 분포(즉 비점수차 단면 곡선)의 플롯(실선)을 나타내는 도면이다.
도 11은, 실제의 피막 볼록부(11) 및 그 근방에 대한 비점수차 분포에서의, 피막 볼록부(11)의 정점(즉 평면에서 볼 때의 피막 볼록부의 중심)을 통과하는 단면에서의 비점수차 분포(즉 비점수차 단면 곡선)의 플롯(실선)을 나타내는 도면이다.
도 10 및 도 11에서, 가로축은 X축 즉 안경 렌즈(1)의 물체측의 면(3)을 평면에서 볼 때의 수평 방향 위치를 나타내고 단위는mm이다. X축 대신에 Y축 즉 안경 렌즈(1)의 물체측의 면(3)을 평면에서 볼 때의 수직(천지(天地)) 방향을 사용해도 상관없다.
좌측 세로축은 비점수차(및 평균 도수)의 값을 나타내고 단위는 디옵터(diopter)이다.
우측 세로축은 피막 볼록부(11) 또는 기재 볼록부(6)의 높이를 나타내고 단위는 mm이다.
또, 피막 볼록부(11) 또는 기재 볼록부(6)는 가로축에서 0.3~1.3mm의 부분이다. 또, 평균 도수 분포(즉 평균 도수 분포 단면 곡선)의 플롯(점선), 및 피막 볼록부(11) 또는 기재 볼록부(6)의 Z축의 높이의 플롯(파선)도 나타낸다.
도 10에 나타내는 바와 같이, 설계상, 비점수차 단면 곡선은, 기재 볼록부(6)에서도, 베이스 부분인 대략 수평 부분에서도 대략 일정하고, 기재 볼록부(6)와 베이스 부분과의 사이의 부분만이 구면 형상으로부터 벗어난 형상이 된다. 그 때문에, 해당 부분에서만 높은 비점수차의 값을 나타낸다.
그 한편, 도 11에 나타내는 바와 같이, 실제의 피막 볼록부(11) 및 그 근방에 대한 비점수차 단면 곡선이면, 피막 볼록부(11)와 베이스 부분과의 사이(X=0.3mm 근방 및 X=1.3mm 근방)에서는 X축 방향으로 비교적 넓은 범위에서 비점수차가 증가하고 있다. 이것은, 피막 볼록부(11)와 베이스 부분과의 사이에서는, 설계값인 도 10에 비해 비교적 넓은 범위에서 구면 형상으로부터 벗어난 형상으로 되어 있는 것을 나타낸다.
미광 광선의 원인 중 하나는, 피막 볼록부(11)의 근원에서, 베이스 부분으로부터의 형상의 변화가 너무 완만한 것에 있다. 즉, 베이스 부분과 피막 볼록부(11)가 명확하게 나누어져 있으면 미광 광선의 원인 중 하나를 배제할 수 있고, 나아가서는 렌즈 기재(2)에 대해서 피막을 형성한 후에도 근시 억제 효과를 충분히 발휘할 수 있게 된다. 그래서, 베이스 부분과 피막 볼록부(11)와의 사이에, 미광 광선의 원인 중 하나가 되는 어중간한 형상의 부분이 별로 존재하지 않는 것을 나타내도록, 상기 비점수차 단면 곡선을 이용한다. 즉, 피막 볼록부(11)에 대한 비점수차 단면 곡선에 의해, 피막 볼록부(11)의 근원의 형상의 변화의 정도(즉 구배 변화)를 규정한다.
실제의 안경 렌즈에 관한 도 11에서의 반값폭은, 그 이름과 같이 피크 정점의 값(디옵터)의 반값에서의 피크폭을 채용하면 좋다. 예를 들면 도 11이라면, X=0.3mm 근방에서도 X=1.3mm 근방에서도 약 0.10mm가 된다.
상기 비점수차 단면 곡선의 반값폭을 0.20mm 이하로 규정하는 것에 의해, 베이스 부분으로부터 피막 볼록부(11)로 급격하게 변화하고 있는 것이 나타내어지고, 나아가서는 본 발명의 일 형태의 안경 렌즈(1)가, 충분한 근시 억제 효과를 발휘할 수 있다.
상기 피막은, 상기 렌즈 기재(2)와 접하는 λ/4막(미도시)과, 상기 λ/4막 상에 형성된 하드 코트막(8)과, 상기 하드 코트막(8) 상에 형성된 반사 방지막(10)을 가지는 것이 바람직하다.
λ/4막은, 광학적으로 λ/4의 두께를 가지는 막이면 특별히 한정은 없고, 반사 방지 필터 등에 사용되는 막을 사용해도 상관없다. 하나의 구체예로서는, λ/4막으로서 우레탄 수지(굴절률 n=1.54)를 사용해도 상관없으며, 두께는 70~90nm 라도 좋다.
하드 코트막(8)은, 안경 렌즈(1)의 내찰상성(耐擦傷性)을 향상시키는 것이라면 특별히 한정되지 않는다. 하나의 구체예로서는, 하드 코트막(8)으로서 금속을 포함하지 않는 규소 화합물(굴절률 n=1.50)을 사용해도 상관없으며, 두께는 1.5~3.0μm(바람직하게는 1.5~2.0μm)라도 좋다. 기재 볼록부(6)의 형상에 대한 피막 볼록부(11)의 형상의 추종성의 관점으로부터, 하드 코트막(8)의 두께는 2.9μm 이하(바람직하게는 1.9μm 이하)가 바람직하지만, 내찰상성의 관점으로부터 1.5μm 이상인 것이 바람직하다.
반사 방지막(10)은, 공지의 것을 사용해도 상관없다.
상기 렌즈 기재(2)의 굴절률은 상기 λ/4막보다도 높고, 상기 λ/4막의 굴절률은 상기 하드 코트막(8)보다도 높게 하는 것이 바람직하다.
이하, 상기 내용 이외의 구체적 내용에 대해 서술한다.
[렌즈 기재(2)]
기재 볼록부(6)의 사이즈 및 렌즈 기재(2)의 표면에서의 복수의 기재 볼록부(6)의 배치의 형태는, 특별히 한정되는 것이 아니고, 예를 들면, 기재 볼록부(6)의 외부로부터의 시인성, 기재 볼록부(6)에 의한 디자인성 부여, 기재 볼록부(6)에 의한 굴절력 조정 등의 관점으로부터 결정할 수 있다. 기재 볼록부(6)의 높이는, 예를 들면 0.1~10μm로 해도 좋고, 기재 볼록부(6)의 표면의 곡률 반경은, 예를 들면 50~250mmR로 해도 좋다. 또, 서로 이웃하는 기재 볼록부(6) 사이의 거리(어느 기재 볼록부(6)의 단부와 이 기재 볼록부(6)와 서로 이웃하는 기재 볼록부(6)의 단부와의 거리)는, 예를 들면 기재 볼록부(6)의 반경의 값과 동일한 정도로 해도 좋다. 또, 복수의 기재 볼록부(6)는, 예를 들면 렌즈 중심 부근에 거의 균일하게 배치할 수 있다.
렌즈 기재(2)로서는, 안경 렌즈(1)에 일반적으로 사용되는 각종 렌즈 기재(2)를 사용할 수 있다. 렌즈 기재(2)는, 예를 들면 플라스틱 렌즈 기재 또는 글라스 렌즈 기재로 해도 좋다. 글라스 렌즈 기재는, 예를 들면 무기 글라스제의 렌즈 기재라도 좋다. 렌즈 기재(2)로서는, 경량이고 깨지기 어렵다고 하는 관점으로부터, 플라스틱 렌즈 기재가 바람직하다. 플라스틱 렌즈 기재로서는, (메타)아크릴 수지를 비롯한 스틸렌 수지, 폴리카보네이트 수지, 아릴 수지, 디에틸렌 글리콜 비스아릴 카보네이트 수지(CR-39) 등의 아릴 카보네이트 수지, 비닐 수지, 폴리에스테르 수지, 폴리에테르 수지, 이소시아네이트 화합물과 디에틸렌글리콜 등의 히드록시 화합물과의 반응으로 얻어진 우레탄 수지, 이소시아네이트 화합물과 폴리티올(thiol) 화합물을 반응시킨 티오우레탄 수지, 분자 내에 1개 이상의 이황화물 결합을 가지는 (티오)에폭시 화합물을 함유하는 경화성 조성물을 경화한 경화물(일반적으로 투명 수지로 불림)을 들 수 있다. 경화성 조성물은, 중합성 조성물이라고 칭해도 상관없다. 렌즈 기재(2)로서는, 염색되어 있지 않은 것(무색 렌즈)을 이용해도 좋고, 염색되어 있는 것(염색 렌즈)을 이용해도 괜찮다. 렌즈 기재(2)의 두께 및 직경은 특별히 한정되는 것은 아니지만, 예를 들면, 두께(중심 두께)는 1~30mm 정도로 해도 좋고, 직경은 50~100mm 정도로 해도 좋다. 렌즈 기재(2)의 굴절률은, 예를 들면, 1.60~1.75 정도로 해도 좋다. 다만 렌즈 기재(2)의 굴절률은, 상기 범위에 한정되는 것이 아니고, 상기의 범위 내에서도, 상기의 범위로부터 상하로 벗어나 있어도 괜찮다. 본 발명 및 본 명세서에서, 굴절률은, 파장 500nm의 광에 대한 굴절률을 말하는 것으로 한다. 렌즈 기재(2)는, 주형중합(注型重合) 등의 공지의 성형법에 의해 성형할 수 있다. 예를 들면, 복수의 오목부가 구비된 성형면을 가지는 성형형을 이용하고, 주형중합에 의한 렌즈 기재(2)의 성형을 행하는 것에 의해, 적어도 일방의 표면에 기재 볼록부(6)를 가지는 렌즈 기재(2)가 얻어진다.
[피막]
렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면 상에 형성되는 피막의 일 형태로서는, 경화성 화합물을 포함하는 경화성 조성물을 경화하여 형성되는 경화막을 들 수 있다. 이러한 경화막은, 일반적으로 하드 코트막(8)이라고 불리며, 안경 렌즈(1)의 내구성 향상에 기여한다. 경화성 화합물이란 경화성 관능기를 가지는 화합물을 의미하고, 경화성 조성물이란 경화성 화합물을 1종 이상 포함하는 조성물을 의미한다.
상기 경화막을 형성하기 위한 경화성 조성물의 일 형태로서는, 경화성 화합물로서 유기 규소 화합물을 포함하는 경화성 조성물을 들 수 있고, 유기 규소 화합물과 함께 금속 산화물 입자를 포함하는 경화성 조성물을 들 수도 있다. 상기 경화막을 형성할 수 있는 경화성 조성물의 일 예로서는, 일본특허공개 소63-10640호 공보에 기재되어 있는 경화성 조성물을 들 수 있다.
또, 유기 규소 화합물의 일 형태로서는, 하기 일반식 (I)에서 나타내어지는 유기 규소 화합물 및 그 가수 분해물을 들 수도 있다.
(R1)a(R3)bSi(OR2)4-(a+b) … (I)
일반식 (I) 중, R1은, 글리시독시기(glycidoxy基), 에폭시기, 비닐기, 메타크릴 옥시기, 아크릴 옥시기, 메르캅토기(mercapto基), 아미노기, 페닐기 등을 가지는 유기기를 나타내고, R2는 탄소수 1~4의 알킬기, 탄소수 1~4의 아실기 또는 탄소수 6~10의 아릴기를 나타내고, R3는 탄소수 1~6의 알킬기 또는 탄소수 6~10의 아릴기를 나타내며, a 및 b는 각각 0 또는 1을 나타낸다.
R2로 나타내어지는 탄소수 1~4의 알킬기는, 직쇄(直鎖) 또는 분기(分岐)의 알킬기로서, 구체예로서는, 메틸기, 에틸기, 프로필기, 부틸기 등을 들 수 있다.
R2로 나타내어지는 탄소수 1~4의 아실기로서는, 예를 들면, 아세틸기, 프로피오닐기, 올레일기(Oleyl基), 벤조일기(benzoyl基) 등을 들 수 있다.
R2로 나타내어지는 탄소수 6~10의 아릴기로서는, 예를 들면, 페닐기, 크실릴기(xylyl基), 토릴기(tolyl基) 등을 들 수 있다.
R3로 나타내어지는 탄소수 1~6의 알킬기는, 직쇄 또는 분기의 알킬기로서, 구체예로서는, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기 등을 들 수 있다.
R3로 나타내어지는 탄소수 6~10의 아릴기로서는, 예를 들면, 페닐기, 크실릴기, 토릴기 등을 들 수 있다.
상기 일반식 (I)에서 나타내어지는 화합물의 구체예로서는, 일본특허공개 제2007-077327호 공보의 단락 0073에 기재되어 있는 화합물을 들 수 있다. 일반식 (I)에서 나타내어지는 유기 규소 화합물은 경화성기(硬化性基)를 가지기 때문에, 도포 후에 경화 처리를 실시하는 것에 의해, 경화막으로서 하드 코트막(8)을 형성할 수 있다.
금속 산화물 입자는, 경화막의 굴절률의 조정 및 경도 향상에 기여할 수 있다. 금속 산화물 입자의 구체예로서는, 산화 텅스텐(WO3), 산화 아연(ZnO), 산화 규소(SiO2), 산화 알류미늄(Al2O3), 산화 티타늄(TiO2), 산화 지르코늄(ZrO2), 산화 주석(SnO2), 산화 베릴륨(BeO), 산화 안티몬(Sb2O5) 등의 입자를 들 수 있고, 단독 또는 2종 이상의 금속 산화물 입자를 조합시켜 사용할 수 있다. 금속 산화물 입자의 입경은, 경화막의 내찰상성(耐擦傷性)과 광학 특성을 양립하는 관점으로부터, 5~30nm의 범위인 것이 바람직하다. 경화성 조성물의 금속 산화물 입자의 함유량은, 형성될 경화막의 굴절률 및 경도를 고려하여 적절히 설정할 수 있고, 통상, 경화성 조성물의 고형분당 5~80 질량% 정도로 해도 좋다. 또, 금속 산화물 입자는, 경화막 중에서의 분산성의 점으로부터, 콜로이드 입자인 것이 바람직하다.
상기 경화막은, 예를 들면, 상기 성분 및 필요에 따라서 유기 용매, 계면 활성제(레벨링제(levelling劑)), 경화제 등의 임의 성분을 혼합하여 조제한 경화성 조성물을, 렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면에 직접 도포하거나, 또는 다른 막을 사이에 두고 간접적으로 도포하여 도포막을 형성하며, 이 도포막에 경화성 화합물의 종류에 따른 경화 처리(예를 들면 가열 및/또는 광 조사)를 실시하는 것에 의해 형성할 수 있다. 경화성 조성물의 도포에 대해서, 상세는 후술한다. 예를 들면 경화 처리를 가열에 의해 행하는 경우, 경화성 조성물의 도포막이 형성된 렌즈 기재(2)를 50~150℃의 분위기 온도의 환경하에 30분 ~ 2시간 정도 배치하는 것에 의해, 도포막 중의 경화성 화합물의 경화 반응을 진행시킨다.
렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면 상에 피막을 형성하기 위한 경화성 조성물의 점도는, 스핀 코트에 의한 도포 적성의 관점으로부터는, 1~50mPa·s의 범위인 것이 바람직하고, 1~40mPa·s의 범위인 것이 보다 바람직하고, 1~20mPa·s의 범위인 것이 보다 더 바람직하다. 본 발명 및 본 명세서에서의 점도는, 액체의 온도 25℃에서의 점도를 말하는 것으로 한다.
또, 렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면 상에 형성되는 피막의 일 형태로서는, 일반적으로 프라이머막으로 불리고 층 사이의 밀착성 향상에 기여하는 피막을 들 수도 있다. 그러한 피막을 형성할 수 있는 도포액으로서는, 폴리우레탄 수지 등의 수지 성분이 용매(물, 유기 용매, 또는 그들의 혼합 용매) 중에 분산하고 있는 조성물(이하, 「건조 고화성(固化性) 조성물」이라고 기재함)을 들 수 있다. 이러한 조성물은, 용매를 건조 제거하는 것에 의해 고화가 진행된다. 건조는, 풍건, 가열 건조 등의 건조 처리에 의해서 행할 수 있다.
렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면 상에 피막을 형성하기 위한 건조 고화성 조성물의 점도는, 스핀 코트에 의한 도포 적성의 관점으로부터는, 1~50mPa·s의 범위인 것이 바람직하고, 1~40mPa·s의 범위인 것이 보다 바람직하며, 1~20mPa·s의 범위인 것이 보다 더 바람직하다.
[도포액의 공급]
렌즈 기재(2)의 기재 볼록부(6)를 가지는 표면 상에 피막을 형성하기 위한 도포액의 공급은, 스핀 코트에 의해 행해진다. 도포를 스핀 코트에 의해 행하는 것에 의해, 기재 볼록부(6) 주변에 액체 고임이 생기는 것 등에 기인하여 피막의 막 두께가 불균일하게 되는 것을 억제할 수 있다. 스핀 코트에 의한 도포는, 예를 들면, 스핀 코터에 기재 볼록부(6)를 가지는 표면을 연직 상부를 향하여 렌즈 기재(2)를 배치하고, 스핀 코터 상에서 렌즈 기재(2)를 회전시킨 상태에서, 상기 표면 상에 상부로부터 도포액을 공급하는(예를 들면 상기 표면의 상부에 배치된 노즐로부터 도포액을 토출하는) 것에 의해 행할 수 있다. 여기서 스핀 코트에서의 렌즈 기재(2)의 회전 속도는, 막 두께가 보다 균일한 피막을 형성하는 관점으로부터, 10~3000rpm(rotations per minute)의 범위로 하는 것이 바람직하고, 50~2500rpm의 범위로 하는 것이 보다 바람직하며, 100~2000rpm의 범위로 하는 것이 보다 더 바람직하다.
상기 도포 후, 도포액의 종류에 따른 처리(예를 들면 경화 처리, 건조 처리등)를 행하는 것에 의해 피막을 형성할 수 있다.
이상의 공정을 거쳐 형성되는 피막의 막 두께는, 예를 들면 0.5~100μm의 범위로 해도 좋다. 다만, 피막의 막 두께는, 피막에 요구되는 기능에 따라 결정되는 것이며, 상기의 예시한 범위에 한정되는 것은 아니다.
상기 피막 상에는, 1층 이상의 피막을 더 형성할 수도 있다. 그러한 피막의 일 예로서는, 반사 방지막(10), 발수성 또는 친수성의 방오막(防汚膜), 방담막(防曇膜) 등의 각종 피막을 들 수 있다. 이들 피막의 형성 방법에 대해서는, 공지 기술을 적용할 수 있다.
또, 렌즈 기재(2)의 일방의 표면이 기재 볼록부(6)를 갖지 않는 경우, 그러한 렌즈 기재(2) 표면에도 1층 이상의 피막을 형성할 수 있다. 이러한 피막으로서는, 안경 렌즈(1)에 통상 마련되는 각종 피막(예를 들면, 하드 코트막(8), 프라이머막, 반사 방지막(10), 방오막, 방담막 등)을 들 수 있고, 이들 피막의 형성 방법에 대해서도 공지 기술을 적용할 수 있다.
본 발명의 상기 일 형태에서는, 피막 볼록부(11) 형상과 기재 볼록부(6) 형상과의 사이의 렌즈 두께 방향에서의 차이의 절대값의 최대값을 0.1μm 이하로 한 경우에 대해 기술했다. 그 한편, 본 발명에 관한 안경 렌즈(1)는 이 차이의 규정에는 한정되지 않는다. 단적으로 말하면, 기재 볼록부(6)를 가지는 측의 안경 렌즈(1)의 최표면에 있는 볼록부와, 기재 볼록부(6)는, 공통된 광선 수속 특성을 가지는 것에 본 발명의 주된 취지가 있으며, 이 주된 취지는 신규이다.「공통된 광선 수속 특성」은, 안경 렌즈의 베이스 부분에 의해 광선을 수속시키는 소정의 위치(A)보다도 물체측 근처에 광선을 수속시키는 특성을 말한다. 기재 볼록부(6)를 가지는 측의 안경 렌즈(1)의 최표면에 있는 볼록부의 형상이, 기재 볼록부(6)의 형상에 추종하고 있기 때문에, 공통된 광선 수속 특성을 가진다. 또, 소정의 위치(A)보다도 물체측에 가깝게 하는 거리에는 특별히 한정은 없다. 예를 들면, 기재 볼록부(6)를 가지는 측의 안경 렌즈(1)의 최표면에 있는 볼록부에 의해 광선이 수속되는 위치와, 기재 볼록부(6)에 의해 광선이 수속되는 위치를, 소정의 위치(A)로부터 상기의 범위 즉 0mm를 초과하고 또한 10mm 이하의 범위로 설정해도 괜찮다.
또, 본 발명의 상기 일 형태에서는, 피막 볼록부(11) 형상과 기재 볼록부(6) 형상과의 사이의 렌즈 두께 방향에서의 차이를 규정했다. 그 한편, 본 발명에 관한 안경 렌즈(1)는, 이 차이를 규정하는 것이 아니라, 피막의 두께 자체를 규정해도 괜찮다. 근시 억제 효과를 나타내는 기재 볼록부(6)를 구비한 렌즈 기재(2)에 대해서 피막을 형성하는 경우, 피막이 너무 두꺼우면 기재 볼록부(6)가 피막에 의해 메워져 버려, 베이스 부분과 피막 볼록부(11)와의 차이가 소실되어 버린다. 그런데, 피막의 두께가 3.0μm 이하(바람직하게는 2.0μm 이하)라면, 피막 볼록부(11)의 형상은, 해당 기재 볼록부(6)의 형상에 대해서 양호하게 추종한다. 이 규정은, 「공통된 광선 수속 특성」과 마찬가지로, 상사성을 높게 할 수 있는 규정이다. 또, 「피막의 두께가 3.0μm 이하(바람직하게는 2.0μm 이하)」라고 하는 규정은, 피막 볼록부(11) 형상과 기재 볼록부(6) 형상과의 사이의 렌즈 두께 방향에서의 차이와 마찬가지로, 「피막 볼록부가, 렌즈 기재에서의 기재 볼록부의 형상을 충실히 추종 한다」라고 하는 기술적 사상에 근거하는 발명이다.
앞서 서술한 본 발명의 일 형태의 안경 렌즈의 기술적 사상은 원시 억제 기능을 나타내는 안경 렌즈에도 적용할 수 있다. 구체적으로 말하면, 피막 볼록부(11) 및 기재 볼록부(6)의 「볼록부」를 「오목부」로 변경한다. 그것에 의해, 피막 오목부는, 안경 렌즈에 입사한 광선을, 소정의 위치(A)보다도 「안구측」근처의 위치(B')에 수속시킬 수 있다. 지금까지 설명한 본 발명의 일 형태의 안경 렌즈에서, 「볼록부」를 「오목부」로 변경하고, 소정의 위치(A)보다도 「안구측」근처의 위치(B')에 수속한다고 하는 것과 같이 변경하면, 원시 억제 기능을 나타내는 안경 렌즈가 된다.
1 : 안경 렌즈 2 : 렌즈 기재
3 : 물체측의 면(볼록면) 4 : 안구측의 면(오목면)
6 : 기재 볼록부 8 : 하드 코트막
10 : 반사 방지막 11 : 피막 볼록부
20 : 안구 20A : 망막
30 : 안경 렌즈 모델 32 : 안구 모델
32A : 망막 33 : 모델 상에서의 물체측의 면(볼록면)
36 : 모델 상에서의 피막 볼록부

Claims (9)

  1. 물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 소정의 위치(A)에 수속(收束)시키는 안경 렌즈에 있어서,
    상기 물체측의 면과 상기 안구측의 면 중 적어도 일방의 면에 기재(基材) 볼록부를 복수 가지는 렌즈 기재와,
    상기 기재 볼록부를 가지는 면을 덮는 피막(被膜)을 구비하며,
    상기 피막은 3.0μm 이하인 안경 렌즈.
  2. 물체측의 면으로부터 입사한 광선을 안구측의 면으로부터 출사시켜 소정의 위치(A)에 수속(收束)시키는 안경 렌즈에 있어서,
    상기 물체측의 면과 상기 안구측의 면 중 적어도 일방의 면에 기재(基材) 볼록부를 복수 가지는 렌즈 기재와,
    상기 기재 볼록부를 가지는 면을 덮는 피막(被膜)을 구비하며,
    상기 기재 볼록부를 가지는 측의 안경 렌즈의 최표면(最表面)에 있는 볼록부와, 상기 기재 볼록부와는, 공통된 광선 수속 특성을 가지는 안경 렌즈.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 피막의 최표면 형상은, 상기 기재 볼록부에 유래하는 피막 볼록부를 가지며,
    상기 피막 볼록부는, 상기 안경 렌즈에 입사한 광선을, 상기 소정의 위치(A)보다도 물체측 근처의 위치(B)에 수속시키고,
    상기 피막 볼록부 형상과 상기 기재 볼록부 형상과의 사이의 렌즈 두께 방향에서의 차이의 절대값의 최대값이 0.1μm 이하인 안경 렌즈.
  4. 청구항 3에 있어서,
    상기 피막 볼록부는, 상기 안경 렌즈에 입사한 광선을, 상기 소정의 위치(A)보다도 물체측에 0mm를 초과하고 또한 10mm 이하의 범위에서 가깝게 한 위치(B)에 수속시키는 안경 렌즈.
  5. 청구항 3 또는 청구항 4에 있어서,
    광선 추적 계산에 의해 얻어지는, 상기 안경 렌즈의 상기 물체측의 면의 소정 범위 내에 균등하게 입사하여 상기 피막을 통과하는 다수의 광선 중, 상기 소정의 위치(A) 근방을 통과하지 않고, 또한, 상기 물체측 근처의 위치(B) 근방도 통과하지 않는 미광 광선의 갯수는 입사 광선 갯수의 30% 이하인 안경 렌즈.
  6. 청구항 3 내지 청구항 5 중 어느 한 항에 있어서,
    상기 피막 볼록부의 돌출 거리 Lc와, 상기 기재 볼록부의 돌출 거리 Ll과의 관계가 이하의 식 (1)을 만족하는 안경 렌즈.
    0.6≤Lc/Ll≤1.5 … 식 (1)
  7. 청구항 3 내지 청구항 6 중 어느 한 항에 있어서,
    상기 피막의 최표면 형상에 대한 비점수차 분포에서의 상기 피막 볼록부의 근원에서의 비점수차의 단면 곡선의 반값폭이 0.20mm 이하인 안경 렌즈.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 피막은, 상기 렌즈 기재와 접하는 λ/4막과, 상기 λ/4막 상에 형성된 하드 코트막과, 상기 하드 코트막 상에 형성된 반사 방지막을 가지는 안경 렌즈.
  9. 청구항 8에 있어서,
    상기 렌즈 기재의 굴절률은 상기 λ/4막보다도 높고, 상기 λ/4막의 굴절률은 상기 하드 코트막보다도 높은 안경 렌즈.
KR1020207035199A 2018-06-29 2019-06-27 안경 렌즈 KR102501016B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-125124 2018-06-29
JP2018125124 2018-06-29
PCT/JP2019/025617 WO2020004552A1 (ja) 2018-06-29 2019-06-27 眼鏡レンズ

Publications (2)

Publication Number Publication Date
KR20210006440A true KR20210006440A (ko) 2021-01-18
KR102501016B1 KR102501016B1 (ko) 2023-02-21

Family

ID=68986652

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207035199A KR102501016B1 (ko) 2018-06-29 2019-06-27 안경 렌즈

Country Status (7)

Country Link
US (1) US12013598B2 (ko)
EP (1) EP3816712A4 (ko)
JP (1) JP7125985B2 (ko)
KR (1) KR102501016B1 (ko)
CN (1) CN112219156B (ko)
SG (1) SG11202010901SA (ko)
WO (1) WO2020004552A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7366673B2 (ja) * 2019-09-25 2023-10-23 ホヤ レンズ タイランド リミテッド 光学特性評価方法および眼鏡レンズの製造方法
US20230113972A1 (en) * 2020-03-17 2023-04-13 Hoya Lens Thailand Ltd. Spectacle lens
DE102022111995B4 (de) * 2022-05-12 2024-01-18 Rodenstock Gmbh Brillengläser zur Reduzierung der Progression von Myopie sowie Verfahren zur individuellen Brechnung oder Herstellung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090098975A (ko) * 2007-01-12 2009-09-18 코니카 미놀타 옵토 인코포레이티드 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및 표시 장치
JP2012163789A (ja) * 2011-02-07 2012-08-30 Sony Corp 導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器
WO2012157072A1 (ja) * 2011-05-17 2012-11-22 伊藤光学工業株式会社 光学要素およびその製造方法
CN104678572A (zh) * 2013-11-29 2015-06-03 豪雅镜片泰国有限公司 眼镜片
US20170131567A1 (en) * 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
KR20170131567A (ko) 2015-03-27 2017-11-29 애질런트 테크놀로지스, 인크. 살아있는 세포의 통합된 대사 베이스라인 및 포텐셜의 측정을 위한 방법 및 시스템
WO2018026697A1 (en) * 2016-08-01 2018-02-08 Jay Neitz Ophthalmic lenses for treating myopia

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310640A (ja) 1986-06-30 1988-01-18 Hoya Corp 眼鏡プラスチックレンズ用コーティング組成物
FR2888947B1 (fr) * 2005-07-20 2007-10-12 Essilor Int Composant optique a cellules
JP5021194B2 (ja) 2005-09-15 2012-09-05 Hoya株式会社 硬化性組成物及びそれを用いた光学部材
US8469512B2 (en) * 2011-05-31 2013-06-25 Gunnar Optiks, Llc Computer eyewear with spectral filtering
JP6061477B2 (ja) * 2012-03-08 2017-01-18 イーエイチエス レンズ フィリピン インク 光学部材および光学部材の製造方法
SG10201400920RA (en) 2014-03-24 2015-10-29 Menicon Singapore Pte Ltd Apparatus and methods for controlling axial growth with an ocular lens
US10663625B2 (en) 2014-04-24 2020-05-26 Hoya Lens Thailand Ltd. Spectacle lens
CN107407823B (zh) * 2015-02-03 2019-11-01 睛姿控股公司 焦点调节辅助透镜
DE202016009007U1 (de) * 2015-04-15 2021-06-11 Vision Ease, Lp Ophthalmische Linse mit abgestuften Mikrolinsen
EP3203274B1 (en) 2016-02-04 2023-04-05 Essilor International Ophthalmic lens comprising a thin antireflective coating with a very low reflection in the visible
AU2017351635C1 (en) * 2016-10-25 2023-08-03 Brien Holden Vision Institute Limited Devices, systems and/or methods for myopia control
JP6928576B2 (ja) 2018-03-30 2021-09-01 ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd 眼鏡レンズの製造方法
WO2020004551A1 (ja) 2018-06-29 2020-01-02 ホヤ レンズ タイランド リミテッド 眼鏡レンズ
EP3640712B1 (en) 2018-10-16 2022-08-03 Essilor International Optical lens
EP3809168B1 (en) 2020-04-21 2024-03-20 Essilor International Optical lens

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090098975A (ko) * 2007-01-12 2009-09-18 코니카 미놀타 옵토 인코포레이티드 반사 방지 필름, 반사 방지 필름의 제조 방법, 편광판 및 표시 장치
JP2012163789A (ja) * 2011-02-07 2012-08-30 Sony Corp 導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器
WO2012157072A1 (ja) * 2011-05-17 2012-11-22 伊藤光学工業株式会社 光学要素およびその製造方法
CN104678572A (zh) * 2013-11-29 2015-06-03 豪雅镜片泰国有限公司 眼镜片
KR20170131567A (ko) 2015-03-27 2017-11-29 애질런트 테크놀로지스, 인크. 살아있는 세포의 통합된 대사 베이스라인 및 포텐셜의 측정을 위한 방법 및 시스템
US20170131567A1 (en) * 2015-11-06 2017-05-11 Hoya Lens Thailand Ltd. Spectacle Lens
WO2018026697A1 (en) * 2016-08-01 2018-02-08 Jay Neitz Ophthalmic lenses for treating myopia

Also Published As

Publication number Publication date
CN112219156B (zh) 2023-03-24
JPWO2020004552A1 (ja) 2021-04-22
EP3816712A4 (en) 2022-03-30
US20210278704A1 (en) 2021-09-09
SG11202010901SA (en) 2020-12-30
JP7125985B2 (ja) 2022-08-25
KR102501016B1 (ko) 2023-02-21
US12013598B2 (en) 2024-06-18
WO2020004552A1 (ja) 2020-01-02
EP3816712A1 (en) 2021-05-05
CN112219156A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
KR102501015B1 (ko) 안경 렌즈
WO2021131826A1 (ja) 眼鏡レンズ
KR102501016B1 (ko) 안경 렌즈
CN215867412U (zh) 眼镜镜片
WO2021131874A1 (ja) 眼鏡レンズ
WO2021131457A1 (ja) 眼鏡レンズの製造方法
KR102501014B1 (ko) 안경 렌즈

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant