KR20200012741A - 실리콘 질화막의 성막 방법 및 성막 장치 - Google Patents
실리콘 질화막의 성막 방법 및 성막 장치 Download PDFInfo
- Publication number
- KR20200012741A KR20200012741A KR1020190086767A KR20190086767A KR20200012741A KR 20200012741 A KR20200012741 A KR 20200012741A KR 1020190086767 A KR1020190086767 A KR 1020190086767A KR 20190086767 A KR20190086767 A KR 20190086767A KR 20200012741 A KR20200012741 A KR 20200012741A
- Authority
- KR
- South Korea
- Prior art keywords
- gas
- silicon
- region
- silicon nitride
- nitride film
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45527—Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
- C23C16/45536—Use of plasma, radiation or electromagnetic fields
- C23C16/45538—Plasma being used continuously during the ALD cycle
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02211—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67748—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68771—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Analytical Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
본 개시는 매립의 최종 단계에서 심을 발생시키지 않는 실리콘 질화막의 성막 방법 및 성막 장치를 제공한다.
기판의 표면에 형성된 오목부 내에, ALD에서 저면 및 측면으로부터 실리콘 질화막을 서서히 매립해 가고, 상기 오목부 내의 중앙부의 간극을 좁히도록 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정과,
상기 측면으로부터 중앙을 향해 퇴적된 상기 박막끼리를 연결시켜 상기 중앙의 간극을 메우기 직전의 단계에 있어서, 상기 오목부 내에 제1 질소 라디칼을 흡착시키는 공정과,
상기 오목부 내에 있어서, 상기 제1 질소 라디칼 상에 실리콘 함유 가스를 물리 흡착시키는 공정과,
상기 오목부 내에 제2 질소 라디칼을 공급하고, 상기 실리콘 함유 가스를 상기 제1 질소 라디칼로부터 탈리시킴과 함께, 탈리한 상기 실리콘 함유 가스와 상기 제2 질소 라디칼을 반응시켜 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정을 갖는다.
기판의 표면에 형성된 오목부 내에, ALD에서 저면 및 측면으로부터 실리콘 질화막을 서서히 매립해 가고, 상기 오목부 내의 중앙부의 간극을 좁히도록 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정과,
상기 측면으로부터 중앙을 향해 퇴적된 상기 박막끼리를 연결시켜 상기 중앙의 간극을 메우기 직전의 단계에 있어서, 상기 오목부 내에 제1 질소 라디칼을 흡착시키는 공정과,
상기 오목부 내에 있어서, 상기 제1 질소 라디칼 상에 실리콘 함유 가스를 물리 흡착시키는 공정과,
상기 오목부 내에 제2 질소 라디칼을 공급하고, 상기 실리콘 함유 가스를 상기 제1 질소 라디칼로부터 탈리시킴과 함께, 탈리한 상기 실리콘 함유 가스와 상기 제2 질소 라디칼을 반응시켜 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정을 갖는다.
Description
본 발명은 실리콘 질화막의 성막 방법 및 성막 장치에 관한 것이다.
종래부터, V자의 개구 단면 형상을 형성하면서, 매립 특성이 양호한 매립 성막을 행하는 것이 가능한 실리콘 질화막의 성막 방법이 알려져 있다(예를 들어, 특허문헌 1 참조).
이러한 특허문헌 1에 기재된 실리콘 질화막의 성막 방법에서는, 표면에 오목부가 형성된 기판에 암모니아 함유 가스를 공급하고, 오목부의 표면을 질화하여 오목부 내에 흡착 사이트를 형성하는 공정과, 기판에 염소 함유 가스를 공급하고, 염소 함유 가스를 상기 오목부의 최상부로부터 소정 깊이까지의 소정 영역에 물리 흡착시켜, 해당 소정 영역에 비흡착 사이트를 형성하는 공정을 갖는다. 그리고, 기판에 실리콘 함유 가스를 공급하고, 오목부 내의 소정 영역 이외에 잔존한 저부를 포함하는 흡착 사이트에 실리콘 함유 가스를 흡착시켜, 암모니아 함유 가스와 실리콘 함유 가스의 반응에 의해 실리콘 질화막을 성막한다.
특허문헌 1에 기재된 실리콘 질화막의 성막 방법에 의하면, V자의 단면 형상을 유지하면서 오목부로의 매립을 행할 수 있어, 보텀 업 성막에 의해 보이드의 발생을 억제할 수 있다.
ALD(Atomic Layer Deposition, 원자층 퇴적법)를 사용하여 트렌치나 비아 등의 오목부에 매립 성막을 행하는 경우, 오목부의 측면으로부터 중앙을 향해 층상으로 성막이 이루어지지만, 마지막에는 대향하는 박막끼리가 연결됨으로써 간극을 메우므로, 보이드의 발생을 억제해도, 심이 남는 경우가 있다.
그래서, 본 개시는 매립의 최종 단계에서 심의 발생을 억제할 수 있는 실리콘 질화막의 성막 방법 및 성막 장치를 제공한다.
상기 목적을 달성하기 위해, 본 개시의 일 형태에 관한 실리콘 질화막의 성막법은, 기판의 표면에 형성된 오목부 내에, ALD로 저면 및 측면으로부터 실리콘 질화막을 서서히 매립해 가고, 상기 오목부 내의 중앙부의 간극을 좁히도록 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정과,
상기 측면으로부터 중앙을 향해 퇴적된 상기 박막끼리를 연결시켜 상기 중앙의 간극을 메우기 직전의 단계에 있어서, 상기 오목부 내에 제1 질소 라디칼을 흡착시키는 공정과,
상기 오목부 내에 있어서, 상기 제1 질소 라디칼 상에 실리콘 함유 가스를 물리 흡착시키는 공정과,
상기 오목부 내에 제2 질소 라디칼을 공급하고, 상기 실리콘 함유 가스를 상기 제1 질소 라디칼로 탈리시킴과 함께, 탈리한 상기 실리콘 함유 가스와 상기 제2 질소 라디칼을 반응시켜 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정을 갖는다.
본 개시에 의하면, 심의 발생을 억제하면서 실리콘 질화막을 오목부 내에 매립할 수 있다.
도 1은 본 개시의 실시 형태에 관한 성막 장치를 도시하는 개략 단면도이다.
도 2는 본 개시의 실시 형태에 관한 성막 장치의 진공 용기 내의 구성을 도시하는 개략 사시도이다.
도 3은 본 개시의 실시 형태에 관한 성막 장치의 진공 용기 내의 구성을 도시하는 개략 평면도이다.
도 4는 본 개시의 실시 형태에 관한 성막 장치의 회전 테이블의 동심원을 따른 진공 용기의 개략 단면도이다.
도 5는 본 개시의 실시 형태에 관한 성막 장치의 다른 개략 단면도이다.
도 6은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생원을 도시하는 개략 단면도이다.
도 7은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생기를 도시하는 다른 개략 단면도이다.
도 8은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생기를 도시하는 개략 상면도이다.
도 9는 본 개시의 실시 형태에 관한 성막 장치의 일례를 도시하는 평면도이다.
도 10은 본 개시의 실시 형태에 관한 성막 장치에 있어서의 제3 처리 영역 P3을 설명하기 위한 일부 단면도이다.
도 11은 샤워 헤드부의 하면의 일례를 도시한 평면도이다.
도 12는 암모니아에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 13은 질소에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 14는 본 개시의 실시 형태에 관한 실리콘 질화막의 성막 방법의 일례의 일련의 공정을 도시한 도면이다.
도 15는 비교예에 관한 성막 방법의 성막 결과를 도시한 도면이다.
도 16은 본 실시 형태에 관한 성막 방법을 실시한 실시예의 성막 결과를 도시한 도면이다.
도 2는 본 개시의 실시 형태에 관한 성막 장치의 진공 용기 내의 구성을 도시하는 개략 사시도이다.
도 3은 본 개시의 실시 형태에 관한 성막 장치의 진공 용기 내의 구성을 도시하는 개략 평면도이다.
도 4는 본 개시의 실시 형태에 관한 성막 장치의 회전 테이블의 동심원을 따른 진공 용기의 개략 단면도이다.
도 5는 본 개시의 실시 형태에 관한 성막 장치의 다른 개략 단면도이다.
도 6은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생원을 도시하는 개략 단면도이다.
도 7은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생기를 도시하는 다른 개략 단면도이다.
도 8은 본 개시의 실시 형태에 관한 성막 장치에 마련되는 플라스마 발생기를 도시하는 개략 상면도이다.
도 9는 본 개시의 실시 형태에 관한 성막 장치의 일례를 도시하는 평면도이다.
도 10은 본 개시의 실시 형태에 관한 성막 장치에 있어서의 제3 처리 영역 P3을 설명하기 위한 일부 단면도이다.
도 11은 샤워 헤드부의 하면의 일례를 도시한 평면도이다.
도 12는 암모니아에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 13은 질소에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 14는 본 개시의 실시 형태에 관한 실리콘 질화막의 성막 방법의 일례의 일련의 공정을 도시한 도면이다.
도 15는 비교예에 관한 성막 방법의 성막 결과를 도시한 도면이다.
도 16은 본 실시 형태에 관한 성막 방법을 실시한 실시예의 성막 결과를 도시한 도면이다.
이하, 도면을 참조하여, 본 발명을 실시하기 위한 형태의 설명을 행한다.
[성막 장치]
처음에, 본 개시의 실시 형태에 관한 성막 장치에 대하여 설명한다. 도 1부터 도 3까지를 참조하면, 본 실시 형태에 관한 성막 장치는, 대략 원형의 평면 형상을 갖는 편평한 진공 용기(1)와, 진공 용기(1) 내에 마련되고, 진공 용기(1)의 중심에 회전 중심을 갖는 회전 테이블(2)을 구비하고 있다. 진공 용기(1)는 내부에 수용한 웨이퍼의 표면 상에 성막 처리를 행하기 위한 처리실이다. 진공 용기(1)는 바닥이 있는 원통 형상을 갖는 용기 본체(12)와, 용기 본체(12)의 상면에 대하여, 예를 들어 O링 등의 시일 부재(13)(도 1)를 통해 기밀하게 착탈 가능하게 배치되는 천장판(11)을 갖고 있다.
회전 테이블(2)은 중심부에서 원통 형상의 코어부(21)에 고정되고, 이 코어부(21)는 연직 방향으로 연신되는 회전축(22)의 상단에 고정되어 있다. 회전축(22)은 진공 용기(1)의 저부(14)를 관통하고, 하단이 회전축(22)(도 1)을 연직축 주위로 회전시키는 구동부(23)에 설치되어 있다. 회전축(22) 및 구동부(23)는 상면이 개구된 통상의 케이스체(20) 내에 수납되어 있다. 케이스체(20)는 그 상면에 마련된 플랜지 부분이 진공 용기(1)의 저부(14)의 하면에 기밀하게 설치되어 있고, 케이스체(20)의 내부 분위기와 외부 분위기의 기밀 상태가 유지되어 있다.
회전 테이블(2)의 표면부에는, 도 2 및 도 3에 도시한 바와 같이 회전 방향(주위 방향)을 따라 복수(도시의 예에서는 5매)의 기판인 반도체 웨이퍼(이하 「웨이퍼」라고 함)(W)를 적재하기 위한 원 형상의 오목부(24)가 마련되어 있다. 또한, 도 3에는 편의상 1개의 오목부(24)에만 웨이퍼(W)를 도시한다. 이 오목부(24)는 웨이퍼(W)의 직경보다도 약간, 예를 들어 4㎜ 큰 내경과, 웨이퍼(W)의 두께에 대략 동등한 깊이를 갖고 있다. 따라서, 웨이퍼(W)가 오목부(24)에 수용되면, 웨이퍼(W)의 표면과 회전 테이블(2)의 표면[웨이퍼(W)가 적재되지 않는 영역]이 동일한 높이로 된다. 오목부(24)의 저면에는, 웨이퍼(W)의 이면을 지지하여 웨이퍼(W)를 승강시키기 위한, 예를 들어 3개의 승강 핀이 관통하는 관통 구멍(모두 도시하지 않음)이 형성되어 있다.
도 2 및 도 3은 진공 용기(1) 내의 구조를 설명하기 위한 도면이고, 설명의 편의상, 천장판(11)의 도시를 생략하고 있다. 도 2 및 도 3에 도시한 바와 같이, 회전 테이블(2)의 상방에는, 예를 들어 반응 가스 노즐(31), 반응 가스 노즐(32), 샤워 헤드(93) 및 분리 가스 노즐(41, 42)이 각각 진공 용기(1)의 주위 방향[회전 테이블(2)의 회전 방향(도 3의 화살표 A)]으로 서로 간격을 두고 배치되어 있다. 도시한 예에서는, 후술하는 반송구(15)로부터 시계 방향[회전 테이블(2)의 회전 방향]으로, 분리 가스 노즐(41), 반응 가스 노즐(31), 분리 가스 노즐(42), 반응 가스 노즐(32) 및 샤워 헤드(93)가 이 순서로 배열되어 있다. 이들 노즐(31, 32, 41, 42)은 각 노즐(31, 32, 41, 42)의 기단부인 가스 도입 포트(31a, 32a, 41a, 42a)(도 3)를 용기 본체(12)의 외주벽에 고정함으로써, 진공 용기(1)의 외주벽으로부터 진공 용기(1) 내로 도입되고, 용기 본체(12)의 반경 방향을 따라 회전 테이블(2)에 대하여 수평으로 연신되도록 설치되어 있다. 또한, 샤워 헤드(93)는, 도시하지 않은 천장판(11)의 상면에 가스 도입구(도시하지 않음)가 마련된다. 또한, 샤워 헤드(93)의 구성의 상세에 대해서는 후술한다.
본 실시 형태에 있어서는, 도 3에 도시된 바와 같이, 반응 가스 노즐(31)은 배관(110) 및 유량 제어기(120) 등을 통해, 원료 가스의 공급원(130)에 접속되어 있다. 반응 가스 노즐(32)은 배관(111, 111a, 111b) 및 유량 제어기(121a, 121b) 등을 통해, 암모니아 가스의 공급원(131a) 및 질소 가스의 공급원(131b)에 접속되어 있다. 질화 가스로서, 암모니아 가스를 사용할지 또는 질소 가스를 사용할지는, 밸브(140 내지 143)에 의해 전환 가능하게 구성되어 있다. 또한, 샤워 헤드(93)는 배관(112) 및 유량 제어기(122) 등을 통해, 염소 가스(Cl2)의 공급원(132)에 접속되어 있다. 분리 가스 노즐(41, 42)은 모두 도시하지 않은 배관 및 유량 제어 밸브 등을 통해, 분리 가스의 공급원(도시하지 않음)에 접속되어 있다. 분리 가스로서는, 헬륨(He)이나 아르곤(Ar) 등의 희가스나 질소(N2) 가스 등의 불활성 가스를 사용할 수 있다. 본 실시 형태에서는, Ar 가스를 사용하는 예를 들어 설명한다.
반응 가스 노즐(31, 32)에는 회전 테이블(2)을 향해 개구되는 복수의 가스 토출 구멍(35)이, 반응 가스 노즐(31, 32)의 길이 방향을 따라, 예를 들어 10㎜의 간격으로 배열되어 있다. 반응 가스 노즐(31)의 하방 영역은, 원료 가스를 웨이퍼(W)에 흡착시키기 위한 제1 처리 영역 P1로 된다. 반응 가스 노즐(32)의 하방 영역은, 제1 처리 영역 P1에 있어서 웨이퍼(W)에 흡착한 원료 가스를 질화하는 질화 가스(암모니아 가스 또는 질소 가스)를 공급하고, 질화물의 분자층을 생성하는 제2 처리 영역 P2로 된다. 또한, 질화물의 분자층이, 성막되는 질화막을 구성한다. 샤워 헤드(93)의 하방 영역은, 제2 처리 영역 P2에 있어서 생성한 반응 생성물(질화막)에 플라스마에 의해 활성화한 염소 가스, 즉 염소 라디칼을 공급하고, 흡착 저해기를 형성하는 제3 처리 영역 P3으로 된다. 여기서, 제1 처리 영역 P1은 원료 가스를 공급하고, 원료 가스를 웨이퍼에 흡착시키는 영역이므로, 원료 가스 공급 영역 P1 또는 원료 가스 흡착 영역 P1이라고 칭해도 되는 것으로 한다. 마찬가지로, 제2 처리 영역 P2는 원료 가스와 반응하여 질화물을 생성 가능한 질화 가스를 공급하고, 원료 가스를 질화하는 영역이므로, 질화 가스 공급 영역 P2 또는 질화 영역 P2라고 칭해도 되는 것으로 한다. 또한, 제3 처리 영역 P3은 염소 가스를 공급하고, 염소 가스를 웨이퍼에 흡착시키는 영역이므로, 염소 가스 공급 영역 P3 또는 염소 가스 흡착 영역 P3이라고 칭해도 되는 것으로 한다.
또한, 제3 처리 영역 P3의 상방에는, 필요에 따라, 리모트 플라스마 발생기(90)가 마련된다. 또한, 제2 처리 영역 P2의 상방에도, 필요에 따라, 플라스마 발생기(80)를 마련한다. 도 3에 있어서, 플라스마 발생기(80, 90)는 파선으로 간략화하여 나타내고 있다. 플라스마 발생기(80, 90)의 상세에 대해서는 후술한다.
또한, 원료 가스로서는, 실리콘을 함유하는 가스, 바람직하게는 실리콘 및 염소를 함유하는 가스가 선택된다. 예를 들어, 원료 가스로서는, 디클로로실란(DCS, SiH2Cl2) 등의 실리콘 및 염소를 함유하는 가스가 선택된다.
질화 가스로서는, V자의 단면 형상을 유지하면서 오목부로 실리콘 질화막을 매립할 때에는, 암모니아(NH3) 함유 가스가 선택된다. 그 후, 오목부 내에 매립된 실리콘 질화막의 중앙부의 간극을 심리스에 채우는 경우에는, 질소(N2) 함유 가스가 선택된다. 또한, 질화 가스는 암모니아 또는 질소 외에, Ar 등의 캐리어 가스를 포함해도 된다.
샤워 헤드(93)로부터 공급되는 염소 가스는, 제1 반응 가스 노즐(31)로부터 공급되는 원료 가스가 웨이퍼에 흡착하는 것을 저해시키는 흡착 저해기로 이루어지는 흡착 저해 영역을 웨이퍼의 표면 상에 형성하는 역할을 갖는다. 예를 들어, 웨이퍼의 표면에 비아, 트렌치 등의 오목부 패턴이 형성되어 있는 경우에는, 웨이퍼의 표면 및 오목부 패턴의 상부에 흡착 저해기로 이루어지는 흡착 저해 영역을 형성함으로써, 오목부 패턴의 상부에서는 막 두께가 두꺼워지지 않고, 저면측의 막 두께가 두꺼워져, 보텀 업성이 높은 성막이 가능해진다. 원료 가스가 질화됨으로써, NH2 구조의 아미노기로 종단하고, 원료 가스에 대하여 흡착 사이트를 형성하고 있지만, 활성화한 염소가 공급되면, NH2 구조의 H기가 Cl기로 치환되어 버린다. 상술한 바와 같이, 원료 가스가 염소를 함유하는 가스이고, 염소끼리는 흡착하지 않기 때문에, 염소로 종단화된 개소에는 원료 가스가 흡착되지 않는다. 이와 같이, Cl기로 종단된 개소는 흡착 저해기로서 기능하여, 원료 가스의 흡착을 저해한다. 또한, 활성화한 염소 가스는, 웨이퍼(W)의 표면 및 오목부 패턴의 상부에는 용이하게 도달하므로 많이 흡착하지만, 오목부 패턴의 하부 및 저부에는 도달하기 어려워지므로, 오목부 패턴의 저부에 접근함에 따라, Cl기의 밀도는 작아진다. 따라서, 오목부 패턴의 상부 및 웨이퍼의 표면에는 고밀도로 흡착 저해기가 형성되지만, 오목부 패턴의 하부(저부)에는 흡착 저해기가 저밀도로 형성된다. 이로써, 원료 가스가 웨이퍼(W)의 표면 및 상부에 의해 하부에 많이 흡착시킬 수 있고, 오목부 패턴의 저부로부터 성막을 개시하는 보텀 업 성막이 가능해진다. 또한, 이 점의 상세에 대해서는 후술한다. 또한, 제3 반응 가스 노즐로부터 공급되는 가스는, 염소 가스 외에, Ar 등의 캐리어 가스를 포함해도 된다.
도 2 및 도 3을 참조하면, 진공 용기(1) 내에는 2개의 볼록형부(4)가 마련되어 있다. 볼록형부(4)는 분리 가스 노즐(41, 42)과 함께 분리 영역 D를 구성하기 위해, 후술하는 바와 같이, 회전 테이블(2)을 향해 돌출되도록 천장판(11)의 이면에 설치되어 있다. 또한, 볼록형부(4)는 정상부가 원호상으로 절단된 부채형의 평면 형상을 갖고, 본 실시 형태에 있어서는, 내원호가 돌출부(5)(후술)에 연결되고, 외원호가, 진공 용기(1)의 용기 본체(12)의 내주면을 따르도록 배치되어 있다.
도 4는 반응 가스 노즐(31)로부터 반응 가스 노즐(32)까지 회전 테이블(2)의 동심원을 따른 진공 용기(1)의 단면을 도시하고 있다. 도시한 바와 같이, 천장판(11)의 이면에 볼록형부(4)가 설치되어 있기 때문에, 진공 용기(1) 내에는 볼록형부(4)의 하면인 평탄한 낮은 천장면(44)(제1 천장면)과, 이 천장면(44)의 주위 방향 양측에 위치하는, 천장면(44)보다도 높은 천장면(45)(제2 천장면)이 존재한다. 천장면(44)은 정상부가 원호상으로 절단된 부채형의 평면 형상을 갖고 있다. 또한, 도시한 바와 같이, 볼록형부(4)에는 주위 방향 중앙에 있어서, 반경 방향으로 연신되도록 형성된 홈부(43)가 형성되고, 분리 가스 노즐(42)이 홈부(43) 내에 수용되어 있다. 또 하나의 볼록형부(4)에도 마찬가지로 홈부(43)가 형성되고, 여기에 분리 가스 노즐(41)이 수용되어 있다. 또한, 높은 천장면(45)의 하방의 공간에 반응 가스 노즐(31, 32)이 각각 마련되어 있다. 이들 반응 가스 노즐(31, 32)은, 천장면(45)으로부터 이격하여 웨이퍼(W)의 근방에 마련되어 있다. 또한, 도 4에 도시한 바와 같이, 높은 천장면(45)의 하방의 우측의 공간(481)에 반응 가스 노즐(31)이 마련되고, 높은 천장면(45)의 하방의 좌측의 공간(482)에 반응 가스 노즐(32)이 마련된다.
또한, 볼록형부(4)의 홈부(43)에 수용되는 분리 가스 노즐(41, 42)에는 회전 테이블(2)을 향해 개구되는 복수의 가스 토출 구멍(42h)(도 4 참조)이, 분리 가스 노즐(41, 42)의 길이 방향을 따르고, 예를 들어 10㎜의 간격으로 배열되어 있다.
천장면(44)은 좁은 공간인 분리 공간 H를 회전 테이블(2)에 대하여 형성하고 있다. 분리 가스 노즐(42)의 토출 구멍(42h)으로부터 Ar 가스가 공급되면, 이 Ar 가스는 분리 공간 H를 통해 공간(481) 및 공간(482)을 향해 흐른다. 이때, 분리 공간 H의 용적은 공간(481 및 482)의 용적보다도 작기 때문에, Ar 가스에 의해 분리 공간 H의 압력을 공간(481 및 482)의 압력에 비해 높게 할 수 있다. 즉, 공간(481 및 482) 사이에 압력이 높은 분리 공간 H가 형성된다. 또한, 분리 공간 H로부터 공간(481 및 482)으로 흘러 나오는 Ar 가스가, 제1 영역 P1로부터의 제1 반응 가스와, 제2 영역 P2로부터의 제2 반응 가스에 대한 카운터 플로우로서 작용한다. 따라서, 제1 영역 P1로부터의 제1 반응 가스와, 제2 영역 P2로부터의 제2 반응 가스가 분리 공간 H에 의해 분리된다. 따라서, 진공 용기(1) 내에 있어서 제1 반응 가스와 제2 반응 가스가 혼합하고, 반응하는 것이 억제된다.
또한, 회전 테이블(2)의 상면에 대한 천장면(44)의 높이 h1은, 성막 시의 진공 용기(1) 내의 압력, 회전 테이블(2)의 회전 속도, 공급하는 분리 가스(Ar 가스)의 공급량 등을 고려하여, 분리 공간 H의 압력을 공간(481 및 482)의 압력에 비해 높게 하는 데 적합한 높이로 설정하는 것이 바람직하다.
한편, 천장판(11)의 하면에는, 회전 테이블(2)을 고정하는 코어부(21)의 외주를 둘러싸는 돌출부(5)(도 2 및 도 3)가 마련되어 있다. 이 돌출부(5)는 본 실시 형태에 있어서는, 볼록형부(4)에 있어서의 회전 중심측의 부위와 연속되어 있고, 그 하면이 천장면(44)과 동일한 높이로 형성되어 있다.
앞서 참조한 도 1은 도 3의 I-I'선을 따른 단면도이고, 천장면(45)이 마련되어 있는 영역을 도시하고 있다. 한편, 도 5는 천장면(44)이 마련되어 있는 영역을 도시하는 단면도이다. 도 5에 도시한 바와 같이, 부채형의 볼록형부(4)의 주연부[진공 용기(1)의 외연측의 부위]에는 회전 테이블(2)의 외측 단부면에 대향하도록 L자형으로 굴곡되는 굴곡부(46)가 형성되어 있다. 이 굴곡부(46)는 볼록형부(4)와 마찬가지로, 분리 영역 D의 양측으로부터 반응 가스가 침입하는 것을 억제하고, 양 반응 가스의 혼합을 억제한다. 부채형의 볼록형부(4)는 천장판(11)에 마련되고, 천장판(11)이 용기 본체(12)로부터 분리되도록 되어 있는 점에서, 굴곡부(46)의 외주면과 용기 본체(12) 사이에는 약간 간극이 있다. 굴곡부(46)의 내주면과 회전 테이블(2)의 외측 단부면의 간극, 및 굴곡부(46)의 외주면과 용기 본체(12)의 간극은, 예를 들어 회전 테이블(2)의 상면에 대한 천장면(44)의 높이와 동일한 치수로 설정되어 있다.
용기 본체(12)의 내주벽은, 분리 영역 D에 있어서는 도 4에 도시한 바와 같이 굴곡부(46)의 외주면과 접근하여 수직면으로 형성되어 있지만, 분리 영역 D 이외의 부위에 있어서는, 도 1에 도시한 바와 같이, 예를 들어 회전 테이블(2)의 외측 단부면과 대향하는 부위로부터 저부(14)에 걸쳐서 외측으로 오목하게 되어 있다. 이하, 설명의 편의상, 대략 직사각형의 단면 형상을 갖는 오목한 부분을 배기 영역이라고 기재한다. 구체적으로는, 제1 처리 영역 P1에 연통하는 배기 영역을 제1 배기 영역 E1이라고 기재하고, 제2 및 제3 처리 영역 P2, P3에 연통하는 영역을 제2 배기 영역 E2라고 기재한다. 이들 제1 배기 영역 E1 및 제2 배기 영역 E2의 저부에는, 도 1 내지 도 3에 도시한 바와 같이, 각각, 제1 배기구(610) 및 제2 배기구(620)가 형성되어 있다. 제1 배기구(610) 및 제2 배기구(620)는, 도 1에 도시한 바와 같이 각각 배기관(630)을 통해 진공 배기 수단인, 예를 들어 진공 펌프(640)에 접속되어 있다. 또한, 진공 펌프(640)와 배기관(630) 사이에, 압력 제어기(650)가 마련된다.
회전 테이블(2)과 진공 용기(1)의 저부(14) 사이의 공간에는, 도 1 및 도 5에 도시한 바와 같이 가열 수단인 히터 유닛(7)이 마련되고, 회전 테이블(2)을 통해 회전 테이블(2) 상의 웨이퍼(W)가, 프로세스 레시피로 결정된 온도(예를 들어, 400℃)로 가열된다. 회전 테이블(2)의 주연 부근의 하방측에는, 회전 테이블(2)의 상방 공간으로부터 배기 영역 E1, E2에 이르기까지의 분위기와 히터 유닛(7)이 놓여져 있는 분위기를 구획하여 회전 테이블(2)의 하방 영역으로의 가스의 침입을 억제하기 위해, 링상의 커버 부재(71)가 마련되어 있다(도 5). 이 커버 부재(71)는 회전 테이블(2)의 외연부 및 외연부보다도 외주측을 하방측으로부터 면하도록 마련된 내측 부재(71a)와, 이 내측 부재(71a)와 진공 용기(1)의 내벽면 사이에 마련된 외측 부재(71b)를 구비하고 있다. 외측 부재(71b)는 분리 영역 D에 있어서 볼록형부(4)의 외연부에 형성된 굴곡부(46)의 하방에서, 굴곡부(46)와 근접하여 마련되고, 내측 부재(71a)는 회전 테이블(2)의 외연부 하방(및 외연부보다도 약간 외측의 부분의 하방)에 있어서, 히터 유닛(7)을 전체 주위에 걸쳐서 둘러싸고 있다.
히터 유닛(7)이 배치되어 있는 공간보다도 회전 중심 근처의 부위에 있어서의 저부(14)는 회전 테이블(2)의 하면의 중심부 부근에 있어서의 코어부(21)에 접근하도록 상방측으로 돌출되어 돌출부(12a)를 이루고 있다. 이 돌출부(12a)와 코어부(21) 사이는 좁은 공간으로 되어 있고, 또한 저부(14)를 관통하는 회전축(22)의 관통 구멍의 내주면과 회전축(22)의 간극이 좁게 되어 있고, 이들 좁은 공간은 케이스체(20)에 연통하고 있다. 그리고 케이스체(20)에는 퍼지 가스인 Ar 가스를 좁은 공간 내에 공급하여 퍼지하기 위한 퍼지 가스 공급관(72)이 마련되어 있다. 또한 진공 용기(1)의 저부(14)에는 히터 유닛(7)의 하방에 있어서 주위 방향으로 소정의 각도 간격으로, 히터 유닛(7)의 배치 공간을 퍼지하기 위한 복수의 퍼지 가스 공급관(73)이 마련되어 있다[도 5에는 하나의 퍼지 가스 공급관(73)을 도시함]. 또한, 히터 유닛(7)과 회전 테이블(2) 사이에는, 히터 유닛(7)이 마련된 영역으로의 가스의 침입을 억제하기 위해, 외측 부재(71b)의 내주벽[내측 부재(71a)의 상면]으로부터 돌출부(12a)의 상단부와의 사이를 주위 방향에 걸쳐서 덮는 덮개 부재(7a)가 마련되어 있다. 덮개 부재(7a)는, 예를 들어 석영으로 제작할 수 있다.
또한, 진공 용기(1)의 천장판(11)의 중심부에는 분리 가스 공급관(51)이 접속되어 있고, 천장판(11)과 코어부(21) 사이의 공간(52)에 분리 가스인 Ar 가스를 공급하도록 구성되어 있다. 이 공간(52)에 공급된 분리 가스는 돌출부(5)와 회전 테이블(2)의 좁은 간극(50)을 통해 회전 테이블(2)의 웨이퍼 적재 영역측의 표면을 따라 주연을 향해 토출된다. 공간(50)은 분리 가스에 의해 공간(481) 및 공간(482)보다도 높은 압력으로 유지될 수 있다. 따라서, 공간(50)에 의해, 제1 처리 영역 P1에 공급되는 원료 가스와 제2 처리 영역 P2에 공급되는 질화 가스가, 중심 영역 C를 통해 혼합되는 것이 억제된다. 즉, 공간(50)(또는 중심 영역 C)은 분리 공간 H(또는 분리 영역 D)와 마찬가지로 기능할 수 있다.
또한, 진공 용기(1)의 측벽에는, 도 2, 도 3에 도시한 바와 같이, 외부의 반송 암(10)과 회전 테이블(2) 사이에서 기판인 웨이퍼(W)의 전달을 행하기 위한 반송구(15)가 형성되어 있다. 이 반송구(15)는 도시하지 않은 게이트 밸브에 의해 개폐된다. 또한 회전 테이블(2)에 있어서의 웨이퍼 적재 영역인 오목부(24)는 이 반송구(15)에 면하는 위치에서 반송 암(10)과의 사이에서 웨이퍼(W)의 전달이 행해지는 점에서, 회전 테이블(2)의 하방측에 있어서 전달 위치에 대응하는 부위에, 오목부(24)를 관통하여 웨이퍼(W)를 이면으로부터 들어 올리기 위한 전달용의 승강 핀 및 그 승강 기구(모두 도시하지 않음)가 마련되어 있다.
이어서, 도 6부터 도 8까지를 참조하면서, 플라스마 발생기(80)에 대하여 설명한다. 도 6은 회전 테이블(2)의 반경 방향을 따른 플라스마 발생기(80)의 개략 단면도이고, 도 7은 회전 테이블(2)의 반경 방향과 직교하는 방향을 따른 플라스마 발생기(80)의 개략 단면도이고, 도 8은 플라스마 발생기(80)의 개략을 도시하는 상면도이다. 도시의 편의상, 이들 도면에 있어서 일부의 부재를 간략화하고 있다.
도 6을 참조하면, 플라스마 발생기(80)는, 고주파 투과성의 재료로 제작되고, 상면으로부터 오목한 오목부를 갖고, 천장판(11)에 형성된 개구부(11a)에 감입되는 프레임 부재(81)와, 프레임 부재(81)의 오목부 내에 수용되고, 상부가 개구된 대략 상자상의 형상을 갖는 패러데이 차폐판(82)과, 패러데이 차폐판(82)의 저면 상에 배치되는 절연판(83)과, 절연판(83)의 상방에 지지되어, 대략 팔각형의 상면 형상을 갖는 코일상의 안테나(85)를 구비한다.
천장판(11)의 개구부(11a)는 복수의 단차부를 갖고 있고, 그 중 하나의 단차부에는 전체 주위에 걸쳐서 홈부가 형성되고, 이 홈부에, 예를 들어 O-링 등의 시일 부재(81a)가 감입되어 있다. 한편, 프레임 부재(81)는 개구부(11a)의 단차부에 대응하는 복수의 단차부를 갖고 있고, 프레임 부재(81)를 개구부(11a)에 감입하면, 복수의 단차부 중 하나의 단차부의 이면이, 개구부(11a)의 홈부에 감입된 시일 부재(81a)와 접하고, 이로써, 천장판(11)과 프레임 부재(81) 사이의 기밀성이 유지된다. 또한, 도 6에 도시한 바와 같이, 천장판(11)의 개구부(11a)에 감입되는 프레임 부재(81)의 외주를 따른 압박 부재(81c)가 마련되고, 이로써, 프레임 부재(81)가 천장판(11)에 대하여 하방으로 압박된다. 이 때문에, 천장판(11)과 프레임 부재(81) 사이의 기밀성이 더 확실하게 유지된다.
프레임 부재(81)의 하면은 진공 용기(1) 내의 회전 테이블(2)에 대향하고 있고, 그 하면의 외주에는 전체 주위에 걸쳐서 하방으로[회전 테이블(2)을 향해] 돌기하는 돌기부(81b)가 마련되어 있다. 돌기부(81b)의 하면은 회전 테이블(2)의 표면에 근접하고 있고, 돌기부(81b)와, 회전 테이블(2)의 표면과, 프레임 부재(81)의 하면에 의해 회전 테이블(2)의 상방에 공간(이하, 제3 처리 영역 P3)이 구획 형성되어 있다. 또한, 돌기부(81b)의 하면과 회전 테이블(2)의 표면의 간격은, 분리 공간 H(도 4)에 있어서의 천장면(11)의 회전 테이블(2)의 상면에 대한 높이 h1과 거의 동일해도 된다.
또한, 이 제2 처리 영역 P2에는 돌기부(81b)를 관통한 반응 가스 노즐(32)이 연장되어 있다. 반응 가스 노즐(32)에는, 본 실시 형태에 있어서는, 도 6에 도시한 바와 같이 암모니아 가스가 충전되는 암모니아 가스 공급원(131a)이, 유량 제어기(121a)를 통해 배관(111a 및 111)에 의해 접속되어 있다. 마찬가지로, 반응 가스 노즐(32)에는 질소 가스가 충전되는 질소 가스 공급원(131b)이, 유량 제어기(121b)를 통해 배관(111b 및 111)에 의해 병렬로 접속되어 있다. 암모니아 가스는 트렌치 등의 오목부 패턴의 대부분을 매립하기 위해 사용된다. 한편, 질소 가스는 매립의 최종 단계, 또는 매립의 도중에는 있지만, 각 깊이 레벨에서의 최종 단계에 있어서, 오목부 패턴의 중심 부근에 형성된 간극을, 심을 억제하면서 막기 위해 사용된다. 따라서, 암모니아 가스의 공급과 질소 가스의 공급은 밸브(140 내지 144)의 개폐에 의해 전환된다. 구체적으로는, 암모니아 가스를 반응 가스 노즐(32)에 공급하는 경우에는 밸브(140, 141)가 개방으로 되고, 밸브(142, 143)가 폐쇄로 된다. 반대로, 질소 가스를 반응 가스 노즐(32)에 공급하는 경우에는, 밸브(142, 143)가 개방으로 되고, 밸브(140, 141)가 폐쇄로 된다. 그리고, 유량 제어기(121a)에 의해 유량 제어된 암모니아 가스 또는 유량 제어기(121b)에 의해 유량 제어된 질소 가스가, 플라스마 발생기(80)에서 플라스마화되고, 소정의 유량으로 제2 처리 영역 P2에 공급된다.
또한, 반응 가스 노즐(32)에는 그 길이 방향을 따라 소정의 간격(예를 들어, 10㎜)으로 복수의 토출 구멍(35)이 형성되어 있고, 토출 구멍(35)으로부터 상술한 염소 가스가 토출된다. 토출 구멍(35)은, 도 7에 도시한 바와 같이 회전 테이블(2)에 대하여 수직인 방향으로부터 회전 테이블(2)의 회전 방향의 상류측을 향해 기울어져 있다. 이 때문에, 반응 가스 노즐(32)로부터 공급되는 가스는, 회전 테이블(2)의 회전 방향과 역의 방향으로, 구체적으로는, 돌기부(81b)의 하면과 회전 테이블(2)의 표면 사이의 간극을 향해 토출된다. 이로써, 회전 테이블(2)의 회전 방향을 따라 플라스마 발생기(80)보다도 상류측에 위치하는 천장면(45)의 하방의 공간으로부터 반응 가스나 분리 가스가, 제2 처리 영역 P2 내로 유입되는 것이 억제된다. 또한, 상술한 바와 같이, 프레임 부재(81)의 하면의 외주를 따라 형성되는 돌기부(81b)가 회전 테이블(2)의 표면에 근접하고 있기 때문에, 반응 가스 노즐(32)로부터의 질화 가스에 의해 제2 처리 영역 P2 내의 압력을 용이하게 높게 유지할 수 있다. 이것에 의해서도, 반응 가스나 분리 가스가 제2 처리 영역 P2 내로 유입되는 것이 억제된다.
패러데이 차폐판(82)은 금속 등의 도전성 재료로 제작되고, 도시는 생략하지만 접지되어 있다. 도 8에 명확하게 도시된 바와 같이, 패러데이 차폐판(82)의 저부에는 복수의 슬릿(82s)이 형성되어 있다. 각 슬릿(82s)은 대략 팔각형의 평면 형상을 갖는 안테나(85)가 대응하는 변과 거의 직교하도록 연장되어 있다.
또한, 패러데이 차폐판(82)은, 도 7 및 도 8에 도시한 바와 같이, 상단의 2개소에 있어서 외측으로 구부러지는 지지부(82a)를 갖고 있다. 지지부(82a)가 프레임 부재(81)의 상면에 지지됨으로써, 프레임 부재(81) 내의 소정의 위치에 패러데이 차폐판(82)이 지지된다.
절연판(83)은, 예를 들어 석영 유리에 의해 제작되고, 패러데이 차폐판(82)의 저면보다도 약간 작은 크기를 갖고, 패러데이 차폐판(82)의 저면에 적재된다. 절연판(83)은 패러데이 차폐판(82)과 안테나(85)를 절연하는 한편, 안테나(85)로부터 방사되는 고주파를 하방으로 투과시킨다.
안테나(85)는, 평면 형상이 대략 팔각형으로 되도록 구리제의 중공관(파이프)을, 예를 들어 3중으로 권회함으로써 형성된다. 파이프 내에 냉각수를 순환시킬 수 있고, 이로써, 안테나(85)로 공급되는 고주파에 의해 안테나(85)가 고온으로 가열되는 것이 방지된다. 또한, 안테나(85)에는 세워 설치부(85a)가 마련되어 있고, 세워 설치부(85a)에 지지부(85b)가 설치되어 있다. 지지부(85b)에 의해, 안테나(85)가 패러데이 차폐판(82) 내의 소정의 위치에 유지된다. 또한, 지지부(85b)에는 매칭 박스(86)를 통해 고주파 전원(87)이 접속되어 있다. 고주파 전원(87)은, 예를 들어 13.56㎒의 주파수를 갖는 고주파를 발생할 수 있다.
이와 같은 구성을 갖는 플라스마 발생기(80)에 의하면, 매칭 박스(86)를 통해 고주파 전원(87)으로부터 안테나(85)로 고주파 전력을 공급하면, 안테나(85)에 의해 전자계가 발생한다. 이 전자계 중 전계 성분은, 패러데이 차폐판(82)에 의해 차폐되기 때문에, 하방으로 전파할 수는 없다. 한편, 자계 성분은 패러데이 차폐판(82)의 복수의 슬릿(82s)을 통해 제3 처리 영역 P3 내로 전파한다. 이 자계 성분에 의해, 반응 가스 노즐(32)로부터 제2 처리 영역 P2로 공급되는 질화 가스가 활성화된다.
이어서, 리모트 플라스마 발생기(90)에 대하여 설명한다.
도 9는 플라스마 발생기(80, 90)를 탑재한 본 실시 형태에 관한 성막 장치의 일례를 도시한 도면이다. 도 9에 도시된 바와 같이, 본 실시 형태에 관한 성막 장치는, 제2 처리 영역 P2에 ICP 플라스마(Inductively-Coupled Plasma, 유도 결합형 플라스마) 발생기(80)가 마련되어 있고, 제3 처리 영역 P3에 리모트 플라스마 발생기(90)가 마련되어 있다.
염소 가스를 강하게 플라스마화하면, 박막을 에칭해 버리는 경우가 있다. 도 6 내지 도 8에서 설명한 안테나(85)를 사용한 ICP 플라스마 발생기(80)는 높은 플라스마 강도로 플라스마를 발생시키는 데 유효하지만, 염소의 활성화는, 플라스마보다도 활성도가 약한 라디칼을 발생시킬 정도의 플라스마 발생기를 사용하도록 해도 된다. 리모트 플라스마 발생기(90)는 ICP 플라스마 발생기(80)보다도 약한 플라스마를 발생시키는 데 적합하다. 따라서, 본 실시 형태에 관한 성막 장치에서는, 제3 처리 영역 P3에 있어서의 염소 가스의 활성화를 리모트 플라스마 발생기(90)에서 행하는 예에 대하여 설명한다.
도 10은 리모트 플라스마 발생기(90)를 포함하는 본 실시 형태에 관한 성막 장치의 단면도이다.
도 10에 도시된 바와 같이, 리모트 플라스마 발생기(90)는 제3 처리 영역 P3에 있어서, 회전 테이블(2)에 대향하여 마련된다. 리모트 플라스마 발생기(90)는, 플라스마 생성부(91)와, 가스 공급관(92)과, 샤워 헤드(93)와, 배관(94)을 구비하고 있다. 또한, 샤워 헤드(93)는 염소 가스 토출부의 일례이고, 예를 들어 샤워 헤드(93) 대신에, 가스 노즐이 사용되어도 된다. 이 경우에는, 플라스마 생성부(91)를 가스 노즐에 접속하도록 구성하면 된다.
플라스마 생성부(91)는 가스 공급관(92)으로부터 공급된 염소 가스를 플라스마원에 의해 활성화한다. 플라스마원으로서는, 염소 가스를 활성화하는 것이 가능하면, 특별히 한정되는 것은 아니다. 플라스마원으로서는, 예를 들어 유도 결합형(ICP) 플라스마, 용량 결합형 플라스마(CCP: Capacitively Coupled Plasma), 표면파 플라스마(SWP: Surface Wave Plasma)를 사용할 수 있다.
가스 공급관(92)은 그 일단이 플라스마 생성부(91)와 접속되어 있고, 플라스마 생성부(91)에 염소 가스를 공급한다. 가스 공급관(92)의 타단은, 예를 들어 개폐 밸브 및 유량 조정기를 통해 염소 가스가 저류된 염소 가스 공급원(132)과 접속되어 있다.
샤워 헤드(93)는 배관(94)을 통해 플라스마 생성부(91)와 접속되어 있고, 플라스마 생성부(91)에서 활성화된 불소 함유 가스를 진공 용기(1) 내에 공급하는 부분이다. 샤워 헤드(93)는 부채형의 평면 형상을 갖고, 부채형의 평면 형상의 외연을 따르도록 형성된 압박 부재(95)에 의해 하방측을 향해 주위 방향에 걸쳐서 압박된다. 또한, 압박 부재(95)가 도시하지 않은 볼트 등에 의해 천장판(11)에 고정됨으로써, 진공 용기(1)의 내부 분위기가 기밀 상태로 된다. 천장판(11)에 고정된 때의 샤워 헤드(93)의 하면과 회전 테이블(2)의 상면의 간격은, 예를 들어 0.5㎜ 내지 5㎜ 정도로 할 수 있다.
샤워 헤드(93)에는 회전 테이블(2)의 각속도의 차이에 대응하여 회전 중심측에서 적고, 외주측에서 많아지도록 복수의 가스 토출 구멍(93a)이 마련되어 있다. 복수의 가스 토출 구멍(93a)의 개수로서는, 예를 들어 수십 내지 수백개로 할 수 있다. 또한, 복수의 가스 토출 구멍(93a)의 직경으로서는, 예를 들어 0.5㎜ 내지 3㎜ 정도로 할 수 있다. 샤워 헤드(93)에 공급된 활성화된 염소 가스는 가스 토출 구멍(93a)을 통해 회전 테이블(2)과 샤워 헤드(93) 사이의 공간에 공급된다.
도 11은 샤워 헤드(93)의 하면의 일례를 도시한 평면도이다. 도 11에 도시된 바와 같이, 가스 토출 구멍(93a)은 샤워 헤드(93)의 하면(93b)의 주위 방향의 중앙에, 반경 방향으로 연장되도록 마련되어도 된다. 이로써, 회전 테이블(2)의 중심측으로부터 외주측으로 분산시켜 염소 라디칼을 공급할 수 있다.
이와 같이, 리모트 플라스마 발생기(90)를 사용하여, 염소 라디칼을 웨이퍼(W)에 공급해도 된다. 또한, 리모트 플라스마 발생기(90)를 마련하여 염소 라디칼을 공급하는 것은 필수는 아니고, 필요에 따라 마련하도록 해도 된다. 즉, 예를 들어 염소 가스를 라디칼화하지 않고, 그대로 공급하여 필요해지는 흡착 저해 효과가 얻어지는 경우에는, 리모트 플라스마 발생기(90)를 특별히 마련할 필요는 없고, 가스 노즐 또는 샤워 헤드(93)로부터 염소 가스를 그대로 공급해도 된다.
또한, 본 실시 형태에 의한 성막 장치에는, 도 1에 도시한 바와 같이, 장치 전체의 동작의 컨트롤을 행하기 위한 컴퓨터로 이루어지는 제어부(100)가 마련되어 있고, 이 제어부(100)의 메모리 내에는 제어부(100)의 제어 하에, 후술하는 성막 방법을 성막 장치에 실시시키는 프로그램이 저장되어 있다. 이 프로그램은 후술하는 성막 방법을 실행하도록 스텝군이 짜여져 있고, 하드 디스크, 콤팩트 디스크, 광자기 디스크, 메모리 카드, 플렉시블 디스크 등의 매체(102)에 기억되어 있고, 소정의 판독 장치에 의해 기억부(101)로 판독되고, 제어부(100) 내에 인스톨된다.
[성막 방법]
이어서, 본 개시의 실시 형태에 관한 실리콘 질화막의 성막 방법에 대하여 설명한다. 먼저, 본 실시 형태에 관한 실리콘 질화막의 성막 방법에서 사용하는 암모니아에 의한 질화를 사용한 실리콘 질화막의 성막 방법과, 질소에 의한 질화를 사용한 실리콘 질화막의 성막 방법의 상위에 대하여 설명한다.
도 12는 암모니아에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 12의 (a)는 기판이 적재된 상태를 도시한 도면이다.
도 12의 (b)는 암모니아에 의해 질화한 기판의 표면을 도시한 도면이다. 도 12의 (b)에 도시된 바와 같이, 암모니아를 사용하여 질화하면, NH2기(아미노기)가 기판의 표면에 형성된다. NH2기는 실리콘에 대한 흡착 사이트를 형성하므로, 실리콘 함유 가스에 대한 흡착 사이트로 된다. 또한, 도 12에서는, 실리콘 함유 가스로서 디클로로실란(Dichlorosilane, SiH2Cl2)을 사용한 경우를 예로 들어 설명한다.
도 12의 (c)는 실리콘 함유 가스 흡착 공정의 일례를 도시한 도면이다. 실리콘 함유 가스 흡착 공정에서는, 디클로로실란이 NH2기 위에 흡착한다. NH2기는 실리콘 함유 가스에 대하여 흡착 사이트를 형성하므로, 디클로로실란은 NH2기에 흡착한다. 또한, 그 때, HCl가 생성되고 기화되어 빠져 나간다.
도 12의 (d)는 암모니아에 의한 질화 공정의 일례를 도시한 도면이다. 여기서는, 암모니아, 수소 및 아르곤으로 이루어지는 혼합 가스를 사용하여 암모니아 플라스마에 의해 디클로로실란을 질화한 예를 도시한다. 흡착 사이트인 NH2기에 흡착한 디클로로실란은 암모니아 플라스마의 공급에 의해, 암모니아와 반응하여, 질화 실리콘으로 된다. 이로써, 실리콘 질화막이 퇴적된다. 또한, 이때, HCl가 기화되어 빠진다. 또한, 이때의 질화는 암모니아 플라스마에 의하므로, 실리콘 질화막은 동시에 개질 처리되고, 표면에는 흡착 사이트인 NH2기가 형성된다.
도 12의 (e)는 흡착 사이트 형성 공정의 일례를 도시한 도면이다. 암모니아 플라스마의 공급에 의해, 실리콘 질화막의 표면에 NH2기로 이루어지는 흡착 사이트가 형성된다.
그리고, 도 12의 (b) 내지 (e)를 1사이클로 하고, 이 1사이클을 복수회 반복함으로써, 실리콘 질화막이 성막된다.
이상이, 오목부의 매립에 사용되는 실리콘 질화막의 성막 방법이다.
도 13은 질소에 의한 질화를 사용한 실리콘 질화막의 성막 방법을 설명하기 위한 도면이다.
도 13의 (a)는 기판이 적재된 상태를 도시한 도면이다.
도 13의 (b)는 질소에 의해 질화한 기판의 표면을 도시한 도면이다. 도 13의 (b)에 도시된 바와 같이, 질소를 사용하여 질화하면, N기(질소 라디칼)가 기판의 표면에 형성된다. N기는 실리콘에 대한 화학적인 흡착 사이트는 형성하지 않지만, 실리콘 함유 가스가 물리 흡착하는 것이 가능한 사이트를 형성한다. 예를 들어, 물리 흡착 가능 사이트라고 칭해도 된다. 또한, 도 13에 있어서도, 실리콘 함유 가스로서 디클로로실란(Dichlorosilane, SiH2Cl2)을 사용한 경우를 예로 들어 설명한다.
도 13의 (c)는 실리콘 함유 가스 물리 흡착 공정의 일례를 도시한 도면이다. 실리콘 함유 가스 물리 흡착 공정에서는, 디클로로실란이 N기 위에 물리 흡착한다. 물리 흡착이므로, 화학적인 결합과는 달리, 어떤 에너지를 가하면, 흡착이 풀려 버릴 정도의 흡착력이다.
도 13의 (d)는 질소에 의한 질화 공정의 일례를 도시한 도면이다. 여기서는, 질소 및 아르곤으로 이루어지는 혼합 가스를 사용하여 질소 플라스마(질소 라디칼)에 의해 디클로로실란을 질화한 예를 나타낸다. N기에 물리 흡착한 디클로로실란은 질소 플라스마의 공급에 의해 불어 날려져, N기로부터 탈리되어 버린다. 이로써, 디클로로실란이 부유한 상태로 된다.
도 13의 (e)는 실리콘 질화막 퇴적 공정의 일례를 도시한 도면이다. 부유한 디클로로실란에는, 질소 플라스마가 계속해서 공급되고, 디클로로실란과 질소 플라스마가 반응하여, 실리콘 질화막이 생성된다. 그리고, 실리콘 질화막이 기판 상에 퇴적된다. 이때의 반응은 ALD가 아니라, 기판보다도 상방의 공간에서 반응이 발생하고, CVD(Chemical Vapor Deposition)에 가까운 반응이다. 공중에서 질화 실리콘이 반응 생성물로서 생성되고, 그것이 기판 상에 퇴적된다는 반응이다. ALD에 의해 트렌치, 비아 등의 오목부 패턴을 매립하면, 측벽면으로부터 중앙을 향해 서서히 박막이 퇴적(성장)되기 때문에, 최후의 중앙부에서는, 대향하는 박막끼리가 중앙에서 접합할 때, 어떻게 해도 심이 발생해 버린다. 그러나, CVD 반응의 경우, 측벽으로부터의 성장이 아니라, 공중에서 발생하여 낙하하는 거동이기 때문에, 박막의 성장의 방향성이 없고, 간극 내에서 형성되어 간극 내에 퇴적된다. 따라서, 박막끼리의 접속이라는 거동이 없고, 상방으로부터 하방으로의 퇴적뿐이므로, 심의 발생을 억제하면서 박막을 퇴적시킬 수 있다. 따라서, 이와 같은 성막을 오목한 패턴의 매립의 최종 단계에 사용하면, 심의 발생을 억제하면서 오목부를 마지막까지 매립할 수 있다.
이와 같이, 질소에 의한 성막은, 연속적인 성막을 행하는 데 매우 적합한 방법인 것을 알 수 있다. 또한, 도 13의 (b) 내지 (e)를 1사이클로 하고, 이 1사이클을 복수회 반복함으로써, 실리콘 질화막이 성막된다.
이상이, 오목부의 매립을 종료할 때의 최종 단계에 사용되는 실리콘 질화막의 성막 방법이다.
이와 같은 암모니아를 사용한 실리콘 질화막의 성막과, 질소를 사용한 실리콘 질화막의 성막을 조합하여 본 실시 형태에 관한 실리콘 질화막의 성막 방법은 행해진다.
도 14는 본 개시의 실시 형태에 관한 실리콘 질화막의 성막 방법의 일례의 일련의 공정을 도시한 도면이다. 본 실시 형태에서는, 웨이퍼(W)로서 실리콘 웨이퍼를 사용하는 것으로 하고, 그 실리콘 웨이퍼에는, 도 14의 (a)에 도시한 바와 같이 트렌치 T가 형성되어 있다.
반응 가스 노즐(31)로부터는, 실리콘 함유 가스로서 디클로로실란(DCS, SiH2Cl2)이 공급되고, 반응 가스 노즐(32)로부터 질화 가스로서 암모니아(NH3)가 공급되고, 샤워 헤드(93)로부터 염소(Cl2) 가스가 공급되는 예를 들어 설명한다. 또한, 플라스마 발생기(80, 90)는 양쪽 모두 탑재되고, 암모니아 가스 및 염소 가스의 양쪽 모두 활성화되고, 암모니아 플라스마 및 염소 라디칼로서 공급되는 경우를 예로 들어 설명한다.
우선, 도시하지 않은 게이트 밸브를 개방하고, 외부로부터 반송 암(10)(도 3)에 의해 반송구(15)(도 2 및 도 3)를 통해 웨이퍼(W)를 회전 테이블(2)의 오목부(24) 내에 전달된다. 이 전달은 오목부(24)가 반송구(15)에 면하는 위치에 정지한 때에 오목부(24)의 저면의 관통 구멍을 통해 진공 용기(1)의 저부측으로부터 도시하지 않은 승강 핀이 승강함으로써 행해진다. 이와 같은 웨이퍼(W)의 전달을, 회전 테이블(2)을 간헐적으로 회전시켜 행하고, 회전 테이블(2)의 5개의 오목부(24) 내에 각각 웨이퍼(W)를 적재한다.
계속해서 게이트 밸브를 폐쇄하고, 진공 펌프(640)에 의해 도달 가능 진공도까지 진공 용기(1) 내를 배기한 후, 분리 가스 노즐(41, 42)로부터 분리 가스인 Ar 가스를 소정의 유량으로 토출하고, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 73)으로부터도 Ar 가스를 소정의 유량으로 토출한다. 이에 수반하여, 압력 제어 수단(650)(도 1)에 의해 진공 용기(1) 내를 미리 설정한 처리 압력으로 제어한다. 이어서, 회전 테이블(2)을 시계 방향으로, 예를 들어 5rpm의 회전 속도로 회전시키면서 히터 유닛(7)에 의해 웨이퍼(W)를, 예를 들어 400℃로 가열한다. 회전 테이블(2)의 회전 속도는, 용도에 따라 다양한 회전 속도로 설정할 수 있다. 또한, 플라스마 발생기(80, 90)도 작동시킨다.
도 14의 (a)는 암모니아 플라스마 질화 공정의 일례를 도시한 도면이다. 먼저, 반응 가스 노즐(32)로부터 암모니아 가스를 공급하여, 플라스마 발생기(80)에서 암모니아 플라스마를 생성한다. 이로써, 트렌치 T 내가 질화되고, 표면에 NH2기(110)가 형성된다. NH2기는 디클로로실란에 대한 흡착 사이트로 된다.
도 14의 (b)는 흡착 저해 영역 형성 공정의 일례를 도시한 도면이다. 암모니아 플라스마 질화 공정 후에는, 샤워 헤드(93)로부터 염소 라디칼을 공급한다. 염소 라디칼은 리모트 플라스마 발생기(90)에 의해 생성된다. 회전 테이블(2)의 회전에 의해, 제3 처리 영역 P3을 웨이퍼(W)가 통과함으로써, 트렌치 T 내의 NH2기(110) 위에 염소 라디칼이 공급된다. 염소 라디칼은, H기와 반응하여 HCl를 생성함과 함께, H기와 치환하여 Cl기 종단부를 형성한다. 이러한 Cl기는 염소 함유 가스에 대해서는, 흡착 저해기로서 기능하여, 흡착 저해 영역(120)을 형성한다. 여기서, 염소 라디칼은 웨이퍼(W)의 표면 S, 트렌치 T의 상부에는 용이하게 도달하지만, 트렌치 T의 안측, 즉 저부 부근의 하부에는 그다지 많이 도달하지는 않는다. 트렌치 T의 애스펙트비는 높으므로, 많은 염소 라디칼은 트렌치 T의 안측에 도달하기 전에 H기와 치환되어 버린다. 따라서, 웨이퍼(W)의 표면 S 및 트렌치 T의 상부에는 고밀도로 흡착 저해기인 Cl기가 형성되고, 흡착 저해 영역(120)이 형성되지만, 트렌치 T의 하부에는 NH2 구조의 H기가 많이 잔존하고, Cl기의 밀도는 낮아진다.
도 14의 (c)는 원료 가스 흡착 공정의 일례를 도시한 도면이다. 도 14의 (c)에 도시된 바와 같이, 웨이퍼(W)가 분리 영역 D를 통과하여 퍼지 가스가 공급되어 퍼지된 후, 제1 처리 영역 P1을 통과함으로써, 디클로로실란(130)이 공급된다. 디클로로실란(130)은 흡착 저해기인 Cl기가 존재하는 흡착 저해 영역(120)에는 그다지 흡착하지 않고, 흡착 저해 영역(120) 이외의 영역에 많이 흡착한다. 따라서, 트렌치 T 내의 저면 부근에 디클로로실란(130)이 많이 흡착하고, 웨이퍼(W)의 표면 S 및 트렌치 T의 상부에는 그다지 디클로로실란(130)이 흡착하지 않는다. 즉, 트렌치 T의 저부 부근에 원료 가스인 디클로로실란(130)이 고밀도로 흡착하고, 트렌치 T의 상부 및 웨이퍼(W)의 표면 상에는 디클로로실란(130)이 저밀도로 흡착한다.
도 14의 (d)는 실리콘 질화막 퇴적 공정의 일례를 도시한 도면이다. 도 14의 (d)에 도시된 바와 같이, 웨이퍼(W)가 분리 영역 D를 통과하여 퍼지 가스가 공급되고 퍼지된 후, 제2 처리 영역 P2를 통과함으로써, 암모니아 플라스마가 공급된다. 여기서, 암모니아 가스는, 예를 들어 암모니아, 질소 및 아르곤을 포함하는 혼합 가스로서 공급되어도 된다. 암모니아 플라스마의 공급에 의해, 트렌치 T 내에 흡착한 디클로로실란(130)과 공급된 암모니아 플라스마가 반응하고, 실리콘 질화막의 분자층이 반응 생성물로서 형성된다. 여기서, 디클로로실란은, 트렌치 T의 저부 부근에 많이 흡착하고 있으므로, 트렌치 T 내의 저부 부근에 많이 실리콘 질화막이 형성된다. 따라서, 도 14의 (d)에 도시된 바와 같은 보텀 업성이 높은 매립 성막이 가능해진다.
이어서, 웨이퍼(W)가 회전 테이블(2)의 회전에 의해 제3 처리 영역 P3을 통과하면, 다시 도 14의 (b)에 도시한 상태로 되고, 흡착 저해기인 Cl기가 트렌치 T 내의 상부 및 웨이퍼(W)의 표면에 흡착하고, 흡착 저해 영역(120)이 형성된다.
이하, 각 반응 가스를 공급하면서 회전 테이블(2)을 반복해서 회전시킴으로써, 도 14의 (b) 내지 도 14의 (d)에 도시한 사이클로 교체되고, 트렌치 T의 개구부가 막히지 않는 상태에서, 저면측으로부터 실리콘 질화막이 퇴적된다. 그리고, 도 14의 (d)에 도시된 바와 같이, V자의 단면을 형성하면서, 개구부를 막지 않는 보텀 업성이 높은 실리콘 질화막(140)의 성막을 행할 수 있다. 이로써, 보이드 등을 발생시키지 않고 고품질의 실리콘 질화막(140)의 매립 성막을 행할 수 있다.
이와 같이, 본 발명의 실시 형태에 관한 성막 방법에 의하면, 염소 라디칼을 트렌치 T의 상부에 공급하여 흡착 저해 영역(120)을 형성하면서 ALD(Atomic Layer Deposition)법에 의한 성막을 행함으로써, 보텀 업성이 높은 선택적인 성막을 행할 수 있다.
또한, NH3는, 반드시 플라스마에 의해 활성화되어 공급될 필요는 없고, 질화가 가능하면, 플라스마화되지 않고 공급되어도 된다.
또한, 본 실시 형태에 있어서는, 도 14의 (a)에 있어서, 웨이퍼(W)의 표면 S 및 트렌치 T의 내면을 암모니아 플라스마에 의해 질화하여 흡착 사이트(110)를 형성했지만, 처음부터 하지막으로서 실리콘 질화막이나 실리콘 산화막이 형성되어 있는 경우에는, 도 14의 (a)의 질화 공정을 행하지 않고, 도 14의 (b)의 흡착 저해 영역 형성 공정으로부터 개시하도록 해도 된다.
도 14의 (b) 내지 (d)의 공정을 1사이클로 하여 이 사이클을 반복하고, V자를 형성하면서 트렌치 T 내에 실리콘 질화막을 매립해 간다. 이로써, 트렌치 T의 측벽으로부터 중앙을 향하고, 또한 저면으로부터 상부를 향해 실리콘 질화막이 퇴적되고, 성장해 간다.
그리고, 트렌치 T 내의 중앙의 간극이 매우 작아져, 매립의 최종 단계에 들어간 경우에는, 도 14의 (e), (f)의 간극 충전 공정을 실시한다. 또한, 간극 충전 공정을 실시할 때에는, 샤워 헤드(93)로부터의 염소 라디칼의 공급을 정지한다. 또한, 반응 가스 노즐(32)로부터 공급되는 가스를 암모니아 가스로부터 질소 가스로 전환한다. 구체적으로는, 암모니아 가스 공급원(131a)으로부터의 공급을, 질소 가스 공급원(131b)으로 전환한다. 전환은, 밸브(140, 141)가 개방, 밸브(142, 143)가 폐쇄로 되어 있던 것을, 밸브(140, 141)를 폐쇄, 밸브(142, 143)를 개방으로 전환하면 된다.
도 14의 (e)는 실리콘 함유 가스 흡착 공정의 일례를 도시한 도면이다. 실리콘 함유 가스 흡착 공정에서는, 도 14의 (c)와 마찬가지로, 제1 처리 영역 P1에서 디클로로실란(130)이 공급되고, 실리콘 질화막(140)의 표면에 흡착한다.
도 14의 (f)는 질소 플라스마 질화 공정의 일례를 도시한 도면이다. 질소 플라스마 질화 공정에서는, 질소 플라스마에 의한 디클로로실란(130)의 질화를 행하고, 실리콘 질화막(140)을 퇴적시킨다. 여기서, 도 13에서 설명한 바와 같이, 질소 플라스마에 의한 질화의 경우, 실리콘 질화막의 표면에 N기가 형성된다.
이어서, 도 14의 (e), (f)를 1사이클로 하여 이 사이클을 복수회 반복하지만, 2회째의 실리콘 함유 가스 흡착 공정에서는, N기에 디클로로실란이 물리 흡착한다. 따라서, 2회째의 질소 플라스마 질화 공정에서는, 디클로로실란이 질소 플라스마에 의해 불어 날려져, 디클로로실란이 중앙의 간극에 부유한 상태에서 질소 플라스마와 반응하고, 부유한 상태에서 생성한 질화 실리콘이 실리콘 질화막(140) 상에 퇴적하여, 간극을 메워간다. 따라서, 측면으로부터의 성장은 아니고, 간극 내에서 CVD적으로 생성된 질화 실리콘이 퇴적된다. 이로써, 벽면끼리의 접합에 의해 형성되는 심이 형성되지 않고, 심리스로 간극을 충전할 수 있다.
도 14의 (e), (f)의 사이클은 중앙의 간극을 충전할 때까지 행한다. 이와 같은 2단계의 프로세스를 행함으로써, V자의 단면 형상을 유지하면서 매립 성막을 행하여 보이드의 발생을 방지하고, 최종 단계에서 연속적인 성막으로 중앙의 간극을 막을 수 있고, 보이드리스이고 또한 심리스인 고품질의 매립 성막을 행할 수 있다.
도 14의 (g)는 트렌치 T를 실리콘 질화막(140)으로 완전히 매립한 상태를 도시한 도면이다. 도 14의 (g)에 도시된 바와 같이, 보이드리스 및 심리스로 실리콘 질화막의 매립 성막을 행할 수 있다.
또한, 도 14의 (e), (f)의 심리스 성막은 트렌치 T의 매립의 최종 단계뿐만 아니라, 트렌치 T를 매립하고 있는 도중에 행해도 된다. 예를 들어, 각 깊이의 레벨에 있어서, 그 깊이에 있어서의 중앙부의 간극을 막는 단계에서, 심리스 성막을 행하도록 해도 된다. 즉, 트렌치 T의 깊이를 복수 단계로 분할하고, 각 깊이의 최종 단계에서 도 14의 (e), (f)의 심리스 성막을 행하도록 해도 된다.
또한, 본 실시 형태에 있어서는, 전반의 매립 성막을, 염소 라디칼을 사용하여 V자 형상을 유지하면서 매립 성막을 행하는 예를 들어 설명했지만, 보이드리스의 성막이 가능하면, 전반의 성막은 다른 성막 방법을 채용해도 된다.
또한, 전반의 매립 성막에 대하여, 흡착 저해 가스로서 염소 가스를 사용하고, 실리콘 함유 가스로서 실리콘 및 염소를 함유하는 가스를 사용하는 예를 들어서 설명했지만, 실리콘 함유 가스에 대하여 흡착 저해 영역(120)을 형성할 수 있는 가스의 조합이라면, 상술한 실시 형태의 조합에 한정되는 것은 아니다. 즉, 염소끼리의 관계뿐만 아니라, 그와 같은 서로 반발하는 원소끼리의 조합이라면, 실리콘 함유 가스 및 흡착 저해 가스도 다양한 조합으로 할 수 있다.
또한, 본 실시 형태에 있어서는, 흡착 저해 가스는 흡착 저해 라디칼, 질화 가스는 플라스마 가스로서 공급하는 예를 들어 설명했지만, 흡착 저해와 질화라는 목적을 달성할 수 있는 경우에는, 플라스마 발생기(80, 90)를 반드시 사용하지 않아도 된다.
이와 같이, 본 실시 형태에 관한 실리콘 질화막의 성막 방법에서는, 용도에 따라 다양한 형태를 채용할 수 있고, 보이드리스이고 또한 심리스로 실리콘 질화막을 트렌치 T 등의 오목부에 매립할 수 있다.
[실시예]
이어서, 본 실시 형태에 관한 실리콘 질화막의 성막 방법을 실시한 실시예의 실시 결과에 대하여 설명한다.
도 15는 전반의 V자 형상을 유지하는 성막만으로 최후까지 매립한 비교예에 관한 성막 방법의 성막 결과를 도시한 도면이다. 도 15에 도시된 바와 같이, 비교예에 관한 성막 방법에서는, 보이드는 발생하고 있지 않지만, 중앙부에 심이 형성되어 버리는 것이 나타나 있다.
도 16은 본 실시 형태에 관한 성막 방법을 실시한 실시예의 성막 결과를 도시한 도면이다. 도 16에 도시된 바와 같이, 보이드도 발생하고 있지 않고, 중앙부에 있어서의 심의 발생이 도 15보다도 매우 작게 되어 있어, 깔끔하게 매립 성막이 이루어진 것을 나타내고 있다.
이와 같이, 본 실시예에 의하면, 본 실시 형태에 관한 실리콘 질화막의 성막 방법에 의해 보이드리스이고 또한 심리스로 실리콘 질화막의 매립 성막을 행할 수 있는 것이 나타났다.
이상, 본 발명의 바람직한 실시 형태 및 실시예에 대하여 상세하게 설명했지만, 본 발명은 상술한 실시 형태 및 실시예에 제한되지 않고, 본 발명의 범위를 일탈하지 않고, 상술한 실시예에 다양한 변형 및 치환을 더할 수 있다.
1 : 진공 용기
2 : 회전 테이블
4 : 볼록형부
5 : 돌출부
7 : 히터 유닛
11 : 천장판
12 : 용기 본체
15 : 반송구
24 : 오목부
31, 32 : 반응 가스 노즐
41, 42 : 분리 가스 노즐
80, 90 : 플라스마 발생기
91 : 플라스마 생성부
93 : 샤워 헤드
131a : 암모니아 가스 공급원
131b : 질소 가스 공급원
P1 내지 P3 : 처리 영역
W : 웨이퍼
2 : 회전 테이블
4 : 볼록형부
5 : 돌출부
7 : 히터 유닛
11 : 천장판
12 : 용기 본체
15 : 반송구
24 : 오목부
31, 32 : 반응 가스 노즐
41, 42 : 분리 가스 노즐
80, 90 : 플라스마 발생기
91 : 플라스마 생성부
93 : 샤워 헤드
131a : 암모니아 가스 공급원
131b : 질소 가스 공급원
P1 내지 P3 : 처리 영역
W : 웨이퍼
Claims (10)
- 기판의 표면에 형성된 오목부 내에, ALD로 저면 및 측면으로부터 실리콘 질화막을 서서히 매립해 가고, 상기 오목부 내의 중앙부의 간극을 좁히도록 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정과,
상기 측면으로부터 중앙을 향해 퇴적된 상기 박막끼리를 연결시켜 상기 중앙의 간극을 메우기 직전의 단계에 있어서, 상기 오목부 내에 제1 질소 라디칼을 흡착시키는 공정과,
상기 오목부 내에 있어서, 상기 제1 질소 라디칼 상에 실리콘 함유 가스를 물리 흡착시키는 공정과,
상기 오목부 내에 제2 질소 라디칼을 공급하고, 상기 실리콘 함유 가스를 상기 제1 질소 라디칼로 탈리시킴과 함께, 탈리한 상기 실리콘 함유 가스와 상기 제2 질소 라디칼을 반응시켜 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정을 갖는 실리콘 질화막의 성막 방법. - 제1항에 있어서, 상기 실리콘 질화막을 퇴적시키는 공정은, CVD에 의해 행해지는, 실리콘 질화막의 성막 방법.
- 제1항 또는 제2항에 있어서, 상기 실리콘 함유 가스를 물리 흡착시키는 공정과, 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정은, 상기 중앙의 간극을 완전히 메울 때까지 반복되는, 실리콘 질화막의 성막 방법.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정은, 상기 오목부 내의 상부에 상기 실리콘 함유 가스의 흡착을 저해시키는 흡착 저해 가스를 흡착시켜, 상기 실리콘 함유 가스에 대한 흡착 저해 영역을 상기 오목부 내의 상부에 형성하는 공정과,
상기 오목부 내에 상기 실리콘 함유 가스를 공급하고, 상기 오목부 내의 상기 흡착 저해 영역 이외의 영역에 상기 실리콘 함유 가스를 흡착시키는 공정과,
상기 오목부 내에 암모니아 가스를 공급하여, 상기 오목부 내에 흡착한 상기 실리콘 함유 가스와 상기 암모니아 가스를 반응시켜, 실리콘 질화막의 분자층을 상기 오목부 내에 퇴적시키는 공정과,
상기 흡착 저해 영역을 상기 오목부 내의 상부에 형성하는 공정, 상기 흡착 저해 영역 이외의 영역에 상기 실리콘 함유 가스를 흡착시키는 공정 및 상기 실리콘 질화막의 분자층을 상기 오목부 내에 퇴적시키는 공정을 주기적으로 반복하는 공정을 갖는, 실리콘 질화막의 성막 방법. - 제4항에 있어서, 상기 암모니아 가스는, 플라스마화된 암모니아 플라스마로서 상기 오목부 내에 공급되는, 실리콘 질화막의 성막 방법.
- 제5항에 있어서, 상기 흡착 저해 가스는 플라스마에 의해 활성화된 흡착 저해기인, 실리콘 질화막의 성막 방법.
- 제6항에 있어서, 상기 흡착 저해 가스를 활성화하는 플라스마는 리모트 플라스마이고,
상기 제1 질소 라디칼, 상기 제2 질소 라디칼 및 상기 암모니아 플라스마는, 유도 결합형 플라스마를 사용하여 생성되는, 실리콘 질화막의 성막 방법. - 제4항 내지 제7항 중 어느 한 항에 있어서, 상기 실리콘 함유 가스는 염소를 함유하는 가스이고,
상기 흡착 저해 가스는 염소 가스인, 실리콘 질화막의 성막 방법. - 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 측면으로부터 중앙을 향해 박막을 퇴적시키는 공정, 상기 오목부 내에 제1 질소 라디칼을 흡착시키는 공정, 상기 제1 질소 라디칼 상에 실리콘 함유 가스를 물리 흡착시키는 공정 및 상기 중앙의 간극을 메우도록 실리콘 질화막을 퇴적시키는 공정을 1사이클로 하고,
상기 오목부 내를 전부 매립할 때까지, 상기 오목부의 깊이 범위에 따라 복수 사이클 행해지는, 실리콘 질화막의 성막 방법. - 처리실과,
해당 처리실 내에 마련되어, 상면에 직경 방향을 따라 기판을 적재 가능한 기판 적재 영역을 갖는 회전 테이블과,
해당 회전 테이블의 상방에, 상기 회전 테이블의 회전 방향을 따라 마련되어, 상기 회전 테이블 상에 실리콘 함유 가스를 흡착시키는 것이 가능한 실리콘 함유 가스 흡착 영역과,
해당 실리콘 함유 가스 흡착 영역의 상기 회전 테이블의 회전 방향 하류측에 마련되어, 상기 회전 테이블 상에 암모니아 플라스마 또는 질소 플라스마를 공급 가능한 질화 영역과,
해당 질화 영역의 상기 회전 테이블의 회전 방향 하류측, 또한 상기 실리콘 함유 가스 흡착 영역의 상류측에 마련되어, 상기 회전 테이블 상에 상기 실리콘 함유 가스의 흡착을 저해시키는 흡착 저해 가스를 흡착시키는 것이 가능한 흡착 저해 가스 흡착 영역과,
표면에 오목부가 형성된 기판이 상기 기판 적재 영역 상에 적재된 상기 회전 테이블을 회전시키면서, 상기 질화 영역에서 상기 기판에 상기 암모니아 플라스마를 공급하여 상기 오목부 내를 질화하는 처리와, 상기 흡착 저해 가스 흡착 영역에서 상기 오목부 내의 상부에 상기 흡착 저해 가스를 흡착시켜, 상기 실리콘 함유 가스에 대한 흡착 저해 영역을 형성하는 처리와, 상기 실리콘 함유 가스 흡착 영역에서 상기 오목부 내의 상기 흡착 저해 영역 이외의 영역에 상기 실리콘 함유 가스를 흡착시키는 처리를 주기적으로 반복하여 상기 오목부 내에, 중앙부에 간극을 갖는 V자의 단면 형상을 갖는 실리콘 질화막의 성막을 행하는 성막 공정과,
상기 회전 테이블을 회전시키면서 상기 실리콘 함유 가스 흡착 영역에서 상기 오목부 내의 표면에 상기 실리콘 함유 가스를 물리 흡착시키는 처리와, 상기 질화 영역에서 상기 오목부 내에 상기 질소 플라스마를 공급하고, 물리 흡착한 상기 실리콘 함유 가스를 해리시킴과 함께 상기 질소 플라스마와 반응시켜, 중앙부의 상기 간극에 실리콘 질화막을 채우는 심리스 공정을 실시하는 제어부를 갖는, 성막 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2018-141736 | 2018-07-27 | ||
JP2018141736A JP7003011B2 (ja) | 2018-07-27 | 2018-07-27 | シリコン窒化膜の成膜方法及び成膜装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200012741A true KR20200012741A (ko) | 2020-02-05 |
KR102548628B1 KR102548628B1 (ko) | 2023-06-28 |
Family
ID=69177998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190086767A KR102548628B1 (ko) | 2018-07-27 | 2019-07-18 | 실리콘 질화막의 성막 방법 및 성막 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11519067B2 (ko) |
JP (1) | JP7003011B2 (ko) |
KR (1) | KR102548628B1 (ko) |
CN (1) | CN110777357B (ko) |
TW (1) | TWI770404B (ko) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7013507B2 (ja) * | 2020-03-23 | 2022-02-15 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法およびプログラム |
JP7303226B2 (ja) * | 2021-01-18 | 2023-07-04 | 株式会社Kokusai Electric | 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム |
KR20240036569A (ko) | 2021-07-28 | 2024-03-20 | 도쿄엘렉트론가부시키가이샤 | 기판 처리 방법 |
WO2024102586A1 (en) * | 2022-11-07 | 2024-05-16 | Lam Research Corporation | Chemical vapor deposition of silicon nitride using a remote plasma |
WO2024135040A1 (ja) * | 2022-12-22 | 2024-06-27 | 株式会社Kokusai Electric | 基板処理方法、半導体装置の製造方法、プログラム、および基板処理装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170000351A (ko) * | 2015-06-23 | 2017-01-02 | 도쿄엘렉트론가부시키가이샤 | 실리콘 함유막의 성막 방법 및 성막 장치 |
JP2017092098A (ja) * | 2015-11-04 | 2017-05-25 | 東京エレクトロン株式会社 | 窒化膜の形成方法 |
KR20170072805A (ko) * | 2015-12-17 | 2017-06-27 | 도쿄엘렉트론가부시키가이샤 | 성막 방법 및 성막 장치 |
JP2017139451A (ja) * | 2016-02-01 | 2017-08-10 | 東京エレクトロン株式会社 | 窒化膜の形成方法 |
JP2017201653A (ja) * | 2016-05-02 | 2017-11-09 | 東京エレクトロン株式会社 | 凹部の埋め込み方法 |
JP2018010950A (ja) | 2016-07-13 | 2018-01-18 | 東京エレクトロン株式会社 | シリコン窒化膜の成膜方法 |
JP2018117038A (ja) * | 2017-01-18 | 2018-07-26 | 東京エレクトロン株式会社 | 保護膜形成方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7598129B2 (en) * | 2003-11-14 | 2009-10-06 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and method for manufacturing the same |
CN101167165B (zh) * | 2005-05-26 | 2011-12-21 | 应用材料股份有限公司 | 增加pecvd氮化硅膜层的压缩应力的方法 |
US7863198B2 (en) * | 2006-05-18 | 2011-01-04 | Micron Technology, Inc. | Method and device to vary growth rate of thin films over semiconductor structures |
US8728956B2 (en) * | 2010-04-15 | 2014-05-20 | Novellus Systems, Inc. | Plasma activated conformal film deposition |
US8815685B2 (en) * | 2013-01-31 | 2014-08-26 | GlobalFoundries, Inc. | Methods for fabricating integrated circuits having confined epitaxial growth regions |
JP6267080B2 (ja) * | 2013-10-07 | 2018-01-24 | 東京エレクトロン株式会社 | シリコン窒化物膜の成膜方法および成膜装置 |
US9576792B2 (en) | 2014-09-17 | 2017-02-21 | Asm Ip Holding B.V. | Deposition of SiN |
-
2018
- 2018-07-27 JP JP2018141736A patent/JP7003011B2/ja active Active
-
2019
- 2019-07-18 KR KR1020190086767A patent/KR102548628B1/ko active IP Right Grant
- 2019-07-19 US US16/516,395 patent/US11519067B2/en active Active
- 2019-07-25 TW TW108126297A patent/TWI770404B/zh active
- 2019-07-26 CN CN201910681551.1A patent/CN110777357B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170000351A (ko) * | 2015-06-23 | 2017-01-02 | 도쿄엘렉트론가부시키가이샤 | 실리콘 함유막의 성막 방법 및 성막 장치 |
JP2017092098A (ja) * | 2015-11-04 | 2017-05-25 | 東京エレクトロン株式会社 | 窒化膜の形成方法 |
KR20170072805A (ko) * | 2015-12-17 | 2017-06-27 | 도쿄엘렉트론가부시키가이샤 | 성막 방법 및 성막 장치 |
JP2017139451A (ja) * | 2016-02-01 | 2017-08-10 | 東京エレクトロン株式会社 | 窒化膜の形成方法 |
JP2017201653A (ja) * | 2016-05-02 | 2017-11-09 | 東京エレクトロン株式会社 | 凹部の埋め込み方法 |
JP2018010950A (ja) | 2016-07-13 | 2018-01-18 | 東京エレクトロン株式会社 | シリコン窒化膜の成膜方法 |
KR20180007679A (ko) * | 2016-07-13 | 2018-01-23 | 도쿄엘렉트론가부시키가이샤 | 실리콘 질화막의 성막 방법 |
JP2018117038A (ja) * | 2017-01-18 | 2018-07-26 | 東京エレクトロン株式会社 | 保護膜形成方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110777357B (zh) | 2023-03-28 |
US20200032390A1 (en) | 2020-01-30 |
TWI770404B (zh) | 2022-07-11 |
JP2020017708A (ja) | 2020-01-30 |
KR102548628B1 (ko) | 2023-06-28 |
JP7003011B2 (ja) | 2022-01-20 |
TW202020204A (zh) | 2020-06-01 |
US11519067B2 (en) | 2022-12-06 |
CN110777357A (zh) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102350505B1 (ko) | 실리콘 질화막의 성막 방법 및 성막 장치 | |
KR102241266B1 (ko) | 성막 방법 및 성막 장치 | |
JP6873007B2 (ja) | シリコン窒化膜の成膜方法及び成膜装置 | |
KR102548628B1 (ko) | 실리콘 질화막의 성막 방법 및 성막 장치 | |
KR102680516B1 (ko) | 성막 방법 | |
KR102640001B1 (ko) | 성막 방법 | |
KR102278354B1 (ko) | 실리콘 질화막의 성막 방법 및 성막 장치 | |
KR102119299B1 (ko) | 성막 장치 | |
KR102120528B1 (ko) | 성막 방법 | |
JP6929209B2 (ja) | シリコン窒化膜の成膜方法及び成膜装置 | |
US11952661B2 (en) | Deposition method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |