KR20190129884A - 영구 자석 오프셋 시스템들 및 방법들(permanent magnet offset systems and methods) - Google Patents

영구 자석 오프셋 시스템들 및 방법들(permanent magnet offset systems and methods) Download PDF

Info

Publication number
KR20190129884A
KR20190129884A KR1020197027987A KR20197027987A KR20190129884A KR 20190129884 A KR20190129884 A KR 20190129884A KR 1020197027987 A KR1020197027987 A KR 1020197027987A KR 20197027987 A KR20197027987 A KR 20197027987A KR 20190129884 A KR20190129884 A KR 20190129884A
Authority
KR
South Korea
Prior art keywords
magnetic flux
donor
magnetic
effective
control coil
Prior art date
Application number
KR1020197027987A
Other languages
English (en)
Other versions
KR102195613B1 (ko
Inventor
채드 반덴버그
Original Assignee
채드 반덴버그
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 채드 반덴버그 filed Critical 채드 반덴버그
Publication of KR20190129884A publication Critical patent/KR20190129884A/ko
Application granted granted Critical
Publication of KR102195613B1 publication Critical patent/KR102195613B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/38Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary
    • H02K21/44Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with rotating flux distributors, and armatures and magnets both stationary with armature windings wound upon the magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/16Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots for auxiliary purposes, e.g. damping or commutating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Synchronous Machinery (AREA)

Abstract

자기 선속 오프셋 시스템은 선택적으로 자기 선속 엘리먼트의 유효극들에서의 자기 선속을 변형한다. 각각의 유효극으로부터의 자기 선속은 제어 코일을 이용하여 효과적으로 상쇄되고 그리고/또는 강화된다. 제어 코일은 하나의 유효극에서 선속 도너로부터의 자기 선속을 상쇄하기 위해 자기 선속 도너로부터의 자기 선속을 지향시킨다. 제어 코일로부터의 자기 선속은 다른 유효극에서 선속 도너로부터의 자기 선속에 더해진다. 제어 코일에 대한 전류를 역전시키는 것은 자기 선속이 상쇄되는 유효극 및 자기 선속이 강화되는 유효극을 스위칭한다.

Description

영구 자석 오프셋 시스템들 및 방법들(PERMANENT MAGNET OFFSET SYSTEMS AND METHODS)
본 발명의 기술분야는 영구 자석 오프셋 시스템들 및 방법들이다.
배경기술의 설명은 본 발명을 이해하는데 유용할 수 있는 정보를 포함한다. 본 명세서에서 제공되는 임의의 정보가 현재 청구되는 발명에 관련되거나 또는 선행 기술임을 인정하거나, 또는 명시적으로 또는 암시적으로 참조되는 임의의 간행물이 선행 기술임을 인정하는 것은 아니다.
전기적으로 활성화된(energized) 계자극(field pole)들을 가지는 고정자(stator) 및 영구적으로 자화된 극들을 가지는 회전자(rotor)를 구비하는 모터들은 다양한 단점들을 가진다. 이러한 모터들을 위한 전류는 일반적으로 교류 전류 공급원으로부터 또는 회전자로 회전하는 정류자(communicator)들로부터 공급된다. 그러나, 이러한 모터들의 최대 속도는 교류 전류의 주파수에 의해서나 또는 계자 코일(field coil)에서의 전류의 흐름을 빠르게 역전시키는 능력에 의해 제한된다.
이러한 문제점들을 해결하기 위해, Baermann의 미국 특허 번호 제2,968,755호는 각각의 고정자 극을 자화시키기 위한 영구 자석 수단을 구비하는 고정자 극들을 포함하는, 모터를 개시한다. Baermann의 고정자 극들은 또한 영구 자기 수단 보다 더 큰 자기 강도의 원격으로 작용되는 자기 수단을 가지며, 이는 교류 전류를 역전시키는 것을 제공할 필요가 없이 그 대응하는 고정자 극들의 자기 극성을 역전시키는데 사용될 수 있었다. 그러나, Baermann의 고정자는 각각의 영구 자석의 하나의 극으로부터의 자기 선속만을 이용하며, 그리고 Baermann의 고정자에 대한 자기 극성을 역전시키는 것이 에너지적으로 요구된다.
미국 특허 번호 제5,825113호에서, Lipo 등은 존재하는 자기장을 약화시키거나 또는 강화시키는데 사용될 수 있는 계자 권선(field winding)을 활용하는 영구 자기 기계들을 개시한다. Lipo의 모터들은 고정자 요크, 계자 권선, 및 전기자 권선(armature winding)들에 내장되는 한 쌍의 아치형 영구 자석들을 포함한다. Lipo의 고정자 극들의 절반은 전용 자기 북극(dedicated magnetic north pole)들이고, 절반은 전용 자기 북극들에 직경방향으로(diametrically) 대향하는 전용 자기 남극들이다. Zimmerman의 미국 특허 번호 제2,816,240호는 또한 Lido에 의해 개시되는 것들에 유사한 원리들을 활용한다. 그러나, Lipo 및 Zimmerman 둘 다는 단지 가변적인 자기장들을 약화시키거나 강화시키기 위해 계자 권선들을 이용한다.
본 명세서에서 식별되는 모든 간행물들은 각각의 개별적인 간행물 또는 특허 출원이 참조로서 통합되는 것으로 명시적으로 또는 개별적으로 지시되는 것과 같은 정도로 참조로서 통합된다. 통합된 참조에서의 용어의 사용 또는 정의가 본 명세서에서 제공되는 해당 용어의 정의와 상반되거나 또는 일치하지 않는 경우, 본 명세서에서 제공되는 해당 용어의 정의가 적용되고 그리고 참조에서의 해당 용어의 정의가 적용되는 것은 아니다.
따라서, 보다 에너지-효율적인 방식으로 자기장의 품질 및 강도를 변화시키는 영구 자석 오프셋 시스템들에 대한 수요가 여전히 존재한다.
본 발명의 주제는 상쇄 자기 선속 도너가 효과적으로 자기 선속 엘리먼트의 유효극들에서의 유효 자기 선속을 상쇄하는 시스템들 및 모터들을 제공한다. 자기 선속 엘리먼트는 이들 각각의 유효 극에 자기적으로 결합되는, 영구 자석 또는 전자석과 같은, 적어도 하나의 유효 자기 선속 도너를 각각이 가지는 적어도 2개의 유효극들을 가진다. 하나 이상의 상쇄 자기 선속 도너들은 일반적으로 적어도 유효 자기 선속 도너들 사이에, 또는 유효극들 사이의 자기 선속 엘리먼트들에 자기적으로 결합된다.
유효 자기 선속 도너들은 상쇄 자기 선속 도너의 극성과 반대되는 극성을 나타낸다.
제어 코일은 자기 선속 엘리먼트의 임의의 유효극들을 향하는 상쇄 자기 선속 도너로부터의 자기 선속을 지향시키는데 사용된다.
제어 코일은 또한 제 2 유효극에서 제 2 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상쇄 자기 선속 도너로부터의 자기 선속과 합해지는 자기 선속을 제공한다. 제어 코일은 상쇄 자기 선속 도너로부터의 자기 선속을 지향시키고, 모으는 것을 돕기 위해 복수의 위치들에서 각각의 극에서의 자속 엘리먼트에 감겨질 수 있다. 예를 들어, 제어 코일은 상쇄 자기 선속 도너와 제 1 유효 자기 선속 도너 사이에, 그리고 동일한 상쇄 자기 선속 도너와 제 2 유효 자기 선속 도너 사이에 위치할 수 있다.
전류가 일 방향으로 제어 코일을 통해 흐르는 경우, 제어 코일은 제 1 활성 자기 상태를 가진다. 제어 코일로부터의 자기 선속은 제 1 유효극에서 제 1 유효 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상쇄 자기 선속 도너로부터의 자기 선속에 합해지고, 그리고 지향시킨다. 제 1 활성 자기 상태에서, 제 2 유효극은 제 2 유효 자기 선속 도너의 극성을 나타내게 된다.
전류의 방향이 역전되는 경우, 제어 코일은 제 2 활성 자기 상태를 가진다. 제 2 자기 활성 상태에서, 제어 코일로부터의 자기 선속은 제 2 유효극에서 제 2 유효 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상쇄 자기 선속 도너로부터의 자기 선속에 합해지고, 그리고 지향시킨다. 이러한 제 2 활성 자기 상태에서, 제 1 유효극은 제 1 유효 자기 선속 도너의 극성을 나타내게 된다.
유리하게는, 상쇄 자기 선속 도너로부터의 자기 선속을 지향시킴으로써 에너지-효율적인 방식으로 상쇄할 유효 자기 선속 도너를 선택하는데 스위치(switch)가 사용될 수 있다.
본 발명 주제의 다른 양상들에서, 자기 선속 요크는 상쇄 및 유효 자기 선속 도너들 사이에서 자기 회로를 이룰 수 있다. 요크는 서로 흐르고 강화하기 위해 자기 선속 도너들의 대향하는 극들로부터의 자기 선속을 위한 자기 경로를 제공한다. 요크의 자기 경로는 또한 각각의 자기 선속 도너의 대향하는 자기 선속으로부터의 간섭을 최소화한다.
몇몇의 실시예들에서, 추가적인 자기 선속 도너들이 제 1 극성을 나타내는 이들의 각각의 극들을 통해 유효극에 근접한 자기 선속 엘리먼트에 자기적으로 결합된다.
제어 코일들이 제 1 활성 자기 상태에 있는 경우, 제어 코일들로부터의 자기 선속은 제 2 유효극에서 모든 유효 자기 선속 도너들로부터의 자기 선속을 실질적으로 상쇄하기 위해 상쇄 자기 선속 도너로부터의 자기 선속에 합해지고, 그리고 지향시킨다. 제어 코일이 제 1 활성 자기 상태에 있는 경우, 제어 코일들로부터의 자기 선속은 제 2 유효극에서 모든 유효 자기 선속 도너들로부터의 자기 선속을 실질적으로 상쇄하기 위해 상쇄 자기 선속 도너로부터의 자기 선속에 추가적으로 합해지고, 그리고 지향시킨다.
다른 실시예들에서, 자기 선속 엘리먼트는 각각의 유효극들을 향해 제어 코일 내로 적어도 부분적으로 연장하는 갭을 포함한다. 또 다른 자기 선속 도너가 갭에 위치될 수 있어 이것이 갭의 일 측면 상의 유효 자기 선속 엘리먼트에 제 2 극성의 자기 선속을 제공하고 그리고 갭의 다른 측면 상의 유효 자기 선속 엘리먼트에 제 1 극성의 자기 선속을 제공하도록 한다.
본 발명자는 본 발명의 자기 오프셋 시스템들이 제어 코일이 제 1 활성 자기 상태에 있는 경우에 하나의 유효극 및 제어 코일이 제 2 활성 자기 상태에 있는 경우에 또 다른 유효극의 유효 자기장들을 통과하는 철계 엘리먼트들(예를 들어, 영구 자석들)을 가지는 회전자들을 가지는 모터들에서의 고정자들로 사용될 수 있다는 것을 더 고려한다. 제 1 철계 엘리먼트들은 회전자 둘레 주위에 분포된다. 몇몇의 실시예들에서, 회전자는 홀수개의 철계 엘리먼트 쌍들을 포함한다.
본 발명 주제의 추가적인 실시예들에서, 청구항의 모터는 제 2 고정자로서 제 2 자기 선속 오프셋 시스템을 사용할 수 있다.
본 발명 주제의 다양한 목적들, 특징들, 양상들 및 이점들은 동일한 번호가 동일한 컴포넌트들을 나타내는 첨부되는 도면들과 함께, 바람직한 실시예들의 이하의 상세한 설명들로부터 보다 명확해질 것이다.
도 1a는 모터의 일 실시예에 대한 측면도이다.
도 1b는 모터의 일 실시예에 대한 평면도이다.
도 2는 모터의 제 2 실시예에 대한 측면도이다.
도 3은 모터의 제 3 실시예에 대한 측면도이다.
도 4는 모터의 제 4 실시예에 대한 측면도이다.
도 1a는 자기 선속 오프셋 시스템(magnetic flux offset system)(100) 및 회전자(rotor)(160)를 포함하는 모터를 도시한다. 자기 선속 오프셋 시스템(100)은 영구 자석들(130, 131, 및 132)에 자기적으로 결합되는 자기 선속 엘리먼트(101)를 포함한다. 영구 자석들(130, 131, 및 132)이 도시되지만, 일시자석들(예를 들어, 전자석들)의 사용 또한 고려된다. 제어 코일(180)의 극성은 가역적이다. 여기에서 사용되는 바와 같이, 용어 “제어 코일(control coil)”은 단일 선, 동일한 입력 소스(input source)를 가지는 다수의 개별 선들, 또는 이의 개별 입력 소스들이 동일한 방향으로 전류를 제공하기 위해 서로 동기화되는 다수의 개별 선들을 의미할 수 있다. 환언하면, 제어 코일은 역전될 수 있는 자기 선속을 제공하고 그리고 지향시키기 위한 임의의 적합한 전기적 구성을 활용할 수 있다.
용어 “활성 자기 상태(active magnetic state)”는 자기 선속 엘리먼트에 자기 선속을 제공하고 그리고 자기 선속 엘리먼트 내에 기존 자기 선속(existing magnetic flux)의 흐름을 지향시키기 위해 제어 코일을 따라 일 방향으로 전류가 흐르는 상태로 본 명세서에서 정의된다. 제 1 활성 자기 상태에서의 제어 코일의 극성은 전류의 방향이 역전되는 경우 변하고, 제 2 활성 자기 상태로 제어 코일을 변경한다. 이는 전류가 제어 코일에 공급되지 않는 경우에 수동 자기 상태(passive magnetic state)와 대비된다.
도 1a에서 도시되는 활성 자기 상태에서, 유효극(111)에 가장 가까운 제어 코일(180)의 부분은 영구 자석(130)으로부터의 자기 남 선속(magnetic south flux)과 자기 선속 회로(magnetic flux circuit)를 이루는, 자기 선속 엘리먼트(101)의 상단을 향해 지향되는 자기 선속 북 선속(magnetic north flux)을 생성한다. 제어 코일(180)의 이 부분은 또한 영구 자기(130)으로부터의 남 자기 선속(south magnetic flux)에 합해지고(aggregate with) 그리고 영구 자석(131)으로부터의 북 자기 선속(north magnetic flux)과 자기 회로를 이루는, 자기 선속 엘리먼트(101)의 하단을 향해 지향되는 자기 남 선속을 생성한다. 바람직하게는, 영구 자석(130) 및 제어 코일로부터의 남 자기 선속 총합은 회전자(160) 상에 임의의 영향을 가지는 자기 남 선속 또는 자기 북 선속을 최소화하기 위해 영구 자석(131)에 의해 제공되는 북 자기 선속과 실질적으로 동일하다. 따라서, 제 1 활성 자기 상태에서, 회전자(160)를 향해 지향되는 유효극(111)에서의 자기 선속은 실질적으로 상쇄된다.
동일한 제 1 활성 자기 상태에서, 유효극(112)에 가장 가까운 제어 코일(180)의 부분은 영구 자석(132)으로부터의 북 자기 선속에 북 자기 선속을 추가하여, 유효 북 자기 선속장(effective north magnetic flux field)이 유효극(112)에서부터 회전자(160)를 향해 흐르도록 보장한다. 본 명세서에서 사용되는 바와 같이, 용어 “유효 자기장(effective magnetic field)”은 제 1 또는 제 2 활성 자기 상태에서 자기 선속을 방출하는 유효극에서의 자기장을 지칭하며, 그리고 이는 회전자 철계(ferrous) 엘리먼트(들)를 밀거나 또는 당기는 원동력을 제공한다. 제어 코일(180)의 이 부분으로부터의 남 자기 선속은 영구 자석(130)으로부터의 남 자기 선속으로 모이고 그리고 유효극(111)에 가까운 제어 코일로부터의 북 자기 선속과 자기 회로(magnetic circuit)를 이루도록 자기 선속 엘리먼트(101)의 상단을 향해 지향된다.
제 2 활성 자기 상태에서, 유효극(111)에 가장 가까운 제어 코일(180)의 부분은 영구 자석(130)으로부터의 남 자기 선속으로 합해지고 그리고 영구 자석(132)으로부터의 북 자기 선속과 자기 회로를 이루는, 자기 선속 엘리먼트(101)의 상단을 향해 지향되는 자기 남 선속을 생성한다. 제어 코일(180)의 이 부분은 또한 영구 자석(131)로부터의 자기 북 선속과 합해지는, 자기 선속 엘리먼트(101)의 하단을 향해 지향되는 자기 북 선속을 생성한다. 바람직하게는, 영구 자석(130) 및 제어 코일(180)로부터의 남 자기 선속 총합은 영구 자석(132)에 의해 제공되는 북 자기 선속과 실질적으로 동일하다. 따라서, 제 2 활성 자기 상태에서, 회전자(160)를 향해 지향되는 유효극(112)에서의 자기 선속은 실질적으로 상쇄된다.
제 2 활성 상태에서, 유효극(112)에 가장 가까운 제어 코일(180)의 부분은 영구 자석(132)으로부터의 북 자기 선속과 자기 회로를 이루도록 유효극을 향해 남 자기 선속을 지향시킨다. 제어 코일(180)의 이 부분으로부터의 북 자기 선속은 유효극(111)에 가까운 제어코일로부터의 남 자기 선속 및 영구 자석(130)으로부터의 남 자기 선속과 자기 회로를 이루도록 자기 선속 엘리먼트(10)의 상단을 향해 지향되어, 유효 북 자기 선속장이 유효극(111)에서부터 회전자(160)를 향해 흐르도록 보장한다.
따라서, 자기 선속 도너(magnetic flux donor)로부터의 자기 선속을 상쇄하도록 지향시킴으로써 에너지-효율적인 방식으로 어떠한 자기 선속 도너를 상쇄할지를 선택하는데 스위치 및 제어 코일이 사용될 수 있다는 점이 이해될 것이다.
회전자(160)는 샤프트(shaft)(150) 및 철계 엘리먼트(161 및 162)를 가진다. 도 1a에서, 유효극(112)으로부터의 북 자기 선속은 철계 엘리먼트(162)의 남극을 향해 인력을 가하여, 원동력을 제공한다. 바람직하게는, 철계 엘리먼트(162)가 유효극(112)을 통과하는 경우, 스위치가 유효극(112)로부터의 인력을 상쇄하기 위해 제어 코일(180)을 플립시켜(flip) 철계 엘리먼트(162)가 회전자(160)에 가해지게 되는 임의의 저지력(stopping force) 없이 지나가게 한다. 회전자(160)가 회전함에 따라, 철계 엘리먼트들(161 및 162)은 유효극들의 유효 자기장들을 “회전 방식으로 통과(rotatively pass)”한다. 바람직하게는, 철계 엘리먼트들(161 및 162) 둘 다가 유효극들과 마주하는 남극을 가지는 영구 자석들이지만, 철계 엘리먼트들(161 및 162)은 비-철계 자석들 또는 전자석들과 같은, 활성 유효극으로 당겨지는 임의의 철계 엘리먼트들일 수 있다.
도 1 내지 도 4에서 도시되는 모터는 한 쌍의 유효극들 및 한 쌍의 회전자 극들을 도시하나, 하나 이상의 유효극들의 쌍을 가지는 고정자(stator)들이 고려된다. 회전자들은 홀수개 또는 짝수개의 철계 엘리먼트 쌍들을 가질 수 있다. 본 발명의 모터들의 바람직한 실시예들은 임의의 짝수개의 유효극들(예를 들어 4쌍 또는 6쌍의 유효극들)을 가지는 고정자들을 가진다. 대응하는 회전자들은 바람직하게는 회전자의 중심에 직경 방향으로(diametrically) 대향하지 않는 홀수개의 철계 엘리먼트들을 가지며, 이는 오직 하나의 철계 엘리먼트만이 도 1b에 도시되는 바와 같이 활성 유효극에 의해 작동되는 것을 보장한다. 회전자(160)가 반시계방향으로 회전함에 따라, 철계 엘리먼트(162)는 자기 선속 엘리먼트(100)의 유효극(112)으로부터 멀어지도록 회전한다. 유효극(111)이 실질적으로 상쇄된 상태에서 자기 상태로 스위칭함에 따라, 유효극(111)이 철계 엘리먼트(161)를 당기며, 그리고 철계 엘리먼트(161)가 유효극(111)을 향해 회전한다. 철계 엘리먼트(161, 162) 및 5개의 비표지(unlabeled)된 철계 엘리먼트들은 자성이거나 또는 비자성일 수 있다.
자석들이 철계 엘리먼트들로 사용되는 경우, 자성 유효극은 철계 엘리먼트들을 당기거나 또는 밀어낼 수 있다. 비자성 철계 엘리먼트들이 사용되는 경우, 자성의 유효극은 철계 엘리먼트가 자성 유효극의 자기장으로 들어감에 따라 각각의 철계 엘리먼트를 당길 수 있다. 다른 예시적인 실시예에서, 3 “쌍”의 철계 엘리먼트들을 가지는 회전자는 4개의 유효극들을 가지는 회전자와 사용될 수 있다. 몇몇의 실시예들에서, 고정자들은 홀수개의 유효극들을 가지고, 그리고 회전자들은 홀수개의 철계 엘리먼트들을 가진다. 다른 실시예에서, 고정자들은 홀수개의 유효극들을 가지고, 그리고 회전자들은 짝수개의 철계 엘리먼트들을 가진다. 환언하면, 임의의 개수의 유효극들 및 철계 엘리먼트들이 적절하게 사용될 수 있다.
도 2는 자기 선속 오프셋 시스템(200) 및 회전자(260)를 포함하는 모터의 다른 실시예들 도시한다. 자기 선속 엘리먼트(201)는 자기 남 선속 도너(230), 자기 북 선속 도너들(231 및 232), 및 영구 자석들(241 및 242)과 자기적으로 결합된다. 선속 요크(flux yoke)(235)는 남 선속 도너(230)와 북 선속 도너들(231 및 232) 사이의 자기 회로를 이루고, 이는 자기 선속 엘리먼트(200)와 선속 도너들(230, 231, 및 232) 사이의 각각의 접촉 지점에서의 자기 선속을 유리하게 향상시킨다. 선속 요크(235)는 또한 자기 회로를 이루기 위해 선속 도너들(230, 231, 및 232)로부터의 자기 선속을 위한 낮은 자기저항(reluctance) 경로를 제공함으로써 자기 남 선속 도너(230) 및 자기 북 선속 도너들(231 및 232)로부터의 자기 선속이 자기 선속 엘리먼트(201)에서의 자기 선속장을 공간적으로 간섭하는 것을 방지한다.
추가적인 북 자기 선속이 각각 자기 선속 도너들(241 및 242)에 의해 유효극들(211 및 212)에서 자기 선속 엘리먼트(201)에 제공된다. 자기 오프셋 시스템(100)과 마찬가지로, 제어 코일(280)을 통해 흐르는 전류의 방향은 유효극들(211 및 212) 중 어느 하나가 자기 북 극성을 나타내는지를 제어한다.
도 2에서 도시되는 활성 자기 상태에서, 유효극들(211)에서의 북 자기 선속이 실질적으로 상쇄되고, 그리고 유효극(212)은 자기 북 극성을 나타낸다. 유효극(212)으로부터의 자기 북 선속은, 도시되는 바와 같은 영구 자석이거나 또는 임의의 기타 적합한 철계 엘리먼트일 수 있는, 회전자(260)의 철계 엘리먼트(262)로부터의 자기 남 선속과 상호작용한다. 회전자(260)는 철계 엘리먼트(261) 및 샤프트(250)를 더 포함한다.
도 3에서, 자기 선속 오프셋 시스템(300)은 회전자(360)에 대한 고정자로 작동한다. 회전자(360)는 샤프트(350) 및 철계 엘리먼트(361 및 362)를 가진다. 자기 오프셋 시스템(300)은 두 위치: 유효극(311) 및 유효극(312)에서의 제어 코일(380) 내로 적어도 부분적으로 연장하는 갭(gap)(310)을 가지는, 자기 선속 엘리먼트(301)를 포함한다. 영구 자석(320)은 갭(310)에 배치되고 그리고 자기 선속 엘리먼트(301)의 상부 부분에 자기 북 선속을 제공하고(donate), 그리고 자기 선속 엘리먼트(301)의 하부 부분에 자기 남 선속을 제공한다. 영구 자석(330)은 또한 자기 선속 엘리먼트(301)의 하부 부분에 자기 남 선속을 제공한다. 자기 북 선속은 자기 북 선속 도너들(331 및 341)로부터 유효극(311)에 제공된다. 자기 남 선속은 자기 북 선속 도너들(332 및 342)로부터 유효극(312)에 제공된다.
제 1 활성 자기 상태에서, 자기 북 선속은 제어 코일(380)에서부터, 자기 선속 엘리먼트(301)를 따라, 유효극(312)을 향해 주행한다. 따라서, 제어 코일(380)은 영구 자석(320)으로부터의 자기 북 선속에 자기 북 선속을 더한다. 혼합된 선속은 유효극(312)에 가까운 제어 코일의 부분으로부터의 자기 남 선속과 회로를 이루고 그리고 영구 자석들(332 및 342)로부터의 자기 북 선속에 추가되어, 유효극(312)로부터의 자기 북 선속을 증대시킨다.
제 1 활성 자기 상태에서, 자기 남 선속은 제어 코일(380)에서부터, 자기 선속 엘리먼트(301)를 따라, 유효극(311)을 향해 주행한다. 자기 남 선속 도너들(320 및 330) 및 유효극(312)에 더 가까운 제어 코일(380)의 부분으로부터의 자기 남 선속은 자기 남 선속 도너들(331 및 341) 및 유효극(311)에 더 가까운 제어 코일(380)의 부분으로부터의 자기 북 선속과 자기 회로를 이룬다. 따라서, 유효극(311)에서의 자기 북 선속은 실질적으로 상쇄된다. 도 1 및 도 2에서의 실시예와 마찬가지로, 제어 코일(380)의 제 2의, 반대되는 활성 자기 상태에서 반대가 발생하게 된다.
도 4는 2개의 자기 선속 오프셋 시스템들(400 및 400')를 가지는 또 다른 엔진을 도시한다. 자기 선속 오프셋 시스템(400)의 자기 선속 엘리먼트(401)는 제어 코일(480) 내로 적어도 부분적으로 연장하는, 갭(410)을 가진다. 영구 자석(420)은 자기 선속 엘리먼트(301)의 외측 부분에 자기 남 선속을 그리고 자기 선속 엘리먼트(401)의 내측 부분에 자기 북 선속을 제공한다. 고정자(400)는 자기 남 선속 도너들(441S 및 442S), 요크들(441 및 442), 및 자기 북 선속 도너들(441N 및 442N)을 통해 고정자(400')에 자기적으로 결합된다.
유사하게, 고정자(400')의 자기 선속 엘리먼트(401')는 제어 코일(480') 내로 적어도 부분적으로 연장하는, 갭(410')을 가진다. 영구 자석(420')은 자기 선속 엘리먼트(401')의 내측 부분에 자기 남 선속을 그리고 자기 선속 엘리먼트(401')의 외측 부분에 자기 북 선속을 제공한다.
제어 코일(480)이 제 1 활성 자기 상태에 있는 경우, 극들(411 및 411')에서의 자기 선속이 실질적으로 상쇄된다. 유효극(412)은 자기 남 극성을 나타내고, 그리고 유효극(412')은 자기 북 극성을 나타낸다. 따라서, 유효극(412)은 고정자(460)의 철계 엘리먼트로부터의 자기 북 선속과 상호작용한다. 유효극(412')은 철계 엘리먼트(462)로부터의 자기 남 선속과 상호작용한다. 이러한 조합된 상호작용들은 모터의 원동력 및 샤프트(450)에 대한 샤프트(460) 회전을 발생시킨다. 고려되는 실시예에서, 유효극들(412 및 412')은 철계 엘리먼트(462)를 끌어 당기지만, 철계 엘리먼트(462)의 영구 자석은 유효극들(412 및 412')이 철계 엘리먼트(462)를 밀어내도록 허용하기 위해 역전될 수 있다.
다른 실시예들에서, 모터들은 각각 4, 6, 8, 10 또는 그 이상의 유효극들을 가지는 자기 선속 엘리먼트(들)를 포함하는, 하나 이상의 고정자들을 포함할 수 있다. 이러한 모터들의 작동 중에, 상쇄 자기 선속 도너는 시계방향 또는 반시계 방향으로 연속하는 유효극들에서 자기 선속 도너들로부터의 유효 자기 선속을 효과적으로 상쇄한다. 제어 코일은 효과적으로 자기적으로 상쇄되는 각각의 유효극을 향해 상쇄 자기 선속 도너로부터의 자기 선속을 지향시키는데 사용된다. 제어 코일은 또한 자기적으로 상쇄되는 유효극에 반대되는 각각의 유효극에서 자기 선속 도너로부터의 자기 선속과 합해지는 자기 선속을 제공하여, 이들 극들에서 자기 선속을 강화시킨다. 자기적으로 상쇄/강화되는 유효극들의 하나 이상의 쌍들은 회전자 극들의 개수에 따라 활성화될 수 있다는 점이 이해되어야 한다.
본 명세서에서 특정 실시예들에 대하여 제공되는 임의의 그리고 모든 예시들, 또는 예시적인 언어(예를 들어, “~와 같은”)의 사용은 단지 본 발명의 보다 잘 설명하기 위해 의도되며 그리고 달리 청구되지 않는 한 본 발명의 범위에 대해 제한을 부여하지 않는다. 본 명세서에서의 언어는 본 발명의 실시에 필수적인 임의의 청구되지 않은 엘리먼트를 지시하는 것으로 해석되지 않아야 한다. 본 명세서에서 사용되는 바와 같이, 문맥이 달리 지시하지 않는 한, 용어 “~에 결합되는(coupled to)”은 직접 결합(서로 결합되는 두 개의 엘리먼트들이 서로 접함) 및 간접 결합(적어도 하나의 추가적인 엘리먼트가 두 개의 엘리먼트들 사이에 위치함) 둘 다를 포함하는 것으로 의도된다. 따라서, 용어 “~에 결합하는” 및 “~과 결합하는(coupled with)”은 같은 뜻으로 사용된다.
본 명세서에서의 설명에서 사용되는 바와 같이 그리고 이하의 청구항들 전체에서, “일(a)”, “일(an)” 및 “상기(the)”의 의미는 문맥이 명백히 달리 지시하지 않는 한 복수의 참조를 포함한다. 또한, 본 명세서에서의 설명들에서 사용되는 바와 같이, “에서(in)”의 의미는 문맥이 명백히 달리 지시하지 않는 한 “에서(in)” 및 “상에(on)”를 포함한다.
문맥이 상반되게 지시하지 않는 한, 본 명세서에서 제시되는 모든 범위들은 이들의 종점들을 포함하는 것으로 해석되어야 하고 그리고 개방된 범위들은 상업적으로 실용적인 값들 만을 포함하는 것으로 이해되어야 한다. 유사하게, 값들의 모든 목록들은 문맥이 상반되게 지시하지 않는 한 중간값을 포함하는 것을 간주되어야 한다. 본 명세서에서 지시되지 않는 한, 각각의 개별값은 이들이 개별적으로 본 명세서에서 인용되는 것처럼 본 명세서 내에 통합된다.
본 명세서에서 개시되는 본 발명의 대안적인 요소들 또는 실시예들의 그룹들은 제한으로써 해석되지 않는다. 각각의 그룹 구성원은 개별적으로 또는 그룹의 다른 구성원 또는 본 명세서에 찾을 수 있는 다른 요소들과의 임의의 조합으로 지칭되고 그리고 청구될 수 있다. 그룹의 하나 이상의 구성원들은 편의성 및/또는 특허성의 이유들로 그룹에 포함되거나 또는 그룹으로부터 삭제될 수 있다. 임의의 이러한 포함 또는 삭제가 발생하는 경우, 본 명세서는 수정된 바와 같은 그룹을 포함하는 것으로 본 명세서에서 간주되어 모든 첨부되는 청구항들의 기재된 설명을 충족시킨다.
이 논의는 본 발명의 주제에 대한 많은 예시적인 실시예들을 제공한다. 각각의 실시예들이 본 발명의 요소들의 단일 조합을 나타내지만, 본 발명의 주제는 개시되는 요소들의 모든 가능한 조합들을 포함하는 것으로 고려된다. 따라서, 일 실시예가 구성요소 A, B 및 C를 포함하고, 제 2 실시예가 구성요소 B 및 D를 포함하는 경우, 본 발명의 주제는 명시적으로 개시되지 않는 경우에도 A, B, C 또는 D의 다른 나머지 조합들을 포함하는 것으로 고려된다.
이미 설명된 것들 이외의 보다 많은 변형들이 본 명세서의 발명의 개념들을 벗어나지 않고 가능하다는 점이 본 기술분야의 통상의 기술자들에게 명백할 것이다. 따라서, 본 발명의 주제는 첨부되는 청구항들의 사상을 제외하고는 제한되어서는 안된다. 또한, 본 명세서 및 청구항들 모두를 해석함에 있어서, 모든 용어들은 문맥과 일치하는 가장 넓은 가능한 방식으로 해석되어야 한다. 특히, 용어 “포함한다(comprises)” 및 “포함하는(comprising)”은 참조되는 구성요소들, 컴포넌트들, 또는 단계들이 명시적으로 참조되지 않은 구성요소들, 컴포넌트들, 또는 단계들과 존재하거나, 사용되거나, 또는 조합되는 것을 나타내는, 비-배타적인 방식으로 구성요소들, 컴포넌트들, 또는 단계들을 지칭하는 것으로 해석되어야 한다. 본 명세서의 청구항들이 A, B, C … 및 N으로 구성되는 그룹으로부터 선택되는 것 중 적어도 하나를 지칭하는 경우, 문장은 A 더하기 N, 또는 B 더하기 N 등이 아닌, 그룹으로부터의 단지 하나의 요소만을 요구하는 것으로 해석되어야 한다.

Claims (16)

  1. 자기 선속 오프셋 시스템(magnetic flux offset system)으로서,
    제 1 유효극(effective pole) 및 제 2 유효극을 가지는 자기 선속 엘리먼트(magnetic flux element);
    제 1 자기 선속 도너(magnetic flux donor), 제 2 자기 선속 도너, 및 제 3 자기 선속 도너 - 상기 제 1 자기 선속 도너 및 제 2 자기 선속 도너는 각각 상기 제 1 유효극 및 제 2 유효극에 근접한 상기 자기 선속 엘리먼트에 자기적으로 결합되고,
    상기 제 3 자기 선속 도너는 상기 제 1 자기 선속 도너와 제 2 자기 선속 도너 사이의 상기 자기 선속 엘리먼트에 자기적으로 결합되고,
    상기 제 1 자기 선속 도너 및 제 2 자기 선속 도너는 상기 자기 선속 엘리먼트에 대해 제 1 극성을 나타내며, 그리고
    상기 제 3 자기 선속 도너는 상기 자기 선속 엘리먼트에 대해, 상기 제 1 극성에 반대인, 제 2 극성을 나타냄 -; 및
    상기 자기 선속 엘리먼트에 감겨지는 제어 코일 - 상기 제어 코일은 상기 제 2 유효극에서 상기 제 2 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상기 제 3 자기 선속 도너로부터의 자기 선속에 모으고, 그리고 지향시키는 제 1 활성 자기 상태를 가지고, 그리고
    상기 제어 코일은 상기 제 1 유효극에서 상기 제 1 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상기 제 3 자기 선속 도너로부터의 자기 선속을 모으고, 그리고 지향시키는 제 2 활성 자기 상태를 가지고,
    상기 제 1 유효극은 상기 제어 코일이 상기 제 1 활성 자기 상태에 있는 경우 상기 제 1 유효극을 나타내고, 그리고
    상기 제 2 유효극은 상기 제어 코일이 상기 제 2 활성 자기 상태에 있는 경우 상기 제 1 극성을 나타냄 -;
    을 포함하는,
    자기 선속 오프셋 시스템.
  2. 제 1 항에 있어서,
    상기 제 1 자기 선속 도너, 제 2 자기 선속 도너, 및 제 3 자기 선속 도너 사이의 자기 회로를 이루는 자기 선속 요크;
    를 더 포함하는,
    자기 선속 오프셋 시스템.
  3. 제 2 항에 있어서,
    각각 상기 제 1 유효극 및 제 2 유효극에 근접한 상기 자기 선속 엘리먼트에 자기적으로 결합되는 제 4 자기 선속 도너 및 제 5 자기 선속 도너;
    를 더 포함하고, 그리고
    상기 제 4 자기 선속 도너 및 제 5 자기 선속 도너는 상기 제 1 극성을 나타내는,
    자기 선속 오프셋 시스템
  4. 제 3 항에 있어서,
    상기 제 1 활성 자기 상태는 추가적으로 상기 제 2 유효극에서 상기 제 5 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄시키기 위해 상기 제 3 자기 선속 도너로부터의 자기 선속을 모으고, 그리고 지향시키고, 그리고
    상기 제 2 활성 자기 상태는 추가적으로 상기 제 1 유효극에서 상기 제 4 자기 선속 도너로부터의 자기 선속을 실질적으로 상쇄하기 위해 상기 제 3 자기 선속 도너로부터의 자기 선속을 모으고, 그리고 지향시키는,
    자기 선속 오프셋 시스템.
  5. 제 1 항에 있어서,
    상기 제 1 자기 선속 도너, 제 2 자기 선속 도너, 및 제 3 자기 선속 도너는 영구 자석들인,
    자기 선속 오프셋 시스템.
  6. 제 1 항에 있어서,
    상기 자기 선속 엘리먼트는 상기 제 1 유효극을 향해 상기 제어 코일 내로 적어도 부분적으로 연장하고 그리고 상기 제 2 유효극을 향해 상기 제어 코일 내로 적어도 부분적으로 연장하는 갭(gap)을 더 포함하는,
    자기 선속 오프셋 시스템.
  7. 제 5 항에 있어서,
    상기 제 1 극성을 나타내는, 상기 갭에 배치되는, 제 4 자기 선속 도너; 및
    상기 제 2 극성을 나타내는, 상기 갭에 배치되는, 제 5 자기 선속 도너;
    를 더 포함하고,
    상기 제 5 자기 선속 도너는 상기 갭의 제 1 측면 상의 상기 자기 선속 엘리먼트의 제 1 부분에 자기적으로 결합되고, 그리고 상기 제 2 극성의 자기 선속을 제공(donate)하고, 그리고
    상기 제 4 자기 선속 도너는 상기 갭의 상기 제 1 측면에 대향하는 상기 갭의 제 2 측면 상의 상기 자기 선속 엘리먼트의 제 2 부분에 자기적으로 결합되고, 그리고 상기 제 1 극성의 자기 선속을 제공하는,
    자기 선속 오프셋 시스템.
  8. 제 7 항에 있어서,
    상기 제 3 자기 선속 도너 및 제 5 자기 선속 도너는 상기 자기 선속 엘리먼트의 상기 제 1 부분의 대향하는 측면들에 자기적으로 결합되는,
    자기 선속 오프셋 시스템.
  9. 제 7 항에 있어서,
    각각 상기 제 1 유효극 및 제 2 유효극에 근접한 상기 자기 선속 엘리먼트에 자기적으로 연결되는 제 6 자기 선속 도너 및 제 7 자기 선속 도너;
    를 더 포함하고, 그리고
    상기 제 6 자기 선속 도너 및 제 7 자기 선속 도너는 제 1 극성을 나타내는,
    자기 선속 오프셋 시스템.
  10. 제 1 항에 있어서,
    상기 제어 코일은 상기 제 1 자기 선속 엘리먼트와 제 3 자기 선속 엘리먼트 사이 및 상기 제 2 자기 선속 엘리먼트와 제 3 자기 선속 엘리먼트 사이의 상기 자기 선속 엘리먼트에 감겨지는,
    자기 선속 오프셋 시스템.
  11. 모터에 있어서,
    제 1 항의 제 1 자기 선속 오프셋 시스템을 가지는 제 1 고정자(stator); 및
    상기 제어 코일이 상기 제 1 활성 자기 상태에 있는 경우 상기 제 1 유효극 그리고 상기 제어 코일이 상기 제 2 활성 자기 상태에 있는 경우 상기 제 2 유효극의 유효 자기장들을 둘 다가 회전 방식으로(rotatively) 통과하는 제 1 철계(ferrous) 엘리먼트 및 제 2 철계 엘리먼트를 가지는 회전자(rotor);
    를 포함하는,
    모터.
  12. 제 11 항에 있어서,
    상기 제 1 철계 엘리먼트는 영구 자석을 가지는,
    모터.
  13. 제 11 항에 있어서,
    상기 제 1 철계 엘리먼트는 회전자 둘레의 제 1 철계 부분에 위치하고 그리고 상기 제 2 철계 엘리먼트는 상기 회전자 둘레의 제 2 철계 부분에 위치하는,
    모터.
  14. 제 13 항에 있어서,
    상기 회전자는 홀수개의 철계 부분들을 포함하는,
    모터.
  15. 제 11 항에 있어서,
    제 2 고정자 및 상기 제 1 고정자의 상기 제어코일, 상기 제 1 자기 선속 도너, 및 상기 제 2 자기 선속 도너에 자기적으로 결합되는 자기 선속 요크;
    를 더 포함하는,
    모터.
  16. 모터에 있어서,
    제 1 항의 제 1 자기 선속 오프셋 시스템을 가지는 제 1 고정자;
    제 1 항의 제 2 자기 선속 오프셋 시스템을 가지는 제 2 고정자; 및
    제 1 철계 엘리먼트 및 제 2 철계 엘리먼트를 가지는 회전자;
    를 포함하고,
    상기 제 1 철계 엘리먼트 및 상기 제 2 철계 엘리먼트 둘 다는 상기 제어 코일이 상기 제 1 자기 활성 상태에 있는 경우 상기 제 1 자기 선속 오프셋 시스템의 상기 제 1 유효극 및 상기 제 2 자기 선속 오프셋 시스템의 상기 제 1 유효극의 유효 자기장들을 회전 방식으로 통과하고, 그리고
    상기 제 1 철계 엘리먼트 및 상기 제 2 철계 엘리먼트 둘 다는 상기 제어 코일이 상기 제 2 활성 자기 상태에 있는 경우 상기 제 1 자기 선속 오프셋 시스템의 상기 제 2 유효극 및 상기 제 2 자기 선속 오프셋 시스템의 상기 제 2 유효극의 유효 자기장들을 회전 방식으로 통과하는,
    모터.
KR1020197027987A 2017-02-24 2018-02-23 영구 자석 오프셋 시스템들 및 방법들(permanent magnet offset systems and methods) KR102195613B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/441,618 US9941763B1 (en) 2017-02-24 2017-02-24 Permanent magnet offset systems and methods
US15/441,618 2017-02-24
PCT/US2018/019371 WO2018156865A1 (en) 2017-02-24 2018-02-23 Permanent magnet offset systems and methods

Publications (2)

Publication Number Publication Date
KR20190129884A true KR20190129884A (ko) 2019-11-20
KR102195613B1 KR102195613B1 (ko) 2020-12-28

Family

ID=61801591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197027987A KR102195613B1 (ko) 2017-02-24 2018-02-23 영구 자석 오프셋 시스템들 및 방법들(permanent magnet offset systems and methods)

Country Status (9)

Country Link
US (2) US9941763B1 (ko)
EP (1) EP3586424A4 (ko)
JP (1) JP6933731B2 (ko)
KR (1) KR102195613B1 (ko)
CN (1) CN110546858B (ko)
BR (1) BR112019017473A2 (ko)
CA (1) CA3054308A1 (ko)
MX (1) MX2019010053A (ko)
WO (1) WO2018156865A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941763B1 (en) * 2017-02-24 2018-04-10 Chad Ashley Vandenberg Permanent magnet offset systems and methods
JP2021144281A (ja) * 2020-03-10 2021-09-24 富士通株式会社 最適化装置、最適化方法、及び最適化プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121571A1 (en) * 2007-10-18 2009-05-14 Iwaki Co., Ltd. Magnetic levitation motor and pump
US20110070108A1 (en) * 2008-05-08 2011-03-24 Mitsubishi Electric Corporation Rotary electric motor and blower that uses the same
US20140265693A1 (en) * 2013-03-15 2014-09-18 Hamilton Sundstrand Corporation Integrated starter generator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816240A (en) 1956-03-09 1957-12-10 American Mach & Foundry High speed composite electro-magnet and permanent magnet generator
US2968755A (en) 1958-07-28 1961-01-17 Baermann Max Magnetic motor
US3007068A (en) 1958-10-20 1961-10-31 Emerson Electric Mfg Co Shaded pole motor
US4077678A (en) * 1976-07-30 1978-03-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Energy storage apparatus
US5652493A (en) 1994-12-08 1997-07-29 Tridelta Industries, Inc. (Magna Physics Division) Polyphase split-phase switched reluctance motor
US5825113A (en) 1995-07-05 1998-10-20 Electric Power Research Institute, Inc. Doubly salient permanent magnet machine with field weakening (or boosting) capability
US5965962A (en) * 1998-02-20 1999-10-12 Northern Magnetics, Inc. Linear stepper motor
US6246561B1 (en) 1998-07-31 2001-06-12 Magnetic Revolutions Limited, L.L.C Methods for controlling the path of magnetic flux from a permanent magnet and devices incorporating the same
JP4786297B2 (ja) * 2005-10-28 2011-10-05 株式会社イワキ ハイブリッド型磁気軸受
JP2010226911A (ja) * 2009-03-25 2010-10-07 Shigeyuki Iida 高効率発電及び動力装置。
US10389207B2 (en) * 2011-05-20 2019-08-20 Levitronix Gmbh Rotational machine as well as apparatus having a rotational machine
JP6035957B2 (ja) * 2012-07-30 2016-11-30 シンフォニアテクノロジー株式会社 回転機
CN103490672A (zh) * 2013-08-29 2014-01-01 李扬远 输出大于输入的电热装置
WO2015074571A1 (zh) * 2013-11-20 2015-05-28 戴珊珊 交流永磁开关磁阻电动机
CN104617691B (zh) * 2014-12-26 2018-04-10 河北科技大学 一种液质悬浮式仿生电磁驱动三自由度运动电机
US9941763B1 (en) * 2017-02-24 2018-04-10 Chad Ashley Vandenberg Permanent magnet offset systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090121571A1 (en) * 2007-10-18 2009-05-14 Iwaki Co., Ltd. Magnetic levitation motor and pump
US20110070108A1 (en) * 2008-05-08 2011-03-24 Mitsubishi Electric Corporation Rotary electric motor and blower that uses the same
US20140265693A1 (en) * 2013-03-15 2014-09-18 Hamilton Sundstrand Corporation Integrated starter generator

Also Published As

Publication number Publication date
BR112019017473A2 (pt) 2020-03-31
KR102195613B1 (ko) 2020-12-28
EP3586424A4 (en) 2020-12-30
JP2020508635A (ja) 2020-03-19
CA3054308A1 (en) 2018-08-30
JP6933731B2 (ja) 2021-09-08
US10666107B2 (en) 2020-05-26
US20180248435A1 (en) 2018-08-30
MX2019010053A (es) 2020-02-05
US9941763B1 (en) 2018-04-10
WO2018156865A1 (en) 2018-08-30
CN110546858A (zh) 2019-12-06
EP3586424A1 (en) 2020-01-01
CN110546858B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
RU2388132C2 (ru) Бесщеточная электрическая машина
EP2107665A3 (en) Permanent magnet dynamoelectric machine with variable magnetic flux excitation
JP6852694B2 (ja) 電動機の磁気発生装置
JP2010172046A (ja) 磁石励磁の磁束量可変回転電機システム
KR102195613B1 (ko) 영구 자석 오프셋 시스템들 및 방법들(permanent magnet offset systems and methods)
JP5124923B2 (ja) 界磁子、電動機及びその駆動方法
JPS61180019A (ja) 磁気軸受
JP5372115B2 (ja) 回転電機
JP6260994B2 (ja) アキシャルギャップ形モータ
JPH0126271B2 (ko)
JPS62221852A (ja) 電動体
US20150084467A1 (en) Reduced Reaction Rotary Alternating Current Generator
JP2014103789A (ja) 永久磁石埋込型モータ
JP2020529185A (ja) 複数の交互の磁気回路を提供する回転子を有するジェネレータ
KR101702035B1 (ko) 영구자석의 자기력선 제어를 이용한 모터
KR102174622B1 (ko) 극성-전환 자기 다이오드(polarity-switching magnetic diode)
JP2021103928A (ja) 回転電機
US8120225B2 (en) External split field generator
JP3225166U (ja) 二次コイルを有する発電機
US433703A (en) Electro—Magnetic Motor
RU2252476C2 (ru) Электродвигатель
RU2216843C2 (ru) Вентильный электродвигатель
WO2016170384A1 (en) High efficiency alternating current generator
JPH08331829A (ja) リニア直流モータ
JP2005080454A (ja) 渦電流式減速装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant