KR20190063602A - 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법 - Google Patents

폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법 Download PDF

Info

Publication number
KR20190063602A
KR20190063602A KR1020170162510A KR20170162510A KR20190063602A KR 20190063602 A KR20190063602 A KR 20190063602A KR 1020170162510 A KR1020170162510 A KR 1020170162510A KR 20170162510 A KR20170162510 A KR 20170162510A KR 20190063602 A KR20190063602 A KR 20190063602A
Authority
KR
South Korea
Prior art keywords
group
alkyl
aryl
formula
silyl
Prior art date
Application number
KR1020170162510A
Other languages
English (en)
Inventor
김화규
한정은
박상호
황혜인
윤승웅
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170162510A priority Critical patent/KR20190063602A/ko
Publication of KR20190063602A publication Critical patent/KR20190063602A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6428Component covered by group C08F4/64 with an organo-aluminium compound with an aluminoxane, i.e. a compound containing an Al-O-Al- group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 폴리올레핀 제조를 위한 신규한 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법에 관한 것이다. 구체적으로, 메탈로센계 전이금속 화합물을 주촉매로 포함하고 알루미녹산 화합물 및/또는 알루미늄 화합물 및/또는 보레이트 화합물을 조촉매로 포함하는 촉매 시스템과 이 촉매 시스템의 존재 하에서 에틸렌 단독 중합체와 에틸렌/알파-올레핀 공중합체의 제조방법 및 코모노머 함입율이 높고, 활성이 높으며, 분자량이 높은 폴리에틸렌 중합체를 제공한다.

Description

폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법{A METALLOCENE CATALYST SYSTEM FOR PRODUCING POLYOLEFIN AND A METHOD FOR PRODUCING POLYOLEFIN BY USING THE SAME}
본 발명은 폴리올레핀 제조를 위한 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법에 관한 것이다. 구체적으로는 메탈로센 주촉매 화합물에 알루미녹산 화합물 및/또는 알루미늄 화합물 등의 조촉매 화합물을 함께 포함하는 메탈로센 촉매 시스템, 및 상기 촉매 시스템의 존재 하에서 에틸렌 단독 중합체와 에틸렌 및 알파-올레핀의 공중합체의 제조방법에 관한 것이다.
기존 폴리올레핀의 상업적 제조 과정에 널리 사용되는 지글러-나타 촉매는 높은 활성을 갖지만, 촉매의 다활성점(multi-active site) 특성으로 인해 고분자의 분자량 분포가 넓고 공단량체의 조성 분포가 균일하지 않아 물성의 한계가 있다. 최근에는 티타늄, 지르코늄, 하프늄 등의 전이 금속과 사이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 상용화되고 있으며 이런 메탈로센 화합물은 일반적으로 알루미녹산, 보레인, 보레이트 등의 조촉매를 사용하여 활성화시킨다.
한국 특허 제986301호는 테트라하이드로퀴놀린 유도체로부터 유래한 아미도 리간드와 티오펜 헤테로 고리로 융합된 새로운 리간드의 티타늄 촉매를 개발하여 이 촉매를 사용하여 높은 활성과 높은 분자량의 에틸렌/1-헥센 및 에틸렌/1-옥텐 공중합체를 제공하고 있다. 이 촉매는 합성수율은 높으나, 여러 합성 단계를 거쳐 만들어진 복잡한 구조의 촉매 화합물로써 최종 제품의 단가를 높이는 단점이 있다.
미국 특허 제5,064,802호는 신규한 구조의 아미도 리간드를 가지며, 용액 공정에서 에틸렌/1-옥텐 제품을 만드는 촉매를 제시하고 다양한 엘라스토머 제품을 만드는 기술에 대한 것으로, 상기 촉매는 안정성이 떨어지고, 합성 수율이 낮아 최종 제품의 단가를 높이는 단점이 있다.
한국 특허 제834889호는 촉매와 조촉매의 상호작용을 통해서 입체규칙도를 조절할 수 있고, 높은 분자량의 입체규칙도가 높은 프로필렌 중합체를 제조하는 방법에 관한 것으로, 프로필렌의 중합에 대한 실시예들을 통해 프로필렌 중합체의 입체규칙성에 대한 중합특성을 파악하였으나 에틸렌과 다른 알파 올레핀의 공중합체의 중합특성에 대해서는 입체규칙성이 의미가 없기 때문에 촉매계로부터 어떤 중합특성이 있는지 알 수 없었다.
이에 본 발명에서는 신규한 메탈로센 촉매 시스템을 사용하여, 코모노머의 함입율이 높고, 활성이 높으며, 분자량이 높은 폴리올레핀을 제조하고자 한다.
한국 특허 제986301호 미국 특허 제5,064,802호 한국 특허 제834889호
본 발명은 폴리올레핀 제조를 위한 신규한 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법에 관한 것이다. 구체적으로, 메탈로센계 전이금속 화합물을 주촉매로 포함하고 알루미녹산 화합물 및/또는 알루미늄 화합물 및/또는 보레이트 화합물을 조촉매로 포함하는 촉매 시스템과 이 촉매 시스템의 존재 하에서 에틸렌 단독 중합체와 에틸렌/알파-올레핀 공중합체의 제조방법 및 코모노머 함입율이 높고, 활성이 높으며, 분자량이 높은 폴리에틸렌 중합체를 제공한다.
본 발명은 위의 과제를 달성하기 위해, A) 하기 화학식 1의 메탈로센 주촉매 화합물; 및 (B) 하기 화학식 4-1 내지 4-3으로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 포함하는, 폴리올레핀 제조용 메탈로센 촉매 시스템을 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에서,
M은 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf)이고,
X는 C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기, C6~C20의 실릴아릴기, C1~C20의 알콕시기, C1~C20의 알킬실록시기, C6~C20의 아릴옥시기, 할로겐기 및 아민기로 이루어진 군에서 선택되고,
Cp는 시클로펜타디에닐 골격을 갖는 리간드로서, 하기 [화학식 2-1] 및 [화학식 2-2]로 이루어진 군에서 선택되는 1종 이상의 치환체를 가지되; 상기 리간드 및 상기 치환체는 C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C1~C20의 할로알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기, C6~C20의 실릴아릴기 및 할로겐기로 이루어진 군에서 선택되는 치환체로 추가로 치환될 수 있고; 상기 치환체들은 서로 결합하여 고리를 형성할 수 있고,
Y는 M과 직접결합하며 하기 화학식 3의 구조를 가지고,
a 및 b는 서로 독립적으로 1 내지 5의 정수이다.
[화학식 2-1]
Figure pat00002
[화학식 2-2]
Figure pat00003
상기 화학식 2-1 및 2-2에서,
Z는 주기율표 15족 또는 16족의 원소이고,
은 수소, C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기 및 C6~C20의 실릴아릴기로 이루어진 군에서 선택되고,
m은 1 또는 2의 정수이고,
p는 1 내지 5의 정수이다.
[화학식 3]
Figure pat00004
상기 화학식 3에서,
R1, R2, R3, R4 및 R5는 서로 독립적으로 수소, C1~C20의 알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C1~C20의 할로알킬기, C3~C20의 시클로알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기, C6~C20의 실릴아릴기, C1~C20의 알콕시기, C1~C20의 알킬실록시기, C6~C20의 아릴옥시기, 할로겐기 및 아미노기로 이루어진 군에서 선택되고, R1, R2, R3, R4 및 R5 중 둘 이상이 서로 결합하여 고리를 형성할 수 있다.
[화학식 4-1]
Figure pat00005
상기 화학식 4-1에서,
R6은 C1~C10의 알킬기이고,
q는 1 내지 70의 정수이다.
[화학식 4-2]
Figure pat00006
상기 화학식 4-2에서,
R7, R8 및 R9는 서로 독립적으로 C1~C10의 알킬기, C1~C10의 알콕시기, 또는 할로겐기이고, R7, R8 및 R9 중 하나 이상은 C1~C10의 알킬기이다.
[화학식 4-3]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 화학식 4-3에서,
L은 중성 또는 양이온성 루이스 산이고,
Z는 주기율표 13족의 원소이고,
A는 각각 독립적으로 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이고, 상기 라디칼은 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시, 또는 (C6-C20)아릴옥시 라디칼로 치환될 수 있다.
또한, 본 발명은 상기 메탈로센 촉매 시스템을 탄소수 2 내지 20의 올레핀 단량체와 반응시켜 액상(liquid phase), 기상(gas phase), 괴상(bulk phase), 또는 슬러리상(slurry phase)에서 올레핀 중합체를 수득하는 것을 포함하는 폴리올레핀의 제조방법을 제공한다.
본 발명에 따른 신규한 메탈로센 촉매 시스템을 사용함으로써 올레핀 중합체를 제조함에 있어 효율이 높고 높은 분자량의 공중합체를 제조할 수 있다.
본 발명에 따른 신규한 메탈로센 촉매 시스템은 (A) 하기 화학식 1로 표시되는 메탈로센 주촉매 화합물 및 (B) 조촉매 화합물을 포함한다.
[화학식 1]
Figure pat00007
상기 화학식 1에서,
M은 주기율표 상의 3~10족 원소이고,
X는 C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기, C6~C20의 실릴아릴기, C1~C20의 알콕시기, C1~C20의 알킬실록시기, C6~C20의 아릴옥시기, 할로겐기 및 아민기로 이루어진 군에서 선택되고,
Cp는 시클로펜타디에닐 골격을 갖는 리간드(ligand)이고, 하기 화학식 2-1 및 화학식 2-2로 이루어진 군에서 선택된 1종 이상의 치환체를 가지고,
Y는 중심금속과 직접 결합한 페녹시(phenoxy) 작용기로서 하기 화학식 3과 같은 구조를 갖고,
a와 b는 1~5의 정수로서 중심 금속의 산화수에 따라 변한다.
[화학식 2-1]
Figure pat00008
[화학식 2-2]
Figure pat00009
상기 화학식 2-1 및 화학식 2-2에서,
Z는 주기율표 15족 또는 16족의 원소이며,
R은 수소, C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기 및 C6~C20의 실릴아릴기로 이루어진 군에서 선택되고,
m은 Z의 종류에 따라 결정되는 1 또는 2의 정수이며,
p는 1 내지 5의 정수이고,
상기 화학식 2-1 및 화학식 2-2로 표시되는 치환체 이외에 Cp에 결합되는 다른 치환체, 및 상기 화학식 2-1 및 화학식 2-2에서 ZRm과 결합하지 않은 페닐 고리 내의 탄소 원자와 결합되는 다른 치환체는 수소, C1~C20의 알킬기, C3~C20의 시클로알킬기, C1~C20의 알킬실릴기, C1~C20의 실릴알킬기, C1~C20의 할로알킬기, C6~C20의 아릴기, C6~C20의 아릴알킬기, C6~C20의 알킬아릴기, C6~C20의 아릴실릴기, C6~C20의 실릴아릴기 및 할로겐기로 이루어진 군에서 선택되며, 이들은 인접한 치환체들끼리 서로 결합하여 고리(ring)를 형성할 수 있다.
[화학식 3]
Figure pat00010
상기 화학식 3에서 R1, R2, R3, R4, R5는 서로 같거나 서로 다른 치환체로서, 탄소수 1~20개의 알킬(alkyl)기, 알킬실릴(alkylsilyl)기, 실릴알킬(silylalkyl), 할로알킬(haloalkyl)기; 탄소수 3~20개의 시클로알킬기(cycloalkyl); 탄소수 6~20개의 아릴(aryl)기, 아릴알킬(arylalkyl)기, 알킬아릴(alkylaryl)기, 아릴실릴(arylsilyl)기, 실릴아릴(silylaryl)기; 탄소수 1~20개의 알콕시(alkoxy)기, 알킬실록시(alkylsiloxy)기; 탄소수 6~20개의 아릴옥시(aryloxy)기, 할로겐(halogen)기, 아미노(Amino)기로서, 상기 구성하는 알킬 부분은 사슬(chain)형, 가지(branch)형 모두 가능하며, 치환체의 치환수가 2 이상일 경우에는 치환체간의 결합으로 고리(ring)를 형성하기도 한다.
본 발명에 다른 메탈로센 촉매 시스템에서 조촉매(B)는 메탈로센 화합물을 포함하는 메탈로센 주촉매 화합물(A)이 촉매 활성을 갖게 하는 화합물로서 하기 화학식 4-1 내지 화학식 4-3으로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 화합물이다.
[화학식 4-1]
Figure pat00011
상기 화학식 4-1에서,
R6은 C1~C10의 알킬기이고,
q는 1 내지 70의 정수이다.
[화학식 4-2]
Figure pat00012
상기 화학식 4-2에서,
R7, R8 및 R9는 서로 독립적으로 C1~C10의 알킬기, C1~C10의 알콕시기, 또는 할로겐기이고, R7, R8 및 R9 중 하나 이상은 C1~C10의 알킬기이다.
[화학식 4-3]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
상기 화학식 4-3에서,
L은 중성 또는 양이온성 루이스 산이고,
Z는 주기율표 13족의 원소이고,
A는 각각 독립적으로 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이고, 상기 라디칼은 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시, 또는 (C6-C20)아릴옥시 라디칼로 치환될 수 있다.
본 발명의 일 구현예에서, 상기 촉매 시스템은 (A)의 메탈로센 주촉매 화합물: 상기 (B)의 조촉매 화합물의 몰비가 10:1 내지 1:10,000일 수 있다.
상기 촉매 시스템에서 상기 메탈로센 주촉매 화합물인 전이금속 화합물(M) 대비 상기 화학식 4-1로 표시되는 조촉매 화합물(Al)의 몰비 (M : Al)는 100 : 1 내지 1 : 10,000이 바람직하고, 더욱 바람직하게는 50 : 1 내지 1 : 5,000을 사용하는 것이 좋다.
상기 전이금속 화합물(M) 대비 상기 화학식 4-2의 조촉매 화합물(Al)의 몰비(M : Al)는 1 : 1 내지 1 : 100이 바람직하고, 더욱 바람직하게는 1 : 1 내지 1 : 50을 사용하는 것이 좋다.
상기 전이금속 화합물 대비 상기 화학식 4-3의 조촉매 화합물의 몰비(M : Z)는 1 : 1 내지 1 : 10이 바람직하고, 더욱 바람직하게는 1 : 1 내지 1 : 5를 사용하는 것이 좋다.
상기 촉매 시스템에서 상기 전이금속 화합물 대비 상기 조촉매 화합물의 몰비가 상기 하한치보다 낮을 경우 활성 구현이 안 될 가능성이 있으며, 상기 상한치보다 높을 경우 수지 제조 시 조촉매 비용이 높아진다는 문제가 있다.
상기 화학식 4-1에 따른 화합물은 선상(chain) 또는 환상(cyclic) 또는 그물(network) 구조를 가지며, 구체적으로 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산(ethylaluminoxane), 부틸알루미녹산(butylaluminoxane), 헥실알루미녹산(hexylaluminoxane), 옥틸알루미녹산(octylaluminoxane), 데실알루미녹산(decylaluminoxane) 등이 있다.
상기 화학식 4-2에 따른 화합물로는 구체적으로 트리메틸알루미늄(trimethylaluminum), 트리에틸알루미늄(triethylaluminum), 트리부틸알루미늄(tributylaluminum), 트리헥실알루미늄(trihexylaluminum), 트리옥틸알루미늄(trioctylaluminum) 등이 있다.
상기 화학식 4-3에 따른 화합물로는 구체적으로 N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate), N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium n-butyltris(pentafluorophenyl)borate), 트리페닐메틸 카르베늄 테트라키스(펜타플루오로페닐)보레이트(triphenylmethylcarbenium tetrakis(pentafluorophenyl)borate) 등을 예로 들 수 있다.
본 발명에 따른 촉매 시스템의 구성성분으로 사용되는 상기 화학식 4-1 내지 화학식 4-3의 화합물은 상기 예에 한정되는 것이 아니며, 중합시 단독 또는 두 종류 이상 혼합하여 사용될 수 있다.
또한, 본 발명은 상기 메탈로센 촉매 시스템을 올레핀 단량체와 반응시켜 액상(liquid phase), 기상(gas phase), 괴상(bulk phase), 또는 슬러리상(slurry phase)에서 올레핀 중합체를 수득하는 것을 포함하는 폴리올레핀의 제조방법을 제공한다.
상기 메탈로센 촉매 시스템을 이용하여 중합(polymerization)될 수 있는 올레핀에는 에틸렌(ethylene)을 비롯하여 프로필렌(propylene), 1-부텐(1-butene), 1-펜텐(1-pentene), 1-헥센(1-hexene) 등의 C2~C20까지의α-올레핀(α-olefin), 1,3-부타디엔(1,3-butadiene), 1,4-펜타디엔(1,4-pentadiene), 2-메틸-1,3-부타디엔(2-methyl-1,3-butadiene) 등의 C4~C20까지의 디올레핀(diolefin), 시클로펜텐(cyclopentene), 시클로헥센(cyclohexene), 시클로펜타디엔(cyclopentadiene), 시클로헥사디엔(cyclohexadiene), 노르보넨(norbonene), 메틸-2-노르보넨(methyl-2-Norbonene) 등의 C3~C20까지의 시클로올레핀(cycloolefin) 또는 시클로디올레핀(cyclodiolefin), 스티렌 또는 스티렌의 벤젠 고리(phenyl ring)에 C1~C10의 알킬기, C1~C10의 알콕시기, 할로겐기, 아민기, 실릴기, 할로겐화알킬기 등이 결합된 치환된 스티렌(substituted Sstyrene) 등이 포함된다.
본 발명에 따른 촉매 시스템을 사용하여 중합하는 경우에, 중합은 슬러리상(slurry phase), 액상(solution phase), 기상(gas phase), 또는 괴상(bulk phase)에서 실시될 수 있다. 중합이 액상 또는 슬러리상에서 실시되는 경우, 용매(solvent) 또는 모노머(monomer) 자체를 매질로 사용할 수 있으며 중합에 사용되는 모노머는 단독으로 사용하거나 두 종류 이상을 섞어서 사용할 수 있다. 사용되는 용매는 예를 들면, 부탄(butane), 펜탄(pentane), 헥산(hexane), 옥탄(octane), 데칸(decane), 도데칸(dodecane), 시클로펜탄(cyclopentane), 메틸시클로펜탄(methylcyclopentane), 시클로헥산(cyclohexane), 벤젠(benzene), 톨루엔(toluene), 자일렌(xylene), 디클로로메탄(dichloromethane), 클로로에탄(chloroethane), 1,2-디클로로에탄(1,2-dichloroethane), 클로로벤젠(chlorobenzene) 등이 있으며 이들 용매를 일정한 비율로 섞어 사용할 수도 있다.
본 발명의 촉매 시스템을 무기(inorganic) 또는 유기(organic) 화합물에 담지(supporting)시켜 사용하는 경우에 그 담체는 일정한 물질에 한정되는 것이 아니라 표면에 미세한 구멍(pore)을 가지고 표면적이 넓은 무기화합물로서 실리카(SiO2), 알루미나(Al2O3), 마그네슘클로라이드(MgCl2), 또는 이들의 혼합물 형태로 사용될 수 있으며, 이들 화합물들은 소량의 카보네이트, 썰페이트, 나이트레이트를 포함하기도 한다. 유기화합물로서는 합성 폴리머 등이 사용될 수 있다.
본 발명에 따른 촉매 시스템을 무기 또는 유기 화합물에 담지시킬 경우에는 수분이 제거(Dehydrated)된 담체(Support)에 합성된 전이금속 화합물(A)을 직접 담지시키는 방법, 담체를 유기알루미녹산 화합물(B) 또는 유기알루미늄 화합물(B)로 전처리한 다음 전이금속 화합물(A)을 담지시키는 방법, 담체에 합성된 전이금속 화합물(A)을 담지시킨 다음 유기알루미녹산 화합물(B) 또는 유기알루미늄 화합물(B)을 처리하는 방법, 전이금속 화합물(A)과 유기알루미녹산 화합물(B) 또는 유기알루미늄 화합물(B) 또는 전이금속(transition metal) 화합물과 반응하여 전이금속 화합물이 촉매 활성을 갖게 하는 벌키(bulky)한 화합물을 반응시킨 다음 담체와 반응시키는 방법 등이 사용될 수 있다.
본 발명의 촉매 시스템을 담지시킬 때 사용되는 용매에는 펜탄(Pentane), 노르말헥산(hexane), 헵탄(heptane), 옥탄(octane), 노난(nonane), 데칸(decane), 운데칸(undecane), 도데칸(dodecane) 등의 지방족 탄화수소계 용매 또는 벤젠(benzene), 모노클로로벤젠(monochlorobenzene), 디클로로벤젠(dichlorobenzene), 트리클로로벤젠(trichlorobenzene), 톨루엔(toluene) 등의 방향족 탄화수소계 용매, 디클로로메탄(dichloromethane), 트리클로로메탄(trichloromethane), 디클로로에탄(dichloroethane), 트리클로로에탄(trichloroethane) 등의 할로겐화 지방족 탄화수소 용매가 있으며 담지 반응시 단독으로 또는 섞어서 사용할 수 있다.
본 발명에 따른 올레핀 중합체의 중합 온도는 0~200 에서 선택할 수 있으며, 배치식(batch type), 반연속식(semi-continuous type) 또는 연속식(continuous type)으로 중합을 실시할 수 있고, 중합 압력은 1~100 bar에서 선택할 수 있다.
본 발명에 따른 올레핀 중합체의 제조방법에 있어서, 중합체 내 에틸렌의 함량은 5 중량% 이상 95 중량% 이하, 알파-올레핀 단량체의 함량은 0보다 크고 90 중량% 이하일 수 있다.
본 발명에 따른 중합체의 분자량 분포(Mw/Mn)는 2 내지 5 일 수 있고, 중량 평균 분자량(Mw)은 10,000~1,000,000 일 수 있다.
또한, 본 발명에 따른 중합체의 밀도는 0.850~0.920 g/mL 일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 다양한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 및 비교예
<합성예>
모든 합성 반응은 질소(nitrogen) 또는 아르곤(argon) 등의 비활성 분위기(inert atmosphere)에서 진행되었고, 표준 쉴렌크(Standard Schlenk) 기술과 글러브 박스(Glove Box) 기술을 이용하였다.
테트라하이드로퓨란(tetahydrofuran, THF), 톨루엔(toluene), 노르말헥산(n-hexane), 노르말펜탄(n-pentane), 디에틸에테르(diethyl ether), 메틸렌클로라이드(methylene chloride, CH2Cl2), 등의 합성용 용매는 Sigma Aldrich사의 무수 등급(anhydrous grade)을 구매하여 활성화된 알루미나 층(activated alumina column)을 통과시켜 수분을 제거한 다음, 활성화된 분자체(Molecular Sieve 5A, Yakuri Pure Chemicals Co) 상에서 보관하면서 사용하였으며, 유기금속화합물의 NMR 구조 분석에 사용된 이중수소치환클로로포름(chloroform-d, CDCl3)은 Cambridge Isotope Laboratories사에서 구매한 후 활성화된 분자체(Molecular Sieve 5A, Yakuri Pure Chemicals Co) 상에서 건조하여 사용하였다.
에탄올(ethanol), 노르말펜탄(n-pentane), 에틸아세테이트(ehyl acetate), 노르말부틸리튬(n-butyllithium (2.5 M solution in n-hexane)), 메틸리튬(methyllithium (1.6 M solution in diethyl ether)), 4-브로모-4'-메톡시비페닐(4-bromo-4'-methoxybiphenyl), 4-브로모-N,N-디메틸아닐린(4-bromo-N,N-dimethylaniline), 염화암모늄(ammonium chloride), 무수 황산마그네슘(magnesium sulfate, anhydrous), 2,3,4-트리메틸시클로펜타-2-에논(2,3,4-trimethyl-cyclopent-2-enone), 2,6-디이소프로필페놀(2,6-diisopropylphenol), 파라-톨루엔술폰산 수화물(para-toluenesulfonic acid monohydrate (p-TsOH·H2O)), 트리메틸실릴클로라이드(trimethylsilyl chloride, Me3SiCl (TMSCl))은 Sigma-Aldrich사에서, 트리이소프로폭시티타늄 클로라이드(triisopropoxytitanium chloride, ClTi(OiPr)3)은 Strem사 에서 구매하여 정제 없이 사용하였으며, 3,4-디메틸시글로펜타-2-에논(3,4-dimethylcyclopent-2-enone, 3,4-Me2-C5H4O) 은 문헌에 수록된 방법대로 합성하여 사용하였다.
[합성예 1-1] 1-( p -디메틸아미노페닐)-3,4-디메틸시클로펜타디엔(1-( p -Dimethylaminophenyl)-3,4-dimethylcyclopentadiene, ( p -Me 2 NC 6 H 4 )-3,4-Me 2 C 5 H 3 )의 합성
4-브로모-N,N-디메틸아닐린 (4.00 g, 20 mmol)을 50 mL의 디에틸에테르에 녹인 뒤 0 °C 에서 1당량의 노르말부틸리튬 (8.0 mL)을 가하였다. 상온에서 2시간 동안 교반시킨 뒤, -78 °C로 온도를 낮추고 1당량의 3,4-디메틸시클로펜타-2-에논 (2.20 g, 20 mmol)을 녹인 20mL의 테트라하이드로퓨란 용액을 적가한 후 상온으로 천천히 올려 장시간 저어주었다. 그 다음, 얻어진 오렌지색을 띄는 용액에 포화된 염화암모늄 수용액을 적당량 가하여 반응을 종결시켰다.
그 다음, 유기 용액층만 디에틸에테르 (50 mL)로 추출하여 모은 뒤, 무수황산마그네슘으로 건조하여 여과시켰다. 여과된 용액을 회전증발기에서 용매를 제거하여 얻어진 노란색 오일을 얻었다. 이 오일을 메틸렌클로라이드 (30 mL)에 녹인 뒤, 파라-톨루엔술폰산 수화물 (ca. 0.1 g)을 넣고, 상온에서 한 시간 동안 저어주어 아이보리색 고체를 얻었다. 용매를 회전증발기로 증발시킨 뒤 30 mL의 노르말헥산으로 침전시킨 뒤, Glass Filter를 이용하여 걸러내었다. 걸러진 고체를 에탄올 (30 mL), 디에틸에테르 (30 mL), 노르말펜탄 (30 mL)로 씻어낸 후 진공으로 건조하여 1-(p-디메틸아미노페닐)-3,4-디메틸시클로펜타디엔을 63 % 수율로 얻었다.
[합성예 1-2] [1-( p -디메틸아미노페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 [1-( p -Dimethylaminophenyl)-3,4-dimethylcyclopentadienyl]titanium trichloride, [1-( p -Me 2 NC 6 H 4 )-3,4-Me 2 C 5 H 2 ]TiCl3)의 합성
상기 [합성예 1-1]에서 합성된 1-(p-디메틸아미노페닐)-3,4-디메틸시클로펜타디엔 (1.280 g, 6.0 mmol)을 30 mL 디에틸에테르에 녹인 뒤, -78 °C에서 1당량의 노르말부틸리튬 (2.4 mL)을 가하였다. 상기 반응기를 상온으로 올린 뒤 4시간 동안 저어주었다.
0 ℃에서 1당량의 트리이소프로폭시티타늄 클로라이드(ClTi(OiPr)3, 1.56 g, 6 mmol)가 들어 있는 테트라하이드로퓨란 20 ml 용액을 가하였다. 반응용액을 상온으로 승온한 다음, 24시간 더 교반하였다. 이후 용매를 완전히 날리고, 30 ml 의 메틸렌클로라이드를 가해 반응생성물을 녹여 내었다. 메틸렌클로라이드에 녹아 나온 반응생성물을 셀라이트 층을 통하여 걸러서 반응의 부산물로 생긴 LiCl 고체물질을 제거하면 엷은 녹색의 용액이 얻어지는데, 이 용액에 과량의 트리메틸실릴클로라이드((CH3)3SiCl, 3당량, 1.96 g)를 0 ℃에서 가하였다. 상온으로 승온한 다음 교반하면 반응이 진행될수록 적색 침전이 서서히 생성되는 것이 관찰되었다. 밤새 교반한 후 적색의 고체물질이 겨우 젖을 정도로 메틸렌클로라이드를 날리고 나서 n-헥산/디에틸에테르(v/v = 2/1) 20 ml 로 두 번 씻은 다음 진공 하에서 건조하여 주홍색의 미세 결정 형태의 1.43 g의 표제화합물을 65% 수율로 얻을 수 있었다.
[합성예 1-3] [1-( p -디메틸아미노페닐)-3,4-디메틸시클로펜타디에닐] (2,6-디이소프로필페녹시) 티타늄 디클로라이드 [1-( p -Dimethylaminophenyl)-3,4-dimethylcyclopentadienyl]titanium trichloride, [1-( p -Me 2 NC 6 H 4 )-3,4-Me 2 C 5 H 2 ] [Ti(O-2,6- i Pr 2 Ph)Cl 2 ]의 합성
상기 [합성예 1-2]에서 합성한 [1-(p-디메틸아미노페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 0.367 (1.0 mmol)과 1당량의 2,6-디이소프로필페놀의 리튬염(LiO-2,6-iPr2Ph) 0.184 g을 같은 반응기에 넣은 다음, -78 ℃에서 테트라하이드로퓨란 20 mL를 가하였다. 반응 용액을 상온까지 천천히 올린 다음, 6시간 더 상온에서 교반하였다. 테트라하이드로퓨란을 날리고 나서 반응 생성물을 메틸렌클로라이드로 추출해 내고, 셀라이트 패드를 통과시켜 반응부산물을 걸러 제거한 다음, 메틸렌클로라이드를 10 mL가 남을 때까지 휘발시켰다. 위의 응축된 용액에 n-헥산 20 mL를 가해 용액과 층을 이루게 한 다음, -20 ℃에서 보관하면 0.28 g의 붉은색 결정의 표제화합물을 55% 수율로 얻을 수 있었다.
[합성예 2-1] 1-( p -메톡시페닐)-3,4-디메틸시클로펜타디엔(1-( p -methoxyphenyl)-3,4-dimethylcyclopentadiene, ( p -MeOC 6 H 4 )-3,4-Me 2 C 5 H 3 )의 합성
3,4-디메틸시클로펜타-2-에논 (2.20 g, 20 mmol)을 테트라하이드로퓨란(20 mL)에 녹인 뒤, -78 °C에서 1당량의 4-메톡시페닐마그네슘 브로마이드 (20 mmol)를 천천히 가해 주었다. 상기 반응 용액을 상온으로 올려준 뒤 밤새 교반시켰다. 상기 오렌지색 용액에 포화된 염화암모늄 수용액을 적당량 가하여 반응을 종결시켰다. 그 다음 디에틸에테르 (50mL)로 유기층만 추출하여 모은 뒤 무수황산마그네슘으로 건조하여 여과시켰다. 상기 여과된 용액을 회전증발기에서 용매를 제거하여 오렌지색 오일을 얻었다. 이 오일을 다시 메틸렌클로라이드(30 mL)에 녹인 뒤, 파라톨루엔술폰산 수화물 (ca. 0.1 g)을 넣고 상온에서 한 시간 동안 저어주었다. 상기 용액을 회전증발기로 용매를 적당히 제거한 후, 에탄올에 다시 용해시켜 재결정하여 2.20 g의 1-(p-메톡시페닐)-3,4-디메틸시클로펜타디엔을 47 % 수율로 얻었다.
[합성예 2-2] [1-( p -메톡시페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 [1-( p -methoxyphenyl)-3,4-dimethylcyclopentadienyl] titanium trichloride, [1-( p -MeOC 6 H 4 )-3,4-Me 2 C 5 H 2 ] 2 TiCl3)의 합성
상기 [합성예 2-1]에서 합성된 1-(p-메톡시페닐)-3,4-디메틸시클로펜타디엔 (1.202 g, 6.0 mmol)을 이용하는 것을 제외하고는, 상기 [합성예 1-2]에서와 동일한 방법으로 반응을 진행시켜 붉은 주황색 고체인 [1-(p-메톡시페닐)-3,4-디메틸시클로펜타디에닐]티타늄 트리클로라이드 1.12 g (53% 수율)을 얻었다.
[합성예 2-3] [1-( p -메톡시페닐)-3,4-디메틸시클로펜타디에닐] (2,6-디이소프로필페녹시) 티타늄 디클로라이드 [1-( p -methoxyphenyl)-3,4-dimethylcyclopentadienyl]titanium trichloride, [1-( p -MeOC 6 H 4 )-3,4-Me 2 C 5 H 2 ] [Ti(O-2,6- i Pr 2 Ph)Cl 2 ]의 합성
상기 [합성예 2-2]에서 합성한 [1-(p-메톡시페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 0.353 (1.0 mmol)을 이용하는 것을 제외하고는, 상기 [합성예 1-3]에서와 동일한 방법으로 반응을 진행시켜 밝은 주황색 고체인 표제 화합물 0.28 g (57% 수율)을 얻을 수 있었다.
[합성예 3-1] 1-( p -메톡시비페닐)-3,4-디메틸시클로펜타디엔(1-( p -methoxyphenyl)-3,4-dimethylcyclopentadiene, ( p -MeOC 6 H 4 C 6 H 4 )-3,4-Me 2 C 5 H 3 )의 합성
4-브로모-4'-메톡시비페닐 (2.631 g, 10 mmol)을 50 mL의 디에틸에테르에 녹인 뒤 0 °C 에서 1당량의 노르말부틸리튬 (4.0 mL)을 가하였다. 상온으로 온도를 올려 2시간 동안 교반시킨 뒤, -78 °C로 온도를 낮추고 1당량의 3,4-디메틸시클로펜타-2-에논 (1.10 g, 10 mmol)을 녹인 20mL의 테트라하이드로퓨란 용액을 적가한 후 상온으로 천천히 올려 밤새 저어주었다. 그 다음, 얻어진 오렌지색을 띄는 용액에 포화된 염화암모늄 수용액을 적당량 가하여 반응을 종결시켰다.
그 다음, 유기 용액층만 디에틸에테르 (50 mL)로 추출하여 모든 뒤, 무수황산마그네슘으로 건조하여 여과하였다. 여과된 용액을 회전증발기에서 용매를 제거하여 얻어진 노란색 오일을 얻었다. 이 오일을 메틸렌클로라이드 (30mL)에 녹인 뒤, 파라-톨루엔술폰산 수화물 (ca. 0.1 g)을 넣고, 상온에서 한 시간 동안 저어주어 아이보리색 고체를 얻었다. 용매를 회전증발기로 증발시킨 뒤 얻어진 고체에 30 mL의 에탄올을 붓고, Glass Filter를 이용하여 걸러내었다. 이어서, 디에틸에테르 (10 mL), 노르말펜탄 (10 mL)로 씻어낸 후 진공으로 건조하여 1-(p-메톡시비페닐)-3,4-디메틸시클로펜타디엔을 55 % 수율로 얻었다.
[합성예 3-2] [1-( p -메톡시비페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 [1-( p -methoxybiphenyl)-3,4-dimethylcyclopentadienyl] titanium trichloride, [1-( p -MeO C 6 H 4 C 6 H 4 )-3,4-Me 2 C 5 H 2 ] 2 TiCl3)의 합성
상기 [합성예 3-1]에서 합성된 1-(p-메톡시비페닐)-3,4-디메틸시클로펜타디엔 (1.202 g, 6.0 mmol)을 이용하는 것을 제외하고는, 상기 [합성예 1-2]에서와 동일한 방법으로 반응을 진행시켜 붉은 주황색 고체인 [1-(p-메톡시페닐)-3,4-디메틸시클로펜타디에닐]티타늄 트리클로라이드 1.29 g (50% 수율)을 얻었다.
[합성예 3-3] [1-( p -메톡시비페닐)-3,4-디메틸시클로펜타디에닐] (2,6-디이소프로필페녹시) 티타늄 디클로라이드 [1-( p -methoxybiphenyl)-3,4-dimethylcyclopentadienyl]titanium trichloride, [1-( p -MeOC 6 H 4 C 6 H 4 )-3,4-Me 2 C 5 H 2 ] [Ti(O-2,6- i Pr 2 Ph)Cl 2 ]의 합성
상기 [합성예 3-2]에서 합성한 [1-(p-메톡시비페닐)-3,4-디메틸시클로펜타디에닐] 티타늄 트리클로라이드 0.430 (1.0 mmol)을 이용하는 것을 제외하고는, 상기 [합성예 1-3]에서와 동일한 방법으로 반응을 진행시켜 밝은 주황색 고체인 표제 화합물 0.34 g (60% 수율)을 얻을 수 있었다.
<중합예>
모든 중합은 외부 공기와 완전히 차단된 고압 반응기(autoclave) 내에서 필요량의 메틸알루미녹산, 트리에틸알루미늄(triisobutylaluminum), 전이금속 화합물 또는 담지 촉매 등을 주입한 후에 일정한 에틸렌 압력을 유지하면서 진행되었다. 중합에 사용된 노르말헥산(n-hexane), 톨루엔(toluene) 등은 무수 등급(anhydrous grade)을 Sigma-Aldrich사로부터 구매한 다음, 활성화된 분자체(Molecular Sieve, 4A) 또는 활성화된 알루미나(alumina) 층을 통과시켜 추가로 건조한 다음 사용하였다. 중합 후 생성된 중합체의 분자량과 분자량 분포는 GPC(Gel Permeation Chromatography, PL-GPC220)법으로 측정하였으며, 녹는점은 DSC(Differential Scanning Calorimetry, TA Instruments)법으로 측정하였다.
[실시예 1]
3 L 스테인레스 스틸 반응기의 내부를 질소로 치환한 후, 노르말헥산 1L를 채우고, MAO 용액 15 mmol과 1-옥텐(1-Octene) 50 g을 넣은 뒤, 상기 [합성예 1-3] 에서 합성된 촉매 7.5 umol을 별도의 촉매 탱크로 주입하였다.
이후 승온하여 70 ℃가 되면 8 bar의 압력으로 에틸렌 가스를 도입하여 온도 70 ℃를 유지하면서 30분 동안 중합 반응을 실시하였다. 중합 반응이 완료된 시점에서 에틸렌 공급을 멈추고, 반응기 온도를 25 ℃로 냉각한 뒤, 미반응 에틸렌을 반응기 외부로 벤트(Vent)하였다. 반응물을 종이 필터에 여과하여 고체 성분으로 분리한 후, 온도 80 ℃ 진공 조건에서 건조하는 방법으로 올레핀 공중합체를 얻었다.
[실시예 2]
상기 [실시예 1]과 동일하게 에틸렌 중합을 실시하되 [합성예 2-3] 에서 합성된 촉매를 사용하여 중합을 실시하였다.
[실시예 3]
상기 [실시예 1]과 동일하게 에틸렌 중합을 실시하되 [합성예 3-3] 에서 합성된 촉매를 사용하여 중합을 실시하였다.
[비교예 1]
상기 [실시예 1]과 동일하게 에틸렌 중합을 실시하되 MAO 10 mmol 사용하고, 합성예의 촉매 대신 비스인데닐 지르코늄 디클로라이드를 5 umol을 사용하여 중합을 실시하였다.
상기 중합 실시예와 중합 비교예의 중합 결과와 얻어진 중합체의 물성을 하기 표 1에 정리하였다.
활성
Kg-PE/mmol of M
분자량
(x 104)
분자량분포
Mw/Mn
Tm
(℃)
실시예 1 24.9 30.0 2.78 78
실시예 2 21.2 20.3 2.66 89
실시예 3 28.6 29.1 2.27 33
비교예 1 18.5 13.8 2.18 62.19,124.7
상기 표 1을 통해 알 수 있는 바와 같이, 실시예 1 내지 실시예 3에 따른 폴리올레핀 공중합체의 중합 결과 및 분석을 통해 에틸렌과 알파-올레핀의 공중합 활성이 우수하고, 분자량이 높은 올레핀 중합체를 제조할 수 있음을 확인하였다.
비교예 1에서는 활성이 다소 낮고 분자량이 낮으며, 알파-올레핀의 공중합의 효율이 낮아 알파-올레핀이 적게 혼입된 높은 Tm을 보이는 결과를 얻었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (9)

  1. (A) 하기 화학식 1의 메탈로센 주촉매 화합물; 및
    (B) 하기 화학식 4-1 내지 4-3으로 표시되는 화합물로 이루어진 군에서 선택되는 1종 이상의 조촉매 화합물을 포함하는, 폴리올레핀 제조용 메탈로센 촉매 시스템:

    [화학식 1]
    Figure pat00013

    상기 화학식 1에서,
    M은 티타늄(Ti), 지르코늄(Zr), 또는 하프늄(Hf)이고,
    X는 (C1~C20)알킬기, (C3~C20)시클로알킬기, (C1~C20)알킬실릴기, 실릴(C1~C20)알킬기, (C6~C20)아릴기, (C6~C20)아릴(C1~C20)알킬기, (C1~C20)알킬(C6~C20)아릴기, (C6~C20)아릴실릴기, 실릴(C6~C20)아릴기, (C1~C20)알콕시기, (C1~C20)알킬실록시기, (C6~C20)아릴옥시기, 할로겐기 및 아민기로 이루어진 군에서 선택되고,
    Cp는 시클로펜타디에닐 골격을 갖는 리간드로서, 하기 화학식 2-1 및 화학식 2-2로 이루어진 군에서 선택되는 1종 이상의 치환체를 가지되; 상기 리간드 및 상기 치환체는 (C1~C20)알킬기, (C3~C20)시클로알킬기, (C1~C20)알킬실릴기, 실릴(C1~C20)알킬기, 할로(C1~C20)알킬기, (C6~C20)아릴기, (C6~C20)아릴(C1~C20)알킬기, (C1~C20)알킬(C6~C20)아릴기, (C6~C20)아릴실릴기, 실릴(C6~C20)아릴기 및 할로겐기로 이루어진 군에서 선택되는 치환체로 추가로 치환될 수 있고; 상기 치환체들은 서로 결합하여 고리를 형성할 수 있고,
    Y는 M과 직접결합하며 하기 화학식 3의 구조를 가지고,
    a 및 b는 서로 독립적으로 1 내지 5의 정수이며,

    [화학식 2-1]
    Figure pat00014

    [화학식 2-2]
    Figure pat00015

    상기 화학식 2-1 및 2-2에서,
    Z는 주기율표 15족 또는 16족의 원소이고,
    R은 수소, (C1~C20)알킬기, (C3~C20)시클로알킬기, (C1~C20)알킬실릴기, 실릴(C1~C20)알킬기, (C6~C20)아릴기, (C6~C20)아릴(C1~C20)알킬기, (C6~C20)알킬(C6~C20)아릴기, (C6~C20)아릴실릴기 및 실릴(C6~C20)아릴기로 이루어진 군에서 선택되고,
    m은 1 또는 2의 정수이고,
    p는 1 내지 5의 정수이며,

    [화학식 3]
    Figure pat00016

    상기 화학식 3에서,
    R1, R2, R3, R4 및 R5는 서로 독립적으로 수소, (C1~C20)알킬기, (C1~C20)알킬실릴기, 실릴(C1~C20)알킬기, 할로(C1~C20)알킬기, (C3~C20)시클로알킬기, (C6~C20)아릴기, C6~C20)아릴(C1~C20)알킬기, (C1~C20)알킬(C6~C20)아릴기, (C6~C20)아릴실릴기, 실릴(C6~C20)아릴기, (C1~C20)알콕시기, (C1~C20)알킬실록시기, (C6~C20)아릴옥시기, 할로겐기 및 아미노기로 이루어진 군에서 선택되고, R1, R2, R3, R4 및 R5 중 둘 이상이 서로 결합하여 고리를 형성할 수 있으며,

    [화학식 4-1]
    Figure pat00017

    상기 화학식 4-1에서,
    R6은 C1~C10의 알킬기이고,
    q는 1 내지 70의 정수이며,

    [화학식 4-2]
    Figure pat00018

    상기 화학식 4-2에서,
    R7, R8 및 R9는 서로 독립적으로 (C1~C10)알킬기, (C1~C10)알콕시기, 또는 할로겐기이고, R7, R8 및 R9 중 하나 이상은 (C1~C10)알킬기이고,

    [화학식 4-3]
    [L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
    상기 화학식 4-3에서,
    L은 중성 또는 양이온성 루이스 산이고,
    Z는 주기율표 13족의 원소이고,
    A는 각각 독립적으로 (C6-C20)아릴 또는 (C1-C20)알킬 라디칼이고, 상기 라디칼은 할로겐, (C1-C20)하이드로카르빌, (C1-C20)알콕시, 또는 (C6-C20)아릴옥시 라디칼로 치환될 수 있다.
  2. 제1항에 있어서, 상기 (A)의 화학식 1의 메탈로센 주촉매 화합물은 [1-(p-Me2NC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(p-MeOC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], 및 [1-(p-MeOC6H4C6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(p-Me2NC6H4)-2,3,4-Me3C5H] [Ti(O-2,6-iPr2Ph)Cl2], [1-(p-MeOC6H4)-2, 3,4-Me3C5H] [Ti(O-2,6-iPr2Ph)Cl2], 및 [1-(p-MeOC6H4C6H4)-2,3,4-Me3C5H] [Ti(O-2,6-iPr2Ph)Cl2], [1-(p-Me2NC6H4)-2,3,4,5-Me4C5] [Ti(O-2,6-iPr2Ph)Cl2], [1-(p-MeOC6H4)-2,3,4,5-Me4C5] [Ti(O-2,6-iPr2Ph)Cl2], 및 [1-(p-MeOC6H4C6H4)-2,3,4,5-Me4C5] [Ti(O-2,6-iPr2Ph)Cl2], [1-(o-Me2NC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(o-MeOC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(o-MeOC6H4C6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(m-Me2NC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], [1-(m-MeOC6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2], 및 [1-(m-MeOC6H4C6H4)-3,4-Me2C5H2] [Ti(O-2,6-iPr2Ph)Cl2]로 이루어진 군에서 선택되는 1종 이상의 것인, 폴리올레핀 제조용 메탈로센 촉매 시스템:
    상기 화학식에서, iPr은 이소프로필(isopropyl)이고, Me는 메틸(methyl)이고, Ph는 페닐(phenyl)이고, NMe2는 디메틸아민(dimethylamine)이고, MeO는 메톡시(methoxy)이고, C6H4는 페닐렌(phenylene)이다.
  3. 제1항에 있어서, 상기 (B)의 조촉매 화합물은 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산(ethylaluminoxane), 부틸알루미녹산(butylaluminoxane), 헥실알루미녹산(hexylaluminoxane), 옥틸알루미녹산(octylaluminoxane), 데실알루미녹산(decylaluminoxane), 트리메틸알루미늄(trimethylaluminum), 트리에틸알루미늄(triethylaluminum), 트리부틸알루미늄(tributylaluminum), 트리헥실알루미늄(trihexylaluminum), 트리옥틸알루미늄(trioctylaluminum), N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate), N,N-디메틸아닐리늄 n-부틸트리스(펜타플루오로페닐)보레이트(N,N-dimethylanilinium n-butyltris(pentafluorophenyl)borate), 및 트리페닐메틸 카르베늄 테트라키스(펜타플루오로페닐)보레이트(triphenylmethylcarbenium tetrakis(pentafluorophenyl)borate)로 이루어진 군에서 선택되는 1종 이상의 화합물인 것인, 폴리올레핀 제조용 메탈로센 촉매 시스템.
  4. 제1항에 있어서, 상기 (A)의 메탈로센 주촉매 화합물: 상기 (B)의 조촉매 화합물의 몰비가 10:1 내지 1:10,000 인 것인, 폴리올레핀 제조용 메탈로센 촉매 시스템.
  5. 제1항에 따른 메탈로센 촉매 시스템을 (C2~C20)올레핀 단량체와 반응시켜 액상(liquid phase), 기상(gas phase), 괴상(bulk phase), 또는 슬러리상(slurry phase)으로 올레핀 중합체를 수득하는 것을 포함하는 폴리올레핀의 제조방법.
  6. 제5항에 있어서, 상기 올레핀 단량체는 α-(C2~C20)올레핀, (C4~C20)디올레핀, (C3~C20)시클로올레핀, (C3~C20)시클로디올레핀, 스티렌 및 스티렌 유도체로 이루어진 군에서 선택되는 것인, 폴리올레핀의 제조방법.
  7. 제5항에 있어서, 상기 올레핀 중합체는 분자량 분포가 2.0 이상 5.0 이하인 것인, 폴리올레핀의 제조방법.
  8. 제5항에 있어서, 상기 올레핀 중합체는 밀도가 0.850 내지 0.920 g/ml이고, 용융흐름지수 (MFI, 190 ℃, 2.16 kg 하중 조건)는 0.1 내지 100 g/10min인 것인, 폴리올레핀의 제조방법.
  9. 제5항에 있어서, 상기 올레핀 중합체는 에틸렌과 프로필렌, 에틸렌과 부텐, 에틸렌과 헥센 또는 에틸렌과 옥텐의 공중합체인 것인, 폴리올레핀의 제조방법.
KR1020170162510A 2017-11-30 2017-11-30 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법 KR20190063602A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170162510A KR20190063602A (ko) 2017-11-30 2017-11-30 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170162510A KR20190063602A (ko) 2017-11-30 2017-11-30 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법

Publications (1)

Publication Number Publication Date
KR20190063602A true KR20190063602A (ko) 2019-06-10

Family

ID=66848637

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170162510A KR20190063602A (ko) 2017-11-30 2017-11-30 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법

Country Status (1)

Country Link
KR (1) KR20190063602A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048030A1 (en) * 2019-09-10 2021-03-18 Sabic Global Technologies B.V. Compounds for use in catalyst compositions for the production of polyolefins
CN117069773A (zh) * 2023-08-30 2023-11-17 苏州源起材料科技有限公司 一种单茂金属配合物及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
KR100834889B1 (ko) 2006-11-02 2008-06-03 호남석유화학 주식회사 전이금속 화합물, 프로필렌 중합용 촉매, 및 상기 촉매를이용한 프로필렌 중합체의 제조방법
KR100986301B1 (ko) 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
KR100834889B1 (ko) 2006-11-02 2008-06-03 호남석유화학 주식회사 전이금속 화합물, 프로필렌 중합용 촉매, 및 상기 촉매를이용한 프로필렌 중합체의 제조방법
KR100986301B1 (ko) 2010-04-12 2010-10-07 아주대학교산학협력단 테트라하이드로퀴놀린 유도체로부터 유래한 티오펜-축합고리 싸이클로펜타디에닐 4족 금속 화합물 및 이를 이용한 올레핀 중합

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021048030A1 (en) * 2019-09-10 2021-03-18 Sabic Global Technologies B.V. Compounds for use in catalyst compositions for the production of polyolefins
CN114364707A (zh) * 2019-09-10 2022-04-15 Sabic环球技术有限责任公司 用于生产聚烯烃的催化剂组合物中的化合物
CN114364707B (zh) * 2019-09-10 2023-09-19 Sabic环球技术有限责任公司 用于生产聚烯烃的催化剂组合物中的化合物
CN117069773A (zh) * 2023-08-30 2023-11-17 苏州源起材料科技有限公司 一种单茂金属配合物及其制备方法与应用
CN117069773B (zh) * 2023-08-30 2024-01-26 苏州源起材料科技有限公司 一种单茂金属配合物及其制备方法与应用

Similar Documents

Publication Publication Date Title
US6943225B2 (en) Multinuclear metallocene catalyst
RU2135522C1 (ru) Каталитическая композиция и способ полимеризации олефинов
KR950009197B1 (ko) 신규한 천이금속화합물 및 이것을 이용한 올레핀의 중합방법
KR101249995B1 (ko) 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 올레핀계 중합체의 제조방법
KR101618460B1 (ko) 올레핀 중합용 담지 촉매 및 이를 이용하여 제조된 올레핀 중합체의 제조방법
EP1373282B1 (en) Bimetallic catalysts for olefin polymerization
EP1214364A1 (en) Catalyst system and process for the polymerization of olefins
KR101071400B1 (ko) 혼성 담지 메탈로센 촉매, 이의 제조 방법 및 혼성 담지메탈로센 촉매를 이용한 폴리올레핀의 제조방법
JP2000513761A (ja) 官能性ポリオレフィンの製造法
KR101228582B1 (ko) 폴리올레핀 제조용 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조방법
CN109983040B (zh) 聚烯烃催化剂和使用其制备聚烯烃的方法
KR20190063602A (ko) 폴리올레핀 제조용 메탈로센 촉매 시스템 및 이를 이용한 폴리올레핀의 제조방법
EP2305719B1 (en) Method for preparing an olefin polymerization catalyst and olefin polymerization method using the same
CN108290971B (zh) 金属茂负载型催化剂及使用该催化剂制备聚烯烃的方法
NO319295B1 (no) Katalysatorsystem for polymerisering
KR101835993B1 (ko) 올레핀 중합용 촉매 및 이를 이용한 올레핀 중합체의 제조방법
ES2311174T3 (es) Procedimiento de polimerizacion de olefinas.
KR20150017309A (ko) 이핵 메탈로센 화합물, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR0151873B1 (ko) 메탈로센 화합물, 이의 제조방법 및 이를 촉매로 이용한 고분자의 제조방법
EP1043339A1 (en) Polymerization catalyst and process for producing olefin polymer or copolymer with the same
JPH0559077A (ja) 新規遷移金属化合物
KR100615460B1 (ko) 메탈로센 촉매 및 이를 이용한 폴리올레핀 왁스의 제조방법
KR101785705B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR101174516B1 (ko) 수소첨가된 촉매
US6087290A (en) Si-N-Si-bridged metallocenes, their production and use