WO2012027928A1 - 背光模块及其光学组件 - Google Patents

背光模块及其光学组件 Download PDF

Info

Publication number
WO2012027928A1
WO2012027928A1 PCT/CN2010/078757 CN2010078757W WO2012027928A1 WO 2012027928 A1 WO2012027928 A1 WO 2012027928A1 CN 2010078757 W CN2010078757 W CN 2010078757W WO 2012027928 A1 WO2012027928 A1 WO 2012027928A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
pattern
backlight module
microstructure
light
Prior art date
Application number
PCT/CN2010/078757
Other languages
English (en)
French (fr)
Inventor
郑巍巍
郭仪正
任杰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US12/996,881 priority Critical patent/US20120057326A1/en
Publication of WO2012027928A1 publication Critical patent/WO2012027928A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a backlight module and an optical component thereof, and more particularly to a structure in which a fluorescent layer is coated on one surface and a microstructure is disposed on the other surface to generate uniform brightness and brightness, and to generate light mixing.
  • An optical component of the effect and a backlight module having the optical component are particularly important.
  • a liquid crystal display is a flat panel di splay (FPD) that uses the characteristics of a liquid crystal material to display an image, which is thinner and lighter than other display devices.
  • FPD flat panel di splay
  • the advantages of voltage and low power consumption have become mainstream products in the entire consumer market.
  • the liquid crystal material of the liquid crystal display cannot emit light by itself, and the light source must be externally provided. Therefore, a backlight module is additionally provided in the liquid crystal display to provide a desired light source.
  • the backlight module can be divided into a side backlight module and a bottom backlight module.
  • the main function of the backlight module is to provide a backlight with high brightness and uniform brightness distribution to the liquid crystal display. Therefore, whether the optical component of the backlight module can be thinner or thinner Whether the light source is more uniform and has high brightness and meets the requirements of energy saving has become the focus of current research and development. Therefore, the backlight module has become a mainstream trend with optical components such as a semiconductor light-emitting component and a diffusion plate.
  • the semiconductor light-emitting component has more energy-saving, energy-saving and service life than the cold cathode fluorescent lamp (CCFL). Longer, and more compact.
  • the existing semiconductor light-emitting component emits light by using a light emitting diode (LED), and the light-emitting diode is mostly fixed on the fixing plate of the backlight module in the form of a chip; and the diffusing plate of the optical component provides light brightness. In addition to the uniform backlight, it also has the function of improving brightness and brightness.
  • LED light emitting diode
  • a backlight module 10 generally includes a diffusion plate 11 , a fluorescent layer 12 , a fixed plate 13 , and a plurality of LED cores .
  • Sheet 14 The fluorescent layer 12 is coated with a phosphor on a surface 111 of the diffusion plate 11.
  • the plurality of LED chips 14 are fixed on a surface 131 of the fixing plate 13, and the diffusion plate 11 is The surface 111 is disposed opposite to the surface 131 of the fixing plate 13.
  • the plurality of light-emitting diode chips 14 are configured to emit at least one incident blue light, and when the at least one incident blue light is incident on the fluorescent layer 12 on the diffusing plate 11, a portion of the at least one incident blue light excites
  • the phosphor of the fluorescent layer 12 radiates a first light beam and penetrates through the diffusing plate 11; and part of the at least one incident blue light directly penetrates the fluorescent layer 12 and the diffusing plate 11 Forming a second light beam, wherein the first light beam is yellow light and the second light beam is still blue light, and the first light beam and the second light beam are mixed on the other side of the diffuser plate 11 to form a white light Used as a light source of the backlight module 10.
  • FIGS. 2A and 2B due to the presence of different refractive indices (index of refraction) shown in FIGS. 2A and 2B 0 beams of different colors, which are disclosed different angles of incidence of the incident blue light excites the phosphor layer 12 generates yellow light distribution bidirectional penetration
  • the bidirectional reflectance di-stribution function (BTDF) and the incident blue light of different incident angles directly penetrate the bidirectional penetration distribution function of the fluorescent layer 12 and the diffusion plate 11.
  • BTDF bidirectional reflectance di-stribution function
  • the incident blue light of different incident angles directly penetrate the bidirectional penetration distribution function of the fluorescent layer 12 and the diffusion plate 11.
  • the bidirectional penetration distribution function of the first beam and the second beam are inconsistent, and the first beam exhibits a Lambert di-stribution bidirectional according to different incident angles.
  • the distribution function is penetrated, and the second beam exhibits a bidirectional penetration distribution function with a narrow half-height width due to different incident angles.
  • the first light beam and the second light beam have different strength bidirectional penetration distribution functions due to different incident angles, that is, the white light of different viewing angles is different ratios of the first light beam and The second light beam is mixed. Therefore, if the backlight module 10 is used as a light source of a liquid crystal display, the chromatic aberration and chromaticity of each viewing angle will be inconsistent, and the imaging quality of the liquid crystal display will be greatly affected.
  • the main object of the present invention is to provide a backlight module and an optical component thereof, including a substrate, a phosphor layer and a microstructure.
  • the substrate has a first surface and a second surface, the fluorescent layer is coated on the first surface of the substrate, and the microstructure is disposed on the second surface of the substrate, wherein The phosphor layer and the microstructure are respectively disposed on two sides of the substrate, so that at least one incident beam is optically refracted or scattered by the microstructure, and then uniformly penetrates the microstructure and the Substrate, thereby uniformly exciting the phosphor layer, and finally mixing a blue backlight directly penetrating the phosphor layer with a yellow backlight generated by exciting the phosphor layer to ensure that the backlight module provides a light A white backlight with uniform brightness and high brightness.
  • a secondary object of the present invention is to provide a backlight module and an optical component thereof, wherein the microstructure further comprises a specific pattern surface having a pattern, a particle pattern, a prism pattern, a microlens pattern, or a combination thereof.
  • Another object of the present invention is to provide a backlight module and an optical component thereof, wherein the at least one incident beam is a blue light, a part of the blue light excites the phosphor layer to radiate a yellow backlight, and another portion of the blue light Directly penetrating the microstructure, the substrate and the phosphor layer, and forming a blue backlight, and finally the yellow backlight is mixed with the blue backlight to form a white backlight, and the blue light penetrates the optical During the process of the component, optical refraction or scattering by the microstructure facilitates improving the brightness uniformity and luminance of the white backlight.
  • a backlight module includes: an optical component, comprising: a substrate having a first surface and a second surface; a fluorescent layer covering the And the first surface of the substrate; and a microstructure formed on the second surface of the substrate; a fixing plate; and at least one semiconductor light emitting component fixed to the fixing plate for emitting at least At least one incident beam; wherein the at least one incident beam is optically refracted or scattered by the microstructure to uniform brightness and increase luminance, so that the at least one incident light can be uniformly penetrated through After the microstructure and the substrate, penetrate the phosphor layer or The phosphor layer is excited.
  • the present invention provides another optical component, the optical component comprising: a substrate having a first surface and a second surface; a phosphor layer coated on the first surface of the substrate; And a microstructure formed on the second surface of the substrate for optically refracting or scattering at least one incident light beam, and the at least one incident light is uniformly penetrated through the microstructure and the After the substrate is described, the fluorescent layer is penetrated or excited.
  • the microstructure further includes a pattern surface formed by an imprint process, coating, diffusion, molding, or precision turning, which has a pattern, a particle pattern, and a prism pattern. , microlens pattern or a combination thereof.
  • the at least one semiconductor light emitting component is a light emitting diode chip, such as a blue light emitting diode chip.
  • the LED chip further comprises an encapsulant.
  • the substrate is a diffusion plate, a diffusion film or a light collecting sheet.
  • the phosphor layer has at least one phosphor, such as a yellow phosphor.
  • the fixing plate is a back plate or a light source base.
  • the backlight module of the present invention and the optical component thereof are the blue light as the at least one incident light beam, wherein a part of the blue light generates the blue backlight by penetrating the optical component, part of The blue light excites the fluorescent layer to cause the fluorescent layer to radiate out of the yellow backlight, and finally, the blue backlight is mixed with the yellow backlight to form the white backlight, since the blue light penetrates the micro
  • the process of the structure has been optically refracted or scattered so that the brightness of the white backlight after mixing will be more uniform and the brightness will be greatly improved.
  • 1 is a schematic view of a conventional backlight module.
  • 2A is a bidirectional penetration distribution function (BTDF) for generating yellow light by incident blue light excitation phosphors at different incident angles of a conventional backlight module, wherein the X axis is the beam tilt angle (°) of the beam exiting surface, and the Y axis is BTDF. (Sr-.
  • BTDF bidirectional penetration distribution function
  • Fig. 2B is a bidirectional penetration distribution function of the incident blue light of different backlight angles of the existing backlight module directly penetrating through the phosphor and the diffusion plate.
  • FIG. 3 is a schematic diagram of a backlight module and its optical components in accordance with a preferred embodiment of the present invention. detailed description
  • FIG. 3 a schematic diagram of a backlight module and an optical component thereof according to a preferred embodiment of the present invention are disclosed.
  • the backlight module 20 of the preferred embodiment of the present invention is mainly applied to the field of liquid crystal displays, and the backlight module 20 mainly includes An optical component 21, a fixing plate 22 and at least one semiconductor light emitting component 23, wherein the optical component 21 further comprises a substrate 211, a fluorescent layer 212 and a microstructure 213.
  • the optical component 21 further comprises a substrate 211, a fluorescent layer 212 and a microstructure 213.
  • the substrate 211 of the optical component 21 of the backlight module 20 is mainly made of polycarbonate (PC), polymethyl methacrylate. (polymethyl methacrylate, PMMA), methyl methacrylate / styrene (MS), or cycloolefin in polymer (COP) and other optical resin composite materials, and has a a surface 2111 and a second surface 2112 disposed opposite the first surface 2111 for causing at least one incident beam to be optically refracted or scattered to produce a backlight having a uniform brightness distribution, having enhanced brightness The effect.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • MS methyl methacrylate / styrene
  • COP cycloolefin in polymer
  • the substrate 211 is preferably a diffuser plate or a diffuser sheet or a concentrating sheet or a combination of the two.
  • the phosphor layer 212 is coated on the first surface 2111 of the substrate 211 by coating or coating, etc., and after being excited by a part of the at least one incident light beam, a specific color is radiated according to the material property thereof. At least one radiation beam with a specific wavelength of light.
  • the phosphor layer 212 has at least one phosphor therein, and is preferably a yellow phosphor, such as a yttrium aluminum garnet (YAG) phosphor.
  • the microstructure 213 has a specific pattern surface for optically refracting or scattering the at least one incident beam, wherein the specific pattern surface is And determining, according to the optical characteristics of the at least one incident beam and the material properties of the microstructure 213, by geometrical optics such as a refractive index of the light and a path of the light, and the specific pattern surface of the microstructure 213 may be by pressure A pattern, a particle pattern, a prism (pri sm) pattern, a microlens pattern, or a combination thereof is formed by printing, coating, diffusion, molding, or by precision turning.
  • the microstructure 213 is formed on the second surface 2112 of the substrate 211, and when the at least one incident beam is emitted to the microstructure 213, the at least one incident beam will be by the microstructure 213 Optically refracting or scattering the material, the surface shape, and the characteristics of the wavelength and color of the at least one incident light beam, causing a change in convergence or divergence of the light path of the at least one incident beam, such that the at least one incident beam passes After the process of optical refraction or scattering, the at least one incident beam that penetrates the first surface 2111, the second surface 2112, and the phosphor layer 212 of the substrate 211 will form a uniform brightness and high brightness. Brightness backlighting.
  • the fixing plate 22 has a surface 221 and at least one carrier plate 222 fixed to the surface 221, wherein the fixing plate 22 is The surface 221 is disposed opposite to the second surface 2112 of the substrate 211; the at least one semiconductor light emitting component 23 is firmly mounted on the at least one carrier 222 on the surface 221 of the fixing plate 22.
  • the at least one semiconductor light emitting component 23 is electrically connected to the at least one carrier 222 by a plurality of wires (not shown) or a plurality of bumps (not shown), and the at least one semiconductor
  • the light-emitting components 23 can be further covered by an encapsulant 24, wherein the encapsulant 24 is made of a transparent resin material; in the embodiment, the fixing plate 22 is preferably a back plate. Or a light source base; and the at least one semiconductor light emitting component 23 is preferably a light emitting diode chip, such as a blue light emitting diode chip, but is not limited thereto.
  • the at least one semiconductor light emitting component 23 is configured to emit the at least one incident light beam, where a blue light emitting diode chip is used to provide at least one incident blue light, for example, when the at least one incident
  • the at least one incident blue light may be the material of the microstructure 213
  • the property is optically refracted or scattered with the surface shape to change the optical path of the at least one incident blue light.
  • the first blue light beam of the at least one incident blue light sequentially penetrates the microstructure 213 and the first surface 21 1 1 of the substrate 21 1 and the second surface by optical refraction or scattering.
  • the embodiment adopts After the phosphor of the fluorescent layer 212 is excited by the first blue light beam, a yellow light is radiated. Since the first blue light beam that excites the fluorescent layer 212 has been modulated by the material properties and surface shape of the microstructure 213 to form a backlight having uniform brightness and high luminance, the fluorescent layer 212 is radiated.
  • the radiation beam is a yellow backlight with uniform brightness and high luminance; further, a second blue beam of the at least one incident blue light is optically refracted by the material properties and surface shape of the microstructure 213 or Scattering and directly penetrating through the microstructure 213, the first surface 21 1 1 of the substrate 21 1 and the second surface 21 12 and the fluorescent layer 212, and forming uniform brightness and high brightness A blue backlight of brightness. Finally, the yellow backlight radiated by the fluorescent layer 212 is uniformly mixed with the blue backlight directly penetrating the fluorescent layer 212 to form a white backlight for use as a light source of the backlight module 20. Furthermore, as shown in FIG.
  • the above features of the preferred embodiment of the present invention are advantageous in that: the backlight module 20 and its optical component 21 are from different incidents by using the microstructure 213 having the surface of the specific pattern. Optically refracting or scattering the at least one incident beam of the angle, causing the optical path of the at least one incident beam to change to optically converge or diverge, respectively, thereby forming the white backlight having uniform brightness and high luminance, thereby
  • the backlight module 20 can provide a light source with a smaller difference in the role of the liquid crystal display to improve the imaging quality of the liquid crystal display.
  • the specific pattern surface is calculated according to the relationship between the wavelength of the at least one incident beam, the material property of the microstructure 213, the refractive index of the light, and the optical path by means of optical design and geometrical optics, thereby obtaining
  • the specific pattern surface matching the wavelength of the at least one incident beam emitted by the at least one semiconductor light-emitting group 23, and the specific pattern surface of the microstructure 213 may be coated by an imprint process
  • Surface patterns such as a pattern, a particle pattern, a prism pattern, a microlens pattern, or a combination thereof are formed by diffusion, molding, or by precision turning.
  • the at least one incident beam is optically refracted or scattered by the specific surface pattern of the microstructure 213
  • At least one incident beam forms a backlight with uniform brightness and high luminance, wherein a first backlight of the backlight directly penetrates the phosphor layer 212 to maintain the original wavelength, color, uniformity and brightness of the first backlight a second backlight of the backlight excites the phosphor layer 212, causing the phosphor layer 212 to radiate a radiation backlight, and the brightness of the second backlight that excites the phosphor layer 212 is uniform and high in luminance
  • the radiant backlight radiated by the fluorescent layer 212 also has characteristics of uniform brightness and high luminance, and therefore, the first backlight penetrating through the fluorescent layer 212 and being radiated by the fluorescent layer 212
  • the white backlight generated after the radiation backlight is mixed also has the characteristics of uniform brightness and high luminance.

Description

背光模块及其光学组件 技术领域
本发明是有关于一种背光模块及其光学组件, 特别是有关于一种于一表 面披覆荧光层及于另一表面设置微结构, 以产生光亮度均匀并提高辉度且能 产生混光效果的光学组件及具有所述光学组件的背光模块。
液晶显示器(l iquid crystal di splay , LCD)是利用液晶材料的特性来显 示图像的一种平板显示装置(flat panel di splay , FPD), 其相较于其它显示 装置而言更具轻薄、 低驱动电压及低功耗等优点, 已经成为整个消费市场上 的主流产品。 然而, 液晶显示器的液晶材料无法自主发光, 必须借助外在提 供光源, 因此液晶显示器中又另外设有背光模块以提供所需的光源。
一般而言, 背光模块可分为侧背光模块和底背光模块两种形式, 其主要 功用在于向液晶显示器提供高辉度且光亮度均匀分布的背光, 因此, 背光模 块的光学组件能否更轻薄、 光源能否更均匀且具有高辉度、 并同时符合节能 的需求, 已成为现今研究发展的重点。 因此, 背光模块以半导体发光组件搭 配扩散板等光学组件已成为主流趋势, 其优势在于: 半导体发光组件相较于 冷阴极荧光管(cold cathode fluorescent lamp, CCFL)具有更为省电节能、 使用寿命更长, 且体积更为轻巧的优点。 现有半导体发光组件特别是利用发 光二极管(l ight emitt ing diode , LED)进行发光, 且发光二极管多是以芯片 的形式固定于背光模块的固定板上; 而光学组件的扩散板除了提供光亮度均 匀的背光之外, 也同时具备提高光辉度与增亮功能。
请参照图 1所示, 其揭示一种现有的背光模块的示意图, 其中一背光模 块 10大致包含一扩散板 11、一荧光层 12、一固定板 13及数个发光二极管芯 片 14。 所述荧光层 12是将荧光粉涂布在所述扩散板 11的一表面 111上, 所 述数个发光二极管芯片 14固定在所述固定板 13的一表面 131上, 且所述扩 散板 11的所述表面 111与所述固定板 13的所述表面 131是相对设置。 所述 数个发光二极管芯片 14用以发出至少一入射蓝光,当所述至少一入射蓝光入 射至所述扩散板 11的上的所述荧光层 12时, 部分所述至少一入射蓝光会激 发所述荧光层 12的荧光粉以辐射出一第一光束, 并穿透过所述扩散板 11 ; 而部分所述至少一入射蓝光则会直接穿透过所述荧光层 12及所述扩散板 11 成为一第二光束, 其中所述第一光束为黄光而所述第二光束仍为蓝光, 且所 述第一光束与所述第二光束在所述扩散板 11的另一侧混合成一白光,用以作 为所述背光模块 10的一光源。
然而, 由于不同颜色的光束存在不同的折射率(index of refraction) 0 如图 2A及 2B所示, 其分别揭示不同入射角的入射蓝光激发所述荧光层 12 而产生黄光的双向穿透分布函数 (bidirectional reflect ion di stribution function , BTDF)及不同入射角的入射蓝光直接穿透过所述荧光层 12及扩散 板 11的双向穿透分布函数。比较图 2A及 2B可知:所述第一光束与所述第二 光束的双向穿透分布函数并不一致, 所述第一光束依不同入射角而呈现类似 朗伯分布(Lambert di stribut ion)的双向穿透分布函数, 而所述第二光束因 不同入射角呈现半高波宽度较窄的双向穿透分布函数。 换句话说, 所述第一 光束及所述第二光束因不同的入射角而有不同强度的双向穿透分布函数, 亦 即不同视角的所述白光是由不同比例的所述第一光束与所述第二光束所混 合。 故, 若以所述背光模块 10作为液晶显示器的光源, 则其各视角的色差及 色度将不一致, 液晶显示器的成像质量将大受影响。
故, 确实有必要对背光模块的扩散板提供一种光学组件, 以解决现有技 术所存在的色差及色度问题。 发明内容
本发明的主要目的在于提供一种背光模块及其光学组件, 包含一基底、 一荧光层及一微结构。 所述基底具有一第一表面与一第二表面, 所述荧光层 披覆于所述基底的所述第一表面上, 所述微结构设置于所述基底的所述第二 表面, 其中所述荧光层与所述微结构是分别设置于所述基底的两侧, 以使至 少一入射光束借助所述微结构进行光学折射或散射后, 进而均匀的穿透过所 述微结构及所述基底, 从而均匀地激发所述荧光层, 最终使直接穿透过所述 荧光层的一蓝色背光与由激发所述荧光层产生的一黄色背光进行混合, 以确 保所述背光模块提供一光亮度均匀且高辉度的白色背光。
本发明的次要目的在于提供一种背光模块及其光学组件, 其中所述微结 构更包含一特定图案表面, 其具有花紋图案、 粒子图案、 棱镜图案、 微透镜 图案或其组合。
本发明的另一目的在于提供一种背光模块及其光学组件, 其中所述至少 一入射光束是一蓝光, 一部分所述蓝光会激发所述荧光层而辐射出一黄色背 光, 另一部分所述蓝光会直接穿透所述微结构、 所述基底及所述荧光层, 并 形成一蓝色背光, 最后所述黄色背光与所述蓝色背光混合成一白色背光, 于 所述蓝光穿透所述光学组件的过程中,通过所述微结构进行光学折射或散射, 有利于提高所述白色背光的亮度均匀性及辉度。
为达成本发明的前述目的, 本发明提供一种背光模块, 所述背光模块包 含:一光学组件, 包含:一基底, 具有一第一表面与一第二表面; 一荧光层, 披覆于所述基底的所述第一表面上; 及一微结构, 形成于所述基底的所述第 二表面; 一固定板; 以及至少一半导体发光组件, 固定于所述固定板上, 用 以发射至少一至少一入射光束; 其中所述至少一入射光束借助所述微结构产 生光学折射或散射, 以使光亮度均匀并提高辉度, 因此所述至少一入射光可 均匀的依序穿透过所述微结构及所述基底后, 再穿透过所述荧光层或对所述 荧光层进行激发。
再者, 本发明提供另一种光学组件, 所述光学组件包含:一基底, 具有 一第一表面与一第二表面; 一荧光层, 披覆于所述基底的所述第一表面上; 及一微结构, 形成于所述基底的所述第二表面, 用以对至少一入射光束产生 光学折射或散射, 使所述至少一入射光均匀的依序穿透过所述微结构及所述 基底后, 再穿透过所述荧光层或对所述荧光层进行激发。
在本发明的一实施例中, 所述微结构另包含借助压印工艺、涂布、扩散、 模造, 或精密车削加工的方式所形成的一图案表面, 其具有花紋图案、 粒子 图案、 棱镜图案、 微透镜图案或其组合。
在本发明的一实施例中, 所述至少一半导体发光组件是一发光二极管芯 片, 例如是蓝光发光二极管芯片。
在本发明的一实施例中, 所述发光二极管芯片又包含一封装胶体。
在本发明的一实施例中, 所述基底是一扩散板、 一扩散膜或一集光片。 在本发明的一实施例中, 所述荧光层内具有至少一种一荧光粉, 例如黄 光荧光粉。
在本发明的一实施例中, 所述固定板是一背板或一发光源基座。
与现有技术相比较, 本发明的背光模块及其光学组件是以所述蓝光作为 所述至少一入射光束, 其中, 部分所述蓝光借助穿透所述光学组件产生所述 蓝色背光, 部分所述蓝光激发所述荧光层, 使所述荧光层辐射出所述黄色背 光, 最后, 所述蓝色背光与所述黄色背光混合以形成所述白色背光, 由于所 述蓝光穿透所述微结构的过程已进行光学折射或散射, 因而混合后的所述白 色背光的光亮度将更均匀且辉度也将大幅提高。 附图说明
图 1是现有的背光模块的示意图。 图 2A是现有的背光模块不同入射角的入射蓝光激发荧光粉而产生黄光 的双向穿透分布函数(BTDF) , 其中 X轴为光束射出表面的光束倾斜角度(° ), Y轴为 BTDF (Sr— 。
图 2B 是现有的背光模块不同入射角的入射蓝光直接穿透过荧光粉及扩 散板的双向穿透分布函数。
图 3是本发明较佳实施例的背光模块及其光学组件的示意图。 具体实施方式
为让本发明上述目的、 特征及优点更明显易懂, 下文特举本发明较佳实 施例, 并配合附图, 作详细说明如下。 再者, 本发明所提到的方向用语, 例 如 「上」、 「下」、 「前」、 「后」、 「左」、 「右」、 「内」、 「外」、 「侧面」 等, 仅是 参考附加图式的方向。 因此, 使用的方向用语是用以说明及理解本发明, 而 非用以限制本发明。
请参照图 3所示, 其揭示本发明较佳实施例的背光模块及其光学组件的 示意图, 其中本发明较佳实施例的背光模块 20主要应用在液晶显示器领域, 所述背光模块 20主要包含一光学组件 21、一固定板 22及至少一半导体发光 组件 23,其中所述光学组件 21又包含一基底 211、一荧光层 212及一微结构 213。 本发明将于下文详细说明上述各组件。
请再参照图 3所示,在本发明较佳实施例中,所述背光模块 20的光学组 件 21的基底(substrate) 211主要是由聚碳酸酯(polycarbonate , PC)、 聚甲 基丙烯酸甲酯(polymethyl methacrylate , PMMA)、 甲基丙烯酸甲酯 /苯乙烯 共聚合物 (methylmetahacrylate styrene, MS) , 或环烯烃聚合物 (cycloolef in polymer , COP)等光学树脂复合材料所制成, 并具有一第一表 面 2111及与所述第一表面 2111相对设置的一第二表面 2112,用以使至少一 入射光束借助光学折射或散射而产生亮度均匀分布的背光, 具有强化光亮度 的功效。 在本实施例中, 所述基底 211优选是一扩散板(diffuser plate)或 者一扩散膜(diffuser sheet)或者一集光片(l ight concentrat ing sheet) 或者其中二者的结合。 所述荧光层 212是以涂布或镀膜等方式披覆在所述基 底 211的所述第一表面 2111上,其经部分所述至少一入射光束激发后,会依 其材料特性辐射出特定颜色与特定光波长的至少一辐射光束。在本实施例中, 所述荧光层 212内具有至少一种荧光粉, 且优选是一黄光荧光粉, 例如钇铝 石檔石 (yttrium aluminum garnet , YAG)突光粉。
请再参照图 3所示, 在本发明较佳实施例中, 所述微结构 213具有一特 定图案表面, 用以使所述至少一入射光束进行光学折射或散射, 其中所述特 定图案表面是依据所述至少一入射光束的光学特性及所述微结构 213的材料 特性, 借助光折射率及光路径等几何光学计算而得, 且所述微结构 213的所 述特定图案表面可以是借助压印工艺、 涂布、 扩散、 模造, 或以精密车削加 工的方式形成花紋图案、 粒子图案、 棱镜(pri sm)图案、 微透镜(microlens) 图案或其组合。所述微结构 213是形成在所述基底 211的所述第二表面 2112 上, 当所述至少一入射光束发射至所述微结构 213时, 所述至少一入射光束 将借助所述微结构 213的材料、 表面形状与所述至少一入射光束自身的波长 与颜色等特性进行光学折射或散射, 令所述至少一入射光束的光路径发生汇 聚或发散的改变, 使所述至少一入射光束通过光学折射或散射等过程后, 穿 透过所述基底 211的所述第一表面 2111、 所述第二表面 2112及所述荧光层 212的所述至少一入射光束将形成一光亮度均匀且高辉度的背光。
请再参照图 3所示,在本发明较佳实施例中,所述固定板 22具有一表面 221及固定于所述表面 221上的至少一载板 222, 其中所述固定板 22的所述 表面 221与所述基底 211的所述第二表面 2112是相对设置;所述至少一半导 体发光组件 23稳固地装设在所述固定板 22的所述表面 221上的所述至少一 载板 222上,用以朝向所述基底 211的所述第二表面 2112发射所述至少一入 射光束,其中所述至少一半导体发光组件 23是借助数条导线(未绘示)或数个 凸块(未绘示)与所述至少一载板 222电性连接, 且所述至少一半导体发光组 件 23又可以再各自以一封装胶体 24包覆包护,其中所述封装胶体 24是由一 透明的树脂材料所制成;在本实施例中,所述固定板 22优选是一背板或一发 光源基座;而所述至少一半导体发光组件 23优选是一发光二极管芯片,例如 是蓝光发光二极管芯片, 但并不限于此。
请继续参照图 3所示,所述至少一半导体发光组件 23用以发出所述至少 一入射光束, 在此采用一蓝色发光二极管芯片以提供至少一入射蓝光为例, 当所述至少一入射蓝光由所述至少一半导体发光组件 23 射出并到达所述基 底 21 1的所述第二表面 21 12上的所述微结构 213时,所述至少一入射蓝光会 借助所述微结构 213的材料特性与表面形状进行光学折射或散射, 使所述至 少一入射蓝光的光路径发生改变。 其中所述至少一入射蓝光的一第一蓝色光 束借助光学折射或散射依序穿透过所述微结构 213及所述基底 21 1的所述第 一表面 21 1 1与所述第二表面 21 12, 并对所述荧光层 212的荧光粉进行激发, 使所述荧光层 212 依其材料特性辐射出特定颜色与特定光波长的一幅射光 束, 举例而言, 本实施例所采用的所述荧光层 212的荧光粉经所述第一蓝色 光束激发后, 会辐射出一黄光。 由于激发所述荧光层 212的所述第一蓝色光 束已通过所述微结构 213的材料特性与表面形状的调制而形成亮度均匀且高 辉度的背光, 因而所述荧光层 212所辐射出的所述辐射光束即是亮度均匀且 高辉度的一黄色背光; 再者, 所述至少一入射蓝光的一第二蓝色光束借助所 述微结构 213的材料特性与表面形状进行光学折射或散射, 并直接依序穿透 过所述微结构 213、所述基底 21 1的所述第一表面 21 1 1与所述第二表面 21 12 及所述荧光层 212, 并形成亮度均匀且高辉度的一蓝色背光。 最后, 由所述 荧光层 212辐射的所述黄色背光与直接穿透所述荧光层 212的所述蓝色背光 进行均匀混合, 形成一白色背光, 用以作为所述背光模块 20的一光源。 再者, 如图 3所示, 本发明较佳实施例上述特征的优点在于: 所述背光 模块 20及其光学组件 21是利用具有所述特定图案表面的所述微结构 213对 来自于不同入射角度的所述至少一入射光束进行光学折射或散射, 使所述至 少一入射光束的光路径发生改变而分别发生光学汇聚或发散, 进而形成亮度 均匀且高辉度的所述白色背光,故而使所述背光模块 20能提供液晶显示器视 角色差更小的光源, 以提高液晶显示器的成像质量。 其中, 所述特定图案表 面是借助光学设计与几何光学原理, 依据所述至少一入射光束的波长、 所述 微结构 213的材料特性、 光折射率及光路径等关系计算而得, 因而能获得与 所述至少一半导体发光组 23 所射出的所述至少一入射光束的波长相匹配的 所述特定图案表面, 且所述微结构 213的所述特定图案表面可以是借助压印 工艺、 涂布、 扩散、 模造, 或以精密车削加工的方式形成花紋图案、 粒子图 案、 棱镜图案、 微透镜图案或其组合等表面图案。
最后, 再如图 3所示, 本发明较佳实施例的另一个特征在于: 所述至少 一入射光束是先借助所述微结构 213的所述特定表面图案进行光学折射或散 射, 使所述至少一入射光束形成亮度均匀且高辉度的一背光, 其中所述背光 的一第一背光直接穿透过所述荧光层 212而维持所述第一背光原来的波长、 颜色、 均匀度及辉度; 所述背光的一第二背光则激发所述荧光层 212, 使所 述荧光层 212辐射出一辐射背光, 由于激发所述荧光层 212的所述第二背光 的亮度均匀且辉度高, 激发所述荧光层 212辐射出的所述辐射背光也具有亮 度均匀及高辉度的特性, 因此, 穿透过所述荧光层 212的所述第一背光与由 所述荧光层 212辐射出的所述辐射背光混合后所产生的所述白色背光同样具 备亮度均匀及高辉度的特性。
本发明已由上述相关实施例加以描述, 然而上述实施例仅为实施本发明 的范例。 必需指出的是, 已公开的实施例并未限制本发明的范围。 相反地, 包含于权利要求书的精神及范围的修改及均等设置均包括于本发明的范围
.S.8.0/0T0ZN3/X3d OAV

Claims

权 利 要 求
一种背光模块, 其特征在于: 所述背光模块包含:
一光学组件, 包含:
一基底, 具有一第一表面及一与该第一表面相对设置的第二表面; 一荧光层, 设置于所述基底的所述第一表面上; 及
一微结构, 形成于所述基底的所述第二表面;
一固定板; 以及
至少一半导体发光组件,固定于所述固定板上,用以发射至少一入射光束; 其中所述至少一入射光束借助所述微结构产生光学折射或散射,以使所述 至少一入射光均匀的依序穿透过所述微结构及所述基底后,再穿透过所述 荧光层或对所述荧光层进行激发;
其中所述固定板是一背板或一发光源基座;所述至少一半导体发光组件选 自发光二极管芯片;所述至少一入射光束是一蓝光;及所述荧光层是黄光 荧光粉层。
如权利要求 1所述的背光模块,其特征在于:所述微结构另包含一图案表 面, 所述图案表面为花紋图案、 粒子图案、 棱镜图案、 微透镜图案或其组 合。 如权利要求 1所述的背光模块, 其特征在于: 所述基底是一扩散板、 一扩 散膜或一集光片。
一种背光模块, 其特征在于: 所述背光模块包含:
一光学组件, 包含:
一基底, 具有一第一表面及一与该第一表面相对设置的第二表面; 一荧光层, 设置于所述基底的所述第一表面上; 及
一微结构, 形成于所述基底的所述第二表面;
一固定板; 以及 至少一半导体发光组件,固定于所述固定板上,用以发射至少一入射光束; 其中所述至少一入射光束借助所述微结构产生光学折射或散射,以使所述 至少一入射光均匀的依序穿透过所述微结构及所述基底后,再穿透过所述 荧光层或对所述荧光层进行激发。
5. 如权利要求 4所述的背光模块,其特征在于:所述微结构另包含一图案表 面, 所述图案表面为花紋图案、 粒子图案、 棱镜图案、 微透镜图案或其组 合。
6. 如权利要求 4所述的背光模块,其特征在于:所述至少一半导体发光组件 选自发光二极管芯片。
7. 如权利要求 4所述的背光模块, 其特征在于: 所述基底是一扩散板、 一扩 散膜或一集光片。
8. 如权利要求 4所述的背光模块,其特征在于:所述至少一入射光束是一蓝 光; 所述荧光层是黄光荧光粉层。
9. 如权利要求 4所述的背光模块,其特征在于:所述固定板是一背板或一发 光源基座。
10.一种光学组件, 其特征在于: 所述光学组件包含:
一基底, 具有一第一表面与一第二表面;
一荧光层, 披覆于所述基底的所述第一表面上; 及
一微结构,形成于所述基底的所述第二表面,用以对至少一入射光束产生 光学折射或散射,使所述至少一入射光均匀的依序穿透过所述微结构及所 述基底后, 再穿透过所述荧光层或对所述荧光层进行激发。
11.如权利要求 10所述的光学组件, 其特征在于: 所述微结构另包含一图案 表面, 其具有花紋图案、 粒子图案、 棱镜图案、 微透镜图案或其组合。
12.如权利要求 10所述的光学组件, 其特征在于: 所述基底是一扩散板、 一 扩散膜或一集光片。 如权利要求 10所述的光学组件, 其特征在于: 所述至少一入射光束是一 蓝光; 所述荧光层是黄光荧光粉层。
PCT/CN2010/078757 2010-09-03 2010-11-15 背光模块及其光学组件 WO2012027928A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/996,881 US20120057326A1 (en) 2010-09-03 2010-11-15 Backlight Module and Optical Component Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010278761.5 2010-09-03
CN2010102787615A CN101936489A (zh) 2010-09-03 2010-09-03 背光模块及其光学组件

Publications (1)

Publication Number Publication Date
WO2012027928A1 true WO2012027928A1 (zh) 2012-03-08

Family

ID=43389959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078757 WO2012027928A1 (zh) 2010-09-03 2010-11-15 背光模块及其光学组件

Country Status (3)

Country Link
US (1) US20120057326A1 (zh)
CN (1) CN101936489A (zh)
WO (1) WO2012027928A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012005658B4 (de) 2012-03-22 2013-10-24 Schott Ag Weißlichterzeugung
CN102606962A (zh) * 2012-03-31 2012-07-25 福州华映视讯有限公司 背光模块
CN102748612A (zh) * 2012-06-13 2012-10-24 深圳市华星光电技术有限公司 面光源及显示装置
CN103672568A (zh) * 2012-09-04 2014-03-26 展晶科技(深圳)有限公司 直下式背光模组
CN102798060B (zh) * 2012-09-11 2015-10-07 深圳市华星光电技术有限公司 直下式背光模组
DE102015104220A1 (de) * 2015-03-20 2016-09-22 Osram Opto Semiconductors Gmbh Optoelektronische Leuchtvorrichtung
WO2017199642A1 (ja) * 2016-05-19 2017-11-23 シャープ株式会社 バックライト装置およびそれを備えた表示装置
KR102522945B1 (ko) * 2017-10-31 2023-04-17 엘지디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정 표시 장치
CN111316156A (zh) * 2018-10-19 2020-06-19 深圳市珏琥显示技术有限公司 一种光学膜、背光模组和显示装置
CN109358450B (zh) * 2018-11-28 2023-12-01 武汉华星光电技术有限公司 薄型背光模组及其制作方法
KR20210151199A (ko) * 2019-05-14 2021-12-13 라디안트 (광저우) 옵토-엘렉트로닉스 컴퍼니 리미티드 광원 구조, 백라이트 모듈 및 표시 장치
CN113936541B (zh) 2020-06-29 2023-02-21 京东方科技集团股份有限公司 一种直下式背光模组以及显示装置
JP2023023939A (ja) * 2021-08-06 2023-02-16 株式会社エンプラス 面光源装置および表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071642A (ko) * 2001-03-07 2002-09-13 엘지.필립스 엘시디 주식회사 백라이트 및 그 제조방법
CN101201496A (zh) * 2006-12-12 2008-06-18 钰瀚科技股份有限公司 具有荧光层的背光模块及显示面板
WO2009072575A1 (ja) * 2007-12-07 2009-06-11 Sony Corporation 照明装置、表示装置、照明装置の製造方法
CN101470299A (zh) * 2007-12-25 2009-07-01 亿光电子工业股份有限公司 发光二极管背光模块、其扩散片及其制造方法
US20100127289A1 (en) * 2008-11-26 2010-05-27 Bridgelux, Inc. Method and Apparatus for Providing LED Package with Controlled Color Temperature
CN101788132A (zh) * 2009-01-26 2010-07-28 索尼公司 光学部件和显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6871982B2 (en) * 2003-01-24 2005-03-29 Digital Optics International Corporation High-density illumination system
US7352124B2 (en) * 2004-09-28 2008-04-01 Goldeneye, Inc. Light recycling illumination systems utilizing light emitting diodes
US7220040B2 (en) * 2004-11-12 2007-05-22 Harris Corporation LED light engine for backlighting a liquid crystal display
KR101139891B1 (ko) * 2005-01-31 2012-04-27 렌슬러 폴리테크닉 인스티튜트 확산 반사면을 구비한 발광 다이오드 소자
JP2006253298A (ja) * 2005-03-09 2006-09-21 Toshiba Corp 半導体発光素子及び半導体発光装置
CN101086577A (zh) * 2006-06-07 2007-12-12 中国科学院半导体研究所 Led照明的lcd背光源结构
US7703942B2 (en) * 2006-08-31 2010-04-27 Rensselaer Polytechnic Institute High-efficient light engines using light emitting diodes
CN101345236A (zh) * 2008-05-07 2009-01-14 蒋峰 一种均匀照明的白光led模组封装光学方案

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071642A (ko) * 2001-03-07 2002-09-13 엘지.필립스 엘시디 주식회사 백라이트 및 그 제조방법
CN101201496A (zh) * 2006-12-12 2008-06-18 钰瀚科技股份有限公司 具有荧光层的背光模块及显示面板
WO2009072575A1 (ja) * 2007-12-07 2009-06-11 Sony Corporation 照明装置、表示装置、照明装置の製造方法
CN101470299A (zh) * 2007-12-25 2009-07-01 亿光电子工业股份有限公司 发光二极管背光模块、其扩散片及其制造方法
US20100127289A1 (en) * 2008-11-26 2010-05-27 Bridgelux, Inc. Method and Apparatus for Providing LED Package with Controlled Color Temperature
CN101788132A (zh) * 2009-01-26 2010-07-28 索尼公司 光学部件和显示装置

Also Published As

Publication number Publication date
US20120057326A1 (en) 2012-03-08
CN101936489A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2012027928A1 (zh) 背光模块及其光学组件
US8348491B2 (en) Light guide plates and backlight module
JP5336474B2 (ja) 半鏡面構成要素を備えたリサイクル型バックライト
TWI402571B (zh) 具有光線補色區域之背光模組
JP2009283438A (ja) 照明装置、表示装置、照明装置の製造方法
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
US11605764B2 (en) LED light source, surface light source display module, and preparation method for LED light source
US10634948B2 (en) Lighting device and display device
KR20060108244A (ko) 조명 장치, 표시 장치 및 형광체 필름
CN101561085A (zh) 广角led光源
WO2018040781A1 (zh) 一种量子点发光器件及背光模组
KR102221188B1 (ko) 미니 led 또는 마이크로 led를 광원으로 하는 백라이트 유닛
US20210080785A1 (en) Backlight module
KR102461674B1 (ko) 광학필름
WO2009047891A9 (ja) 面光源素子アレイおよび画像表示装置
KR20120075317A (ko) 디스플레이 장치
TW201719251A (zh) 顯示裝置
KR20110135097A (ko) 액정표시장치 모듈
US20230097447A1 (en) Backlight module and display device
US11054698B2 (en) Backlight module and display device
CN212658916U (zh) 直下式背光模组
TWI431327B (zh) 混色透鏡及具有該混色透鏡之液晶顯示裝置
KR20110101465A (ko) 도광판 및 이를 구비한 백라이트 유닛 및 디스플레이 장치
TWI414835B (zh) 導光板及背光模組
WO2019227795A1 (zh) 背光模组及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12996881

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856615

Country of ref document: EP

Kind code of ref document: A1