KR20200100705A - 감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 led 어레이 아키텍처 - Google Patents

감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 led 어레이 아키텍처 Download PDF

Info

Publication number
KR20200100705A
KR20200100705A KR1020207020484A KR20207020484A KR20200100705A KR 20200100705 A KR20200100705 A KR 20200100705A KR 1020207020484 A KR1020207020484 A KR 1020207020484A KR 20207020484 A KR20207020484 A KR 20207020484A KR 20200100705 A KR20200100705 A KR 20200100705A
Authority
KR
South Korea
Prior art keywords
layer
wavelength converting
epitaxial layer
sidewalls
epitaxial
Prior art date
Application number
KR1020207020484A
Other languages
English (en)
Other versions
KR102383573B1 (ko
Inventor
유-천 쉔
루크 고든
애밀 애쇼크 파텔
Original Assignee
루미레즈 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루미레즈 엘엘씨 filed Critical 루미레즈 엘엘씨
Publication of KR20200100705A publication Critical patent/KR20200100705A/ko
Application granted granted Critical
Publication of KR102383573B1 publication Critical patent/KR102383573B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)

Abstract

디바이스는 에피택셜 층(122) 상에 파장 변환 층(130)을 포함한다. 파장 변환 층(130)은 에피택셜 층(122)의 폭과 동일한 폭을 갖는 제1 표면(132), 제1 표면(132)의 폭보다 작은 폭을 갖는 제2 표면(136), 및 경사진 측벽들(138)을 포함한다. 파장 변환 층(130)의 제2 표면(136)이 노출되도록, 경사진 측벽들(138) 상에 및 에피택셜 층(122)의 측벽들(142) 상에 등각 비-방출 층(140)이 형성된다. 디바이스를 형성하는 방법 및 복수의 디바이스들을 포함하는 발광 다이오드(LED) 어레이가 또한 개시된다.

Description

감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 LED 어레이 아키텍처
관련 출원들에 대한 교차 참조
본 출원은 2017년 12월 21일에 출원된 미국 가출원 제62/609,030호, 2018년 3월 1일에 출원된 EP 특허 출원 제18159512.5호, 및 2018년 12월 19일에 출원된 미국 정규 출원 제16/226,226호의 이익을 주장하며, 그 내용들은 본 명세서에 참조로 포함되어 있다.
발광 다이오드(light emitting diode, LED), 공진 공동 발광 다이오드(resonant cavity light emitting diode, RCLED), 수직 공동 레이저 다이오드(vertical cavity laser diode, VCSEL), 및 에지 방출 레이저(edge emitting laser)를 포함하는 반도체 발광 디바이스는 현재 이용가능한 가장 효율적인 광원들 중 하나이다. 가시 스펙트럼(visible spectrum)에 걸쳐 동작이 가능한 고휘도(high-brightness) 발광 디바이스들의 제조에서 현재 관심 있는 재료 시스템들은 III-V족 반도체들, 특히, 갈륨, 알루미늄, 인듐, 및 질소의 2원(binary), 3원(ternary), 및 4원(quaternary) 합금들을 포함하며, 이것들은 III-질화물 재료(III-nitride material)들로도 지칭된다.
전형적으로, III-질화물 발광 디바이스들은 금속-유기 화학 기상 퇴적(metal-organic chemical vapor deposition, MOCVD), 분자선 에피택시(molecular beam epitaxy, MBE), 또는 다른 에피택셜 기법들에 의해 사파이어, 실리콘 탄화물, III-질화물, 또는 다른 적합한 기판 상에 상이한 조성들 및 도펀트(dopant) 농도들의 반도체 층들의 스택을 에피택셜적으로(epitaxially) 성장시킴으로써 제조된다. 스택은 종종 기판 위에 형성된, 예를 들어, 실리콘으로 도핑된 하나 이상의 n-타입 층, n-타입 층 또는 층들 위에 형성된 활성 영역 내의 하나 이상의 발광 층, 및 활성 영역 위에 형성된, 예를 들어, 마그네슘으로 도핑된 하나 이상의 p-타입 층을 포함한다. 전기적 콘택들(electrical contacts)은 n-타입 및 p-타입 영역들 상에 형성된다.
디바이스는 에피택셜 층 상에 파장 변환 층을 포함할 수 있다. 파장 변환 층은 에피택셜 층의 폭과 동일한 폭을 갖는 제1 표면, 제1 표면의 폭보다 작은 폭을 갖는 제2 표면, 및 경사진 측벽들을 포함할 수 있다. 파장 변환 층의 제2 표면이 노출되도록, 경사진 측벽들 및 에피택셜 층의 측벽들 상에 등각 비-방출 층(conformal non-emission layer)이 형성될 수 있다.
첨부 도면들과 함께 예시적으로 주어지는 다음의 설명으로부터 더 상세한 이해가 얻어질 수 있다.
도 1a는 분해된 부분을 갖는 LED 어레이의 평면도이다.
도 1b는 트렌치들을 갖는 LED 어레이의 단면도이다.
도 1c는 트렌치들을 갖는 다른 LED 어레이의 사시도이다.
도 1d는 픽셀의 단면도이다.
도 1e는 미리 형성된 파장 변환 층이 에피택셜 층 상에 형성되는 것을 도시한다.
도 1f는 파장 변환 층이 에피택셜 층에 도포되는 것을 도시한다.
도 1g는 파장 변환 층 및 에피택셜 층 상의 비-방출 층의 형성을 도시한다.
도 1h는 비-방출 층의 일부를 제거하여 파장 변환 층의 상부 표면을 노출시키는 것을 도시한다.
도 1i는 성장 기판이 에피택셜 층 상에 남아 있는 도 1d 내지 도 1h의 대안적인 예를 도시한다.
도 1j는 파장 변환 층이 에피택셜 층 상에 형성되는 것을 도시한다.
도 1k는 파장 변환 층이 에피택셜 층에 도포되는 것을 도시한다.
도 1l은 경사진 측벽들을 형성하기 위해 파장 변환 층의 부분들이 제거되는 것을 도시한다.
도 1m은 파장 변환 층 및 에피택셜 층 상의 비-방출 층의 형성을 도시한다.
도 1n은 비-방출 층의 일부를 제거하여 파장 변환 층의 상부 표면을 노출시키는 것을 도시한다.
도 1o는 에피택셜 층의 상부 표면 상에 직접 파장 변환 층을 형성하는 것을 도시한다.
도 1p는 경사진 측벽들을 형성하기 위해 파장 변환 층의 부분들이 제거되는 것을 도시한다.
도 1q는 파장 변환 층 및 에피택셜 층 상의 비-방출 층의 형성을 도시한다.
도 1r은 비-방출 층의 일부를 제거하여 파장 변환 층의 상부 표면을 노출시키는 것을 도시한다.
도 1s는 에피택셜 층 상에 파장 변환 층을 형성하는 다른 예를 도시하는 단면도이다.
도 1t는 파장 변환 층을 픽셀들에 부착하는 것을 도시한다.
도 1u는 제2 측벽들을 갖는 트렌치를 형성하기 위해 픽셀들 사이의 트렌치 위의 파장 변환 층의 일부를 제거하는 선택적인 단계를 도시한다.
도 1v는 트렌치 위의 파장 변환 층의 일부를 완전히 제거하는 선택적인 단계를 도시한다.
도 1w는 디바이스를 형성하는 방법을 예시하는 흐름도이다.
도 2a는 일 실시예에서 LED 디바이스 부착 영역에서 기판에 부착된 LED 어레이를 갖는 전자 보드(electronics board)의 평면도이다.
도 2b는 회로 보드의 2개의 표면 상에 탑재된 전자 컴포넌트들을 갖는 2 채널 통합 LED 조명 시스템(two channel integrated LED lighting system)의 일 실시예의 도면이다.
도 2c는 예시적인 차량 헤드램프 시스템이다.
도 3은 예시적인 일루미네이션 시스템(illumination system)을 도시한다.
상이한 광 일루미네이션 시스템들(light illumination systems) 및/또는 발광 다이오드("LED") 구현들의 예들이 첨부 도면들을 참조하여 이하에서 더 완전히 설명될 것이다. 이 예들은 상호 배타적이지 않고, 추가적인 구현들을 달성하기 위해 하나의 예에서 발견된 특징들은 하나 이상의 다른 예에서 발견된 특징들과 조합될 수 있다. 따라서, 첨부 도면들에 도시한 예들은 단지 예시적 목적들을 위해 제공되고, 그것들은 본 개시내용을 어떤 방식으로든 제한하려는 것이 아니라는 것을 이해할 것이다. 동일한 번호들은 전체에 걸쳐 동일한 요소들을 지칭한다.
제1, 제2, 제3 등의 용어들이 본 명세서에서 다양한 요소를 설명하기 위해 사용될 수 있지만, 이 요소들은 이 용어들에 의해 제한되어서는 안 된다는 것을 이해할 것이다. 이 용어들은 하나의 요소를 다른 요소와 구별하는 데 사용될 수 있다. 예를 들어, 본 발명의 범위로부터 벗어나지 않고, 제1 요소를 제2 요소라고 부를 수 있고, 제2 요소를 제1 요소라고 부를 수 있다. 본 명세서에서 사용되는 바와 같이, 용어 "및/또는"은 연관된 나열된 항목들 중 하나 이상의 항목의 임의의 및 모든 조합들을 포함할 수 있다.
층, 영역 또는 기판과 같은 요소가 다른 요소 "상에" 있거나 다른 요소 "상으로" 연장되는 것으로 지칭될 때, 다른 요소 상에 직접 있거나 다른 요소 상으로 직접 연장될 수 있거나 또는 개재 요소(intervening element)들이 또한 존재할 수 있다는 것을 이해할 것이다. 반대로, 요소가 다른 요소 "상에 직접(directly on)" 있거나 다른 요소 "상으로 직접(directly onto)" 연장되는 것으로 지칭될 때, 개재 요소들은 존재하지 않을 수 있다. 한 요소가 다른 요소에 "접속(connected)" 또는 "결합(coupled)"되는 것으로 지칭될 때, 한 요소가 다른 요소에 직접 접속 또는 결합될 수 있고/있거나 하나 이상의 개재 요소를 통해 다른 요소에 접속 또는 결합될 수 있다는 것을 또한 이해할 것이다. 반대로, 한 요소가 다른 요소에 "직접 접속(directly connected)" 또는 "직접 결합(directly coupled)"되는 것으로 지칭될 때, 그 요소와 다른 요소 사이에 존재하는 개재 요소들이 없다. 이 용어들은 도면들에 도시한 임의의 배향 이외에 요소의 상이한 배향들을 포괄하기 위한 것이라는 것을 이해할 것이다.
"아래에(below)", "위에(above)", "상부(upper)", "하부(lower)", "수평(horizontal)" 또는 "수직(vertical)"과 같은 상대적인 용어들이 도면들에 도시된 바와 같이 한 요소, 층, 또는 영역과 다른 요소, 층, 또는 영역의 관계를 설명하기 위해 본 명세서에서 사용될 수 있다. 이 용어들은 도면들에 도시된 배향 이외에 디바이스의 상이한 배향들을 포괄하기 위한 것이라는 것을 이해할 것이다.
자외선(UV) 또는 적외선(IR) 광학 파워(optical power)를 방출하는 디바이스들과 같은 반도체 발광 디바이스들(LED들) 또는 광학 파워 방출 디바이스들은 현재 이용가능한 가장 효율적인 광원들 중 하나이다. 이러한 디바이스들(이하, "LED들")은 발광 다이오드들, 공진 공동 발광 다이오드들, 수직 공동 레이저 다이오드들, 에지 방출 레이저들, 또는 그와 유사한 것을 포함할 수 있다. 예를 들어, 그것들의 콤팩트한 크기 및 더 낮은 전력 요건들로 인해, LED들은 많은 상이한 응용들에 대한 매력적인 후보들일 수 있다. 예를 들어, 그것들은 카메라들 및 휴대폰들과 같은 핸드헬드 배터리-전력공급형 디바이스들(hand-held battery-powered devices)에 대한 광원들(예를 들어, 플래시 라이트들, 카메라 플래시들)로서 사용될 수 있다. 그것들은 또한, 예를 들어, 자동차 조명, HUD(heads up display) 조명, 원예 조명(horticultural lighting), 가로등, 비디오에 대한 토치(torch for video), 일반적인 일루미네이션(예를 들어, 집, 상점, 사무실 및 스튜디오 조명, 극장/무대 조명 및 건축화 조명), 증강 현실(AR) 조명, 가상 현실(VR) 조명, 디스플레이를 위한 백라이트로서, 및 IR 분광법을 위해 사용될 수 있다. 단일 LED는 백열 광원보다 덜 밝은 광을 제공할 수 있고, 따라서 다중 접합 디바이스들(multi-junction devices) 또는 LED들의 어레이들(예를 들어, 모놀리식 LED 어레이들, 마이크로 LED 어레이들 등)은 더 많은 밝기가 희망되거나 요구되는 응용들에 사용될 수 있다.
개시된 주제의 실시예들에 따르면, LED 어레이들(예를 들어, 마이크로 LED 어레이들)은 도 1a, 도 1b 및/또는 도 1c에 도시된 바와 같은 픽셀들의 어레이를 포함할 수 있다. LED 어레이들은 LED 어레이 세그먼트들의 정밀도 제어를 요구하는 것들과 같은 임의의 응용들에 사용될 수 있다. LED 어레이 내의 픽셀들은 개별적으로 어드레싱가능(addressable)할 수 있거나, 그룹들/서브세트들로 어드레싱가능할 수 있거나, 어드레싱가능하지 않을 수 있다. 도 1a에서, 픽셀들(111)을 갖는 LED 어레이(110)의 평면도가 도시되어 있다. LED 어레이(110)의 3x3 부분의 분해도가 또한 도 1a에 도시되어 있다. 3x3 부분 분해도에 도시된 바와 같이, LED 어레이(110)는 대략 100㎛ 이하(예를 들어, 40㎛)의 폭 w1을 갖는 픽셀들(111)을 포함할 수 있다. 픽셀들 사이의 레인들(113)은 대략 20㎛ 이하(예를 들어, 5㎛)의 폭 w2에 의해 분리될 수 있다. 도 1b 및 도 1c에 도시되고 여기에 추가로 개시된 바와 같이, 레인들(113)은 픽셀들 사이에 에어 갭을 제공할 수 있거나 다른 재료를 포함할 수 있다. 하나의 픽셀(111)의 중심으로부터 인접 픽셀(111)의 중심까지의 거리 d1은 대략 120㎛ 이하(예를 들어, 45㎛)일 수 있다. 본 명세서에 제공된 폭들 및 거리들은 예들일 뿐이고, 실제 폭들 및/또는 치수들은 변할 수 있다는 것을 이해할 것이다.
대칭 행렬로 배열된 직사각형 픽셀들이 도 1a, 도 1b 및 도 1c에 도시되어 있지만, 임의의 형상 및 배열의 픽셀들이 본 명세서에 개시된 실시예들에 적용될 수 있다는 것을 이해할 것이다. 예를 들어, 도 1a의 LED 어레이(110)는 100x100 행렬, 200×50 행렬, 대칭 행렬, 비대칭 행렬 등과 같은 임의의 적용가능한 배열에서 10,000개가 넘는 픽셀을 포함할 수 있다. 또한, 다수의 세트들의 픽셀들, 행렬들, 및/또는 보드들이 본 명세서에 개시된 실시예들을 구현하기 위해 임의의 적용가능한 포맷으로 배열될 수 있다는 것을 이해할 것이다.
도 1b는 예시적인 LED 어레이(1000)의 단면도를 도시한다. 도시된 바와 같이, 픽셀들(1010, 1020, 및 1030)은 분리 섹션들(1041) 및/또는 n-타입 콘택들(1040)이 픽셀들을 서로 분리하도록 하는 LED 어레이 내의 3개의 상이한 픽셀에 대응한다. 실시예에 따르면, 픽셀들 사이의 공간은 에어 갭에 의해 점유될 수 있다. 도시된 바와 같이, 픽셀(1010)은, 예를 들어, 에피택셜 층(1011)으로부터 제거될 수 있는 사파이어 기판과 같은 임의의 적용가능한 기판 상에 성장될 수 있는 에피택셜 층(1011)을 포함한다. 콘택(1015)으로부터 먼 성장 층의 표면은 실질적으로 평면일 수 있거나 패터닝될 수 있다. p-타입 영역(1012)은 p-콘택(1017)에 근접하여 위치될 수 있다. n-타입 영역 및 p-타입 영역(1012)에 인접하여 활성 영역(1021)이 배치될 수 있다. 대안적으로, 활성 영역(1021)은 반도체 층 또는 n-타입 영역과 p-타입 영역(1012) 사이에 있을 수 있고, 활성 영역(1021)이 광 빔들(light beams)을 방출하도록 전류를 수신할 수 있다. p-콘택(1017)은 SiO2 층들(1013 및 1014)뿐만 아니라 도금된 금속(예를 들어, 도금된 구리) 층(1016)과 접촉할 수 있다. n 타입 콘택들(1040)은 Cu와 같은 적용가능한 금속을 포함할 수 있다. 금속 층(1016)은 반사성일 수 있는 콘택(1015)과 접촉할 수 있다.
특히, 도 1b에 도시된 바와 같이, n-타입 콘택(1040)은 픽셀들(1010, 1020, 및 1030) 사이에 생성된 트렌치들(1130) 내로 퇴적될 수 있고, 에피택셜 층을 넘어 연장될 수 있다. 분리 섹션들(1041)은 변환기 재료(1050)의 전부(도시된 바와 같이) 또는 일부를 분리할 수 있다. LED 어레이는 이러한 분리 섹션들(1041) 없이 구현될 수 있거나 분리 섹션들(1041)은 에어 갭에 대응할 수 있다는 것을 이해할 것이다. 분리 섹션들(1041)은 n-타입 콘택들(1040)의 연장부일 수 있고, 따라서, 분리 섹션들(1041)은 n-타입 콘택들(1040)(예를 들어, 구리)과 동일한 재료로부터 형성된다. 대안적으로, 분리 섹션들(1041)은 n-타입 콘택들(1040)과 상이한 재료로 형성될 수 있다. 실시예에 따르면, 분리 섹션들(1041)은 반사 재료를 포함할 수 있다. 분리 섹션들(1041) 및/또는 n-타입 콘택(1040)의 재료는, 예를 들어, n-타입 콘택(1040) 및/또는 분리 섹션들(1041)의 퇴적을 포함하거나 허용하는 메시 구조(mesh structure)를 적용하는 것과 같은 임의의 적용가능한 방식으로 퇴적될 수 있다. 변환기 재료(1050)는 도 2a의 파장 변환 층(205)과 유사한 특징들/속성들을 가질 수 있다. 본 명세서에서 언급된 바와 같이, 하나 이상의 추가적인 층이 분리 섹션들(1041)을 코팅할 수 있다. 이러한 층은 반사 층, 산란 층, 흡수 층, 또는 임의의 다른 적용가능한 층일 수 있다. 하나 이상의 패시베이션 층(1019)은 n-콘택(1040)을 에피택셜 층(1011)으로부터 완전히 또는 부분적으로 분리할 수 있다.
에피택셜 층(1011)은, 사파이어, SiC, GaN, 실리콘을 포함하는, 여기될 때 광자들을 방출하는 임의의 적용가능한 재료로부터 형성될 수 있고, 보다 구체적으로는, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb를 포함하지만 이에 제한되지 않는 III-V 반도체들, ZnS, ZnSe, CdSe, CdTe를 포함하지만 이에 제한되지 않는 II-VI 반도체들, Ge, Si, SiC를 포함하지만 이에 제한되지 않는 IV족 반도체들, 및 그의 혼합물들 또는 합금들로부터 형성될 수 있다. 이러한 예시적인 반도체들은 그것들이 존재하는 LED들의 전형적인 방출 파장들에서 약 2.4 내지 약 4.1 범위의 굴절률들을 가질 수 있다. 예를 들어, GaN과 같은 III-질화물 반도체들은 500nm에서 약 2.4의 굴절률을 갖고, InGaP와 같은 III-인화물 반도체들은 600nm에서 약 3.7의 굴절률을 가질 수 있다. LED 디바이스(200)에 결합된 콘택들은 AuSn, AuGa, AuSi 또는 SAC 솔더들과 같은 솔더로부터 형성될 수 있다.
n-타입 영역은 성장 기판 상에 성장될 수 있고, 예를 들어, 버퍼 또는 핵생성 층들과 같은 준비 층들, 및/또는 성장 기판의 제거를 용이하게 하도록 설계된 층들을 포함하는, 상이한 조성들 및 도펀트 농도들을 포함하는 하나 이상의 반도체 재료 층을 포함할 수 있다. 이 층들은 n-타입이거나 의도적으로 도핑되지 않을 수 있거나, 심지어 p-타입 디바이스 층들일 수도 있다. 층들은 발광 영역이 효율적으로 광을 방출하기에 바람직한 특정한 광학적, 재료, 또는 전기적 특성들을 위해 설계될 수 있다. 유사하게, p-타입 영역(1012)은 의도적으로 도핑되지 않은 층들, 또는 n-타입 층들을 포함하는, 상이한 조성, 두께, 및 도펀트 농도의 다수의 층들을 포함할 수 있다. 전류는 p-n 접합(예를 들어, 비아 콘택들)을 통해 흐르게 될 수 있고, 픽셀들은 재료들의 밴드 갭 에너지에 의해 적어도 부분적으로 결정되는 제1 파장의 광을 생성할 수 있다. 픽셀은 광을 직접 방출하거나(예를 들어, 정규 또는 직접 방출 LED) 또는 제2 파장의 광을 출력하기 위해 방출된 광의 파장을 추가로 수정하도록 작용하는 파장 변환 층(1050)(예를 들어, 인광체 변환된 LED(phosphor converted LED), "PCLED" 등) 내로 광을 방출할 수 있다.
도 1b는 예시적인 배열에서 픽셀들(1010, 1020, 및 1030)을 갖는 예시적인 LED 어레이(1000)를 도시하지만, LED 어레이 내의 픽셀들은 다수의 배열들 중 어느 하나로 제공될 수 있다는 것을 이해할 것이다. 예를 들어, 픽셀들은 플립 칩 구조, 수직 주입 박막(vertical injection thin film, VTF) 구조, 다중 접합 구조, 박막 플립 칩(thin film flip chip, TFFC), 측방 디바이스들(lateral devices) 등에 있을 수 있다. 예를 들어, 측방 LED 픽셀은 플립 칩 LED 픽셀과 유사할 수 있지만, 전극들의 기판 또는 패키지로의 직접 접속을 위해 위아래가 뒤집혀 있지 않을 수 있다. TFFC는 또한 플립 칩 LED 픽셀과 유사할 수 있지만, 성장 기판이 제거될 수 있다(박막 반도체 층들을 지지되지 않은 채로 둔다). 대조적으로, 성장 기판 또는 다른 기판은 플립 칩 LED의 일부로서 포함될 수 있다.
활성 영역(1021)에 의해 방출되는 광이 하나 이상의 중간 층(예를 들어, 광자 층)을 통해 횡단(traverse)할 수 있도록, 파장 변환 층(1050)은 활성 영역(1021)에 의해 방출되는 광의 경로에 있을 수 있다. 실시예들에 따르면, 파장 변환 층(1050)은 LED 어레이(1000)에 존재하지 않을 수 있다. 파장 변환 층(1050)은, 예를 들어, 투명 또는 반투명 바인더 또는 행렬 내의 인광체 입자들, 또는 하나의 파장의 광을 흡수하고 상이한 파장의 광을 방출하는 세라믹 인광체 요소와 같은 임의의 발광 재료를 포함할 수 있다. 파장 변환 층(1050)의 두께는, LED 어레이(1000) 또는 개별 픽셀들(1010, 1020 및 1030)이 배열되는 사용된 재료 또는 응용/파장에 기초하여 결정될 수 있다. 예를 들어, 파장 변환 층(1050)은 대략 20㎛, 50㎛ 또는 200㎛일 수 있다. 파장 변환 층(1050)은 도시된 바와 같이 각각의 개별 픽셀 상에 제공될 수 있거나, 또는 전체 LED 어레이(1000) 위에 배치될 수 있다.
일차 광학계(1022)는 하나 이상의 픽셀(1010, 1020, 및/또는 1030) 상에 또는 그 위에 있을 수 있고, 일차 광학계를 통해 활성 영역(101) 및/또는 파장 변환 층(1050)으로부터 광이 지나가는 것을 허용할 수 있다. 일차 광학계를 통한 광은 일반적으로, 이상적인 확산 방사기(ideal diffuse radiator)로부터 관찰될 때, 일차 광학계(1022)를 통해 방출되는 광의 광도(luminous intensity)가 입사광의 방향과 표면 법선(surface normal) 사이의 각도의 코사인에 정비례하도록, 램버시안 분포 패턴(Lambertian distribution pattern)에 기초하여 방출될 수 있다. 램버시안 분포 패턴과 상이한 광 분포 패턴을 생성하기 위해 일차 광학계(1022)의 하나 이상의 속성이 수정될 수 있다는 것을 이해할 것이다.
렌즈(1065)와 도파관(1062) 중 하나 또는 둘 다를 포함하는 이차 광학계들에 픽셀들(1010, 1020 및/또는 1030)이 제공될 수 있다. 이차 광학계들이 다수의 픽셀들을 갖는 도 1b에 도시된 예에 따라 논의되지만, 이차 광학계들은 단일 픽셀들에 대해 제공될 수 있다는 것을 이해할 것이다. 이차 광학계들은 유입 광을 확산(발산 광학계)시키거나, 유입 광을 시준된 빔으로 수집(시준 광학계)하기 위해 사용될 수 있다. 도파관(1062)은 유전체 재료, 금속화 층 등으로 코팅될 수 있고 입사광을 반사 또는 재지향(redirect)시키기 위해 제공될 수 있다. 대안적인 실시예들에서, 조명 시스템은 다음 중 하나 이상을 포함하지 않을 수 있다: 파장 변환 층(1050), 일차 광학계(1022), 도파관(1062) 및 렌즈(1065).
렌즈(1065)는 SiC, 알루미늄 산화물, 다이아몬드, 또는 이와 유사한 것 또는 이들의 조합(이에 제한되지 않음)과 같은 임의의 적용가능한 투명 재료로부터 형성될 수 있다. 렌즈(1065)는, 렌즈(1065)로부터의 출력 빔이 원하는 측광 사양을 효율적으로 충족시키도록 렌즈(1065) 내로 입력될 광 빔을 수정하기 위해 사용될 수 있다. 추가적으로, 렌즈(1065)는, 예를 들어, 다수의 LED 디바이스(200B)의 조명된 및/또는 조명되지 않은 외관(lit and/or unlit appearance)을 결정함으로써, 하나 이상의 심미적 목적을 제공할 수 있다.
도 1c는 LED 어레이(1100)의 3차원 뷰의 단면을 도시한다. 도시된 바와 같이, LED 어레이(1100) 내의 픽셀들은 n-콘택들(1140)을 형성하도록 채워지는 트렌치들에 의해 분리될 수 있다. 픽셀들은 기판(1114) 상에 성장될 수 있고 p-콘택(1113), p-GaN 반도체 층(1112), 활성 영역(1111), 및 n-GaN 반도체 층(1110)을 포함할 수 있다. 이러한 구조는 단지 예로서 제공되고, 본 명세서에 제공된 개시내용을 구현하기 위해 하나 이상의 반도체 또는 다른 적용가능한 층이 추가, 제거, 또는 부분적으로 추가 또는 제거될 수 있다는 것을 이해할 것이다. 변환기 재료(1117)가 반도체 층(1110)(또는 다른 적용가능한 층) 상에 퇴적될 수 있다.
도시된 바와 같이, 패시베이션 층들(1115)이 트렌치들(1130) 내에 형성될 수 있고, n-콘택들(1140)(예를 들어, 구리 콘택들)이 트렌치들(1130) 내에 퇴적될 수 있다. 패시베이션 층들(1115)은 n-콘택들(1140)의 적어도 일부를 하나 이상의 반도체 층으로부터 분리할 수 있다. 일 구현에 따르면, 트렌치들 내의 n-콘택들(1140) 또는 다른 적용가능한 재료는, n-콘택들(1140) 또는 다른 적용가능한 재료가 픽셀들 사이의 완전한 또는 부분적인 광학 격리를 제공하도록, 변환기 재료(1117) 내로 연장될 수 있다.
작은 어드레싱가능한 광 LED 픽셀 시스템들의 제조는 픽셀 크기로 인해 비용이 많이 들고 어려울 수 있다. 픽셀들 사이의 광 크로스토크는 심각한 문제일 수 있고, 각각의 픽셀에 대한 원하는 휘도를 달성하는 것이 어려울 수 있다. 다음의 설명은 LED 픽셀들 사이의 광학 크로스토크를 제한하면서 휘도를 선택적으로 증가시키는 방법들을 포함한다. 이것은 반도체 메사 자체보다 작은 면적을 갖는 광 방출기 디바이스들의 반도체 메사에 인광체 캡(phosphor cap)을 부착함으로써 달성될 수 있다. 반도체 메사의 나머지 영역은 반사 또는 흡수 층으로 코팅될 수 있다.
이제 도 1d를 참조하면, 하나 이상의 픽셀(111)의 단면도가 도시되어 있다. 도 1d는 박막 플립 칩 디바이스를 예시하고 있지만, n-타입 콘택 층들 및 p-타입 콘택 층들이 디바이스의 대향 측면들 상에 형성되는 수직 디바이스들, 두 콘택들이 디바이스의 동일 측면 상에 형성되고 콘택들을 통해 광이 추출되는 디바이스, 또는 성장 기판이 디바이스의 일부로 남아 있는 플립 칩 디바이스와 같은 다른 타입들의 디바이스들이 사용될 수 있다.
각각의 픽셀(111)은 에피택셜 층(122)을 포함할 수 있다. 에피택셜 층(122)은 하나의 층으로서 도시되지만, 다양한 조성들의 하나 이상의 층을 포함할 수 있다. 에피택셜 층(122)은 n-타입 영역, 발광 또는 활성 영역, 및 p-타입 영역을 포함할 수 있다. 에피택셜 층(122)은 도 1i에 도시된 바와 같이 성장 기판(123) 상에 성장될 수 있다. 성장 기판(123)은, 예를 들어, 사파이어, SiC, GaN, Si, 사파이어와 같은 성장 기판 위에 성장된 변형 감소 템플릿들(strain-reducing templates), 또는, 예를 들어, 사파이어 호스트(sapphire host)에 본딩된 InGaN 시드 층과 같은 복합 기판을 구성(compose)할 수 있다. 성장 기판(123)은 각각의 픽셀(111)로부터 방출된 광에 대해 실질적으로 투명할 수 있다. 일 예에서, 성장 기판(123)은 픽셀들(111)을 형성하기 위해 에피택셜 층(122)으로부터 제거될 수 있다. 다른 예에서, 도 1i에 도시된 바와 같이, 성장 기판(123)은 에피택셜 층(122) 상에 남아 있을 수 있다.
n-타입 영역은 먼저 성장될 수 있고, 예를 들어, n-타입이거나 의도적으로 도핑되지 않을 수 있는 버퍼 층들 또는 핵생성 층들과 같은 준비 층들, 복합 기판의 추후의 릴리즈 또는 기판 제거 후의 반도체 구조물의 박형화(thinning)를 용이하게 하도록 설계된 릴리즈 층들(release layers), 및 발광 영역이 효율적으로 발광하는 데에 바람직한 특정 광학적 또는 전기적 속성들을 위해 설계된 n-타입 또는 심지어 p-타입 디바이스 층들을 포함하는, 상이한 조성들 및 도펀트 농도의 다수의 층들을 포함할 수 있다. n-타입 영역 위에 발광 또는 활성 영역이 성장될 수 있다. 적합한 발광 영역들의 예들은 단일의 두꺼운 또는 얇은 발광 층, 또는 장벽 층들에 의해 분리된 다수의 얇은 또는 두꺼운 양자 우물 발광 층들을 포함하는 다중 양자 우물 발광 영역(multiple quantum well light emitting region)을 포함한다. p-타입 영역이 발광 영역 위에 성장될 수 있다. n-타입 영역과 마찬가지로, p-타입 영역은 의도적으로 도핑되지 않은 층들, 또는 n-타입 층들을 포함하는, 상이한 조성, 두께, 및 도펀트 농도의 다수의 층들을 포함할 수 있다.
p-콘택 층(124)이 에피택셜 층(122)의 p-타입 영역과 접촉하여 형성될 수 있다. p-콘택 층(124)은 은과 같은 반사 층을 포함할 수 있다. p-콘택 층(124)은 옴 콘택 층(ohmic contact layer) 및, 예를 들어, 티타늄 및/또는 텅스텐을 포함하는 가드 시트(guard sheet)와 같은 다른 선택적 층들을 포함할 수 있다. 도 1d에는 도시되어 있지 않지만, n-콘택 층이 형성될 수 있는 n-타입 영역의 일부를 노출시키기 위해 p-콘택 층(124), p-타입 영역, 및 활성 영역의 일부가 제거될 수 있다.
픽셀(111)은 트렌치(128)에 의해 다른 픽셀(111)로부터 분리될 수 있다. 트렌치(128)는 에피택셜 층(122)의 전체 두께를 통해 연장될 수 있고, 인접한 세그먼트들을 전기적으로 격리하기 위해 각각의 픽셀(111) 사이에 형성될 수 있다. 트렌치(128)는 플라즈마 강화 화학 기상 퇴적(plasma enhanced chemical vapor deposition)에 의해 형성된 실리콘의 산화물 또는 실리콘의 질화물과 같은 유전체 재료로 채워질 수 있다. 트렌치(128)는, 예를 들어, 픽셀들(111) 사이의 영역을 야기하도록 에피택셜 층(122)을 형성하기 위해 사용되는 반도체 재료 내로의 도펀트 원자들의 주입에 의해 형성되는 격리 재료를 포함할 수 있다는 점에 유의해야 한다.
인터커넥트들(interconnects)(도 1d에 도시되지 않음)은 p-콘택 층(124) 및 n-콘택 층 및/또는 마운트(mount) 상에 형성될 수 있다. 인터커넥트들은 솔더 또는 다른 금속들과 같은 임의의 적합한 재료일 수 있고, 다수의 재료 층을 포함할 수 있다. 본딩 층(126)이 p-콘택 층(124) 상에 형성될 수 있다. 본딩 층(126)은 전도성 금속, 예를 들어, 금 또는 그 합금을 포함할 수 있다. 본딩 층(126)은 마운트(120)에 탑재될 수 있다. 마운트(120)는, 예를 들어, 실리콘, 세라믹, AlN, 및 알루미나를 포함하는 임의의 적합한 재료일 수 있다. 일 예에서, 픽셀(111)과 마운트(120) 사이의 본드는 초음파 본딩에 의해 형성될 수 있다. 초음파 본딩 동안, 픽셀(111)은 마운트(120) 상에 배치될 수 있다. 본드 헤드(bond head)가 픽셀(111)의 최상부 표면 상에, 예를 들어, 성장 기판의 최상부 표면 상에 배치된다. 본드 헤드는 초음파 트랜스듀서에 접속될 수 있다. 초음파 트랜스듀서는, 예를 들어, PZT(lead zirconate titanate) 층들의 스택일 수 있다.
시스템이 고조파적으로 공진하게 하는 주파수(종종 수십 또는 수백 kHz 정도의 주파수)로 트랜스듀서에 전압이 인가될 때, 트랜스듀서는 진동하기 시작하고, 이는 결국 본드 헤드 및 픽셀(111)이, 종종 수 마이크론 정도의 진폭으로 진동하게 한다. 진동은, n-콘택 층, p-콘택 층(124) 또는 n-콘택 층과 p-콘택 층 상에 형성된 인터커넥트들과 같은 픽셀(111) 상의 구조물의 금속 격자 내의 원자들이, 마운트(120) 상의 구조물과 상호확산(interdiffuse)하게 하여, 야금학적으로 연속적인 조인트(metallurgically continuous joint)를 초래한다. 본딩 동안에 열 및/또는 압력이 추가될 수 있다.
픽셀(111)이 마운트(120)에 본딩된 후에, 성장 기판(도시되지 않음)의 전부 또는 일부가 제거될 수 있다. 예를 들어, 복합 기판의 일부인 사파이어 성장 기판 또는 사파이어 호스트 기판이 사파이어 기판과의 계면에 있는 III-질화물 또는 다른 층의 레이저 용융에 의해 제거될 수 있다. 제거되는 기판에 적절한 경우, 에칭과 같은 다른 기법들 또는 그라인딩과 같은 기계적 기법들이 사용될 수 있다. 성장 기판이 제거된 후에, 에피택셜 층(122)은, 예를 들어, PEC(photoelectrochemical) 에칭에 의해 박형화될 수 있다. 에피택셜 층(122)의 n-타입 영역의 노출된 표면은, 예를 들어, 조면화(roughening)에 의해 또는 광자 결정 형성에 의해 패턴(129)을 형성하기 위해 텍스처링(textured)될 수 있다. 패턴(129)은 패터닝된 사파이어 기판 상에 에피택셜 층(122)을 성장시킨 결과일 수 있다.
이제 도 1e 내지 도 1h를 참조하면, 에피택셜 층(122) 상에 파장 변환 층(130)을 형성하는 제1 예를 예시하는 단면도들이 도시되어 있다. 도 1e는 미리 형성된 파장 변환 층(130)이 에피택셜 층(122) 상에 형성되는 것을 도시한다. 파장 변환 층(130)은 하나 이상의 파장 변환 재료를 포함할 수 있다. 하나 이상의 파장 변환 재료는, 예를 들어, 실리콘 또는 에폭시와 같은 투명 재료 내에 배치되고 스크린 인쇄 또는 스텐실에 의해 LED 상에 퇴적되는 하나 이상의 분말 인광체(powder phosphor)일 수 있다. 하나 이상의 파장 변환 재료는 전기영동 퇴적(electrophoretic deposition), 분무(spraying), 침전(sedimenting), 증발(evaporation), 또는 스퍼터링(sputtering)에 의해 형성된 하나 이상의 분말 인광체일 수 있다. 하나 이상의 파장 변환 재료는 픽셀(111)에 접착되거나 본딩되는 하나 이상의 세라믹 인광체일 수 있다. 파장 변환 재료들은, 발광 영역에 의해 방출된 광의 일부가 파장 변환 재료에 의해 변환되지 않을 수 있도록 형성될 수 있다. 일부 예들에서, 변환되지 않은 광은 청색일 수 있고, 변환된 광은 황색, 녹색, 및/또는 적색일 수 있으며, 따라서 디바이스로부터 방출된 변환되지 않은 광과 변환된 광의 조합은 백색으로 보인다. 파장 변환 층(130)은 각각의 픽셀(111) 상에 개별적으로 형성될 수 있다.
파장 변환 층(130)은 원소 인광체 또는 그의 화합물들을 포함할 수 있다. 파장 변환 층(130)은 하나 이상의 인광체를 포함할 수 있다. 인광체들은 여기 에너지(보통은 방사 에너지)를 흡수하고, 이어서 흡수된 에너지를 초기 여기 에너지와 상이한 에너지의 방사로서 방출할 수 있는 발광 재료들이다. 인광체들은 100% 근처의 양자 효율을 가질 수 있는데, 이는 여기 에너지로서 제공된 거의 모든 광자가 인광체들에 의해 재방출될 수 있다는 것을 의미한다. 인광체들은 또한 고흡수성(highly absorbent)일 수 있다. 발광 활성 영역(light emitting active region)은 매우 효율적인 고흡수성 파장 변환 층(130) 내로 직접 광을 방출할 수 있기 때문에, 인광체들은 디바이스로부터 광을 효율적으로 추출할 수 있다. 파장 변환 층(130)에서 사용되는 인광체들은 임의의 종래의 녹색, 황색, 및 적색 방출 인광체들을 포함할 수 있지만 이에 제한되지 않는다.
파장 변환 층(130)은 인광체 결정립들(phosphor grains)을 포함할 수 있다. 인광체 결정립들은, 활성 영역으로부터 방출된 광이 인광체 결정립들에 직접 결합될 수 있도록, 에피택셜 층(122)과 직접 접촉할 수 있다. 광학 결합 매질(optical coupling medium)이 인광체 결정립들을 제자리에(in place) 유지하기 위해 제공될 수 있다. 광학 결합 매질은 에피택셜 층(122)의 굴절률을 크게 초과하지 않고 가능한 한 가까운 굴절률을 갖도록 선택될 수 있다. 가장 효율적인 동작을 위해, 에피택셜 층(122), 파장 변환 층(130)의 인광체 결정립들, 및 광학 결합 매질 사이에 손실성 매질(lossy media)이 포함되지 않을 수 있다. 인광체 결정립들은 0.1㎛ 내지 20㎛의 결정립 크기를 가질 수 있다.
파장 변환 층(130)은 세라믹 인광체일 수 있다. 세라믹 인광체는 인광체 입자들의 표면이 연화(soften)되고 용융되기 시작할 때까지 높은 압력에서 분말 인광체를 가열함으로써 형성될 수 있다. 부분적으로 용융된 입자들은 함께 점착되어 단단한 입자 덩어리를 형성할 수 있다. 다결정 세라믹 층을 형성하기 위해서는 미리 형성된 "그린 바디(green body)"의 단축 또는 등방압 가압 단계들(uniaxial or isostatic pressing steps) 및 진공 소결(vacuum sintering)이 필요할 수 있다. 세라믹 인광체의 반투명도(즉, 이것이 생성하는 산란의 양)는 가열 또는 가압 조건들, 제조 방법, 사용되는 인광체 입자 전구체, 및 인광체 재료의 적합한 결정 격자를 조정하는 것에 의해 높은 불투명도로부터 높은 투명도로 제어될 수 있다. 예를 들어, 세라믹의 형성을 촉진하거나 세라믹의 굴절률을 조정하기 위해, 인광체 이외에, 알루미나와 같은 다른 세라믹 형성 재료들이 포함될 수 있다. 다른 예에서, 파장 변환 층(130)은 실리콘과 인광체 입자들의 혼합물을 포함할 수 있다.
파장 변환 층(130)은 몰드(mold)를 사용하여 형성될 수 있거나, 또는 플레이트들로부터 다이싱되고 에피택셜 층(122)의 상부 표면(134)과 실질적으로 폭이 유사한 하부 표면(132)을 갖도록 에칭될 수 있다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(134)의 폭보다 작은 상부 표면(136)을 가질 수 있다. 일 예에서, 상부 표면(136)은, 상부 표면(136)이 에피택셜 층(122)의 상부 표면(134)의 대략 80% 내지 대략 90%인 전체 면적을 갖도록 하는 폭을 가질 수 있다. 파장 변환 층(130)은 상부 표면(136)과 하부 표면(132)을 접속하는 측벽들(138)을 가질 수 있다. 측벽들(138)은 경사질 수 있다. 일 예에서, 측벽들(138)은 에피택셜 층(122)의 상부 표면(134)에 대해 대략 30도 내지 대략 60도 경사질 수 있다. 측벽들(138)은 파장 변환 층(130) 내의 반사들을 감소시키기에 충분히 큰 각도를 가질 수 있고 두꺼운 파장 변환 층(130)에 대한 필요성을 감소시키기에 충분히 얕을 수 있으며, 이들 둘 다 효율을 감소시킬 수 있다.
도 1f는 파장 변환 층(130)이 에피택셜 층(122)에 도포되는 것을 도시한다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(144)에 부착될 수 있다. 일 예에서, 파장 변환 층(130)은 본 기술분야에 알려진 글루(glue) 또는 에폭시를 사용하여 부착될 수 있다. 본딩 층(126) 및 p-콘택 층은 H1의 높이를 가질 수 있다. 에피택셜 층(122)은 H2의 높이를 가질 수 있다. 파장 변환 층(130)은 H3의 높이를 가질 수 있다. 일 예에서, H3은 H2보다 대략 5배 더 클 수 있다. 또한, H1은 H2보다 대략 6배 더 클 수 있다. 예를 들어, H1은 대략 47㎛일 수 있고, H2는 대략 6㎛일 수 있고, H3은 대략 30㎛일 수 있다. 다른 예에서, H3은 H2와 대략 동일할 수 있다. 예를 들어, H2는 대략 6㎛일 수 있고 H3은 대략 10㎛일 수 있다. 다른 예에서, H3은 H2보다 10배 더 클 수 있다. 예를 들어, H2는 대략 6㎛일 수 있고 H3은 대략 60㎛일 수 있다. H1은 대략 25㎛ 내지 대략 100㎛의 범위일 수 있다. H2는 대략 3㎛ 내지 대략 20㎛의 범위일 수 있다. H3은 대략 5㎛ 내지 대략 100㎛의 범위일 수 있다.
도 1g는 파장 변환 층(130) 및 에피택셜 층(122) 상의 비-방출 층(140)의 형성을 도시한다. 비-방출 층(140)은 에피택셜 층(122) 및 파장 변환 층(130)에 의해 방출된 광을 반사 또는 흡수할 수 있다. 비-방출 층(140)은 분산 브래그 반사기(distributed Bragg reflector, DBR) 층들, 반사 재료들(예를 들어, TiO2), 흡수 재료들 등과 같은 하나 이상의 광학 격리 재료를 포함할 수 있다. 비-방출 층(140)은 픽셀들(111) 사이의 광학 격리를 향상시키고 파장 변환 층(130)의 노출된 상부 표면(148)을 감소시키기 위해 DBR, 흡수기들, 레이저 흑화 영역들(laser blackened areas), 및 금속화의 조합들을 포함할 수 있다.
비-방출 층(140)은, 예를 들어, 원자 층 퇴적(atomic layer deposition, ALD)과 같은 등각 퇴적 프로세스를 사용하여 형성될 수 있다. 비-방출 층(140)은 에피택셜 층(122)의 측벽들, 파장 변환 층(130)의 측벽들(138) 및 파장 변환 층(130)의 상부 표면(136) 상에 형성될 수 있다. 파장 변환 층(130)의 측벽들(138) 및 에피택셜 층(122)의 측벽들(142)은 비-방출 층(140)에 의해 부분적으로 또는 완전히 커버될 수 있다. 비-방출 층(140)은 한 파장 변환 층(130)의 측벽들(138)로부터 다른 파장 변환 층(130)의 측벽들(138)까지 트렌치(128)를 가로질러 연장될 수 있다. 다른 예에서, 비-방출 층(140)은 파장 변환 층(130)이 부착되기 전에 격리 층 및 에피택셜 층(122) 상에 형성될 수 있다.
도 1h는 비-방출 층(140)의 일부를 제거하여 파장 변환 층(130)의 상부 표면(136)을 노출시키는 것을 도시한다. 비-방출 층의 부분은, 예를 들어, 평탄화 및 화학 기계적 평탄화(chemical mechanical planarization, CMP)와 같은 종래의 그라인딩 기법들을 사용하여 제거될 수 있다. 선택적으로, 비-방출 층의 부분들(125)이 상부 표면(136) 상에 남아 있도록, 종래의 패터닝 및 에칭 프로세스를 사용하여 비-방출 층(140)의 부분들이 상부 표면(136)으로부터 제거될 수 있다. 이 부분들(125)은 본 명세서에 설명된 실시예들 중 임의의 것에서 남아 있을 수 있다는 점에 유의해야 한다.
도 1i는 성장 기판(123)이 에피택셜 층(122) 상에 남아 있는 도 1d 내지 도 1h의 대안적인 예를 도시한다. 위에서 설명한 것들과 유사한 처리 단계들을 수행하여, 픽셀들(111)을 형성하고, 파장 변환 층(130)을 형성하고, 비-방출 층(140)을 형성할 수 있다. 이 예에서, 파장 변환 층(130)은 성장 기판(123) 상에 형성될 수 있다. 하부 표면(132)은 성장 기판(123)의 상부 표면(135)으로서의 폭을 가질 수 있다. 상부 표면(136)은 성장 기판(123)의 상부 표면(135)의 폭보다 작은 폭을 가질 수 있다. 일 예에서, 상부 표면(136)은, 상부 표면(136)이 성장 기판의 상부 표면(135)의 대략 80% 내지 대략 90%인 전체 면적을 갖도록 하는 폭을 가질 수 있다. 파장 변환 층(130)은 상부 표면(136)과 하부 표면(132)을 접속하는 측벽들(138)을 가질 수 있다. 측벽들(138)은 경사질 수 있다. 일 예에서, 측벽들(138)은 성장 기판(123)의 상부 표면(135)에 대해 대략 30도 내지 대략 60도 경사질 수 있다. 측벽들(138)은 파장 변환 층(130) 내의 반사들을 감소시키기에 충분히 큰 각도를 가질 수 있고 두꺼운 파장 변환 층(130)에 대한 필요성을 감소시키기에 충분히 얕을 수 있으며, 이들 둘 다 효율을 감소시킬 수 있다.
본 명세서에 설명된 실시예들 중 임의의 것에서, 성장 기판(123)은 에피택셜 층(122) 상에 남아 있을 수 있고, 에피택셜 층(122)과 파장 변환 층(130) 사이에 있을 수 있다는 점에 유의해야 한다.
이제 도 1j 내지 도 1n을 참조하면, 에피택셜 층(122) 상에 파장 변환 층(130)을 형성하는 다른 예를 예시하는 단면도들이 도시되어 있다. 도 1j는 파장 변환 층(130)이 에피택셜 층(122) 상에 형성되는 것을 도시한다. 파장 변환 층(130)은 하나 이상의 파장 변환 재료를 포함할 수 있다. 하나 이상의 파장 변환 재료는, 예를 들어, 실리콘 또는 에폭시와 같은 투명 재료 내에 배치되고 스크린 인쇄 또는 스텐실에 의해 LED 상에 퇴적되는 하나 이상의 분말 인광체일 수 있다. 하나 이상의 파장 변환 재료는 전기영동 퇴적, 분무, 침전, 증발, 또는 스퍼터링에 의해 형성된 하나 이상의 분말 인광체일 수 있다. 하나 이상의 파장 변환 재료는 픽셀(111)에 접착되거나 본딩되는 하나 이상의 세라믹 인광체일 수 있다. 파장 변환 재료들은, 발광 영역에 의해 방출된 광의 일부가 파장 변환 재료에 의해 변환되지 않을 수 있도록 형성될 수 있다. 일부 예들에서, 변환되지 않은 광은 청색일 수 있고, 변환된 광은 황색, 녹색, 및/또는 적색일 수 있으며, 따라서 디바이스로부터 방출된 변환되지 않은 광과 변환된 광의 조합은 백색으로 보인다. 파장 변환 층(130)은 각각의 픽셀(111) 상에 개별적으로 형성될 수 있다.
파장 변환 층(130)은 원소 인광체 또는 그의 화합물들을 포함할 수 있다. 파장 변환 층(130)은 하나 이상의 인광체를 포함할 수 있다. 인광체들은 여기 에너지(보통은 방사 에너지)를 흡수하고, 이어서 흡수된 에너지를 초기 여기 에너지와 상이한 에너지의 방사로서 방출할 수 있는 발광 재료들이다. 인광체들은 100% 근처의 양자 효율을 가질 수 있는데, 이는 여기 에너지로서 제공된 거의 모든 광자가 인광체들에 의해 재방출될 수 있다는 것을 의미한다. 인광체들은 또한 고흡수성일 수 있다. 발광 활성 영역은 매우 효율적인 고흡수성 파장 변환 층(130) 내로 직접 광을 방출할 수 있기 때문에, 인광체들은 디바이스로부터 광을 효율적으로 추출할 수 있다. 파장 변환 층(130)에서 사용되는 인광체들은 임의의 종래의 녹색, 황색, 및 적색 방출 인광체들을 포함할 수 있지만 이에 제한되지 않는다.
파장 변환 층(130)은 인광체 결정립들을 포함할 수 있다. 인광체 결정립들은, 활성 영역으로부터 방출된 광이 인광체 결정립들에 직접 결합될 수 있도록, 에피택셜 층(122)과 직접 접촉할 수 있다. 광학 결합 매질이 인광체 결정립들을 제자리에 유지하기 위해 제공될 수 있다. 광학 결합 매질은 에피택셜 층(122)의 굴절률을 크게 초과하지 않고 가능한 한 가까운 굴절률을 갖도록 선택될 수 있다. 가장 효율적인 동작을 위해, 에피택셜 층(122), 파장 변환 층(130)의 인광체 결정립들, 및 광학 결합 매질 사이에 손실성 매질이 포함되지 않을 수 있다. 인광체 결정립들은 0.1㎛ 내지 20㎛의 결정립 크기를 가질 수 있다.
파장 변환 층(130)은 세라믹 인광체일 수 있다. 세라믹 인광체는 인광체 입자들의 표면이 연화(soften)되고 용융되기 시작할 때까지 높은 압력에서 분말 인광체를 가열함으로써 형성될 수 있다. 부분적으로 용융된 입자들은 함께 점착되어 단단한 입자 덩어리를 형성할 수 있다. 다결정 세라믹 층을 형성하기 위해서는 미리 형성된 "그린 바디"의 단축 또는 등방압 가압 단계들 및 진공 소결이 필요할 수 있다. 세라믹 인광체의 반투명도(즉, 이것이 생성하는 산란의 양)는 가열 또는 가압 조건들, 제조 방법, 사용되는 인광체 입자 전구체, 및 인광체 재료의 적합한 결정 격자를 조정하는 것에 의해 높은 불투명도로부터 높은 투명도로 제어될 수 있다. 예를 들어, 세라믹의 형성을 촉진하거나 세라믹의 굴절률을 조정하기 위해, 인광체 이외에, 알루미나와 같은 다른 세라믹 형성 재료들이 포함될 수 있다. 다른 예에서, 파장 변환 층(130)은 실리콘과 인광체 입자들의 혼합물을 포함할 수 있다. 파장 변환 층(130)은 몰드를 사용하여 형성되거나 플레이트들로부터 다이싱될 수 있다.
도 1k는 파장 변환 층(130)이 에피택셜 층(122)에 도포되는 것을 도시한다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(134)에 부착될 수 있다. 일 예에서, 파장 변환 층(130)은 본 기술분야에 알려진 글루 또는 에폭시를 사용하여 부착될 수 있다.
도 1l은 경사진 측벽들(150)을 형성하기 위해 파장 변환 층(130)의 부분들이 제거되는 것을 도시한다. 파장 변환 층(130)의 부분들은 종래의 에칭 또는 그라인딩 프로세스를 사용하여 제거될 수 있다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(406)과 실질적으로 폭이 유사한 하부 표면(146)을 갖도록 에칭될 수 있다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(406)의 폭보다 작은 상부 표면(148)을 가질 수 있다. 일 예에서, 상부 표면(148)은, 상부 표면(148)이 에피택셜 층(122)의 상부 표면(406)의 대략 80% 내지 대략 90%인 전체 면적을 갖도록 하는 폭을 가질 수 있다. 파장 변환 층(130)은 상부 표면(148)과 하부 표면(146)을 접속하는 측벽들(150)을 가질 수 있다. 측벽들(150)은 경사질 수 있다. 일 예에서, 측벽들(150)은 에피택셜 층(122)의 상부 표면(406)에 대해 대략 30도 내지 대략 60도 경사질 수 있다. 측벽들(150)은 파장 변환 층(130) 내의 반사들을 감소시키기에 충분히 큰 각도를 가질 수 있고 두꺼운 파장 변환 층(130)에 대한 필요성을 감소시키기에 충분히 얕을 수 있으며, 이들 둘 다 효율을 감소시킬 수 있다.
파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122) 위에 대칭적으로 중심을 둘 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122) 위의 위치에 대해 비대칭일 수 있다. 상부 표면(148)은, 에피택셜 층(122)과 비교하여 형상은 유사하지만 감소된 크기를 갖는 영역을 가질 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(148)은, 에피택셜 층(122)과 비교하여 형상이 상이하고 감소된 영역을 갖는 영역을 가질 수 있다. 예를 들어, 파장 변환 층(130)의 상부 표면(148)은 정사각형 에피택셜 층(122) 상에 원형, 삼각형 또는 육각형인 영역을 가질 수 있다. 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)에 대해 기울어질 수 있다. 이는 측면-지향 일루미네이션(side-directed illumination)을 가능(enable)하게 할 수 있다. 파장 변환 층(130)의 상부 표면(148)은 조명 응용에 의해 필요에 따라 상이한 픽셀들(111) 상에 상이한 형상들을 가질 수 있다. 예를 들어, 높은 휘도를 갖는 어레이의 중심에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)보다 작을 수 있고, 어레이의 에지에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)과 동일한 크기(또는 더 큰 크기)일 수 있다.
파장 변환 층(130)의 상부 표면(148) 상에 통합된 양자 점 재료의 사용을 통해 효율이 증가할 수 있다. 대안적으로, 방출된 광을 지향시키기 위해 렌즈들, 금속 렌즈들, 광 가이드들(light guides), 또는 다른 광학 요소들이 파장 변환 층(130)의 상부 표면(148) 위에 위치될 수 있다.
파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122) 위에 대칭적으로 중심을 둘 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122) 위의 위치에 대해 비대칭일 수 있다. 상부 표면(148)은, 에피택셜 층(122)과 비교하여 형상은 유사하지만 감소된 크기를 갖는 영역을 가질 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(148)은, 에피택셜 층(122)과 비교하여 형상이 상이하고 감소된 영역을 갖는 영역을 가질 수 있다. 예를 들어, 파장 변환 층(130)의 상부 표면(148)은 정사각형 에피택셜 층(122) 상에 원형, 삼각형 또는 육각형인 영역을 가질 수 있다. 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)에 대해 기울어질 수 있다. 이는 측면-지향 일루미네이션을 가능하게 할 수 있다. 파장 변환 층(130)의 상부 표면(148)은 조명 응용에 의해 필요에 따라 상이한 픽셀들(111) 상에 상이한 형상들을 가질 수 있다. 예를 들어, 높은 휘도를 갖는 어레이의 중심에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)보다 작을 수 있고, 어레이의 에지에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(148)은 에피택셜 층(122)의 상부 표면(406)과 동일한 크기(또는 더 큰 크기)일 수 있다.
파장 변환 층(130)의 상부 표면(148) 상에 통합된 양자 점 재료의 사용을 통해 효율이 증가할 수 있다. 대안적으로, 방출된 광을 지향시키기 위해 렌즈들, 금속 렌즈들, 광 가이드들, 또는 다른 광학 요소들이 파장 변환 층(130)의 상부 표면(148) 위에 위치될 수 있다.
도 1m은 파장 변환 층(130) 및 에피택셜 층(122) 상의 비-방출 층(140)의 형성을 도시한다. 비-방출 층(140)은 에피택셜 층(122) 및 파장 변환 층(130)에 의해 방출된 광을 반사 또는 흡수할 수 있다. 비-방출 층(140)은 분산 브래그 반사기(DBR) 층들, 반사 재료들, 흡수 재료들 등과 같은 하나 이상의 광학 격리 재료를 포함할 수 있다. 비-방출 층(140)은 픽셀들(111) 사이의 광학 격리를 향상시키고 파장 변환 층(130)의 노출된 상부 표면(148)을 감소시키기 위해 DBR, 흡수기들, 레이저 흑화 영역들, 및 금속화의 조합들을 포함할 수 있다.
비-방출 층(140)은, 예를 들어, 원자 층 퇴적(atomic layer deposition, ALD)과 같은 등각 퇴적 프로세스를 사용하여 형성될 수 있다. 비-방출 층(140)은 에피택셜 층(122)의 측벽들, 파장 변환 층(130)의 측벽들(150) 및 파장 변환 층(130)의 상부 표면(148) 상에 형성될 수 있다. 파장 변환 층(130)의 측벽들(150) 및 에피택셜 층(122)의 측벽들(152)은 비-방출 층(140)에 의해 부분적으로 또는 완전히 커버될 수 있다. 비-방출 층(140)은 한 파장 변환 층(130)의 측벽들(150)로부터 다른 파장 변환 층(130)의 측벽들(150)까지 트렌치(128)를 가로질러 연장될 수 있다. 다른 예에서, 비-방출 층(140)은 파장 변환 층(130)이 부착되기 전에 격리 층 및 에피택셜 층(122) 상에 형성될 수 있다.
도 1n은 비-방출 층(140)의 일부를 제거하여 파장 변환 층(130)의 상부 표면(148)을 노출시키는 것을 도시한다. 비-방출 층의 부분은, 예를 들어, 평탄화 및 CMP와 같은 종래의 그라인딩 기법들을 사용하여 제거될 수 있다.
이제 도 1o 내지 도 1r을 참조하면, 에피택셜 층(122) 상에 파장 변환 층(130)을 형성하는 다른 예를 예시하는 단면도들이 도시되어 있다. 도 1o는 에피택셜 층(122)의 상부 표면(154) 상에 직접 파장 변환 층(130)을 형성하는 것을 도시한다.
파장 변환 층(130)은 하나 이상의 파장 변환 재료를 포함할 수 있다. 하나 이상의 파장 변환 재료는, 예를 들어, 실리콘 또는 에폭시와 같은 투명 재료 내에 배치되고 스크린 인쇄 또는 스텐실에 의해 LED 상에 퇴적되는 하나 이상의 분말 인광체일 수 있다. 하나 이상의 파장 변환 재료는 전기영동 퇴적, 분무, 침전, 증발, 또는 스퍼터링에 의해 형성된 하나 이상의 분말 인광체일 수 있다. 하나 이상의 파장 변환 재료는 픽셀(111)에 접착되거나 본딩되는 하나 이상의 세라믹 인광체일 수 있다. 파장 변환 재료들은, 발광 영역에 의해 방출된 광의 일부가 파장 변환 재료에 의해 변환되지 않을 수 있도록 형성될 수 있다. 일부 예들에서, 변환되지 않은 광은 청색일 수 있고, 변환된 광은 황색, 녹색, 및/또는 적색일 수 있으며, 따라서 디바이스로부터 방출된 변환되지 않은 광과 변환된 광의 조합은 백색으로 보인다. 파장 변환 층(130)은 각각의 픽셀(111) 상에 개별적으로 형성될 수 있다.
파장 변환 층(130)은 원소 인광체 또는 그의 화합물들을 포함할 수 있다. 파장 변환 층(130)은 하나 이상의 인광체를 포함할 수 있다. 인광체들은 여기 에너지(보통은 방사 에너지)를 흡수하고, 이어서 흡수된 에너지를 초기 여기 에너지와 상이한 에너지의 방사로서 방출할 수 있는 발광 재료들이다. 인광체들은 100% 근처의 양자 효율을 가질 수 있는데, 이는 여기 에너지로서 제공된 거의 모든 광자가 인광체들에 의해 재방출될 수 있다는 것을 의미한다. 인광체들은 또한 고흡수성일 수 있다. 발광 활성 영역은 매우 효율적인 고흡수성 파장 변환 층(130) 내로 직접 광을 방출할 수 있기 때문에, 인광체들은 디바이스로부터 광을 효율적으로 추출할 수 있다. 파장 변환 층(130)에서 사용되는 인광체들은 임의의 종래의 녹색, 황색, 및 적색 방출 인광체들을 포함할 수 있지만 이에 제한되지 않는다.
파장 변환 층(130)은 인광체 결정립들을 포함할 수 있다. 인광체 결정립들은, 활성 영역으로부터 방출된 광이 인광체 결정립들에 직접 결합될 수 있도록, 에피택셜 층(122)과 직접 접촉할 수 있다. 광학 결합 매질이 인광체 결정립들을 제자리에 유지하기 위해 제공될 수 있다. 광학 결합 매질은 에피택셜 층(122)의 굴절률을 크게 초과하지 않고 가능한 한 가까운 굴절률을 갖도록 선택될 수 있다. 가장 효율적인 동작을 위해, 에피택셜 층(122), 파장 변환 층(130)의 인광체 결정립들, 및 광학 결합 매질 사이에 손실성 매질이 포함되지 않을 수 있다. 인광체 결정립들은 0.1㎛ 내지 20㎛의 결정립 크기를 가질 수 있다.
파장 변환 층(130)은, 예를 들어, CVD(chemical vapor deposition), PECVD(plasma enhanced chemical vapor deposition), MOCVD(metal organic chemical vapor deposition), ALD, 증발, 반응성 스퍼터링(reactive sputtering), 화학 용액 퇴적(chemical solution deposition), 스핀-온 퇴적(spin-on deposition), 또는 다른 유사한 프로세스들과 같은 종래의 퇴적 기법을 사용하여 형성될 수 있다.
파장 변환 층(130)은 전기영동 퇴적, 스핀 코팅, 스프레이 코팅, 스크린 인쇄, 또는 다른 인쇄 기법들을 사용하여 형성될 수 있다. 스핀 코팅 또는 스프레이 코팅과 같은 기법들에서, 인광체는 유기 바인더(organic binder)와 함께 슬러리 내에 배치될 수 있고, 유기 바인더는 이어서 예를 들어 가열에 의해 슬러리의 퇴적 후에 증발될 수 있다. 선택적으로, 광학 결합 매질이 그 다음에 인가될 수 있다. 인광체 입자들은 나노입자들 자체일 수 있다(즉, 크기가 100 nm 내지 1000 nm의 범위에 있는 입자들). 전형적으로 스프레이 열분해 방법들(spray pyrolysis methods) 또는 다른 방법들에 의해 생성되는 구형 인광체 입자들이 인가될 수 있어, 유리한 산란 속성들을 제공하는 높은 패키지 밀도를 갖는 층을 산출할 수 있다. 또한, 인광체 입자들은, 예를 들어, SiO2, Al2O3, MePO4 또는 -폴리포스페이트(polyphosphate)와 같은 인광체에 의해 방출된 광보다 큰 밴드 갭을 갖는 재료, 또는 다른 적합한 금속 산화물들로 코팅될 수 있다. 파장 변환 층(130)이 에피택셜 층(122)의 상부 표면(154) 상에만 형성되는 것을 보장하기 위해 마스킹 층이 사용될 수 있다.
도 1p는 경사진 측벽들(160)을 형성하기 위해 파장 변환 층(130)의 부분들이 제거되는 것을 도시한다. 파장 변환 층(130)의 부분들은 종래의 에칭 또는 그라인딩 프로세스를 사용하여 제거될 수 있다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(506)과 실질적으로 폭이 유사한 하부 표면(156)을 갖도록 에칭될 수 있다. 파장 변환 층(130)은 에피택셜 층(122)의 상부 표면(506)의 폭보다 작은 상부 표면(158)을 가질 수 있다. 일 예에서, 상부 표면(158)은, 상부 표면(158)이 에피택셜 층(122)의 상부 표면(506)의 대략 80% 내지 대략 90%인 전체 면적을 갖도록 하는 폭을 가질 수 있다. 파장 변환 층(130)은 상부 표면(158)과 하부 표면(156)을 접속하는 측벽들(160)을 가질 수 있다. 측벽들(160)은 경사질 수 있다. 일 예에서, 측벽들(160)은 에피택셜 층(122)의 상부 표면(506)에 대해 대략 30도 내지 대략 60도 경사질 수 있다. 측벽들(160)은 파장 변환 층(130) 내의 반사들을 감소시키기에 충분히 큰 각도를 가질 수 있고 두꺼운 파장 변환 층(130)에 대한 필요성을 감소시키기에 충분히 얕을 수 있으며, 이들 둘 다 효율을 감소시킬 수 있다.
파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122) 위에 대칭적으로 중심을 둘 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122) 위의 위치에 대해 비대칭일 수 있다. 상부 표면(158)은, 에피택셜 층(122)과 비교하여 형상은 유사하지만 감소된 크기를 갖는 영역을 가질 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(158)은, 에피택셜 층(122)과 비교하여 형상이 상이하고 감소된 영역을 갖는 영역을 가질 수 있다. 예를 들어, 파장 변환 층(130)의 상부 표면(158)은 정사각형 에피택셜 층(122) 상에 원형, 삼각형 또는 육각형인 영역을 가질 수 있다. 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)에 대해 기울어질 수 있다. 이는 측면-지향 일루미네이션을 가능하게 할 수 있다. 파장 변환 층(130)의 상부 표면(158)은 조명 응용에 의해 필요에 따라 상이한 픽셀들(111) 상에 상이한 형상들을 가질 수 있다. 예를 들어, 높은 휘도를 갖는 어레이의 중심에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)보다 작을 수 있고, 어레이의 에지에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)과 동일한 크기(또는 더 큰 크기)일 수 있다.
파장 변환 층(130)의 상부 표면(158) 상에 통합된 양자 점 재료의 사용을 통해 효율이 증가할 수 있다. 대안적으로, 방출된 광을 지향시키기 위해 렌즈들, 금속 렌즈들, 광 가이드들, 또는 다른 광학 요소들이 파장 변환 층(130)의 상부 표면(158) 위에 위치될 수 있다.
파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122) 위에 대칭적으로 중심을 둘 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122) 위의 위치에 대해 비대칭일 수 있다. 상부 표면(158)은, 에피택셜 층(122)과 비교하여 형상은 유사하지만 감소된 크기를 갖는 영역을 가질 수 있다. 다른 예에서, 파장 변환 층(130)의 상부 표면(158)은, 에피택셜 층(122)과 비교하여 형상이 상이하고 감소된 영역을 갖는 영역을 가질 수 있다. 예를 들어, 파장 변환 층(130)의 상부 표면(158)은 정사각형 에피택셜 층(122) 상에 원형, 삼각형 또는 육각형인 영역을 가질 수 있다. 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)에 대해 기울어질 수 있다. 이는 측면-지향 일루미네이션을 가능하게 할 수 있다. 파장 변환 층(130)의 상부 표면(158)은 조명 응용에 의해 필요에 따라 상이한 픽셀들(111) 상에 상이한 형상들을 가질 수 있다. 예를 들어, 높은 휘도를 갖는 어레이의 중심에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)보다 작을 수 있고, 어레이의 에지에 있는 픽셀들(111) 상의 파장 변환 층(130)의 상부 표면(158)은 에피택셜 층(122)의 상부 표면(506)과 동일한 크기(또는 더 큰 크기)일 수 있다.
파장 변환 층(130)의 상부 표면(158) 상에 통합된 양자 점 재료의 사용을 통해 효율이 증가할 수 있다. 대안적으로, 방출된 광을 지향시키기 위해 렌즈들, 금속 렌즈들, 광 가이드들, 또는 다른 광학 요소들이 파장 변환 층(130)의 상부 표면(158) 위에 위치될 수 있다.
도 1q는 파장 변환 층(130) 및 에피택셜 층(122) 상의 비-방출 층(140)의 형성을 도시한다. 비-방출 층(140)은 에피택셜 층(122) 및 파장 변환 층(130)에 의해 방출된 광을 반사 또는 흡수할 수 있다. 비-방출 층(140)은 분산 브래그 반사기(DBR) 층들, 반사 재료들, 흡수 재료들 등과 같은 하나 이상의 광학 격리 재료를 포함할 수 있다. 비-방출 층(140)은 픽셀들(111) 사이의 광학 격리를 향상시키고 파장 변환 층(130)의 노출된 상부 표면(158)을 감소시키기 위해 DBR, 흡수기들, 레이저 흑화 영역들, 및 금속화의 조합들을 포함할 수 있다.
비-방출 층(140)은, 예를 들어, 원자 층 퇴적(atomic layer deposition, ALD)과 같은 등각 퇴적 프로세스를 사용하여 형성될 수 있다. 비-방출 층(140)은 에피택셜 층(122)의 측벽들, 파장 변환 층(130)의 측벽들(160) 및 파장 변환 층(130)의 상부 표면(158) 상에 형성될 수 있다. 파장 변환 층(130)의 측벽들(160) 및 에피택셜 층(122)의 측벽들(162)은 비-방출 층(140)에 의해 부분적으로 또는 완전히 커버될 수 있다. 비-방출 층(140)은 한 파장 변환 층(130)의 측벽들(160)로부터 다른 파장 변환 층(130)의 측벽들(160)까지 트렌치(128)를 가로질러 연장될 수 있다. 다른 예에서, 비-방출 층(140)은 파장 변환 층(130)이 부착되기 전에 격리 층 및 에피택셜 층(122) 상에 형성될 수 있다.
도 1r은 비-방출 층(140)의 일부를 제거하여 파장 변환 층(130)의 상부 표면(158)을 노출시키는 것을 도시한다. 비-방출 층의 부분은, 예를 들어, 평탄화 및 CMP와 같은 종래의 그라인딩 기법들을 사용하여 제거될 수 있다.
이제 도 1s를 참조하면, 에피택셜 층(122) 상에 파장 변환 층(130)을 형성하는 다른 예를 예시하는 단면도가 도시되어 있다. 파장 변환 층(130) 및 비-방출 층(140)은 위에서 설명한 기법들 중 임의의 것을 사용하여 형성될 수 있다. 그러나, 도 1s에 도시된 바와 같이, 파장 변환 층(130)의 하부 표면(164)은 에피택셜 층(122)의 상부 표면(164)보다 작은 폭을 가질 수 있다. 따라서, 비-방출 층은 또한 에피택셜 층(122)의 상부 표면(166) 상에 형성될 수 있다.
이제 도 1t 내지 도 1v를 참조하면, 에피택셜 층(122) 상에 파장 변환 층(130)을 형성하는 다른 예를 예시하는 단면도들이 도시되어 있다. 도 1t는 파장 변환 층(130)을 픽셀들(111)에 부착하는 것을 도시한다. 파장 변환 층(130)은 도 1e 내지 도 1m을 참조하여 위에서 설명한 것들과 유사한 기법들을 사용하여 부착될 수 있다. 따라서, 제1 측벽들(168)은 파장 변환 층(130)이 픽셀들(111)에 부착되기 전 또는 후에 형성될 수 있다. 그러나, 파장 변환 층(130)은 하나보다 많은 픽셀(111) 위의 하나의 연속적인 피스(piece)일 수 있다. 비-방출 층(140)은 위에서 설명한 것들과 유사한 기법들을 사용하여 형성될 수 있다.
도 1u는 제2 측벽들(170)을 갖는 트렌치(172)를 형성하기 위해 트렌치(128) 위의 파장 변환 층(130)의 일부를 제거하는 선택적인 단계를 도시한다. 그 일부는 임의의 종래의 패터닝 및 에칭 프로세스를 사용하여 제거될 수 있다. 트렌치(172)는 에칭에 의해 형성될 수 있는 임의의 형상일 수 있다는 점에 유의해야 한다. 비-방출 층(140)은 또한 트렌치(172) 내에 형성될 수 있다.
도 1v는 트렌치(128) 위의 파장 변환 층(130)의 일부를 완전히 제거하는 선택적인 단계를 도시한다. 제2 측벽들(170)은 위에서 설명한 경사진 측벽들과 유사할 수 있다. 따라서, 비-방출 층(140)은 위에서 설명한 것들과 유사한 기법들을 사용하여 제2 측벽들(170) 상에 형성될 수 있다.
이제 도 1w를 참조하면, 디바이스를 형성하는 방법을 예시하는 흐름도가 도시되어 있다. 단계 190에서, 파장 변환 층이 에피택셜 층 상에 형성될 수 있다. 파장 변환 층은 에피택셜 층의 폭과 동일한 폭을 갖는 제1 표면, 제1 표면의 폭보다 작은 폭을 갖는 제2 표면, 및 경사진 측벽들을 포함할 수 있다. 단계 192에서, 파장 변환 층의 제2 표면이 노출되도록, 경사진 측벽들 및 에피택셜 층의 측벽들 상에 등각 비-방출 층이 형성될 수 있다. 선택적 단계 194에서, 제1 표면에 대해 원위인 에피택셜 층의 제2 표면 상에 콘택 층이 형성될 수 있다. 제1 콘택 층은 본딩 층을 통해 마운트에 접속될 수 있다. 일 예에서, 파장 변환 층은 에피택셜 층 상에 직접 형성될 수 있다. 본 명세서에서 사용되는 바와 같은 "원위(distal)"라는 용어는 요소, 디바이스, 층, 또는 다른 구조물의 공간적으로 대향하는 측면들을 의미하기 위한 방향성 용어(directional term)로서 사용될 수 있다는 점에 유의해야 한다. 제3 요소의 원위 측면들 상에 있는 제1 요소와 제2 요소는 제3 요소의 적어도 일부에 의해 서로 분리될 수 있다. 예를 들어, 층의 상부 표면은 층의 하부 표면에 대해 원위일 수 있다.
도 2a는 일 실시예에서 LED 디바이스 부착 영역(318)에서 기판에 부착된 LED 어레이(410)를 갖는 전자 보드의 평면도이다. LED 어레이(410)와 함께 전자 보드는 LED 시스템(400A)을 나타낸다. 또한, 전력 모듈(312)은 Vin(497)에서 입력된 전압을 수신하고, 트레이스들(418B)을 통해 접속성 및 제어 모듈(connectivity and control module)(316)로부터 제어 신호들을 수신하고, 트레이스들(418A)을 통해 구동 신호들을 LED 어레이(410)에 제공한다. LED 어레이(410)는 전력 모듈(312)로부터의 구동 신호들을 통해 턴 온 및 오프(turn on and off)된다. 도 2a에 도시된 실시예에서, 접속성 및 제어 모듈(316)은 트레이스(418C)를 통해 센서 모듈(314)로부터 센서 신호들을 수신한다.
도 2b는 회로 보드(499)의 2개의 표면 상에 탑재된 전자 컴포넌트들을 갖는 2 채널 통합 LED 조명 시스템의 일 실시예를 예시한다. 도 2b에 도시된 바와 같이, LED 조명 시스템(400B)은 조광기 신호들 및 AC 전력 신호들을 수신하기 위한 입력들을 갖는 제1 표면(445A) 및 그 위에 탑재된 AC/DC 변환기 회로(412)를 포함한다. LED 시스템(400B)은 조광기 인터페이스 회로(415), DC-DC 변환기 회로들(440A 및 440B), 마이크로컨트롤러(472)를 갖는 접속성 및 제어 모듈(416)(이 예에서는 무선 모듈), 및 그 위에 탑재된 LED 어레이(410)를 갖는 제2 표면(445B)을 포함한다. LED 어레이(410)는 2개의 독립 채널(411A 및 411B)에 의해 구동된다. 대안적인 실시예들에서, 단일 채널이 구동 신호들을 LED 어레이에 제공하기 위해 사용될 수 있거나, 또는 임의의 수의 다중 채널이 구동 신호들을 LED 어레이에 제공하기 위해 사용될 수 있다.
LED 어레이(410)는 2개의 그룹의 LED 디바이스들을 포함할 수 있다. 예시적인 실시예에서, 그룹 A의 LED 디바이스들은 제1 채널(411A)에 전기적으로 결합되고, 그룹 B의 LED 디바이스들은 제2 채널(411B)에 전기적으로 결합된다. 2개의 DC-DC 변환기(440A 및 440B) 각각은 LED 어레이(410) 내의 각자의 그룹의 LED들 A 및 B를 구동하기 위해 각각 단일 채널들(411A 및 411B)을 통해 각자의 구동 전류를 제공할 수 있다. LED들의 그룹들 중 하나의 그룹 내의 LED들은 제2 그룹의 LED들 내의 LED들과는 상이한 색점(color point)을 갖는 광을 방출하도록 구성될 수 있다. LED 어레이(410)에 의해 방출되는 광의 복합 색점의 제어는 각각 단일 채널(411A 및 411B)을 통해 개별 DC/DC 변환기 회로들(440A 및 440B)에 의해 인가되는 전류 및/또는 듀티 사이클을 제어함으로써 범위 내에서 튜닝(tune)될 수 있다. (도 2a에서 설명한 바와 같이) 도 2b에 도시된 실시예는 센서 모듈을 포함하지 않지만, 대안적인 실시예는 센서 모듈을 포함할 수 있다.
예시된 LED 조명 시스템(400B)은, LED 어레이(410) 및 LED 어레이(410)를 동작시키기 위한 회로가 단일 전자 보드 상에 제공되는 통합 시스템이다. 회로 보드(499)의 동일 표면 상의 모듈들 사이의 접속들은 트레이스들(431, 432, 433, 434 및 435) 또는 금속화들(metallizations)(도시되지 않음)과 같은 표면 또는 서브-표면 상호접속들(surface or sub-surface interconnections)에 의해 모듈들 사이에 전압들, 전류들, 및 제어 신호들을 교환하기 위해 전기적으로 결합될 수 있다. 회로 보드(499)의 대향 표면들 상의 모듈들 사이의 접속들은 비아들(vias) 및 금속화들(도시되지 않음)과 같은 보드 상호접속들을 통해 전기적으로 결합될 수 있다.
실시예들에 따르면, LED 어레이가 구동기 및 제어 회로와 별개의 전자 보드 상에 있는 LED 시스템들이 제공될 수 있다. 다른 실시예들에 따르면, LED 시스템은 구동기 회로와 별개의 전자 보드 상의 전자기기들 중 일부와 함께 LED 어레이를 가질 수 있다. 예를 들어, LED 시스템은 LED 어레이들과 별개의 전자 보드 상에 위치한 전력 변환 모듈 및 LED 모듈을 포함할 수 있다.
실시예들에 따르면, LED 시스템은 멀티-채널 LED 구동기 회로를 포함할 수 있다. 예를 들어, LED 모듈은 내장된 LED 캘리브레이션 및 설정 데이터와, 예를 들어, 3개의 그룹의 LED들을 포함할 수 있다. 본 기술분야의 통상의 기술자는, 하나 이상의 응용에 따라 임의의 수의 그룹들의 LED들이 사용될 수 있다는 것을 인식할 것이다. 각각의 그룹 내의 개별 LED들은 직렬로 또는 병렬로 배열될 수 있고, 상이한 색점들을 갖는 광이 제공될 수 있다. 예를 들어, 온백색 광(warm white light)이 제1 그룹의 LED들에 의해 제공될 수 있고, 냉백색 광(cool white light)이 제2 그룹의 LED들에 의해 제공될 수 있고, 중성 백색 광(neutral white light)이 제3 그룹에 의해 제공될 수 있다.
도 2c는 데이터 버스(304)를 포함하는 차량 전력(vehicle power)(302)을 포함하는 예시적인 차량 헤드램프 시스템(300)을 도시한다. 환경 조건들(예를 들어, 주변 광 조건들, 온도, 시간, 비, 안개 등), 차량 조건(주차(parked), 운전중(in-motion), 속도, 방향), 다른 차량들의 존재/위치, 보행자들, 객체들 등과 관련된 데이터를 제공하기 위해 센서 모듈(307)이 데이터 버스(304)에 접속될 수 있다. 센서 모듈(307)은 도 2a의 센서 모듈(314)과 유사하거나 동일할 수 있다. AC/DC 변환기(305)는 차량 전력(302)에 접속될 수 있다.
도 2c의 AC/DC 변환기(312)는 도 2b의 AC/DC 변환기(412)와 동일하거나 유사할 수 있고, 차량 전력(302)으로부터 AC 전력을 수신할 수 있다. 그것은 AC-DC 변환기(412)에 대해 도 2b에서 설명된 바와 같이 AC 전력을 DC 전력으로 변환할 수 있다. 차량 헤드 램프 시스템(300)은 AC/DC 변환기(305), 접속성 및 제어 모듈(306), 및/또는 센서 모듈(307)에 의해 또는 그에 기초하여 제공되는 하나 이상의 입력을 수신하는 액티브 헤드 램프(330)를 포함할 수 있다. 예로서, 센서 모듈(307)이 보행자의 존재를 검출할 수 있어 보행자가 잘 조명되지 않고, 이는 운전자가 보행자를 볼 가능성을 감소시킬 수 있다. 이러한 센서 입력에 기초하여, 접속성 및 제어 모듈(306)은 AC/DC 변환기(305)로부터 제공된 전력을 사용하여 액티브 헤드 램프(330)에 데이터를 출력하여, 출력 데이터가 액티브 헤드 램프(330) 내에 포함된 LED 어레이 내의 LED들의 서브세트를 활성화하게 할 수 있다. LED 어레이 내의 LED들의 서브세트는, 활성화될 때, 센서 모듈(307)이 보행자의 존재를 감지한 방향으로 광을 방출할 수 있다. 보행자가 차량 헤드 램프 시스템을 포함하는 차량의 경로에 더 이상 있지 않다는 것을 확인하는 업데이트된 데이터를 센서 모듈(207)이 제공한 후에 이러한 LED들의 서브세트는 비활성화될 수 있거나 또는 그것들의 광 빔 방향이 다른 방식으로 수정될 수 있다.
도 3은 애플리케이션 플랫폼(560), LED 시스템들(552 및 556), 및 광학계들(554 및 558)을 포함하는 예시적인 시스템(550)을 도시한다. LED 시스템(552)은 화살표들(561a 및 561b) 사이에 도시된 광 빔들(561)을 생성한다. LED 시스템(556)은 화살표들(562a 및 562b) 사이에 광 빔들(562)을 생성할 수 있다. 도 3에 도시된 실시예에서, LED 시스템(552)으로부터 방출된 광은 이차 광학계(554)를 통과하고, LED 시스템(556)으로부터 방출된 광은 이차 광학계(558)를 통과한다. 대안적인 실시예들에서, 광 빔들(561 및 562)은 임의의 이차 광학계를 통과하지 않는다. 이차 광학계는 하나 이상의 광 가이드일 수 있거나 이를 포함할 수 있다. 하나 이상의 광 가이드는 에지 조명(edge lit)될 수 있거나, 광 가이드의 내부 에지를 정의하는 내부 개구를 가질 수 있다. LED 시스템들(552 및/또는 556)은 하나 이상의 광 가이드의 내부 개구들에 삽입되어, 하나 이상의 광 가이드의 내부 에지(내부 개구 광 가이드) 또는 외부 에지(에지 조명 광 가이드) 내로 광을 주입할 수 있다. LED 시스템들(552 및/또는 556) 내의 LED들은 광 가이드의 일부인 베이스의 둘레 주위에 배열될 수 있다. 일 구현에 따르면, 베이스는 열 전도성일 수 있다. 일 구현에 따르면, 베이스는 광 가이드 위에 배치되는 열 소산 요소(heat-dissipating element)에 결합될 수 있다. 열 소산 요소는 열 전도성 베이스를 통해 LED들에 의해 발생된 열을 수신하고 수신된 열을 소산시키도록 배열될 수 있다. 하나 이상의 광 가이드는 LED 시스템들(552 및 556)에 의해 방출된 광이, 예를 들어, 기울기, 챔퍼링된 분포(chamfered distribution), 좁은 분포, 넓은 분포, 각도 분포 등과 같이 원하는 방식으로 성형될 수 있게 할 수 있다.
예시적인 실시예들에서, 시스템(550)은 카메라 플래시 시스템의 이동 전화, 실내 주거용 또는 상업용 조명, 가로등과 같은 실외 조명, 자동차, 의료 디바이스, AR/VR 디바이스들, 및 로봇 디바이스들일 수 있다. 도 2a에 도시된 LED 시스템(400A) 및 도 2c에 도시된 차량 헤드 램프 시스템(300)은 예시적인 실시예들에서 LED 시스템들(552 및 556)을 예시한다.
본 명세서에서 논의된 바와 같이, 애플리케이션 플랫폼(560)은 라인(565) 또는 다른 적용가능한 입력을 통해 전력 버스를 통해 LED 시스템들(552 및/또는 556)에 전력을 제공할 수 있다. 또한, 애플리케이션 플랫폼(560)은 LED 시스템(552) 및 LED 시스템(556)의 동작을 위해 라인(565)을 통해 입력 신호들을 제공할 수 있으며, 이 입력은 사용자 입력/선호도, 감지된 판독, 사전 프로그래밍된 또는 자율적으로 결정된 출력 등에 기초할 수 있다. 하나 이상의 센서는 애플리케이션 플랫폼(560)의 하우징의 내부 또는 외부에 있을 수 있다. 대안적으로 또는 추가적으로, 도 2a의 LED 시스템(400)에 도시된 바와 같이, 각각의 LED 시스템(552 및 556)은 그 자신의 센서 모듈, 접속성 및 제어 모듈, 전력 모듈, 및/또는 LED 디바이스들을 포함할 수 있다.
실시예들에서, 애플리케이션 플랫폼(560) 센서들 및/또는 LED 시스템(552 및/또는 556) 센서들은 시각 데이터(예를 들어, LIDAR 데이터, IR 데이터, 카메라를 통해 수집된 데이터 등), 오디오 데이터, 거리 기반 데이터, 움직임 데이터, 환경 데이터, 또는 이와 유사한 것 또는 이들의 조합과 같은 데이터를 수집할 수 있다. 데이터는 객체, 개인, 차량 등과 같은 물리적 아이템 또는 엔티티와 관련될 수 있다. 예를 들어, 감지 장비는 ADAS/AV 기반 애플리케이션에 대한 객체 근접 데이터를 수집할 수 있으며, 이는 물리적 아이템 또는 엔티티의 검출에 기초하여 검출 및 후속 액션을 우선순위화할 수 있다. 데이터는, 예를 들어, LED 시스템(552 및/또는 556)에 의해 IR 신호와 같은 광학 신호를 방출하고, 방출된 광학 신호에 기초하여 데이터를 수집하는 것에 기초하여 수집될 수 있다. 데이터는 데이터 수집을 위해 광학 신호를 방출하는 컴포넌트와 상이한 컴포넌트에 의해 수집될 수 있다. 예를 계속하면, 감지 장비는 자동차 상에 위치될 수 있고 수직 공동 표면 방출 레이저(vertical-cavity surface-emitting laser, VCSEL)를 사용하여 빔을 방출할 수 있다. 하나 이상의 센서는 방출된 빔 또는 임의의 다른 적용가능한 입력에 대한 응답을 감지할 수 있다.
예시적인 실시예에서, 애플리케이션 플랫폼(560)은 자동차를 나타낼 수 있고 LED 시스템(552) 및 LED 시스템(556)은 자동차 헤드라이트들을 나타낼 수 있다. 다양한 실시예들에서, 시스템(550)은 조향가능한 광 빔들(steerable light beams)을 갖는 자동차를 나타낼 수 있고, 여기서 조향가능한 광을 제공하기 위해 LED들이 선택적으로 활성화될 수 있다. 예를 들어, LED들의 어레이는 도로의 선택된 섹션들만을 정의 또는 투영 또는 성형 또는 패터닝 또는 일루미네이션하는 데 사용될 수 있다. 예시적인 실시예에서, LED 시스템들(552 및/또는 556) 내의 적외선 카메라들 또는 검출기 픽셀들은 일루미네이션을 요구하는 장면(도로, 횡단보도 등)의 부분들을 식별하는 센서들(예를 들어, 센서 모듈(도 2a의 314 및 도 2c의 307)과 유사함)일 수 있다.
실시예들이 상세하게 설명되었지만, 본 기술분야의 통상의 기술자들은, 본 설명을 고려해 볼 때, 본 발명의 개념의 사상으로부터 벗어나지 않고 본 명세서에 설명된 실시예들에 대한 수정들이 이루어질 수 있다는 것을 이해할 것이다. 따라서, 본 발명의 범위는 도시되고 설명된 특정 실시예들에 제한되도록 의도되지 않는다.

Claims (20)

  1. 디바이스로서,
    에피택셜 층 상의 파장 변환 층 - 상기 파장 변환 층은 상기 에피택셜 층의 폭과 동일한 폭을 갖는 제1 표면, 상기 제1 표면의 폭보다 작은 폭을 갖는 제2 표면, 및 경사진 측벽들(angled sidewalls)을 포함함 - ; 및
    상기 파장 변환 층의 상기 제2 표면이 노출되도록, 상기 경사진 측벽들 및 상기 에피택셜 층의 측벽들 상에 있는 등각 비-방출 층(conformal non-emission layer)
    을 포함하는, 디바이스.
  2. 제1항에 있어서, 상기 에피택셜 층은 콘택 층(contact layer) 상의 p-타입 영역, 상기 p-타입 영역 상의 활성 영역, 및 상기 활성 영역 상의 n-타입 영역을 포함하는, 디바이스.
  3. 제1항에 있어서, 상기 파장 변환 층은 인광체(phosphor)를 포함하는, 디바이스.
  4. 제1항에 있어서, 상기 파장 변환 층은 상기 에피택셜 층의 제1 표면 상에 직접 형성되는, 디바이스.
  5. 제4항에 있어서, 상기 에피택셜 층의 상기 제1 표면은 패턴화된 사파이어 기판으로부터의 패턴을 포함하는, 디바이스.
  6. 제1항에 있어서, 상기 등각 비-방출 층은 반사 재료를 포함하는, 디바이스.
  7. 제1항에 있어서, 상기 경사진 측벽들은 상기 에피택셜 층의 상기 제1 표면에 대해 대략 30도 내지 대략 60도의 각도를 갖는, 디바이스.
  8. 제1항에 있어서,
    상기 에피택셜 층과 상기 파장 변환 층 사이의 성장 기판을 추가로 포함하는, 디바이스.
  9. 제1항에 있어서,
    상기 파장 변환 층에 대해 원위인 상기 에피택셜 층의 제2 표면 상의 제1 콘택 층; 및
    상기 콘택 상의 본딩 층 - 상기 본딩 층은 실리콘, 세라믹, AlN, 및 알루미나 중 하나 이상을 포함하는 마운트(mount) 상에 형성됨 - 을 추가로 포함하는, 디바이스.
  10. 디바이스를 형성하는 방법으로서,
    에피택셜 층 상에 파장 변환 층을 형성하는 단계 - 상기 파장 변환 층은 상기 에피택셜 층의 폭과 동일한 폭을 갖는 제1 표면, 상기 제1 표면의 폭보다 작은 폭을 갖는 제2 표면, 및 경사진 측벽들을 포함함 - ; 및
    상기 파장 변환 층의 상기 제2 표면이 노출되도록, 상기 경사진 측벽들 및 상기 에피택셜 층의 측벽들 상에 등각 비-방출 층을 형성하는 단계
    를 포함하는, 방법.
  11. 제10항에 있어서, 상기 에피택셜 층은 콘택 층 상의 p-타입 영역, 상기 p-타입 영역 상의 활성 영역, 및 상기 활성 영역 상의 n-타입 영역을 포함하는, 방법.
  12. 제10항에 있어서, 상기 파장 변환 층은 인광체를 포함하는, 방법.
  13. 제10항에 있어서, 상기 파장 변환 층은 상기 에피택셜 층의 제1 표면 상에 직접 형성되는, 방법.
  14. 제13항에 있어서, 상기 에피택셜 층의 상기 제1 표면은 패턴화된 사파이어 기판으로부터의 패턴을 포함하는, 방법.
  15. 제10항에 있어서, 상기 등각 비-방출 층은 하나 이상의 분산 브래그 반사기(distributed Bragg reflector, DBR) 층을 포함하는, 방법.
  16. 제10항에 있어서, 상기 경사진 측벽들은 상기 에피택셜 층의 상기 제1 표면에 대해 대략 30도 내지 대략 60도의 각도를 갖는, 방법.
  17. 제10항에 있어서,
    상기 파장 변환 층에 대해 원위인 상기 에피택셜 층의 제2 표면 상에 제1 콘택 층을 형성하는 단계; 및
    상기 콘택 상에 본딩 층을 형성하는 단계 - 상기 본딩 층은 실리콘, 세라믹, AlN, 및 알루미나 중 하나 이상을 포함하는 마운트(mount) 상에 형성됨 - 를 추가로 포함하는, 방법.
  18. 발광 다이오드(LED) 어레이로서,
    제1 픽셀 상의 제1 파장 변환 층; 및
    제2 픽셀 상의 제2 파장 변환 층 - 상기 제1 파장 변환 층 및 상기 제2 파장 변환 층 각각은 상기 제1 픽셀 및 상기 제2 픽셀의 폭과 동일한 폭을 갖는 제1 표면, 상기 제1 표면의 폭보다 작은 폭을 갖는 제2 표면, 및 경사진 측벽들을 포함함 - ; 및
    상기 제1 파장 변환 층의 상기 제2 표면 및 상기 제2 파장 변환 층의 상기 제2 표면이 노출되도록, 상기 경사진 측벽들 상에 있는 등각 비-방출 층
    을 포함하는, 발광 다이오드(LED) 어레이.
  19. 제18항에 있어서,
    상기 파장 변환 층에 대해 원위인 상기 제1 픽셀의 제2 표면 상의 제1 콘택 층; 및
    상기 파장 변환 층에 대해 원위인 상기 제2 픽셀의 제2 표면 상의 제2 콘택 층 - 상기 제1 콘택 층 및 상기 제2 콘택 층은 각각 본딩 층을 통해 마운트에 접속됨 - 을 추가로 포함하는, LED 어레이.
  20. 제18항에 있어서, 상기 제1 파장 변환 층은 상기 제1 픽셀의 에피택셜 층 상에 직접 형성되고, 상기 제2 파장 변환 층은 상기 제2 픽셀의 에피택셜 층 상에 직접 형성되는, LED 어레이.
KR1020207020484A 2017-12-21 2018-12-21 감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 led 어레이 아키텍처 KR102383573B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762609030P 2017-12-21 2017-12-21
US62/609,030 2017-12-21
EP18159512 2018-03-01
EP18159512.5 2018-03-01
US16/226,226 US11296262B2 (en) 2017-12-21 2018-12-19 Monolithic segmented LED array architecture with reduced area phosphor emission surface
US16/226,226 2018-12-19
PCT/US2018/067182 WO2019126694A1 (en) 2017-12-21 2018-12-21 Segmented led array architecture with reduced area phosphor emission surface

Publications (2)

Publication Number Publication Date
KR20200100705A true KR20200100705A (ko) 2020-08-26
KR102383573B1 KR102383573B1 (ko) 2022-04-11

Family

ID=66951464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207020484A KR102383573B1 (ko) 2017-12-21 2018-12-21 감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 led 어레이 아키텍처

Country Status (7)

Country Link
US (2) US11296262B2 (ko)
EP (1) EP3729503A1 (ko)
JP (1) JP7053841B2 (ko)
KR (1) KR102383573B1 (ko)
CN (1) CN111712919B (ko)
TW (1) TWI788489B (ko)
WO (1) WO2019126694A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11296262B2 (en) 2017-12-21 2022-04-05 Lumileds Llc Monolithic segmented LED array architecture with reduced area phosphor emission surface
JP6665872B2 (ja) * 2018-01-15 2020-03-13 日亜化学工業株式会社 発光装置及び発光装置の製造方法
CN116210082B (zh) * 2019-10-25 2024-06-25 亮锐有限责任公司 用于led应用的侧涂层材料中的着色和散射颗粒
US11302849B2 (en) 2019-10-25 2022-04-12 Lumileds Llc Pigmented and scattering particles in side coating materials for LED applications
US11411043B2 (en) 2019-10-25 2022-08-09 Lumileds Llc Pigmented and scattering particles in side coating materials for LED applications
US20220260220A1 (en) * 2021-02-16 2022-08-18 Lumileds Llc Method for manufacturing light emitting elements, light emitting element, lighting device and automotive headlamp
US11631715B2 (en) 2021-03-11 2023-04-18 Lumileds Llc Monolithic multi-color matrix emitter with patterned phosphor layer
TWI785659B (zh) * 2021-06-23 2022-12-01 抱樸科技股份有限公司 高出光率的覆晶式發光二極體裝置的製法及其製品
US20230109084A1 (en) * 2021-10-01 2023-04-06 Lumileds Llc Addressable led retrofit for vehicle light
TWI803014B (zh) * 2021-10-07 2023-05-21 友達光電股份有限公司 顯示面板
WO2023113962A1 (en) * 2021-12-15 2023-06-22 Lumileds Llc Phosphor-converted light-emitting diode with dielectric spacer, method for operating an array of such phosphor-converted light-emitting diodes and method for making phosphor-converted light-emitting diode with dielectric spacer
WO2024006264A1 (en) * 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with central electrode and optical cavity
WO2024006263A1 (en) * 2022-06-30 2024-01-04 Lumileds Llc Light-emitting device with aligned central electrode and output aperture
CN114899286B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 一种像素级分立器件及其制作方法
CN114899291B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 用于半导体器件的像素单元及其制作方法、微显示屏

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081869A1 (en) * 2004-10-20 2006-04-20 Chi-Wei Lu Flip-chip electrode light-emitting element formed by multilayer coatings
US20150243842A1 (en) * 2012-09-17 2015-08-27 Koninklijke Philips N.V. Light emitting device including shaped substrate
WO2016094422A1 (en) * 2014-12-08 2016-06-16 Koninklijke Philips N.V. Wavelength converted semiconductor light emitting device
WO2017023502A1 (en) * 2015-08-03 2017-02-09 Koninklijke Philips N.V. Semiconductor light emitting device with reflective side coating

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3093547B2 (ja) * 1993-12-28 2000-10-03 日本電気株式会社 光集積回路およびその製造方法
JP3258221B2 (ja) * 1995-12-26 2002-02-18 沖電気工業株式会社 位置合わせ用の認識マークおよびその形成方法、認識マークおよび発光部の形成の兼用マスク、位置合わせ用の認識マークを用いた位置合わせ方法
US6410942B1 (en) 1999-12-03 2002-06-25 Cree Lighting Company Enhanced light extraction through the use of micro-LED arrays
US6630689B2 (en) * 2001-05-09 2003-10-07 Lumileds Lighting, U.S. Llc Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa
KR100540848B1 (ko) 2004-01-02 2006-01-11 주식회사 메디아나전자 이중 몰드로 구성된 백색 발광다이오드 소자 및 그 제조방법
US7497581B2 (en) * 2004-03-30 2009-03-03 Goldeneye, Inc. Light recycling illumination systems with wavelength conversion
WO2007052777A1 (en) * 2005-11-04 2007-05-10 Matsushita Electric Industrial Co., Ltd. Light-emitting module, and display unit and lighting unit using the same
KR101484461B1 (ko) 2006-12-21 2015-01-20 코닌클리케 필립스 엔.브이. 성형된 파장 변환기를 가지는 발광 장치
DE102008025923B4 (de) 2008-05-30 2020-06-18 Osram Opto Semiconductors Gmbh Strahlungsemittierende Vorrichtung
RU2503092C2 (ru) * 2008-09-25 2013-12-27 Конинклейке Филипс Электроникс Н.В. Светоизлучающее устройство с покрытием и способ нанесения покрытия на него
EP2363896A4 (en) 2008-11-28 2013-08-28 Koito Mfg Co Ltd LIGHT EMITTING MODULE, LIGHT TRANSMITTING MODULE MANUFACTURING METHOD, AND LAMP UNIT
TWI480962B (zh) * 2009-04-09 2015-04-11 Lextar Electronics Corp 發光二極體封裝以及發光二極體晶圓級封裝製程
JP5349260B2 (ja) * 2009-11-19 2013-11-20 株式会社東芝 半導体発光装置及びその製造方法
WO2012016377A1 (en) * 2010-08-03 2012-02-09 Industrial Technology Research Institute Light emitting diode chip, light emitting diode package structure, and method for forming the same
JP2012038889A (ja) 2010-08-06 2012-02-23 Koito Mfg Co Ltd 蛍光部材および発光モジュール
JP2012175040A (ja) * 2011-02-24 2012-09-10 Toshiba Corp 半導体発光素子及び発光装置
JP2013065726A (ja) * 2011-09-16 2013-04-11 Toshiba Corp 半導体発光装置及びその製造方法
US9076923B2 (en) * 2012-02-13 2015-07-07 Epistar Corporation Light-emitting device manufacturing method
JP5816127B2 (ja) 2012-04-27 2015-11-18 株式会社東芝 半導体発光装置およびその製造方法
JP6065811B2 (ja) * 2012-12-18 2017-01-25 豊田合成株式会社 発光装置及びその製造方法
EP2984685B1 (en) 2013-04-11 2018-12-19 Lumileds Holding B.V. Fabrication method for top emitting semiconductor light emitting devices
DE202014011392U1 (de) 2013-05-13 2020-02-21 Seoul Semiconductor Co., Ltd. LED-Gehäuse; Fahrzeuglampe sowie Hintergrundbeleuchtung mit diesem
US9082926B2 (en) * 2013-06-18 2015-07-14 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor optical emitting device with metallized sidewalls
JP5698808B2 (ja) 2013-07-26 2015-04-08 スタンレー電気株式会社 半導体発光装置
WO2015025631A1 (ja) 2013-08-21 2015-02-26 シャープ株式会社 窒化物半導体発光素子
CN106030837B (zh) 2014-02-27 2020-05-05 亮锐控股有限公司 形成波长转换发光器件的方法
US9608168B2 (en) 2014-06-13 2017-03-28 Seoul Viosys Co., Ltd. Light emitting diode
KR20160000513A (ko) * 2014-06-24 2016-01-05 삼성전자주식회사 반도체 발광소자 패키지
US9601673B2 (en) * 2014-11-21 2017-03-21 Cree, Inc. Light emitting diode (LED) components including LED dies that are directly attached to lead frames
DE102016106841B3 (de) 2015-12-18 2017-03-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Konverter zur Erzeugung eines Sekundärlichts aus einem Primärlicht, Leuchtmittel, die solche Konverter enthalten, sowie Verfahren zur Herstellung der Konverter und Leuchtmittel
WO2017116136A1 (ko) 2015-12-31 2017-07-06 서울반도체주식회사 디스플레이 장치
WO2017146477A1 (ko) 2016-02-26 2017-08-31 서울반도체주식회사 디스플레이 장치 및 그의 제조 방법
WO2017146476A1 (ko) 2016-02-26 2017-08-31 서울반도체주식회사 디스플레이 장치 및 그의 제조 방법
US10529696B2 (en) 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
DE102016109308B4 (de) 2016-05-20 2024-01-18 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes bauelement
KR102608419B1 (ko) 2016-07-12 2023-12-01 삼성디스플레이 주식회사 표시장치 및 표시장치의 제조방법
US10606121B2 (en) 2016-09-12 2020-03-31 Seoul Semiconductor Co., Ltd. Display apparatus
DE102016122237A1 (de) 2016-11-18 2018-05-24 Osram Opto Semiconductors Gmbh Multipixel-LED-Bauteil und Verfahren zum Betreiben eines Multipixel-LED-Bauteils
KR102605174B1 (ko) 2016-12-19 2023-11-22 엘지디스플레이 주식회사 발광 다이오드 디스플레이 장치
KR102618811B1 (ko) 2017-01-23 2023-12-28 삼성디스플레이 주식회사 색변환 패널 및 이를 포함하는 표시 장치
CN108461595B (zh) * 2017-02-17 2020-05-29 首尔伟傲世有限公司 具有侧面反射层的发光二极管
TWI699496B (zh) 2017-03-31 2020-07-21 億光電子工業股份有限公司 發光裝置和照明模組
US11335835B2 (en) * 2017-12-20 2022-05-17 Lumileds Llc Converter fill for LED array
US11355548B2 (en) * 2017-12-20 2022-06-07 Lumileds Llc Monolithic segmented LED array architecture
US10957820B2 (en) * 2017-12-21 2021-03-23 Lumileds Llc Monolithic, segmented light emitting diode array
US11296262B2 (en) 2017-12-21 2022-04-05 Lumileds Llc Monolithic segmented LED array architecture with reduced area phosphor emission surface
CN112864143A (zh) * 2019-11-27 2021-05-28 群创光电股份有限公司 电子装置
US11688837B2 (en) * 2020-04-07 2023-06-27 Everlight Electronics Co., Ltd. Light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081869A1 (en) * 2004-10-20 2006-04-20 Chi-Wei Lu Flip-chip electrode light-emitting element formed by multilayer coatings
US20150243842A1 (en) * 2012-09-17 2015-08-27 Koninklijke Philips N.V. Light emitting device including shaped substrate
WO2016094422A1 (en) * 2014-12-08 2016-06-16 Koninklijke Philips N.V. Wavelength converted semiconductor light emitting device
WO2017023502A1 (en) * 2015-08-03 2017-02-09 Koninklijke Philips N.V. Semiconductor light emitting device with reflective side coating

Also Published As

Publication number Publication date
TWI788489B (zh) 2023-01-01
US11296262B2 (en) 2022-04-05
CN111712919B (zh) 2024-05-24
US20220223766A1 (en) 2022-07-14
WO2019126694A1 (en) 2019-06-27
JP7053841B2 (ja) 2022-04-12
US20190198727A1 (en) 2019-06-27
EP3729503A1 (en) 2020-10-28
CN111712919A (zh) 2020-09-25
TW201937759A (zh) 2019-09-16
KR102383573B1 (ko) 2022-04-11
US11817532B2 (en) 2023-11-14
JP2021507530A (ja) 2021-02-22

Similar Documents

Publication Publication Date Title
KR102383573B1 (ko) 감소된 영역 인광체 방출 표면을 갖는 세그먼트화된 led 어레이 아키텍처
KR102586713B1 (ko) Led 어레이 및 그 형성 방법
KR102440696B1 (ko) 임베디드 트랜지스터들을 갖는 세그먼트화된 led
TWI699879B (zh) 發光裝置、發光二極體陣列及形成發光裝置之方法
US10957820B2 (en) Monolithic, segmented light emitting diode array
KR102407151B1 (ko) Led 어레이를 위한 변환기 충전
KR102231533B1 (ko) 모놀리식 led 어레이들을 위한 입자 시스템
US11961875B2 (en) Monolithic segmented LED array architecture with islanded epitaxial growth

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right