KR20200055473A - Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법 - Google Patents

Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법 Download PDF

Info

Publication number
KR20200055473A
KR20200055473A KR1020180139165A KR20180139165A KR20200055473A KR 20200055473 A KR20200055473 A KR 20200055473A KR 1020180139165 A KR1020180139165 A KR 1020180139165A KR 20180139165 A KR20180139165 A KR 20180139165A KR 20200055473 A KR20200055473 A KR 20200055473A
Authority
KR
South Korea
Prior art keywords
dicarboxylate
solid catalyst
electron donor
trans
cis
Prior art date
Application number
KR1020180139165A
Other languages
English (en)
Other versions
KR102122133B1 (ko
Inventor
이영주
박준려
김은일
고수민
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020180139165A priority Critical patent/KR102122133B1/ko
Priority to EP19205678.6A priority patent/EP3653655A1/en
Priority to CN201911041935.3A priority patent/CN111171195B/zh
Priority to US16/668,917 priority patent/US11434315B2/en
Publication of KR20200055473A publication Critical patent/KR20200055473A/ko
Application granted granted Critical
Publication of KR102122133B1 publication Critical patent/KR102122133B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/643Component covered by group C08F4/64 with a metal or compound covered by group C08F4/44 other than an organo-aluminium compound
    • C08F4/6432Component of C08F4/64 containing at least two different metals
    • C08F4/6435Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6491Catalysts containing a specific non-metal or metal-free compound organic hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 티타늄, 마그네슘, 할로젠, 및 시클릭디에스테르의 제1내부전자공여체와 디에테르의 제2내부전자공여체의 조합으로 이루어진 유기전자공여체를 포함하는 것을 특징으로 하는 VOC 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법으로서, 종래의 방법에 비하여 촉매의 수소 반응성을 개선했으며, 상기의 촉매를 사용해 휘발성 유기화합물의 함량을 크게 낮춘 친환경 폴리프로필렌을 제조할 수 있는 효과를 가진다.

Description

VOC 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법{A solid catalyst for Polypropylene polymerization and a method for low Volatile organic compound}
본 발명은 VOC 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법에 관한 것으로서, 더욱 상세하게는, 디알콕시마그네슘과 금속할라이드를 반응시킨 담체, 티타늄할라이드, 유기전자공여체를 포함하는 고체촉매 및 이를 이용한 폴리프로필렌 제조방법에 관한 것이다.
폴리프로필렌은 산업 및 상업적으로 매우 가치있는 소재로, 특히 생활용품부터 자동차 및 전자제품 등에 이르기까지 다양하게 사용되고 있다. 이러한 제품들을 생산할 때, 폴리프로필렌 폴리머 파우더를 용융시켜 사용하게 되는데, 특히 대형제품의 제조 시 폴리프로필렌의 높은 용융흐름성이 필요하게 된다. 이러한 용융흐름성은 폴리프로필렌의 분자량에 직접적인 영향을 받게 되며, 프로필렌의 중합 중 수소의 주입량을 늘려 분자량을 작게함으로써 용융흐름성을 좋게 할 수 있으나 수소의 주입량에 한계가 있어 프로필렌 중합 촉매의 높은 활성이 필수적이다.
이에 대하여, 한국 특허 제10-1540513호에서 디에테르 내부전자공여체를 포함하는 촉매로 실란계 화합물과 함께 반응시켜 폴리프로필렌을 제조하는 방법이 소개되었으나 활성과 입체규칙성에서 개선의 필요가 있었고, 한국 특허 제10-1207628호와 같이 비시클로알켄디카르복실레이트계 내부전자공여체를 이용하여 프로필렌 중합용 고체촉매의 활성을 높이는 방법이 소개 되거나, 한국 특허 제10-1126946호의 프탈레이트계 화합물, 카르복실산에스테르 화합물 및 디에테르 화합물 중 어느 하나를 선택하는 내부전자공여체를 포함하는 촉매로 활성, 겉보기 밀도 및 입체규칙성을 개선하는 방법이 소개된 바가 있다.
휘발성 유기화합물(VOC, Volatile organic compound)은 폴리프로필렌 중합 시 생성되어 폴리프로필렌 수지 내에 잔류하는 저분자량의 올리고머 성분으로, 자동차 내장소재로 사용되기도 하지만, 고온 환경에 노출 될 경우, 포깅(Fogging)현상 및 인체유해성을 유발하는 문제가 생겼고, 이로 인한 사고 및 피해가 발생함에 따라 이 VOC 함량을 낮춘 친환경 폴리프로필렌에 대한 요구가 증가하고 있다.
따라서, 본 발명은 디알콕시마그네슘과 금속할라이드를 반응시켜 생성한 담체에 티타늄할라이드 및 시클릭디에스테르 구조의 화합물을 포함하는 제1내부전자공여체 및 디에테르 구조의 화합물을 포함하는 제2내부전자공여체로 이루어진 2가지 종류의 내부전자공여체를 조합한 유기전자공여체를 포함하는 고체촉매에 관한 것으로, 촉매의 수소 반응성을 개선하고, 상기의 촉매를 사용하여 휘발성유기화합물(T-VOC, Total volatile organic compound)의 함량을 낮춘 친환경의 폴리프로필렌을 제조할 수 있는 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법을 제공하기 위한 것이다.
따라서, 본 발명이 해결하고자 하는 과제는 종래기술의 문제점을 해결하기 위하여 고안된 것으로서, 본 발명은 시클릭디에스테르 구조의 제1내부전자공여체 및 디에테르 구조의 제2내부전자공여체를 포함하는 내부전자공여체를 조합한 유기전자공여체를 포함하는 고체촉매를 통하여 높은 수소 반응성 및 분자량 분포 조절이 가능한 촉매 및 이를 이용하여 VOC 저감효과를 갖는 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것이다
본 발명은, 상술한 기술적 과제를 해결하기 위하여, 디알콕시마그네슘과 금속할라이드를 반응시켜 생성한 담체, 티타늄할라이드 및 시클릭디에스테르 화합물을 포함하는 제1내부전자공여체와 디에테르 화합물을 포함하는 제2내부전자공여체의 조합으로 이루어진 유기전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매를 제공한다.
본 발명의 프로필렌 중합용 고체촉매의 제조방법은, 다음의 단계를 포함하여 이루어지는 것을 특징으로 한다.
(1) 디에톡시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 비교적 낮은 온도에서 반응시키는 단계;
(2) 디에톡시마그네슘 반응 후 온도를 승온하면서 2종의 내부전자공여체를 반응시키는 단계;
(3) 높은온도에서 일정시간동안 반응시키는 단계;
(4) 금속할라이드 화합물과 높은 온도에서 2차로 반응시키고 이를 세척하는 단계.
상기 명시된 고체촉매의 제조공정에 있어서, 상기 (1)단계에서 사용된 디에톡시마그네슘은 금속마그네슘을 염화마그네슘의 존재하에서 무수알콜과 반응시켜 얻어지는 평균입경이 10~200㎛ 이고, 표면이 매끄러운 구형입자로서, 상기 구형의 입자형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10 ㎛미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 곁보기 밀도가 작아지고 촉매제조시 균일한 입자형상을 갖기 어려워 바람직하지 않다.
상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별한 제한이 없으며, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 탄화수소 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 톨루엔, 자일렌, 클로로헥산, 클로로헵탄 등으로부터 선택되는 1종 이상을 혼합하여 사용할 수 있다.
또한 상기 디에톡시마그네슘에 대한 상기 유기용매의 사용비는 디에톡시마그네슘 중량: 유기용매 부피로 1:5~1:50, 보다 바람직하게는 1:7 ~ 1:20 인데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.
상기 고체촉매의 제조과정에서 사용되는 티타늄 할라이드는 하기 화학식 (i)로 표시할 수 있다:
Ti(OR)nX(4-n) ……… (i)
여기에서 R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소를 나타내며, n 은 상기 화학식 (i)의 원자가를 맞추기 위한 것으로 0~3 의 정수이다. 구체적인 예로는 TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(O(n-C4H9))Cl3, Ti(OCH3)2Cl2, Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(O(n-C4H9))2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, Ti(O(n-C4H9))3Cl등이며, 이들 중 TiCl4가 바람직하게 사용된다. 또한 이들 4가 티타늄할라이드 화합물은 1종 단독 또는 2종 이상을 조합하여 사용할 수도 있다. 상기 (1)단계의 반응 온도는 -10 ~ 60℃이다.
상기 (2)단계에서 나타내는 2종의 내부전자공여체 중 제1내부전자공여체는 하기의 구조식 (I) 내지 (Ⅷ)로 표시되는 화합물 중 어느 하나인 시클릭디에스테르계 화합물을 포함하는 것을 특징으로 한다.
하기 구조식 (I) 내지 (Ⅷ)에서 R1 및 R2는 서로 동일하거나 상이하고, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기; R3~R12는 서로 동일하거나 상이하고, 수소, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이다.
Figure pat00001
…… (I)
상기 구조식 (I) 화합물의 구체적인 예로는 디메틸 사이클로헥-1-센-1,2디카복시레이트(dimethyl cyclohex-1-ene-1,2-dicarboxylate), 디에틸 사이클로헥-1-센-1,2-디카복시레이트 (diethyl cyclohex-1-ene-1,2-dicarboxylate), 1-에틸2-메틸 사이클로헥-1-센-1,2디카복시레이트 (1-ethyl 2-methyl cyclonex-1-ene-1,2- dicarboxylate), 1-에틸2프로필 사이클로헥-1-센-1,2디카복시레이트 (1-ethyl 2- propyl cyclohex-1-ene-1,2-dicarboxylate), 디프로필 사이클로헥-1-센-1,2디카복시레이트 (dipropyl cyclonex-1-ene-1,2-dicarboxylate), 디아이소프로필 사이클로헥-1-센-1,2디카복시레이트 (diisopropyl cyclonex-1-ene-1,2-dicarboxylate), 디에틸3메틸 사이클로헥-1-센-1,2디카복시레이트 (diethyl 3-methylcyclohex-1- ene- 1,2-dicarboxylate), 디에틸3,3디메틸사이클로헥-1-센-1,2-디카복시레이트(diethyl 3,3-dimethylcyclohex-1-ene-1,2- dicarboxylate), 디에틸3,3,4,4,-테트라메틸사이클로헥-1-센-1,2-디카복시레이트(diethyl3,3,4,4-tetramethylcyclohex-1- ene- 1,2-dicarboxylate), 디에틸3,3,4,4,6-펜타메틸사이클로헥-1-센-1,2-디카복시레이트(diethyl 3,3,4,4,6-pentamethylcyclohex-1-ene-1,2-dicarboxylate), 디부틸4,5-디메틸사이클로헥-1-센-1,2-디카복시레이트(dibutyl 4,5-dimethylcyclohex-1-ene- 1,2-dicarboxylate), 2-에틸1-프로필5-에틸-3,3,4-트라이메틸사이클로헥-1-센-1,2-디카복시레이트(2-ethyl1-propyl5-ethyl-3,3,4- trimethylcyclohex-1-ene-1,2- dicarboxylate)등이 있다.
Figure pat00002
…… (Ⅱ)
상기 구조식 (Ⅱ) 화합물의 구체적인 예로는 디메틸사이클로헥사-1,4디엔- 1,2-디카복시레이트 (dimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethylcyclohexa-1,4-diene-1,2- dicarboxylate), 디프로필사이클로헥사-1,4디엔-1,2-디카복시레이트 (dipropylcyclohexa-1,4-diene-1,2-dicarboxylate), 디아이소프로필사이클로헥사- 1,4디엔-1,2-디카복시레이트(diisopropylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸3-메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl3-methylcyclohexa- 1,4-diene-1,2-dicarboxylate), 디에틸3,3-디메틸 사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl3,3-dimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸 3,3,6트리메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl3,3,6- trimethylcyclohexa-1,4-diene-1,2-dicarboxylate), 디에틸3,3,6,6테트라메틸사이클로헥사-1,4디엔-1,2-디카복시레이트 (diethyl3,3,6,6tetramethylcyclohexa- 1,4-diene-1,2-dicarboxylate), 디에틸3,3,4,5,6,6-헥사메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(diethyl 3,3,4,5,6,6,-hexamethylcyclohexa-1,4-diene- 1,2-dicarboxylate), 1-에틸2-프로필4-에틸-3,5,6-트리메틸사이클로헥사-1,4디엔-1,2-디카복시레이트(1-ethyl2-propyl4-ethyl-3,5,6-trimethylcyclohexa- 1,4-diene-1,2-dicarboxylate), 2-에틸1-프로필5-에틸-3,3,4,6테트라메틸사이클로헥사-1,4디엔-1,2-디카복시레이트 (2-ethyl1-propyl5-ethyl-3,3,4,6- tetramethylcyclohexa-1,4-diene-1,2 dicarboxylate) 등이 있다.
Figure pat00003
…… (Ⅲ)
상기 구조식 (Ⅲ) 화합물의 구체적인 예로는 트랜스-디메틸-사이클로헥산-1,2-디카복시레이트(trans-dimethyl-cyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-메틸-사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-methyl cyclohexane-1,2-dicarboxylate), 트랜스-디에틸-사이클로헥산-1,2-디카복시레이트 (trans-diethylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필-사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), 트랜스-2-에틸3-프로필1-메틸사이클로헥산-1,2-디카복시레이트(trans-2-ethyl1-propyl 1-methylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필1,2-디메틸사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필-1,2,4,4-테트라메틸사이클로헥산-1,2-디카복시레이트(trans-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), 트랜스-1-에틸2-프로필-1,2,4,4,5,5-헥사메틸사이클로헥산-1,2-디카복시레이트 (trans-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), 트랜스-1-부틸2-에틸-1,4,5,5-테트라메틸사이클로헥산-1,2-디카복시레이트(trans-1-butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2-dicarboxylate) 등이 있다.
Figure pat00004
…… (Ⅳ)
상기 구조식 (Ⅳ) 화합물의 구체적인 예로는 시스-디메틸-사이클로헥산-1,2-디카복시레이트(cis-dimethyl-cyclohexane-1,2-dicarboxylate), 시스 -1-에틸2-메틸-사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-methylcyclohexane- 1,2-dicarboxylate), 시스-디에틸-사이클로헥산-1,2-디카복시레이트(cis- diethylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필-사이클로헥산-1,2-디카복시레이트 (cis-1-ethyl2-propylcyclohexane-1,2-dicarboxylate), 시스 -2-에틸3-프로필1-메틸사이클로헥산-1,2-디카복시레이트 (cis-2-ethyl1-propyl1- methylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필1,2-디메틸사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-propyl1,2-dimethylcyclohexane-1,2- dicarboxylate), 시스-1-에틸2-프로필-1,2,4,4-테트라메틸사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-propyl-1,2,4,4-tetramethylcyclohexane-1,2-dicarboxylate), 시스-1-에틸2-프로필-1,2,4,4,5,5-헥사메틸사이클로헥산-1,2-디카복시레이트(cis-1-ethyl2-propyl-1,2,4,4,5,5-hexamethylcyclohexane-1,2-dicarboxylate), 시스-1-부틸2-에틸-1,4,5,5-테트라메틸사이클로헥산-1,2-디카복시레이트(cis-1-butyl2-ethyl-1,4,5,5-tetramethylcyclohexane-1,2dicarboxylate) 등이 있다.
Figure pat00005
…… (V)
상기 구조식 (V) 화합물의 구체적인 예로는 트랜스-디메틸사이클로헥-4-센-1,2디카복시레이트(trans-dimethyl cyclohex-4-ene-1,2dicarboxylate), 트랜스-디에틸사이클로헥-4-센-1,2디카복시레이트(trans-diethylcyclohex-4-ene-1,2 dicarboxylate), 트랜스-디프로필사이클로헥-4-센-1,2디카복시레이트(trans-dipropylcyclohex-4-ene-1,2dicarboxylate), 트랜스-디아이소프로필사이클로헥-4-센-1,2디카복시레이트(trans-diisopropylcyclohex-4-ene-1,2dicarboxylate), 트랜스-디부틸사이클로헥-4-센-1,2디카복시레이트(trans-dibutylcyclohex-4-ene-1,2 dicarboxylate), 트랜스-1-에틸-2-메틸사이클로헥-4-센-1,2디카복시레이트(trans-1-ethyl-2-methylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-1-에틸-2-프로필사이클로헥-4-센-1,2디카복시레이트(trans-1-ethyl-2-propylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-1-에틸-2-프로필3-메틸사이클로헥-4-센-1,2디카복시레이트(trans-1-ethyl-2-propyl3-methylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-1-에틸-2-프로필3,6-디메틸사이클로헥-4-센-1,2디카복시레이트 (trans-1-ethyl-2-propyl3,6-dimethylcyclohex-4-ene-1,2-dicarboxylate), 트랜스-2-에틸-1-프로필3,4,6-트리메틸사이클로헥-4-센-1,2디카복시레이트(trans-2-ethyl-1-propyl3,4,6-trimethylcyclohex-4ene-1,2-dicarboxylate), 트랜스-2-에틸-1-프로필4-에틸3,6-디메틸사이클로헥-4-센-1,2디카복시레이트(trans-2-ethyl-1-propyl 4-ethyl 3,6-dimethylcyclohex-4ene-1,2-dicarboxylate) 등이 있다.
Figure pat00006
…… (Ⅵ)
상기 구조식 (Ⅵ) 화합물의 구체적인 예로는 시스-디메틸사이클로헥-4-센-1,2디카복시레이트(cis-dimethyl cyclohex-4-ene-1,2dicarboxylate), 시스-디에틸사이클로헥-4-센-1,2디카복시레이트(cis-diethylcyclohex-4-ene-1,2 dicarboxylate), 시스-디프로필사이클로헥-4-센-1,2디카복시레이트(cis- dipropylcyclohex-4-ene-1,2dicarboxylate), 시스-디아이소프로필사이클로헥-4-센-1,2디카복시레이트(cis-diisopropylcyclohex-4-ene-1,2dicarboxylate), 시스-디부틸사이클로헥-4-센-1,2디카복시레이트(cis-dibutylcyclohex-4-ene-1,2 dicarboxylate), 시스-1-에틸-2-메틸사이클로헥-4-센-1,2디카복시레이트(cis-1- ethyl-2-methylcyclohex-4-ene-1,2-dicarboxylate), 시스-1-에틸-2-프로필사이클로헥-4-센-1,2디카복시레이트(cis-1-ethyl-2-propylcyclohex-4-ene-1,2- dicarboxylate), 시스-1-에틸-2-프로필3-메틸사이클로헥-4-센-1,2디카복시레이트 (cis-1-ethyl-2-propyl3-methylcyclohex-4-ene-1,2-dicarboxylate), 시스-1-에틸-2-프로필3,6-디메틸사이클로헥-4-센-1,2디카복시레이트 (cis-1-ethyl-2- propyl3,6-dimethylcyclohex-4-ene-1,2-dicarboxylate), 시스-2-에틸-1-프로필3,4,6-트리메틸사이클로헥-4-센-1,2디카복시레이트(cis-2-ethyl-1-propyl 3,4,6-trimethylcyclohex-4ene-1,2-dicarboxylate), 시스-2-에틸-1-프로필4-에틸3,6-디메틸사이클로헥-4-센-1,2디카복시레이트(cis-2-ethyl-1-propyl4-ethyl 3,6-dimethylcyclohex-4ene-1,2-dicarboxylate) 등이 있다.
Figure pat00007
…… (Ⅶ)
상기 구조식 (Ⅶ) 화합물의 구체적인 예로는 트랜스-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(trans-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디프로필사이클로헥사-3,5-디엔-1,2-디카복시레이트(trans-dipropyl cyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디부틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dibutylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디메틸1-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dimethyl1-methylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디메틸1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-1-에틸2-프로필1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸4-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethyl4-methylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸4,5-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (trans-diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 트랜스-디에틸4-에틸-3,5,6-트리메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(trans-diethyl4-ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate) 등이 있다.
Figure pat00008
…… (Ⅷ)
상기 구조식 (Ⅷ) 화합물의 구체적인 예로는 시스-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-diethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디프로필사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-dipropylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디부틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dibutylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디메틸1-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dimethyl1-methylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디메틸1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-dimethyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-1-에틸2-프로필1,2-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트 (cis-1-ethyl2-propyl1,2-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸4-메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-diethyl4-methyl cyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸4,5-디메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-diethyl4,5-dimethylcyclohexa-3,5-diene-1,2-dicarboxylate), 시스-디에틸4-에틸-3,5,6-트리메틸사이클로헥사-3,5-디엔-1,2-디카복시레이트(cis-diethyl4-ethyl-3,5,6-trimethylcyclohexa-3,5-diene-1,2-dicarboxylate) 등이 있다.
상기의 제2내부전자공여체는 하기 화학식 (ii) 로 표시되는 디에테르 구조의 화합물을 이용한다.
R13R14C(CH2OR15)(CH2OR16) ……(ii)
여기에서, R13 및 R14는 서로 동일하거나 상이하고, 탄소수 1-18개의 알킬, 탄소수 3-18개의 시클로알킬 또는 탄소수 7-18개의 아릴 라디칼이고; R15 및 R16은 서로 동일하거나 상이하고, 탄소수 1-4개의 알킬 라디칼이거나; 위치 2의 탄소 원자가, 2 또는 3개의 불포화 탄화수소를 함유하고 탄소수 5,6 또는 7로 이루어진 시클릭에 속하는 1,3-디에테르 화합물이다.
상기 제2내부전자공여체인 1,3-디에테르계 화합물의 구체적인 예로는, 2-(2-에틸헥실)-1,3-디메톡시프로판, 2-이소프로필-1,3-디메톡시프로판, 2-부틸-1,3-디메톡시프로판, 2-sec-부틸-1,3-디메톡시프로판, 2-시클로헥실-1,3-디메톡시프로판, 2-페닐-1,3-디메톡시프로판, 2-t-부틸-1,3-디메톡시프로판, 2-쿠밀-1,3-디메톡시프로판, 2-(2-페닐에틸)-1,3-디메톡시프로판, 2-(2-시클로헥실에틸)-1,3-디메톡시프로판, 2-(p-클로로페닐)-1,3-디메톡시프로판, 2-(디페닐메틸)-1,3-디메톡시프로판, 2(1-나프틸)-1,3-디메톡시프로판, 2(p-플루오로페닐)-1,3-디메톡시프로판, 2(1-데카히드로나프틸)-1,3-디메톡시프로판, 2(pt-부틸페닐(1,3-디메톡시프로판, 2,2-디시클로헥실-1,3-디메톡시프로판, 2,2-디에틸-1,3-디메톡시프로판, 2,2-디프로필-1,3-디메톡시프로판, 2,2-디부틸-1,3-디메톡시프로판, 2,2-디에틸-1,3-디에톡시프로판, 2,2-디시클로펜틸-1,3-디메톡시프로판, 2,2-디프로필-1,3-디에톡시프로판, 2,2-디부틸-1,3-디에톡시프로판, 2-메틸-2-에틸-1,3-디메톡시프로판, 2-메틸-2-프로필-1,3-디메톡시프로판, 2-메틸-2-벤질-1,3-디메톡시프로판, 2-메틸-2-페닐-1,3-디메톡시프로판, 2-메틸-2-시클로헥실-1,3-디메톡시프로판, 2-메틸-2-메틸시클로헥실-1,3-디메톡시프로판,2,2-비스(p-클로로페닐)-1,3-디메톡시프로판, 2,2-비스(2-페닐에틸)-1,3-디메톡시프로판, 2,2-비스(2-시클로헥실에틸)-1,3-디메톡시프로판, 2-메틸-2-이소부틸-1,3-디메톡시프로판, 2-메틸-2-(2-에틸헥실)-1,3-디메톡시프로판, 2,2-비스(2-에틸헥실)-1,3-디메톡시프로판, 2,2-비스(p-메틸페닐)-1,3-디메톡시프로판, 2-메틸-2-이소프로필-1,3-디메톡시프로판, 2,2-디이소부틸-1,3-디메톡시프로판, 2,2-디페닐-1,3-디메톡시프로판, 2,2-디벤질-1,3-디메톡시프로판, 2-이소프로필-2-시클로펜틸-1,3-디메톡시프로판, 2,2-비스(시클로헥실메틸)-1,3-디메톡시프로필, 2,2-디이소부틸-1,3-디에톡시프로판, 2,2-디이소부틸-1,3-디부톡시프로판, 2-이소부틸-2-이소프로필-1,3-디메톡시프로판, 2,2-디-sec-부틸-1,3-디메톡시프로판, 2,2-디-t-부틸-1,3-디메톡시프로판, 2,2-디네오펜틸-1,3-디메톡시프로판, 2-이소프로필-2-이소펜틸-1,3-디메톡시프로판, 2-페닐-2-벤질-1,3-디메톡시프로판, 2-시클로헥실-2-시클로헥실메틸-1,3-디메톡시프로판, 9,9-비스(메톡시메틸)플루오렌, 9,9-비스(메톡시메틸)-2,3,6,7-테트라메틸플루오렌, 9,9-비스(메톡시메틸)-2,3,4,5,6,7-헥사플루오로플루오렌, 9,9-비스(메톡시메틸)-2,3-벤조플루오렌, 9,9-비스(메톡시메틸)-2,3,6,7-디벤조플루오렌, 9,9-비스(메톡시메틸)-2,7-디이소프로필플루오렌, 9,9-비스(메톡시메틸)-1,8-디클로로플루오렌, 9,9-비스(메톡시메틸)-2,7-디시클로펜틸플루오렌, 9,9-비스(메톡시메틸)-1,8-디플루오로플루오렌, 9,9-비스(메톡시메틸)-1,2,3,4-테트라히드로플루오렌, 9,9-비스(메톡시메틸)-1,2,3,4,5,6,7,8-옥타히드로플루오렌, 9,9-비스(메톡시메틸)-4-t-부틸플루오렌 등이 있다.
상기 (2) 단계는 상기 (1) 단계의 결과물의 온도를 60~150℃, 바람직하게는 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 60℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 150℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.
상기 제1, 2 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 두 내부전자공여체를 동시에 혹은 다른 온도에서 주입하여도 무관하다. 상기 두 내부전자공여체의 전체 사용량에선 제한이 없으나 사용하는 두 내부전자공여체 전체의 몰수는 사용된 디알콕시마그네슘 1몰에 대하여 제1내부전자공여체는 0.001~2.0몰을, 제2내부전자공여체는 0.001~2.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.
상기 고체촉매의 제조공정 중 (3) 단계는, 온도 60~150℃에서, 더 바람직하게는 80~130℃의 온도에서 (2) 단계의 결과물과 티타늄할라이드에 2회 이상 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기 화학식 (i)의 티타늄할라이드를 들 수 있다.
고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.
상기와 같은 방법으로 제조되는 본 발명의 고체촉매는, 마그네슘, 티타늄, 할로겐, 실란계 화합물 및 내부전자공여체를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 제1 내부전자공여체 0.1~20중량%, 제2 내부전자공유체 0.1 ~20중량%를 포함하여 이루어지는 것이 VOC 함량을 낮추는 구성에 있어서 매우 바람직하다.
본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 방법에 적합하게 사용될 수 있으며, 본 발명에 의해 제조되는 VOC 저감을 위한 고체촉매를 이용한 프로필렌 중합 방법은 상기 고체촉매와 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합하는 것이다.
상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 화학식 (iii)로 표시된다:
AlR3 ‥‥‥ (iii)
여기에서, R은 탄소수 1~6개의 알킬기이다.
상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.
상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다.
상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 화학식 (ⅳ)로 표시되는 알콕시실란 화합물 중 1종 이상을 사용할 수 있다:
R1 mR2 nSi(OR3)(4-m-n) ‥‥‥ (ⅳ)
여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다.
상기 외부전자공여체의 구체적인 예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란, 이소프로필트리메톡시실란, 디이소프로필디메톡시실란, 노르말부틸트리메톡시실란, 디노르말부틸디메톡시실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 터셔리부틸트리메톡시실란, 디터셔리부틸디메톡시실란, 노르말펜틸트리메톡시실란, 디노르말펜틸디메톡시실란, 시클로펜틸트리메톡시실란, 디시클로펜틸디메톡시실란, 시클로펜틸메틸디메톡시실란, 시클로펜틸에틸디메톡시실란, 시클로펜틸프로필디메톡시실란, 시클로헥실트리메톡시실란, 디시클로헥실디메톡시실란, 시클로헥실메틸디메톡시실란, 시클로헥실에틸디메톡시실란, 시클로헥실프로필디메톡시실란, 시클로헵틸트리메톡시실란, 디시클로헵틸디메톡시실란, 시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란, 디페닐디메톡시실란, 페닐메틸디메톡시실란, 페닐에틸디메톡시실란, 페닐프로필디메톡시실란, 노르말프로필트리에톡시실란, 디노르말프로필디에톡시실란, 이소프로필트리에톡시실란, 디이소프로필디에톡시실란, 노르말부틸트리에톡시실란, 디노르말부틸디에톡시실란, 이소부틸트리에톡시실란, 디이소부틸디에톡시실란, 터셔리부틸트리에톡시실란, 디터셔리부틸디에톡시실란, 노르말펜틸트리에톡시실란, 디노르말펜틸디에톡시실란, 시클로펜틸트리에톡시실란, 디시클로펜틸디에톡시실란, 시클로펜틸메틸디에톡시실란, 시클로펜틸에틸디에톡시실란, 시클로펜틸프로필디에톡시실란, 시클로헥실트리에톡시실란, 디시클로헥실디에톡시실란, 시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란, 디시클로헵틸디에톡시실란, 시클로헵틸메틸디에톡시실란, 시클로헵틸에틸디에톡시실란, 시클로헵틸프로필디에톡시실란, 페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며, 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.
상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다.
상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃ 미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.
본 발명은 넓은 분자량 분포를 갖는 시클릭디에스테르 구조의 제1내부전자공여체 및 수소 반응성이 우수한 디에테르 구조의 제2내부전자공여체를 조합한 유기전자공여체를 사용함으로써, 촉매의 수소 반응성을 개선하여 촉매활성을 향상시켰고, 분자량 분포를 조절할 수 있었으며, 상기의 촉매를 사용하여 휘발성 유기화합물의 함량을 크게 낮춘 친환경 폴리프로필렌을 제조할 수 있으며, 용융흐름성을 크게 향상 시킬 수 있다.
이하. 본 발명의 바람직한 실시예를 상세히 설명하기로 하지만, 본 발명의 범위가 하기 실시예들에 한정되는 것은 아니다.
본 발명에 따르면, 디알콕시마그네슘과 금속할라이드를 반응시켜 생성한 담체, 티타늄할라이드 및 시클릭디에스테르 구조의 화합물을 포함하는 제1내부전자공여체와 디에테르 구조의 화합물을 포함하는 제2내부전자공여체의 조합으로 이루어진 유기전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매를 제공하고, 이를 이용하여 폴리프로필렌을 제조하는 것을 특징으로 한다.
[실시예 1]
[고체촉매의 제조]
질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 상기의 톨루엔 및 디에톡시마그네슘 혼합물에 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 상기의 혼합물에 트랜스-디부틸시클로헥산디카복시레이트 6.90g을 주입하였다.
100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상기의 반응 생성물의 상등액을 제거하고, 추가로 톨루엔 200ml를 상기의 생성물에 사용하여 1회 세척하였다.
여기에 톨루엔 120ml와 사염화티타늄 20ml를 상기의 생성물에 투입하여 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 2회 반복 수행하여 숙성하였다.
상기 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매를 제조하였다.
상기의 고체촉매를 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매의 티타늄 함량은 3.6중량%였다.
[프로필렌 중합]
4리터 크기의 고압용 스테인레스제 반응기 내에 상기의 고체촉매 10mg과 트리에틸알루미늄 10mmol, 디시클로펜틸메틸디메톡시실란 1mmol을 투입하였다.
이어서 상기의 혼합물에 수소 1000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기 내부의 프로필렌을 완전히 탈기하였다.
상기 폴리머의 분석결과는 표1에 나타내었다.
[실시예 2]
실시예 1의 고체촉매의 제조에 있어서, 트랜스-디부틸시클로헥산디카복시레이트 대신에 시스-디부틸시클로헥산 디카복시레이트 5.24g 과 아이소펜틸아이소프로필디메톡시프로판 1.61g의 혼합물을 주입하여 촉매를 제조하였다.
상기의 제조된 고체촉매의 티타늄 함량은 3.6중량%였다.
다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하였으며, 상기 폴리프로필렌의 분석 결과는 표1에 나타내었다.
[실시예 3]
실시예 1의 고체촉매의 제조에 있어서, 트랜스-디부틸시클로헥산디카복시레이트 대신에 시스-디부틸시클로헥산 디카복시레이트 4.18g 과 아이소펜틸아이소프로필 디메톡시프로판 3.42g의 혼합물을 사용하여 촉매를 제조하였다.
상기의 제조된 고체촉매의 티타늄 함량은 3.6중량%였다.
다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하였으며, 상기 폴리프로필렌의 분석 결과를 표 1에 나타내었다.
[비교예 1]
실시예 1의 고체촉매의 제조에 있어서, 트랜스-디부틸시클로헥산디카복시레이트 대신에 디이소부틸프탈레이트 7.41g을 주입하여 촉매를 제조하였다.
상기의 제조된 고체촉매의 티타늄 함량은 3.1중량%였다.
다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하였으며, 상기 폴리프로필렌의 분석 결과를 표 1에 나타내었다.
촉매 활성
(Kg-PP/
g cat 2h)
MI
(g/10min)
X.S
(wt%)
Tm
(℃)
PI
실시예1 55 2.7 2.0 162.3 6.8
실시예2 63 5.0 1.5 161.4 4.3
실시예3 72 6.2 1.5 161.6 4
비교예1 78 78 1.6 163.1 4.2
① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)
② 용융흐름성(g/10 min): ASTM1238에 의해, 230℃, 2.16kg 하중에서 측정한 값
③ 입체규칙성(X.S, wt%): 혼합크실렌 중에서 결정화되어 석출된 후, 용해된 성분의 중량%
④ 분자량분포 지수 (PI): G'과 G"이 교차될 때의 탄성률 값을 Gc라고 정의할 때, dyne/cm2의 단위일 경우 PI=106/Gc로 정의
[실시예 4]
실시예 1 의 고체촉매에 대하여 폴리프로필렌 중합 수행 시, 수소 1000ml 대신에 15000ml를 주입하였으며, 그 외의 조건은 동일하다.
중합한 폴리머 분석 및 VOC함량 결과는 표2에 나타내었다.
[실시예 5]
실시예 2 의 고체촉매에 대하여 폴리프로필렌 중합 수행 시, 수소 1000ml 대신에 10000ml를 주입하였으며, 그 외의 조건은 동일하다.
중합한 폴리머 분석 및 VOC함량 결과는 표2에 나타내었다.
[실시예 6]
실시예 3 의 고체촉매에 대하여 폴리프로필렌 중합 수행 시, 수소 1000ml 대신에 7000ml를 주입하였으며, 그 외의 조건은 동일하다.
중합한 폴리머 분석 및 VOC함량 결과는 표2에 나타내었다.
[비교예 2]
비교예 1 의 고체촉매에 대하여 폴리프로필렌 중합 수행 시, 수소 1000ml 대신에 15000ml를 주입하였으며, 그 외의 조건은 동일하다.
중합한 폴리머 분석 및 VOC함량 결과는 표2에 나타내었다.
촉매 활성
(Kg-PP/
g cat 2h)
MI
(g/10min)
T-VOC 함량
(ppm)
실시예4 65 90 250
실시예5 70 100 190
실시예6 80 95 150
비교예2 85 106 315
※ T-VOC함량(ppm): 20ml 바이알에 1g의 PP샘플을 담아 밀봉, 180C에서 1시간동안 가열한 후 바이알 내의 C 개수 12~18에 대한 가스를 포집해 Headspace-GC로 측정.

Claims (4)

  1. VOC 저감을 위한 프로필렌 중합용 고체촉매로서, 디알콕시마그네슘과 금속할라이드를 반응시켜 생성한 담체, 티타늄할라이드 및 시클릭디에스테르 구조의 화합물을 포함하는 제1내부전자공여체와 디에테르 구조의 화합물을 포함하는 제2내부전자공여체의 조합으로 이루어진 유기전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.
  2. 제1항에 있어서, 상기 제1내부전자공여체는, 하기의 구조식 (I) 내지 (Ⅷ)로 표시되는 화합물 중 어느 하나인 시클릭디에스테르 화합물을 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.
    Figure pat00009
    …… (I)
    Figure pat00010
    …… (Ⅱ)
    Figure pat00011
    …… (Ⅲ)
    Figure pat00012
    …… (Ⅳ)
    Figure pat00013
    …… (V)
    Figure pat00014
    …… (Ⅵ)
    Figure pat00015
    …… (Ⅶ)
    Figure pat00016
    …… (Ⅷ)
    여기에서, R1 및 R2는 서로 동일하거나 상이하고, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이고; R3 내지 R12는 서로 동일하거나 상이하고, 수소, 탄소원자 1~20개의 선형, 가지형 또는 고리형 알킬기, 알케닐기, 아릴기, 아릴알킬기 또는 알킬아릴기이다.
  3. 제1항에 있어서, 상기 제2내부전자공여체는, 하기 화학식 (ii)로 표시되는 디에테르 화합물을 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.
    R13R14C(CH2OR15)(CH2OR16)……(ii)
    여기에서, R13 및 R14는 서로 동일하거나 상이하고, 탄소수 1-18개의 알킬, 탄소수 3-18개의 시클로알킬 또는 탄소수 7-18개의 아릴 라디칼이고; R15 및 R16은 서로 동일하거나 상이하고, 탄소수 1-4개의 알킬 라디칼이거나; 위치 2의 탄소 원자가, 2 또는 3개의 불포화 탄화수소를 함유하고 탄소수 5,6 또는 7로 이루어진 시클릭에 속하는 1,3-디에테르 화합물이다.
  4. 제1항 내지 제3항 중 어느 한 항에 기재된 VOC 저감을 위한 프로필렌 중합용 고체촉매의 존재하에 프로필렌을 중합하는 것을 특징으로 하는 폴리프로필렌 제조방법.
KR1020180139165A 2018-11-13 2018-11-13 Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법 KR102122133B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180139165A KR102122133B1 (ko) 2018-11-13 2018-11-13 Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
EP19205678.6A EP3653655A1 (en) 2018-11-13 2019-10-28 Propylene polymerizing solid catalyst for reducing voc and method of producing polypropylene using same
CN201911041935.3A CN111171195B (zh) 2018-11-13 2019-10-30 用于减少voc的丙烯聚合固体催化剂和用其生产聚丙烯的方法
US16/668,917 US11434315B2 (en) 2018-11-13 2019-10-30 Propylene polymerizing solid catalyst for reducing VOC and method of producing polypropylene using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180139165A KR102122133B1 (ko) 2018-11-13 2018-11-13 Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법

Publications (2)

Publication Number Publication Date
KR20200055473A true KR20200055473A (ko) 2020-05-21
KR102122133B1 KR102122133B1 (ko) 2020-06-11

Family

ID=68609862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180139165A KR102122133B1 (ko) 2018-11-13 2018-11-13 Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법

Country Status (4)

Country Link
US (1) US11434315B2 (ko)
EP (1) EP3653655A1 (ko)
KR (1) KR102122133B1 (ko)
CN (1) CN111171195B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102259306B1 (ko) * 2019-10-21 2021-05-31 한화토탈 주식회사 프로필렌 중합용 고체 촉매의 제조 방법
CN116157429A (zh) 2020-07-17 2023-05-23 埃克森美孚化学专利公司 具有低水平挥发性有机化合物的聚合物和制备此类聚合物的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248469A (ja) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2012158639A (ja) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分の製造方法
JP2013249445A (ja) * 2012-06-04 2013-12-12 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2015140417A (ja) * 2014-01-30 2015-08-03 三井化学株式会社 オレフィン重合体の製造方法およびオレフィン重合用触媒
KR20170109576A (ko) * 2015-01-30 2017-09-29 도호 티타늄 가부시키가이샤 올레핀류 중합 촉매의 제조 방법 및 올레핀류 중합체의 제조 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888438B2 (en) * 2005-01-19 2011-02-15 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and process for olefin polymerization
KR101126946B1 (ko) 2009-12-28 2012-03-20 호남석유화학 주식회사 폴리올레핀 중합용 촉매 및 이의 제조방법
KR101235445B1 (ko) 2010-01-13 2013-02-20 삼성토탈 주식회사 프로필렌 중합용 고체촉매의 제조 방법
CN103626893B (zh) * 2012-08-23 2016-03-30 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂制备方法
JP6137463B2 (ja) * 2013-04-01 2017-05-31 東邦チタニウム株式会社 オレフィン類重合用固体触媒成分、オレフィン類重合触媒及びこれを用いたオレフィン類重合体の製造方法
KR101540513B1 (ko) 2013-07-22 2015-07-29 한화토탈 주식회사 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
CN105566533B (zh) * 2014-10-31 2018-08-17 中国石油化工股份有限公司 一种低气味、低voc含量的抗冲聚丙烯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248469A (ja) * 2009-03-24 2010-11-04 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィンの重合方法
JP2012158639A (ja) * 2011-01-31 2012-08-23 Sumitomo Chemical Co Ltd オレフィン重合用固体触媒成分の製造方法
JP2013249445A (ja) * 2012-06-04 2013-12-12 Mitsui Chemicals Inc 固体状チタン触媒成分、オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2015140417A (ja) * 2014-01-30 2015-08-03 三井化学株式会社 オレフィン重合体の製造方法およびオレフィン重合用触媒
KR20170109576A (ko) * 2015-01-30 2017-09-29 도호 티타늄 가부시키가이샤 올레핀류 중합 촉매의 제조 방법 및 올레핀류 중합체의 제조 방법

Also Published As

Publication number Publication date
KR102122133B1 (ko) 2020-06-11
US20200172641A1 (en) 2020-06-04
CN111171195A (zh) 2020-05-19
US11434315B2 (en) 2022-09-06
EP3653655A1 (en) 2020-05-20
CN111171195B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
US11041028B2 (en) Non-phthalate catalyst system and its use in the polymerization of olefins
KR101114073B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR101235445B1 (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR102178630B1 (ko) 프로필렌 중합용 고체 촉매 및 이를 이용한 블록 공중합체의 제조방법
KR101930165B1 (ko) 프로필렌 중합용 고체 촉매 및 이를 이용한 프로필렌 중합체 또는 공중합체의 제조방법
KR20110080616A (ko) 프로필렌 중합용 고체촉매의 제조 방법
KR102122133B1 (ko) Voc 저감을 위한 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
RU2342998C2 (ru) Магнийдихлоридсодержащие аддукты и каталитические компоненты, полученные с ними
CN108517022B (zh) 用于烯烃聚合的固体催化剂组分、及其催化剂和应用
KR101338783B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법
CN108570120B (zh) 含有邻苯二胺类化合物的固体催化剂组分和催化剂及其应用
KR102121126B1 (ko) 고입체규칙성 폴리프로필렌 제조용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
KR102259307B1 (ko) Voc 저감용 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
CN114716591A (zh) 一种用于丙烯聚合的催化剂组分、制备方法及其应用
KR101965982B1 (ko) 프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조방법
EP4375303A1 (en) Method for producing propylene copolymer using catalyst system having improved copolymerization activity
EP4361186A1 (en) Solid catalyst for producing polypropylene and method for preparation of propylene-derived polymer
CN107417819B (zh) 一种用于烯烃聚合的固体催化剂组分、催化剂及其应用
KR102453530B1 (ko) 프로필렌계 블록공중합용 고체촉매 및 블록 공중합체 제조방법
CN108570119B (zh) 一种含有萘二胺类化合物的固体催化剂组分、催化剂及其应用
KR20120060404A (ko) 프로필렌 중합용 고체촉매의 제조방법

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)