KR20200092026A - 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름 - Google Patents

미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름 Download PDF

Info

Publication number
KR20200092026A
KR20200092026A KR1020190009028A KR20190009028A KR20200092026A KR 20200092026 A KR20200092026 A KR 20200092026A KR 1020190009028 A KR1020190009028 A KR 1020190009028A KR 20190009028 A KR20190009028 A KR 20190009028A KR 20200092026 A KR20200092026 A KR 20200092026A
Authority
KR
South Korea
Prior art keywords
optical film
light
triangular pyramid
base film
angle
Prior art date
Application number
KR1020190009028A
Other languages
English (en)
Other versions
KR102284255B1 (ko
Inventor
김진환
조성식
김영만
황진배
김원일
Original Assignee
주식회사 엘엠에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘엠에스 filed Critical 주식회사 엘엠에스
Priority to KR1020190009028A priority Critical patent/KR102284255B1/ko
Priority to CN202080009901.0A priority patent/CN113330337B/zh
Priority to PCT/KR2020/000905 priority patent/WO2020153679A1/ko
Publication of KR20200092026A publication Critical patent/KR20200092026A/ko
Application granted granted Critical
Publication of KR102284255B1 publication Critical patent/KR102284255B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Abstract

미니 LED (light emitting diode) 또는 마이크로 LED에서 방사되는 광을 투과하는 광학 필름이 개시된다. 광학 필름은 제1 베이스 필름 및 상기 제1 베이스 필름의 일 측에 배치되고, 복수의 삼각뿔 형상의 렌즈를 포함하는 확산렌즈층을 포함할 수 있다. 여기서, 상기 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 두 개의 마주보는 면 사이의 각도인 정점각은, 상기 렌즈를 투과하는 광이 굴절되어 형성하는 분리각에 기초하여 설정될 수 있다.

Description

미니 LED 또는 마이크로 LED 백라이트 유닛용 광학 필름 {OPTICAL FILM FOR MINI LED OR MICRO LED BACKLIGHT UNIT}
본 발명은 미니 LED 또는 마이크로 LED 백라이트 유닛용 광학 필름에 대한 것으로, 보다 상세하게는, 투과된 미니 LED 광 또는 마이크로 LED 광을 분리 및 확산하는 광학 필름에 대한 것이다.
LED(light emitting diode, 발광 다이오드)에 대한 연구의 진전으로 LED의 빛 에너지 전환 효율이 높아지면서 LED는 기존의 발광 소자를 빠르게 대체하고 있다.
현재 개발되는 LED는 소형화, 경량화 및 저전력 소비 등의 이점을 가지고 있다. 이에 따라, 다양한 화상 표시 장치의 광원으로 LED가 적극 활용되고 있다.
LED 칩 크기는 점차 소형화되는 추세에 있다. 초소형 LED 칩의 예로 미니 LED 및 마이크로 LED가 있다. 일반적으로 미니 LED의 칩 사이즈는 100 μm 내지 200 μm, 마이크로 LED의 칩 사이즈는 5 μm 내지 100 μm로 정의될 수 있다. 미니 LED 또는 마이크로 LED는 LED 칩 하나하나가 개별적으로 화소나 광원이 되므로, 디스플레이 크기 및 형태에 대한 제약이 해소되고, 기존의 광원을 이용하는 경우보다 더 선명한 화질이 구현될 수 있다.
LED 칩 크기의 소형화와 함께 LED 광 특성을 보완하기 위한 광학필름에 대한 연구도 활발하다.
본 발명은 미니 LED 또는 마이크로 LED에서 방사되는 광의 휘도 손실을 최소화하고, 광을 균일하게 확산하여 핫스팟(hot spot) 발생을 제한하는 광학 필름을 제공한다.
본 발명은 미니 LED 또는 마이크로 LED에서 방사되는 광을 백색광으로 변환하면서 광의 휘도 손실을 최소화하고, 광을 균일하게 확산하는 광학 필름을 제공한다.
본 발명의 다양한 실시 예에 따른 미니 LED (light emitting diode) 또는 마이크로 LED에서 방사되는 광을 투과하는 광학 필름은 제1 베이스 필름 및 상기 제1 베이스 필름의 일 측에 배치되고, 복수의 삼각뿔 형상의 렌즈를 포함하는 확산렌즈층을 포함할 수 있다. 여기서, 상기 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 두 개의 마주보는 면 사이의 각도인 정점각은, 상기 렌즈를 투과하는 광이 굴절되어 형성하는 분리각에 기초하여 설정될 수 있다.
본 발명의 다양한 실시 예에 따르면, 미니 LED 또는 마이크로 LED에서 방사되는 광의 휘도 손실을 최소화하고, 광을 균일하게 확산하여 핫스팟 발생을 제한할 수 있다.
본 발명의 다양한 실시 예에 따르면, 미니 LED 또는 마이크로 LED에서 방사되는 광을 백색광으로 변환하면서 광의 휘도 손실을 최소화하고, 광을 균일하게 확산할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 액정표시장치의 분해도이다.
도 2는 본 발명의 일 실시 예에 따른 직하형 LED 광원을 도시한다.
도 3은 본 발명의 일 실시 예에 따른 광학필름의 단면도이다.
도 4는 본 발명의 일 실시 예에 따른 광 분리를 도시한다.
도 5는 본 발명의 다른 실시 예에 따른 광 분리를 도시한다.
도 6a는 본 발명의 다른 실시 예에 따른 광학필름의 일 측을 도시한다.
도 6b는 본 발명의 다른 실시 예에 따른 광학필름의 사시도이다.
도 7은 본 발명의 또 다른 실시 예에 따른 광학필름의 일 측을 도시한다.
도 8는 본 발명의 일 실시 예에 따른 광 분리 측정 결과를 도시한다.
도 9는 본 발명의 일 실시 예에 따른 확산렌즈층의 광 분리 각의 변화를 도시한다.
도 10은 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 11은 본 발명의 일 실시 예에 따른 국제조명위원회 색 공간을 도시한다.
도 12는 본 발명의 일 실시 예에 따른 분광 스펙트럼 측정 결과를 도시한다.
도 13은 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 14는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 15는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 16는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 17은 본 발명의 일 실시 예에 따른 광학필름의 성능실험 결과를 도시한다.
도 18은 본 발명의 다른 실시 예에 따른 광학필름의 성능실험 결과를 도시한다.
이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 대한 동작원리를 상세히 설명한다. 또한, 발명에 대한 실시 예를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 하기에서 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써, 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 사용된 용어들의 정의는 본 명세서 전반에 걸친 내용 및 이에 상응한 기능을 토대로 해석되어야 할 것이다.
백라이트 유닛(backlight unit)은 액정표시장치(liquid crystal display, LCD)의 광원이다. 액정표시장치는 자체적으로 발광하지 못하는 소자이다. 이에 따라, 광원을 구비한 백라이트 유닛이 액정표시장치의 배면에서 액정 패널을 향해 빛을 조사한다. 이를 통해, 식별 가능한 화상이 구현될 수 있다.
백라이트 유닛은 냉음극형광램프(cold cathode fluorescent lamp: CCFL), 외부전극형광램프(external electrode fluorescent lamp) 및 발광다이오드(light emitting diode: LED, 이하 LED라 함)등을 광원으로 사용한다.
백라이트 유닛은 광원의 배열구조에 따라 에지형(edge type)과 직하형(direct type)으로 구분되는데, 직하형은 에지형에 비해 분할구동이 가능하여 에지형 보다 더욱 섬세하게 영상을 구현할 수 있다.
이하에서는, 직하형 LED 백라이트 유닛에 포함되는 광학 필름(optical film)에 대하여 상세히 설명한다.
도 1은 본 발명의 일 실시 예에 따른 액정표시장치의 분해도이다.
도 1을 참조하면, 액정표시장치(또는 LCD(liquid crystal display) 장치)(1)는 백라이트 유닛(10) 및 액정패널(20)을 포함한다. 일반적으로 백라이트 유닛(10)은 액정패널(20)에 빛을 조사하도록 액정패널(20)의 후방에 구비될 수 있다. 백라이트 유닛(10)은 광원(11), 반사시트(12), 컬러변환시트(13), 확산렌즈시트(14), 확산시트(15, 18), 프리즘시트(16, 17) 및 반사편광시트(19)를 포함할 수 있다. 여기서, 백라이트 유닛(10)은 백라이트 유닛(10)에 포함된 구성들(11 내지 19) 중 적어도 하나가 포함되지 않거나, 구성들(11 내지 19) 외 다른 구성이 추가되어 형성될 수 있다. 또한, 백라이트 유닛(10)에 포함된 구성들(11 내지 19) 중 적어도 하나를 포함하는 다양한 조합으로 백라이트 유닛(10)이 형성될 수 있다.
광원(11)은 광을 제공한다. 예를 들어, 광원(11)은 광을 발산하는 복수의 LED 칩을 포함할 수 있다. 일 예로, 도 2를 참조하면, LED 칩(11'-1)은 바둑판식으로 배열되어 직하형(11')으로 형성될 수 있다.
LED는 LED 칩의 크기에 따라, 대형(large) LED(칩의 크기: 1,000 ㎛ 이상), 중형(middle) LED(칩의 크기: 300 - 500 ㎛), 소형(small) LED(칩의 크기: 200 - 300 ㎛), 미니(mini) LED(칩의 크기 100 - 200 ㎛), 마이크로(micro) LED(칩의 크기: 100 ㎛ 이하)로 분류될 수 있다. 여기서, LED는 InGaN, GaN 등의 재질을 포함할 수있다.
백라이트 유닛의 LED의 칩 크기가 작아질수록, LED의 개수를 용이하게 조정할 수 있기 때문에, 액정표시장치(1)의 휘도 특성 및 색 균일도를 향상시키고 슬림화할 수 있다. 또한, LED의 칩 크기가 작아질수록, 소비전력을 줄일 수 있어 휴대 장치의 배터리 소모를 줄이고, 배터리의 수명을 연장할 수 있다.
기존 직하형 LED에 대비하여 미니 LED 또는 마이크로 LED를 사용할 경우 LED의 크기가 작아지므로 로컬 디밍(local dimming)이 가능하다. 로컬 디밍을 통하여 화질을 개선하고 전력을 효율화할 수 있다. 여기서, 로컬 디밍이란, 백라이트로 이용되는 LED의 밝기를 화면의 구성 또는 특성에 기초하여 제어하는 기술로서, 콘트라스트 비율(contrast ratio)을 획기적으로 개선하고 소비 전력을 줄일 수 있는 기술이다. 로컬 디밍의 일 예로, 어두운 화면에 대응되는 미니 LED 또는 마이크로 LED의 밝기를 상대적으로 어둡게 조정하여 어두운 색을 표현하고, 밝은 화면에 대응되는 미니 LED 또는 마이크로 LED의 밝기를 상대적으로 밝게하여 선명한 색을 표현할 수 있다.
반사시트(12)는 광을 반사한다. 반사시트(12)는 광원(11)에서 발산된 광의 발산 방향으로 광을 투과하고, 상부에서 계면반사 등에 따른 반사된 광을 상기 광의 발산 방향으로 반사한다. 이를 통해, 광의 손실이 최소화될 수 있다. 반사시트(12)는 광 재활용(light recycling)을 수행할 수 있다.
컬러변환시트(13)는 광원(11)에서 발산되는 광의 색을 변환한다. 일 예로, 미니 LED 또는 마이크로 LED의 광은 청색 광(450nm)이다. 이 경우, 청색 광은 백색 광으로 변환이 필요하다. 컬러변환시트(13)는 청색 광을 투과하면서 동시에 청색 광을 백색 광으로 변환할 수 있다.
확산렌즈시트(14)는 광을 확산한다. 확산렌즈시트(14)는 광 확산 렌즈를 일 면에 복수 개 배치한다. 일 예로, 광 확산렌즈는 피라미드 형태로 형성되어 광 확산을 촉진시킬 수 있다.
확산시트(15, 18)는 입사된 광을 균일하게 분산시킬 수 있다. 확산시트(15, 18)는 광 확산제 비드(beeds)가 첨가되어 있는 경화성 수지(예를 들어, 우레탄아크릴레이트, 에폭시아크릴레이트, 에스테르아크릴레이트, 에스테르아크릴레이트 및 라디칼 발생형 모노머 중 적어도 하나 이상을 택하여 단독 또는 혼합된 것임) 용액을 도포하여 광학산제 비드에 의해 광확산을 유발할 수 있다. 또한, 확산시트(15, 18)는 균일 또는 불균일한 크기의 형상(예를 들어, 구형)의 돌기 패턴(또는 돌출부)이 배치되어 광의 확산을 촉진할 수 있다.
프리즘 시트(16, 17)는 표면에 형성된 광학패턴을 이용해서 입사된 빛을 집광하여 액정 패널(20)로 출사시킬 수 있다. 프리즘 시트(16, 17)는 투광성 베이스 필름 상부에 정면 방향의 휘도 향상을 위하여 통상 45°의 경사면을 가지고 있는 삼각 어레이(array) 형태의 광학패턴이 형성되어 있는 광학 패턴층으로 형성될 수 있다.
반사편광시트(19)는 프리즘 시트(16, 17) 상부에 구비되어 프리즘 시트(16, 17)로부터 집광된 광에 대해 일 편광은 투과시키고 다른 편광은 하부로 반사시켜 광을 재순환 시키는 역할을 한다.
액정 패널(20)은 광원(11)에서 조사된 광을 전기 신호에 따라 소정의 패턴으로 변조시킨다. 변조된 광은 액정 패널(20)의 전면에 배치된 컬러 필터와 편광 필터를 통과하여 화면을 구성한다.
본 발명의 일 실시 예에 따른 액정표시장치(1)의 구성에 대하여 상술하였다. 이하에서, 본원의 다양한 실시 예는 백라이트 유닛의 광원(11)으로 미니 LED 또는 마이크로 LED를 사용하는 경우를 가정할 것이나, 균일하거나 다양한 크기의 LED들이 직하형으로 배치된 광원(11)을 포함하는 백라이트 유닛에 대하여는 본원의 다양한 실시 예들이 제한 없이 적용될 수 있을 것이다.
이하에서, 본 발명의 다양한 실시 예에 따른 광학 필름을 상세히 설명한다.
이하에서, 광학필름은 도 1의 확산렌즈시트(14)로 정의되거나, 도 1의 확산렌즈시트(14)와 반사시트(12), 컬러변환시트(13), 확산렌즈시트(14), 확산시트(15, 18), 프리즘 시트(16, 17) 및 반사편광시트(19) 중 적어도 하나를 조합한 것으로 정의될 수 있다.
도 3은 본 발명의 일 실시 예에 따른 광학필름의 단면도이다.
도 3을 참조하면, 광학필름(30)은 제1 베이스 필름(31) 및 확산렌즈층(32)을 포함할 수 있다. 광학필름(30)은 미니 LED (light emitting diode) 또는 마이크로 LED에서 방사되는 광을 투과할 수 있다.
제1 베이스 필름(31)은 확산렌즈층(32)을 지지할 수 있다. 제1 베이스 필름(31)은 예를 들어, PET, PC, PP 등의 재질일 수 있다.
확산렌즈층(32)은 제1 베이스 필름(31)의 일 측에 배치될 수 있다. 또한, 확산렌즈층(32)은 복수의 삼각뿔 형상의 렌즈(32-1 내지 32-5)를 포함할 수 있다. 이 경우, 삼각뿔 형상의 렌즈(32-1 내지 32-5)는 규칙적으로 배열될 수 있다. 여기서, 복수의 삼각뿔 형상의 렌즈(32-1 내지 32-5)는 동일한 크기 및 형태이거나, 크기가 다르지만 닮은 꼴일 수 있다. 또한, 확산렌즈층(32)은 제1 베이스 필름(31)을 포함하는 것으로 정의될 수도 있다.
일 예로, 정점각(
Figure pat00001
)(32-1-1)은 삼각뿔 형상의 렌즈(32-1)에 배치되는 네 개의 면 중 두 개의 마주보는 면 사이의 각도로 정의될 수 있다. 예를 들어, 정점각은 40° 내지 150° 내에서 정의되고, 높이(32-1-2)는 약 10μm, 폭(32-1-3)은 약 20μm로 정의될 수 있다. 이 경우, 정점각(32-1-1)은 삼각뿔 형상의 렌즈(32-1)를 투과하는 광이 굴절되어 형성하는 분리각에 기초하여 설정될 수 있다.
도 4를 참조하면, 광의 분리각(
Figure pat00002
)은 미니 LED 또는 마이크로 LED에서 방사되는 광이 제1 베이스 필름(31')의 일 측 방향(33)으로 입사하여 삼각뿔 형상의 렌즈(32'-1)를 투과하는 경우에 형성될 수 있다. 여기서, 삼각뿔 형상의 렌즈(32'-1)를 투과하는 광의 입사각은 제1 베이스 필름(31')의 일 면과 직각을 형성한다.
도 5를 참조하면, 광의 리버스(reverse)-분리각(
Figure pat00003
)은 미니 LED 또는 마이크로 LED에서 방사되는 광이 제1 베이스 필름(31'')의 타 측 방향(33')으로 입사하여 삼각뿔 형상의 렌즈(32''-1)를 투과하는 경우에 형성될 수 있다. 여기서, 삼각뿔 형상의 렌즈(32''-1)를 투과하는 광의 입사각은 제1 베이스 필름(31'')의 일 면과 직각을 형성한다.
상술한 예에서 광의 분리각 및 리버스-분리각은 다양하게 정의될 수 있다 예를 들어, 광의 분리각은 1/
Figure pat00004
로, 리버스-분리각은
Figure pat00005
로 정의될 수 있다.
한편, 삼각뿔 형상의 렌즈(32-1)의 밑면의 높이(32-1-3) 및 삼각뿔 형상의 렌즈(32-1)의 높이(32-1-2)는 정점각
Figure pat00006
에 기초한 비율에 따라 정의될 수 있다. 예를 들어, 정점각
Figure pat00007
가 90인 경우, 삼각뿔 형상의 렌즈(32-1)의 밑면의 높이(32-1-3)와 삼각뿔 형상의 렌즈(32-1)의 높이(32-1-2)의 비율은 2:1로 정의될 수 있다.
도 6a는 본 발명의 다른 실시 예에 따른 광학필름의 일 측을 도시한다.
도 6a는 광학필름(60)의 일 측에서 광학필름(60)을 수직으로 바라본 상태를 도시한다. 도 6a를 참조하면, 광학필름(60)의 일 측에 배치된 복수의 삼각뿔 형상의 렌즈 중 하나(61)는 정점(61-1) 및 4 개의 면(61-1 내지 61-4)을 포함한다.
도 6b를 참조하면, 광학필름(60)의 일 측에 배치된 복수의 삼각뿔 형상의 렌즈들은 규칙적으로 배치되어 있다. 여기서, 삼각뿔 형상은 피라미드(pyramid) 형상으로 지칭될 수도 있다.
도 7은 본 발명의 또 다른 실시 예에 따른 광학필름의 일 측을 도시한다.
도 7은 광학필름(70)의 일 측에서 광학필름을 수직으로 바라본 상태를 도시한다.
도 7을 참조하면, 광학필름(70)은 서로 크기가 다른 복수의 삼각뿔 형상의 렌즈를 포함한다.
일 예로, 복수의 삼각뿔 형상의 렌즈 중 적어도 하나(72)의 높이는 복수의 삼각뿔 형상의 렌즈 중 다른 하나(71)의 높이보다 작을 수 있다. 여기서, 복수의 삼각뿔 형상의 렌즈 중 적어도 하나(72)의 정점각은 복수의 삼각뿔 형상의 렌즈 중 다른 하나(71)의 정점각과 같을 수 있다. 정점각이 동일함에 따라, 복수의 삼각뿔 형상의 렌즈 중 적어도 하나(72) 및 복수의 삼각뿔 형상의 렌즈 중 다른 하나(71)는 닮은 꼴 삼각뿔 형상일 수 있다.
상술한 예에서, 복수의 삼각뿔 형상의 렌즈 중 적어도 하나(72)의 높이는, 복수의 삼각뿔 형상의 렌즈 중 다른 하나(71)의 높이의
Figure pat00008
이다. 여기서, n은 자연수로 정의될 수 있다.
상술한 도 7의 실시 예에 따르면, 광학필름(70)이 백라이트 유닛에 포함되는 다른 필름 또는 층과 부착될 때, 광학필름(70)의 높이가 상대적으로 높은 삼각뿔 형상의 렌즈(72)와 높이가 상대적으로 낮은 삼각뿔 형상의 렌즈(72) 간에 에어 갭(air gap)이 형성될 수 있다. 에어 갭이 생성됨에 따라, 광학필름(70)을 투과하는 광의 확산을 촉진시키고 휘도 저하를 최소화할 수 있다.
상술한 본 발명의 다양한 실시 예에서, 광학필름(60, 70)의 삼각뿔 형상의 렌즈에 배치되는 네 개의 면(또는 렌즈)이 동일(합동)인 경우를 상세히 설명하였다. 하지만, 이에 제한되지 않는다. 예를 들어, 광학필름의 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 X 방향으로 마주보는 면들 또는 Y 방향으로 마주보는 면의 크기 및 각도는 서로 동일하고, 광학필름의 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 연접하는 면의 크기 및 각도는 서로 상이할 수 있다. 이 경우, 광학필름의 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 X 방향으로 마주보는 면들이 이루는 각도와 광학필름의 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 Y 방향으로 마주보는 면들이 이루는 각도 또한 서로 상이할 수 있다.
도 8는 본 발명의 일 실시 예에 따른 광 분리 측정 결과를 도시한다.
도 8은 도 3의 광학필름(30)의 확산렌즈층(32)에서 제1 베이스 필름(31) 방향으로 미니 LED 광 또는 마이크로 LED 광이 입사하는 경우에 대한 광 분리 측정 결과를 도시한 것이다.
도 9는 본 발명의 일 실시 예에 따른 확산렌즈층의 광 분리 각의 변화를 도시한다.
제1 그래프(91)는 확산렌즈층(91-1)의 삼각뿔의 외측 방향(91-2)으로 광이 입사하는 경우, 정점각(PY apex angle)의 변화에 따른 광 분리 각의 변화를 도시한다. 제1 그래프(91)를 참조하면, 정점각이 증가할수록 광 분리각이 감소함을 알 수 있다.
제2 그래프(92)는 확산렌즈층(92-1)의 삼각뿔의 내측 방향(92-2)으로 광이 입사하는 경우, 정점각의 변화에 따른 광 분리 각의 변화를 도시한다. 제2 그래프(92)를 참조하면, 정점각이 100°로 증가할 때까지 광 분리가 수행되지 않다가, 정점각 105°에서 최대 광 분리가 일어나고, 정점각이 105°에서 증가할수록 광 분리 각이 감소함을 알 수 있다.
제1 그래프(91) 및 제2 그래프(92)를 참조하면, 정점각을 일정 영역에서 조정하여 타겟하는 광 분리를 유발할 수 있음을 알 수 있다.
상술한 예에서, 확산렌즈층(32)의 작용으로 입사광이 광 분리(또는 광 확산)되므로, 입사광에 의한 핫 스팟(hot spot)이 감소될 수 있다.
도 10은 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 10을 참조하면, 광학필름(100)은 제1 베이스 필름(101), 제2 베이스 필름(102), 확산렌즈층(103) 및 컬러변환층(104)를 포함할 수 있다.
이하에서, 상술한 광학필름의 내용과 중복되는 구성에 대한 설명은 생략한다.
제1 베이스 필름(101) 및 제2 베이스 필름(102)은 평행하게 배치되어 컬러변환층(104)을 보호할 수 있다.
컬려변환층(104)은 컬러를 변환한다. 컬러 변환층(104)은 미니 LED 또는 마이크로 LED에서 발산되는 청색 광을 백색 광으로 변환할 수 있다.
컬러변환층(104)은 제1 베이스 필름(101) 및 제2 베이스 필름(102) 사이에 배치될 수 있다.
컬러변환층(104)은 레드(red) 형광체, 그린(green) 형광체 및 무기입자를 포함할 수 있다. 여기서, 레드 형광체 또는 그린 형광체는 미니 LED 또는 마이크로 LED에서 방사되는 광을 흡수하여 레드 광 또는 그린 광을 형성하는 물질이다. 예를 들어, 레드 형광체는 KSF(K2SiF6:Mn4+) 형광체, 그린 형광체는
Figure pat00009
-sialon 형광체가 있다. 또한, 무기입자는 광의 균일한 산란을 유도하기 위한 것이다. 무기입자의 예로는 직경이 수백 나노미터인 TiO2, SiO2가 있다.
예를 들어, 컬러변환층(104)은 레드 형광체, 그린 형광체 및 무기입자는 수지(silicone, acrylic 등)에 교반되어 형성될 수 있다. 이 경우, 컬러변환층(104)은 제1 베이스 필름(101) 및 제2 베이스 필름(102) 사이에 부착될 수 있다.
예를 들어, 컬려변환층(104)은 레드 형광체, 그린 형광체 및 무기입자를 기정의된 중량 비율에 따라 포함할 수 있다. 여기서, 기정의된 중량 비율은 백색광에 대한 색 좌표 값에 기초하여 결정되는 레드 형광체의 중량, 그린 형광체의 중량 및 무기입자 간의 중량 비율이다.
도 11을 참조하면, 상술한 백색광에 대한 색 좌표 값은 국제조명위원회(Commission internationale de l'Eclairage: CIE) 색 공간(110)에 기초하여 정의될 수 있다. 이 경우, 백색광에 대한 색 좌표 값은 색 공간(110)에서 정의되는 X 좌표 값, Y 좌표 값 및 Z 좌표 값으로 정의될 수 있다.
일 예로, 상기 X 좌표 값 및 Y 좌표 값은 0.27 내지 0.33에서 정의되고, Z 좌표 값은 정의된 X 좌표 및 Y 좌표에 기초한 종속 변수로 정의될 수 있다.
일 예로, 레드 형광체의 중량 비는 10% 내지 80% 내에서 정의되고, 그린 형광체의 중량 비는 10% 내지 80% 내에서 정의되고, 무기입자의 중량 비는 1% 내지 10%에서 정의될 수 있다. 이 경우, 레드 형광체의 중량 비, 그린 형광체의 중량비 및 무기입자의 중량 비의 총 합은 100% 이하로 정의될 수 있음은 물론이다. 또한, 중량 비가 % 단위로 정의되지 않는 경우 중량 비의 총 합은 100 이하는 물론 100 초과로 정의될 수 있음은 물론이다.
여기서, 레드 형광체의 중량 비는 그린 형광체의 중량 비보다 크고, 그린 형광체의 중량 비는 무기입자의 중량 비보다 크도록 설정된 경우의 예를 이하 도 12를 참조하여 설명한다.
도 12는 본 발명의 일 실시 예에 따른 분광 스펙트럼 측정 결과를 도시한다.
도 12의 실시 예는, 컬러변환층에 포함된 레드 형광체 중량, 그린 형광체 중량 및 무기입자의 중량의 비율이 66:44:5로 설정된 경우이다. 여기서, 미니 LED 또는 마이크로 LED에서 발산되는 청색 광은 컬러변환층(또는 광학필름)을 투과하면서 백색 광으로 변환된다. 이와 동시에, 광이 균일하게 산란하여 얼룩(Mura)이 없는 외관 특성이 제공될 수 있다(121).
상술한 도 10의 실시 예에 따른 광학필름(100)은 무기입자층을 더 포함할 수 있다. 이에 대하여 이하 도 13을 참조하여 설명한다. 이하에서, 상술한 광학필름(100)과 중복되는 내용에 대하여는 설명의 편의를 위하여 생략한다.
도 13은 본 발명의 다른 실시 예에 따른 광학필름의 단면도이다.
도 13을 참조하면, 광학필름(130)은 제1 베이스 필름(131), 제2 베이스 필름(132), 확산렌즈층(133), 컬러변환층(134) 및 무기입자층(135)을 포함할 수 있다.
무기입자층(135)은 상술한 무기입자를 포함할 수 있다. 예를 들어, 무기입자층(135)는 무기입자와 수지를 교반하여 형성될 수 있다. 이 경우, 무기입자층(135)은 제1 베이스 필름(131)의 일 면에 부착될 수 있다.
상술한 예에서, 무기입자층(135)는 상술한 레드 형광체 및 그린 형광체를 더 포함할 수 있다. 또한, 무기입자층(135)의 위치는 컬러변환층(134)의 위치와 교환되어 배치될 수도 있다. 또한, 무기입자층(135)은 제2 베이스 필름(132)의 일 면에 부착될 수도 있다.
도 14는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 14을 참조하면, 광학필름(140)은 제1 베이스 필름(141), 제2 베이스 필름(142), 확산렌즈층(143), 컬러변환층(144) 및 무기입자층(145)을 포함할 수 있다. 여기서, 무기입자층(145)은 제1 베이스 필름(141)의 일 측에 배치될 수 있다. 또한, 확산렌즈층(143)은 무기입자층(145)의 일 면에 배치될 수 있다.
상술한 본원 발명의 다양한 예에서, 광학필름은 반사 패턴을 더 포함할 수 있다. 이하에서 반사 패턴을 포함하는 다양한 실시 예에 대하여 상세히 설명한다.
도 15는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 13을 참조하면, 광학필름(150)은 제1 베이스 필름(151), 제2 베이스 필름(152), 확산렌즈층(153), 컬러변환층(154) 및 반사 패턴(155)을 포함할 수 있다.
반사 패턴(155)은 광을 반사한다. 반사 패턴(155)은 광을 반사함으로써 광 재활용(light recycling)을 구현할 수 있다.
반사 패턴(155)은 제1 베이스 필름(151)의 일 측 또는 제2 베이스 필름(152)의 일 측 중 적어도 하나에 배치 또는 부착될 수 있다. 예를 들어, 반사 패턴(155)은 광/UV 경화 공정을 통해 제1 베이스 필름(151)의 일 측 또는 제2 베이스 필름(152)의 일 측에 형성될 수 있다. 여기서, 반사 패턴(155)은 규칙적 또는 불규칙 적 형태일 수 있다.
일 예로, 반사 패턴(155) 사이의 영역들(155-1, 155-2, 155-3)은 미니 LED의 위치 또는 마이크로 LED(156-1, 156-2, 156-3)의 위치에 대응될 수 있다. 구체적으로, 반사 패턴(155) 사이의 영역들(155-1, 155-2, 155-3)은 미니 LED의 또는 마이크로 LED(156-1, 156-2, 156-3)를 수납할 수 있다.
이를 통해, 미니 LED의 또는 마이크로 LED(156-1, 156-2, 156-3)를 개별적으로 제어하는 로컬 디밍(local dimming)의 구현이 가능하다. 로컬 디밍을 통해, 광 휘도의 조정이 가능하다. 또한, 반사 패턴(155) 사이의 영역들(155-1, 155-2, 155-3) 외의 반사 패턴 영역들은 광 반사를 충실히 구현하므로 광 재활용도가 높아질 수 있다.
일 예로, 반사 패턴(155) 사이의 영역들(155-1, 155-2, 155-3)은 기정의된 중량 비에 기초하여 상술한 컬러변환단층(154)과 같이 레드 형광체, 그린 형광체 및 무기입자를 포함할 수 있다. 이 경우, 광학필름(150)은 별도의 컬러변환단층(154)을 구비하지 않더라도 컬러변환을 수행할 수 있다.
도 16는 본 발명의 또 다른 실시 예에 따른 광학필름의 단면도이다.
도 16을 참조하면, 광학필름(160)은 제1 베이스 필름(161), 제2 베이스 필름(162), 확산렌즈층(163), 컬러변환층(164), 반사 패턴(165) 및 무기입자층(166)을 포함할 수 있다.
여기서, 무기 입자층(166)은 제1 베이스 필름(161)의 일 측에 배치될 수 있다. 이 경우, 확산렌즈층(163)은 무기 입자층(166)의 일 측에 부착될 수 있다.
도 17은 본 발명의 일 실시 예에 따른 광학필름의 성능실험 결과를 도시한다.
도 17의 광학필름의 성능실험은 Rec. 2020(UHDTV) 기준에 기초하였으며, 휘도(또는 휘도 이득)는 170% 내지 230% 내에서, 색역은 61% 이하에서 정의되었다.
제1 실험(171)에서 광학필름(예를 들어, 광학필름(100)에서 확산렌즈층(103)을 제외한 광학필름)은 컬러변환층을 포함한다. 여기서, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리(optical distance, OD)는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 205μm, 휘도 100%, 휘도 균일도 83%, 색역 54%, 색차 0.0158 / 0.0399, White x/y는 0.2323 / 0.2162로 측정된다.
제2 실험(172)에서 광학필름(예를 들어, 광학필름(100))은 컬러변환층 및 확산렌즈층을 포함한다. 여기서, 확산렌즈층의 삼각뿔의 폭은 20 μm, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 255μm, 휘도 174%, 휘도 균일도 83%, 색역 57%, 색차 0.0158 / 0.0379, White x/y는 0.2503 / 0.2624로 측정된다.
제3 실험(173)에서 광학필름은 컬러변환층, 확산렌즈층, 확산시트(예를 들어, 도 1의 확산시트) 및 프리즘시트(예를 들어, 도 1의 프리즘 시트)를 포함한다. 여기서, 확산렌즈층의 삼각뿔의 폭은 20 μm, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 423μm, 휘도 215%, 휘도 균일도 79%, 색역 61%, 색차 0.0168 / 0.0379, White x/y는 0.2849 / 0.3433로 측정된다.
상술한 실험 결과에서, 제1 실험(171)의 광학필름은 컬러변환층을 포함하므로, 높은 휘도(100%) 및 높은 휘도 균일도(83%) 성능을 실현하고 있다. 또한, 제2 실험(172)의 광학필름은 제1 실험(171)의 광학필름에 확산렌즈층을 더 포함함으로써 휘도 향상(174%), 색역 향상(57%), 광분포 향상(제1 실험(171)의 광분포도 참조, 광분포를 통해서 광이 집광되는 효과 발휘), 분광성 향상(백색 광 세기의 피크 감소)을 실현하고 있다. 또한, 제3 실험(173)의 광학필름은 제2 실험(172)의 광학필름에 확산시트 및 프리즘시트를 더 포함함으로써 휘도 향상(215%), 색역 향상(61%), 광분포 향상(제2 실험(172)의 광분포도 참조), 분광성 향상(백색 광 세기의 피크 감소)을 실현하고 있다.
도 18은 본 발명의 다른 실시 예에 따른 광학필름의 성능실험 결과를 도시한다.
도 18의 광학필름의 성능실험은 Rec. 2020(UHDTV) 기준에 기초하였으며, 휘도(또는 휘도 이득)는 110% 내지 280% 내에서, 색역은 58% 이하에서 정의되었다.
제1 실험(181)에서 광학필름(예를 들어, 광학필름(100)에서 확산렌즈층(103)을 제외한 광학필름)은 컬러변환층을 포함한다. 여기서, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리(optical distance, OD)는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 200μm, 휘도 100%, 휘도 균일도 73%, 색역 46%, 9P 색차 0.0118 / 0.0322, White x/y는 0.2067 / 0.1651로 측정된다.
제2 실험(182)에서 광학필름(예를 들어, 광학필름(100))은 확산렌즈층 및 컬러변환층을 포함한다. 여기서, 확산렌즈층의 삼각뿔의 폭은 10 μm, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 288μm, 휘도 187%, 휘도 균일도 76%, 색역 52%, 색차 0.0128 / 0.0429, White x/y는 0.2251 / 0.2218로 측정된다.
제3 실험(183)에서 광학필름은 확산렌즈층, 컬러변환층, 확산시트(예를 들어, 도 1의 확산시트) 및 프리즘시트(예를 들어, 도 1의 프리즘 시트)를 포함한다. 여기서, 확산렌즈층의 삼각뿔의 폭은 10 μm, 광원은 미니 LED 또는 마이크로 LED이고, 광원과 광학필름 간의 광학 거리는 1mm로 설정된다.
이 경우, 광원 및 광학필름의 적층 두께는 475μm, 휘도 236%, 휘도 균일도 79%, 색역 58%, 색차 0.0149 / 0.047, White x/y는 0.264 / 0.3118로 측정된다.
상술한 실험 결과에서, 제1 실험(181)의 광학필름은 컬러변환층을 포함하므로, 높은 휘도(100%) 및 높은 휘도 균일도(73%) 성능을 실현하고 있다. 또한, 제2 실험(182)의 광학필름은 제1 실험(171)의 광학필름에 확산렌즈층을 더 포함함으로써 휘도 향상(187%), 색역 향상(52%), 휘도 균일도 향상, 분광성 향상(백색 광 세기의 피크 감소)을 실현하고 있다. 또한, 제3 실험(183)의 광학필름은 제2 실험(182)의 광학필름에 확산시트 및 프리즘시트를 더 포함함으로써 휘도 향상(236%), 색역 향상(58%), 휘도 균일도 향상, 분광성 향상(백색 광 세기의 피크 감소)을 실현하고 있다.
이상으로, 본 발명의 실시 예들이 도시되고 설명되었지만, 당업자는 첨부된 청구항들 및 그에 동등한 것들에 의해 정의되는 바와 같은 본 실시 예의 사상 및 범위를 벗어나지 않고 형태 및 세부 사항들에 있어 다양한 변경이 이루어질 수 있음을 이해할 것이다.
액정표시장치: 1 백라이트 유닛: 10
액정패널: 20 광원: 11, 11'
반사시트: 12 컬러변환시트: 13
확산렌즈시트: 14
확산렌즈층: 32, 11-1, 12-1, 103, 133, 143, 153
확산시트: 15, 18 프리즘시트: 16, 17 반사편광시트: 19
광학필름: 30, 60, 70, 100, 130, 140, 150
베이스 필름: 31, 31', 31'', 101, 102, 131, 132, 141, 142, 151, 152, 161, 162
컬러변환층: 104, 134, 144, 154, 164
무기입자층: 135, 145, 166
확산렌즈층: 32, 11-1, 12-1, 103, 133, 143, 153, 163
반사 패턴: 155, 165

Claims (14)

  1. 미니 LED (light emitting diode) 또는 마이크로 LED에서 방사되는 광을 투과하는 광학 필름에 있어서,
    제1 베이스 필름; 및
    상기 제1 베이스 필름의 일 측에 배치되고, 복수의 삼각뿔 형상의 렌즈를 포함하는 확산렌즈층;을 포함하고,
    여기서, 상기 삼각뿔 형상의 렌즈에 배치되는 네 개의 면 중 두 개의 마주보는 면 사이의 각도인 정점각은, 상기 렌즈를 투과하는 광이 굴절되어 형성하는 분리각에 기초하여 설정되는, 광학 필름.
  2. 제1항에 있어서,
    상기 광의 입사각은 상기 제1 베이스 필름의 일 면과 직각을 형성하는, 광학 필름.
  3. 제2항에 있어서,
    상기 분리각은 상기 광이 상기 제1 베이스 필름의 상기 일 측 방향으로 입사하는 경우에 형성되고,
    리버스(reverse)-분리각은 상기 광이 상기 제1 베이스 필름의 타 측 방향으로 입사하는 경우에 형성되는, 광학 필름.
  4. 제1항에 있어서,
    상기 삼각뿔 형상의 렌즈의 밑면의 높이 및 상기 삼각뿔 형상의 렌즈의 높이는, 상기 정점각에 기초한 비율에 따라 정의되는, 광학 필름.
  5. 제1항에 있어서,
    상기 복수의 삼각뿔 형상의 렌즈 중 적어도 하나의 높이는, 상기 복수 개 배치된 삼각뿔 형상의 렌즈 중 다른 하나의 높이보다 작고,
    상기 복수의 삼각뿔 형상의 렌즈 중 상기 적어도 하나의 정점각은, 상기 복수의 삼각뿔 형상의 렌즈 중 상기 다른 하나의 정점각과 같은, 광학 필름.
  6. 제5항에 있어서,
    상기 복수의 삼각뿔 형상의 렌즈 중 상기 적어도 하나의 높이는, 상기 복수의 삼각뿔 형상의 렌즈 중 상기 다른 하나의 높이의
    Figure pat00010
    이고,
    여기서, 상기 n은 자연수인, 광학 필름.
  7. 제1항에 있어서,
    상기 삼각뿔 형상의 렌즈에 배치되는 상기 네 개의 면 중 마주보는 면의 크기 및 각도는 서로 동일하고,
    상기 삼각뿔 형상의 렌즈에 배치되는 상기 네 개의 면 중 연접하는 면의 크기 및 각도는 서로 상이한, 광학 필름.
  8. 제1항에 있어서,
    상기 제1 베이스 필름과 평행하게 배치된 제2 베이스 필름; 및
    상기 제1 베이스 필름의 타 면 및 상기 제2 베이스 필름의 일 면 사이에 배치되는 컬러 변환(color conversion) 층;을 더 포함하고,
    여기서, 상기 컬러 변환 층은,
    레드(red) 형광체, 그린(green) 형광체 및 상기 광의 균일한 산란을 유도하는 무기입자를 기정의된 중량 비율에 따라 포함하는, 광학 필름.
  9. 제8항에 있어서,
    상기 기정의된 중량 비율은,
    백색 광에 대한 색 좌표 값에 기초하여 결정되는 상기 레드 형광체의 중량, 상기 그린 형광체의 중량 및 상기 무기입자 중량 간의 비율인, 광학 필름.
  10. 제9항에 있어서,
    상기 백색 광에 대한 상기 색 좌표 값은,
    국제조명위원회(Commission internationale de l'Eclairage: CIE) 색 공간에서 정의되는 X 좌표 값, Y 좌표 값 및 Z 좌표 값인, 광학 필름.
  11. 제8항에 있어서,
    상기 레드 형광체의 중량 비는 상기 그린 형광체의 중량 비보다 크고, 상기 그린 형광체의 중량 비는 상기 무기입자의 중량 비보다 큰, 광학 필름.
  12. 제8항에 있어서,
    상기 레드 형광체의 중량 비는 10% 내지 80% 내에서 정의되고, 상기 그린 형광체의 중량 비는 10% 내지 80% 내에서 정의되고, 상기 무기입자의 중량 비는 1% 내지 10%에서 정의되는, 광학 필름.
  13. 제8항에 있어서,
    상기 무기입자를 포함하는 무기입자층;을 더 포함하는, 광학 필름.
  14. 제8항에 있어서,
    상기 제2 베이스 필름의 타 면은 복수의 반사 패턴을 배치하는, 광학 필름.
KR1020190009028A 2019-01-24 2019-01-24 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름 KR102284255B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190009028A KR102284255B1 (ko) 2019-01-24 2019-01-24 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
CN202080009901.0A CN113330337B (zh) 2019-01-24 2020-01-20 迷你led或微型led背光单元用光学膜
PCT/KR2020/000905 WO2020153679A1 (ko) 2019-01-24 2020-01-20 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190009028A KR102284255B1 (ko) 2019-01-24 2019-01-24 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름

Publications (2)

Publication Number Publication Date
KR20200092026A true KR20200092026A (ko) 2020-08-03
KR102284255B1 KR102284255B1 (ko) 2021-08-03

Family

ID=71736029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190009028A KR102284255B1 (ko) 2019-01-24 2019-01-24 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름

Country Status (3)

Country Link
KR (1) KR102284255B1 (ko)
CN (1) CN113330337B (ko)
WO (1) WO2020153679A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921374B2 (en) 2022-07-19 2024-03-05 Changkang Chemical Co., Ltd. Optical film and back light unit including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104793A1 (ja) * 2008-02-21 2009-08-27 シャープ株式会社 導光体、バックライトシステムおよび携帯端末
KR20110075481A (ko) * 2009-12-28 2011-07-06 엘지디스플레이 주식회사 백라이트 유닛과 이를 이용한 액정표시모듈
KR20130040887A (ko) * 2010-04-12 2013-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 스택 및 도광체
KR20130076636A (ko) * 2011-12-28 2013-07-08 엘지이노텍 주식회사 광학 부재 및 이를 포함하는 표시장치
KR20150038885A (ko) * 2013-10-01 2015-04-09 엘지이노텍 주식회사 형광체 및 이를 포함하는 발광소자 패키지

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3271660B2 (ja) * 1999-01-19 2002-04-02 恵和株式会社 光路制御拡散シート及びこれを用いたバックライトユニット
JP4211559B2 (ja) * 2003-10-08 2009-01-21 セイコーエプソン株式会社 光源装置及びプロジェクタ
JP4813982B2 (ja) * 2006-06-16 2011-11-09 富士フイルム株式会社 導光板組立体およびこれを用いる面状照明装置
KR101157298B1 (ko) * 2007-12-14 2012-06-15 코오롱인더스트리 주식회사 광학 복합 부재
JP2008304501A (ja) * 2007-06-05 2008-12-18 Asahi Kasei Chemicals Corp 拡散板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104793A1 (ja) * 2008-02-21 2009-08-27 シャープ株式会社 導光体、バックライトシステムおよび携帯端末
KR20110075481A (ko) * 2009-12-28 2011-07-06 엘지디스플레이 주식회사 백라이트 유닛과 이를 이용한 액정표시모듈
KR20130040887A (ko) * 2010-04-12 2013-04-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 광학 스택 및 도광체
KR20130076636A (ko) * 2011-12-28 2013-07-08 엘지이노텍 주식회사 광학 부재 및 이를 포함하는 표시장치
KR20150038885A (ko) * 2013-10-01 2015-04-09 엘지이노텍 주식회사 형광체 및 이를 포함하는 발광소자 패키지

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11921374B2 (en) 2022-07-19 2024-03-05 Changkang Chemical Co., Ltd. Optical film and back light unit including the same

Also Published As

Publication number Publication date
WO2020153679A1 (ko) 2020-07-30
CN113330337B (zh) 2023-04-04
KR102284255B1 (ko) 2021-08-03
CN113330337A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US11500244B2 (en) Backlight unit using mini LED or micro LED as light source
KR102461674B1 (ko) 광학필름
KR101957184B1 (ko) 백라이트 유닛 및 그를 구비한 디스플레이 장치
TW200538814A (en) Planar light device
KR20060108244A (ko) 조명 장치, 표시 장치 및 형광체 필름
JP2006202533A (ja) 照明装置
US20140153286A1 (en) Light guide plate, backlight module and display device
TWI544256B (zh) 顯示裝置
CN1584708A (zh) 面状光源装置和备有该装置的显示装置
WO2012027928A1 (zh) 背光模块及其光学组件
JP5736957B2 (ja) 導光板、面光源装置および表示装置
KR20110135097A (ko) 액정표시장치 모듈
KR102185701B1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
KR102185708B1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
CN109407405B (zh) 背光模组及显示装置
KR102284255B1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
US11294235B2 (en) Optical film for mini LED or micro LED backlight unit
JP2010262060A (ja) 液晶表示装置及び照明装置
KR102211672B1 (ko) 미니 led 또는 마이크로 led 백라이트 유닛용 광학 필름
JP2007285934A (ja) 欠陥検査用ライトテーブル
KR20160015833A (ko) 양자점 마이크로 캡슐을 이용한 lcd패널용 백라이트장치
JP2008108582A (ja) 面光源装置
JP2015216037A (ja) 面光源装置および液晶表示装置

Legal Events

Date Code Title Description
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant