KR20190062390A - 검출된 배리어에 기반한 차량의 항법 - Google Patents

검출된 배리어에 기반한 차량의 항법 Download PDF

Info

Publication number
KR20190062390A
KR20190062390A KR1020197006678A KR20197006678A KR20190062390A KR 20190062390 A KR20190062390 A KR 20190062390A KR 1020197006678 A KR1020197006678 A KR 1020197006678A KR 20197006678 A KR20197006678 A KR 20197006678A KR 20190062390 A KR20190062390 A KR 20190062390A
Authority
KR
South Korea
Prior art keywords
vehicle
barrier
image
image capture
images
Prior art date
Application number
KR1020197006678A
Other languages
English (en)
Inventor
바락 코헨
Original Assignee
모빌아이 비젼 테크놀로지스 엘티디.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 모빌아이 비젼 테크놀로지스 엘티디. filed Critical 모빌아이 비젼 테크놀로지스 엘티디.
Priority to KR1020207027886A priority Critical patent/KR102534353B1/ko
Publication of KR20190062390A publication Critical patent/KR20190062390A/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G06K9/00791
    • G06K9/00798
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/008Registering or indicating the working of vehicles communicating information to a remotely located station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2201/00Application
    • G05D2201/02Control of position of land vehicles
    • G05D2201/0213Road vehicle, e.g. car or truck

Abstract

차량의 항법을 위한 시스템 및 방법이 제공된다. 일 실시예에서, 차량의 항법을 위한 시스템은 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하고, 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량 주변상황 내에서 식별하고, 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 복수의 이미지의 적어도 하나에 기반하여 식별하고, 적어도 하나의 배리어의 유형을 판단하도록 프로그램된 적어도 하나의 처리장치를 포함한다. 적어도 하나의 처리장치는 또한 적어도 하나의 배리어의 판단된 유형에 의거하여 차량의 주행 경로를 결정하고 차량으로 하여금 결정된 주행 경로의 적어도 일부 상에서 이동하게 하도록 프로그램된다.

Description

검출된 배리어에 기반한 차량의 항법
본 발명은 자율 주행에 관한 것이다. 또한, 본 발명은 검출된 배리어(barrier)에 기반한 차량의 항법 시스템과 방법에 관한 것이다.
기술 발전과 함께, 도로 상에서 항법이 가능한 완전 자율 자동차의 구현이 목전에 있다. 자율주행차는 의도한 목적지에 안전하고 정확하게 도착하기 위해 다양한 요소를 고려하고 그런 요소에 근거한 적절한 판단을 해야 할 수 있다. 예를 들어, 자율주행차는 시각 정보(예를 들면, 카메라로부터 캡처 된 정보) 및 레이더 또는 라이더(lidar)로부터의 정보를 처리하고 해석해야 할 수 있고, 또한 기타 출처(예를 들면, GPS 장치, 속력 센서, 가속도계, 서스펜션 센서 등)로부터 획득한 정보를 이용할 수도 있다. 동시에, 자율주행차는, 목적지로 주행하기 위하여, 특정 도로 내의 위치(예를 들면, 다차선 도로 상의 특정 차로)를 식별하고, 다른 차량을 따라 주행하고, 장애물과 보행자를 회피하고, 신호등과 도로표지판을 관찰하고, 적절한 교차로나 분기점에서 한 도로에서 다른 도로로 이동하고, 차량의 조작 중에 발생하는 기타 다른 상황에 대응할 필요가 있을 수도 있다. 자율주행차는 상대적으로 짧은 거리의 전방에 장애물 또는 보행자가 예기치 않게 등장하면 문제가 될 수 있다. 이러한 경우, 자율주행차는 차량의 주변상황을 신속하게 분석하고 사고의 회피 및/또는 손상의 최소화를 위한 차량의 실행 가능한 항법 경로를 판단할 필요가 있다.
본 발명은 검출된 배리어(barrier)에 기반한 차량의 항법 시스템과 방법을 제공하는 것이다.
본 기재의 실시예들은 자율 주행을 위한 시스템과 방법을 제공한다. 기재된 실시예는 카메라를 사용하여 자율 주행 특징을 제공할 수 있다. 예를 들면, 기재된 실시예에 따라, 기재된 시스템은 차량의 주변상황을 모니터하는 하나, 둘, 또는 그 이상의 카메라를 포함할 수 있다. 기재된 시스템은, 예를 들어, 하나 또는 그 이상의 카메라에 의해 캡처 된 이미지의 분석에 근거하여 주행 반응을 제공할 수 있다. 상기 주행 반응은 또한, 예를 들어, GPS 데이터, 센서 데이터(예, 가속도계, 속력 센서, 서스펜션 센서 등으로부터의 데이터), 및/또는 기타 지도 데이터를 포함하는 기타 데이터를 고려할 수 있다.
일부 실시예에서, 차량의 항법을 위한 시스템은 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하고, 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량 주변상황 내에서 식별하고, 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어(barrier)를 복수의 이미지의 적어도 하나에 기반하여 식별하고, 적어도 하나의 배리어의 유형을 판단하도록 프로그램된 적어도 하나의 처리장치를 포함할 수 있다. 적어도 하나의 처리장치는 또한 적어도 하나의 배리어의 판단된 유형에 기반하여 차량의 주행 경로를 결정하고 차량으로 하여금 결정된 주행 경로의 적어도 일부 상에서 이동하게 하도록 프로그램된다.
다른 실시예에서, 차량의 항법을 위한 시스템은 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하고, 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량 주변상황 내에서 식별하고, 항법 가능한 구역의 적어도 한 가장자리와 관련된 제1 배리어와 항법 가능한 구역의 적어도 한 가장자리와 관련된 제2 배리어를 복수의 이미지의 적어도 하나에 기반하여 식별하고, 제1 배리어의 유형과 제2 배리어의 유형을 판단하도록 프로그램된 적어도 하나의 처리장치를 포함한다. 제1 배리어의 판단된 유형은 횡단 가능 배리어를 포함하고, 제2 배리어의 판단된 유형은 횡단 불가능 배리어를 포함한다. 적어도 하나의 처리장치는 또한, 제1 배리어와 제2 배리어의 판단된 유형에 기반하여 차량의 주행 경로를 결정하도록 프로그램된다. 결정된 주행 경로는 제2 배리어를 피하기 위해 제1 배리어를 통과하는 것을 포함한다. 적어도 하나의 처리장치는 또한 차량으로 하여금 결정된 주행 경로의 적어도 일부 상에서 이동하게 하도록 프로그램된다.
다른 실시예에서, 차량의 항법을 위한 방법은 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하는 단계, 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량 주변상황 내에서 식별하는 단계, 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 복수의 이미지의 적어도 하나에 기반하여 식별하는 단계, 적어도 하나의 배리어의 유형을 판단하는 단계, 적어도 하나의 배리어의 판단된 유형에 기반하여 차량의 주행 경로를 결정하는 단계, 및 차량으로 하여금 결정된 주행 경로의 적어도 일부 상에서 이동하게 하는 단계를 포함한다.
또 다른 실시예에서, 차량의 항법을 위한 방법은 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하는 단계, 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량 주변상황 내에서 식별하는 단계, 항법 가능한 구역의 적어도 한 가장자리와 관련된 제1 배리어와 항법 가능한 구역의 적어도 한 가장자리와 관련된 제2 배리어를 복수의 이미지의 적어도 하나에 기반하여 식별하는 단계, 및 제1 배리어의 유형과 제2 배리어의 유형을 판단하는 단계를 포함한다. 제1 배리어의 판단된 유형은 횡단 가능 배리어를 포함하고, 제2 배리어의 판단된 유형은 횡단 불가능 배리어를 포함한다. 상기 방법은 또한 제1 배리어와 제2 배리어의 판단된 유형에 기반하여 차량의 주행 경로를 결정하는 단계를 포함한다. 결정된 주행 경로는 제2 배리어를 피하기 위해 제1 배리어를 통과하는 것을 포함한다. 상기 방법은 차량으로 하여금 결정된 주행 경로의 적어도 일부 상에서 이동하게 하는 단계를 더 포함한다.
다른 기재된 실시예에 따라, 비일시적 컴퓨터 가독 저장 매체는 적어도 하나의 처리장치에 의해 실행되고 상기 기재된 방법 중의 어느 하나 이상을 수행하는 프로그램 명령을 저장할 수 있다.
상기 기재와 하기의 상세한 설명은 예시일 뿐이며 본 발명의 청구범위를 제한하지 않는다.
본 명세서에 포함되고 본 명세서의 일부를 구성하는 첨부 도면은 기재된 다양한 실시예를 도시한다.
도 1은 기재된 실시예에 따른 예시적인 시스템의 개략도이다.
도 2A는 기재된 실시예에 따른 시스템을 포함하는 예시적인 자동차의 측면도이다.
도 2B는 기재된 실시예에 따른 도 2A의 자동차와 시스템의 평면도이다.
도 2C는 기재된 실시예에 따른 시스템을 포함하는 자동차의 다른 실시예의 평면도이다.
도 2D는 기재된 실시예에 따른 시스템을 포함하는 자동차의 또 다른 실시예의 평면도이다.
도 2E는 기재된 실시예에 따른 시스템을 포함하는 자동차의 또 다른 실시예의 평면도이다.
도 2F는 기재된 실시예에 따른 예시적인 자동차 제어 시스템의 개략도이다.
도 3A는 기재된 실시예에 따른 차량 이미징 시스템을 위한 백미러(rear view mirror)와 사용자 인터페이스를 포함하는 차량의 실내를 개략적으로 예시한 것이다.
도 3B는 기재된 실시예에 따른 백미러 뒤의 차량 전면 유리에 위치되도록 구성된 카메라 마운트의 일례이다.
도 3C는 기재된 실시예에 따른 도 3B의 카메라 마운트를 다른 시각에서 예시한 것이다.
도 3D는 기재된 실시예에 따른 백미러 뒤의 차량 전면 유리에 위치되도록 구성된 카메라 마운트의 일례이다.
도 4는 기재된 실시예에 따른 하나 이상의 동작의 수행을 위한 명령을 저장하도록 구성된 메모리의 예시적인 구성도이다.
도 5A는 기재된 실시예에 따른 단안 이미지 분석에 근거한 하나 이상의 주행 반응을 야기하는 프로세스의 일례를 예시한 순서도이다.
도 5B는 기재된 실시예에 따른 일련의 영상에서 하나 이상의 차량 및/또는 보행자를 검출하는 예시적인 프로세스를 도시한 순서도이다.
도 5C는 기재된 실시예에 따른 일련의 영상에서 도로 표시 및/또는 차선 형상 정보를 검출하는 예시적인 프로세스를 도시한 순서도이다.
도 5D는 기재된 실시예에 따른 일련의 영상에서 신호등을 검출하는 예시적인 프로세스를 도시한 순서도이다.
도 5E는 기재된 실시예에 따른 차량 경로에 근거한 하나 이상의 주행 반응을 야기하는 예시적인 프로세스를 도시한 순서도이다.
도 5F는 기재된 실시예에 따른 선두 차량이 차선 변경을 하는지를 판단하는 예시적인 프로세스를 도시한 순서도이다.
도 6은 기재된 실시예에 따른 입체 영상 분석에 근거한 하나 이상의 주행 반응을 야기하는 예시적인 프로세스를 도시한 순서도이다.
도 7은 기재된 실시예에 따른 3개 집합의 영상에 근거한 하나 이상의 주행 반응을 야기하는 예시적인 프로세스를 도시한 순서도이다.
도 8은 기재된 실시예에 따른 차량의 항법 시스템을 도시한 것이다.
도 9는 기재된 실시예에 따른 프로그램 모듈을 저장하는 메모리의 일례를 도시한 것이다.
도 10A는 기재된 실시예에 따른 예시적인 차량의 주변상황의 조감도를 개략적으로 도시한 것이다.
도 10B는 도 10A에 도시된 예시적인 차량에 포함된 전방 이미지캡처장치에 의해 캡처된 도 10A의 주변상황의 이미지를 개략적으로 도시한 것이다.
도 11은 기재된 실시예에 따른 예시적인 프로세스를 도시한 순서도이다.
도 12는 기재된 실시예에 따른 예시적인 프로세스를 도시한 순서도이다.
도 13은 기재된 실시예에 따른 예시적인 프로세스를 도시한 순서도이다.
하기의 상세한 설명은 첨부한 도면에 관하여 설명한 것이다. 가능한 모든 경우에, 도면과 설명에서 동일 또는 유사한 구성요소에 동일한 참조 번호를 사용한다. 여러 예시적인 실시예를 설명하였지만, 다양한 수정, 응용, 구현 등이 가능하다. 예를 들어, 도면에 예시된 구성요소를 치환, 또는 추가, 수정할 수 있고, 설명에 포함된 방법은 단계를 치환하거나 순서를 바꾸거나 추가하여 수정할 수 있다. 따라서, 하기의 상세한 설명은 기재한 실시예와 예시에 국한되지 않고, 본 발명의 청구 범위는 기재된 청구항에 의해 정의된다.
자율주행차의 개요
본 명세서에서 사용된 "자율주행차"라는 용어는 운전자의 입력 없이 적어도 하나의 주행 변경을 구현할 수 있는 차량을 의미한다. "주행 변경"이란 차량의 조향, 제동, 가속/감속의 하나 이상을 변경하는 것을 의미한다. 차량이 자율이기 위해서는 완전 자동(예, 운전자나 운전자의 입력 없이 완전히 동작)이어야 한다. 반면, 자율주행차는 특정 시간 동안은 운전자의 제어 하에 작동할 수 있고 다른 시간 동안은 운전자의 제어 없이 작동할 수 있는 차량을 포함한다. 자율주행차는 조향(예, 차량 진로의 차선 사이 유지) 또는 특정 상황 하(모든 상황 하에서가 아님)에서의 일부 조향 동작과 같은 일부 주행 요소만을 제어하고 나머지 요소(예, 제동 또는 특정 상황 하에서의 제동)는 운전자에게 맡기는 차량도 포함할 수 있다. 일부 경우에, 자율주행차는 차량의 제동 및/또는 속도 제어, 조향의 일부 또는 모든 요소를 처리할 수 있다.
운전자들은 차량을 제어하기 위해 흔히 시각적 신호와 관찰에 의존하므로, 교통 인프라는 이에 따라 구축되어, 차로 표시, 교통 표지, 신호등이 운전자들에게 시각적 정보를 제공하도록 설계되었다. 교통 인프라의 이러한 설계 특징을 고려하여, 자율주행차는 카메라 및 차량의 주변으로부터 확보한 시각적 정보를 분석하는 처리부를 포함할 수 있다. 시각적 정보는, 예를 들어, 운전자가 눈으로 확인할 수 있는 교통 인프라의 구성요소(예, 차로 표시, 교통 표지, 신호등 등) 및 기타 장애물(예, 다른 차량, 보행자, 잔해 등)을 나타내는 이미지를 포함할 수 있다. 또한, 자율주행차는 주행 시에 차량 주변상황의 모델을 제공하는 정보와 같은 저장 정보도 사용할 수 있다. 예를 들어, 차량은 이동 중의 차량 주변상황과 관련된 정보를 제공하기 위하여 GPS 데이터 및/또는 센서 데이터(예, 가속도계, 속력 센서, 서스펜션 센서 등으로부터의 데이터), 기타 지도 데이터를 활용할 수 있고, 차량(다른 차량도 함께)은 이런 정보를 이용하여 차량의 위치를 모델 상에서 알아낼 수 있다. 일부 차량들은 또한, 서로 통신이 가능하여, 정보를 교환하고, 차량 주변의 위험 또는 변화에 대해 상대 차량의 수정 등을 가능하게 한다.
시스템 개요
도 1은 본 발명 실시예의 일례에 따른 시스템(100)의 구성도이다. 시스템(100)은 해당 구현의 요구 조건에 따라 다양한 구성 요소를 포함할 수 있다. 일부 실시예에서, 시스템(100)은 처리부(110), 이미지획득부(120), 위치센서(120), 하나 이상의 메모리부(140, 150), 지도 데이터베이스(160), 사용자 인터페이스(170), 무선 송수신기(172)를 포함할 수 있다. 처리부(110)는 하나 이상의 처리장치를 포함할 수 있다. 일부 실시예에서, 처리부(110)는 애플리케이션 프로세서(180), 이미지 프로세서(190), 또는 기타 적합한 처리장치를 포함할 수 있다. 이와 마찬가지로, 이미지획득부(120)는 특정 애플리케이션의 요구 조건에 따라 여러 개의 이미지 획득 장치 및 소자를 포함할 수 있다. 일부 실시예에서, 이미지획득부(120)는 이미지캡처장치(122, 124, 126)와 같은 하나 이상의 이미지캡처장치(예, 카메라, CCD, 또는 기타 유형의 이미지센서)를 포함할 수 있다. 시스템(100)은 또한 처리부(110)와 이미지획득부(120)를 서로 통신하도록 연결하는 데이터 인터페이스(128)를 포함할 수 있다. 예를 들어, 데이터 인터페이스(128)는 이미지획득부(120)가 획득한 이미지 데이터를 처리부(110)로 전송하기 위한 단수 또는 복수의 유선 및/또는 무선 링크를 포함할 수 있다.
무선 송수신기(172)는 무선주파수, 또는 적외선주파수, 자기장, 전기장을 사용하여 무선 인터페이스를 통하여 전파를 하나 이상의 네트워크(예, 이동통신, 인터넷 등)와 주고받도록 구성된 하나 이상의 장치를 포함할 수 있다. 무선 송수신기(172)는 공지의 표준(예, Wi- Fi, Bluetooth®, Bluetooth Smart, 802.15.4, ZigBee 등)을 사용하여 데이터를 송신 및/또는 수신할 수 있다. 이러한 송신은 호스트 차량으로부터 하나 이상의 원격 서버로의 통신을 포함할 수 있다. 이러한 송신은 또한, 호스트 차량과 호스트 차량의 주변환경에 있는 한 대 이상의 타깃 차량 사이의 (일방 또는 쌍방) 통신(예, 호스트 차량의 주변환경에 있는 타깃 차량을 고려한/또는 타깃 차량과 함께 호스트 차량의 주행을 조정하기 위함) 또는 전송 차량의 주변에 있는 불특정 수신자에게 보내는 방송도 포함할 수 있다.
애플리케이션 프로세서(180)와 이미지 프로세서(190)는 모두 다양한 종류의 하드웨어 기반 처리장치를 포함할 수 있다. 예를 들어, 애플리케이션 프로세서(180)와 이미지 프로세서(190) 중 어느 하나 또는 모두는 마이크로프로세서, 전처리장치(예, 이미지 전처리장치), 그래픽 프로세서, 중앙 처리장치(CPU), 보조 회로, 디지털 신호 처리장치, 집적 회로, 메모리, 또는 애플리케이션을 실행하고 영상을 처리 및 분석하기에 적합한 유형의 장치를 포함할 수 있다. 일부 실시예에서, 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)는 단일 또는 멀티 코어 프로세서, 모바일 장치 마이크로컨트롤러, 중앙 처리장치의 한 종류를 포함할 수 있다. Intel®, AMD® 등과 같은 업체가 제공하는 프로세서들을 포함하는 다양한 처리장치들이 사용될 수 있으며, 다양한 아키텍처(예, x86 프로세서, ARM® 등)가 포함될 수 있다.
일부 실시예에서, 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)는 Mobileye®가 제공하는 EyeQ 시리즈의 프로세서 칩을 포함할 수 있다. 이러한 프로세서 설계는 로컬 메모리와 명령 집합을 가진 다중 처리장치를 포함한다. 이러한 프로세서는 복수의 이미지 센서로부터 이미지 데이터를 수신하는 비디오 인풋(inputs)을 포함할 수 있고 비디오 아웃풋 기능(out capabilities)도 포함할 수 있다. 일례로, EyeQ2®는 332Mhz로 작동하는 90nm-마이크론 기술을 사용한다. EyeQ2® 아키텍처는 두 개의 부동 소수점(floating point) 하이퍼 스레드(hyper-thread) 32비트 RISC CPU(MIPS32® 34K® cores), 다섯 개의 Vision Computing Engines (VCE), 세 개의 Vector Microcode Processors(VMP®), Denali 64비트 Mobile DDR Controller, 128비트 내부 Sonics Interconnect, 듀얼 16비트 비디오 인풋 및 18비트 비디오 아웃풋 제어 장치, 16채널 DMA 및 여러 주변 장치로 구성된다. MIPS34K CPU는 다섯 개의 VCE와 세 개의 VMP?, DMA, 두 번째 MIPS34K CPU, 다중 채널 DMA, 및 기타 주변 장치를 관리한다. 다섯 개의 VCE, 세 개의 VMP® 및 MIPS34K CPU는 다기능 묶음 애플리케이션이 요구하는 집중 시각 연산(intensive vision computations)을 수행할 수 있다. 다른 일례에서, EyeQ2®보다 6배 강력한 3세대 프로세서인 EyeQ3®가 실시예에 사용될 수 있다. 다른 일례에서, EyeQ4® 및/또는 EyeQ5®가 기재된 실시예에 사용될 수 있다. 물론, 신형 또는 미래의 EyeQ 처리장치도 기재된 실시예와 함께 사용될 수 있다.
본 명세서에 기재된 처리장치(processing devices)는 각각 특정한 기능을 수행하도록 구성될 수 있다. 특정한 기능을 수행하도록 상기의 EyeQ 프로세서 또는 기타 제어 장치 또는 마이크로프로세서와 같은 처리장치(processing devices)를 구성하는 것은 컴퓨터 실행 명령을 프로그램하고 이러한 명령을 처리장치(processing devices)가 작동하는 동안에 처리장치(processing devices)에 제공하여 실행하도록 하는 것을 포함할 수 있다. 일부 실시예에서, 처리장치(processing devices)를 구성하는 것은 구조적 명령으로 처리장치를 직접 프로그램하는 것을 포함할 수 있다. 다른 실시예에서, 처리장치(processing devices)를 구성하는 것은 작동 중에 처리장치에 접속 가능한 메모리에 실행을 위한 명령을 저장하는 것을 포함할 수 있다. 예를 들어, 처리장치(processing devices)는 작동 중에 메모리에 접속하여 저장된 명령을 획득하고 실행할 수 있다. 어느 경우이든, 여기에 기재된 검출, 이미지 분석, 및/또는 주행 기능을 수행하도록 구성된 처리장치(processing devices)는 호스트 차량의 복수의 하드웨어 기반 구성요소를 제어하는 특화된 하드웨어 기반 시스템을 나타낸다.
도 1에는 두 개의 처리장치(processing devices)가 처리부(110)에 포함된 것을 예시하였지만, 이보다 많거나 적은 처리장치가 사용될 수 있다. 예를 들면, 일부 실시예에서, 애플리케이션 프로세서(180)와 이미지 프로세서(190)의 작업을 수행하기 위하여 단일 처리장치를 사용할 수 있다. 다른 실시예에서, 이러한 작업은 2개 이상의 처리장치를 사용하여 수행될 수 있다. 또한, 일부 실시예에서, 시스템(100)은 하나 이상의 처리부(110)를 포함하되 이미지획득부(120) 등과 같은 다른 구성요소를 포함하지 않을 수도 있다.
처리부(110)는 다양한 유형의 장치를 포함할 수 있다. 예를 들어, 처리부(110)는 제어 장치, 이미지 전처리장치, 중앙 처리장치(CPU), 보조 회로, 디지털 신호 처리장치, 집적 회로, 메모리, 또는 이미지의 처리 및 분석을 위한 기타 유형의 장치 등과 같은 다양한 장치를 포함할 수 있다. 이미지 전처리장치는 이미지 센서로부터 이미지를 캡처, 디지털화, 처리하기 위한 이미지 프로세서를 포함할 수 있다. CPU는 단수 또는 복수의 마이크로컨트롤러 또는 마이크로프로세서를 포함할 수 있다. 보조 회로는 캐시, 전원, 클락, 입/출력 회로 등과 같이 본 발명의 분야에서 일반적으로 공지된 단수 또는 복수의 회로를 포함할 수 있다. 메모리는 처리장치에 의해 실행될 때 시스템의 동작을 제어하는 소프트웨어를 저장할 수 있다. 메모리는 단수 또는 복수의 RAM(random access memory), ROM(read only memory), 플래시 메모리, 디스크 드라이브, 광 저장 장치, 테이프 저장 장치, 탈착형 저장 장치, 및 기타 유형의 저장 장치를 포함할 수 있다. 일례에서, 메모리는 처리부(110)와 분리되어 있을 수 있다. 다른 예에서, 메모리는 처리부(110)와 일체로 구성될 수 있다.
메모리(140, 150) 각각은 처리장치(예, 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190))에 의해 실행될 때 시스템(100)의 다양한 측면의 동작을 제어할 수 있는 소프트웨어 명령을 포함할 수 있다. 이러한 메모리 장치는 다양한 데이터베이스 및 이미지 처리 소프트웨어뿐만 아니라, 예를 들어, 신경망(neural network), 심층 신경망(deep neural network)과 같은 학습 시스템(trained system)을 포함할 수 있다. 이러한 메모리 장치는 RAM, ROM, 플래시 메모리, 디스크 드라이브, 광 저장 장치, 테이프 저장 장치, 탈착형 저장 장치 및/또는 기타 유형의 저장 장치를 포함할 수 있다. 일부 실시예에서, 메모리 장치(140, 150)는 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)와 분리되어 있을 수 있다. 다른 실시예에서, 이러한 메모리 장치는 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)와 일체로 구성될 수 있다.
위치센서(130)는 시스템(100)의 적어도 한 구성요소와 연관된 위치를 판단하기에 적합한 유형의 장치를 포함할 수 있다. 일부 실시예에서, 위치센서(130)는 GPS 수신기를 포함할 수 있다. 이러한 수신기는 GPS 위성이 송신하는 신호를 처리하여 사용자의 위치와 속도를 판단할 수 있다. 위치센서(130)로부터의 위치 정보는 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)로 제공될 수 있다.
일부 실시예에서, 시스템(100)은 차량(200)의 속도를 측정하기 위한 속력 센서(예, 속도계)를 포함할 수 있다. 시스템(100)은 또한 하나 이상의 축을 따라 차량(200)의 가속을 측정하기 위한 하나 이상의 가속도계(단축 또는 다축)를 포함할 수 있다.
메모리(10, 150)는 알려진 랜드마크의 위치를 나타내는 데이터베이스 또는 다른 형태로 구성된 데이터를 포함할 수 있다. 차량 주변상황의 감지 정보(예, 이미지, 레이더 신호, 라이더로 또는 둘 이상의 이미지의 입처 처리로부터의 깊이 정보)는 GPS 좌표, 차량의 자체 움직임 등과 같은 위치 정보와 함께 처리되어, 알려진 랜드마크에 대한 차량의 상대적 현재 위치를 판단하고, 차량의 위치의 정확도를 개선할 수 있다. 이러한 기술의 특정 측면은 본 출원의 양수인이 판매하고 있는 REMTM으로 알려진 위치인식 기술에 포함된다.
사용자 인터페이스(170)는 시스템(100)의 하나 이상의 사용자에게 정보를 제공하고 사용자로부터 입력을 수신하기 적합한 장치를 포함할 수 있다. 일부 실시예에서, 사용자 인터페이스(170)는 예를 들어 터치스크린, 마이크, 키보드, 포인터 장치, 트랙휠, 카메라, 노브, 버튼 등의 사용자 입력 장치를 포함할 수 있다. 이러한 입력 장치는 사용자로 하여금 명령 또는 정보를 타이핑하거나, 음성 명령을 제공하거나, 버튼, 포인터, 또는 눈동자 추적 기능을 사용하여 화면 상의 메뉴를 선택하거나, 시스템(100)과 정보를 교환하기 위한 기타 적합한 기술을 통하여 시스템(100)에 정보 입력 또는 명령을 제공할 수 있게 해준다.
사용자 인터페이스(170)는 사용자에게 정보를 제공하고 사용자로부터 정보를 수신하며 이러한 정보를 예를 들어 애플리케이션 프로세서(180)가 사용하게 처리하도록 구성된 하나 이상의 처리장치를 구비할 수 있다. 일부 실시예에서, 이러한 처리장치는 눈동자의 움직임을 인식 및 추적하고, 음성 명령을 수신 및 해석하고, 터치스크린 상의 터치 및/또는 제스처를 인식 및 해석하고, 키보드 입력 또는 메뉴 선택에 응답하는 등을 위한 지시를 수행할 수 있다. 일부 실시예에서, 사용자 인터페이스(170)는 디스플레이, 스피커, 촉감 장치, 및/또는 사용자에게 출력 정보를 제공하는 기타 장치를 포함할 수 있다.
지도 데이터베이스(160)는 시스템(100)에서 사용 가능한 지도 데이터를 저장하기 위한 모든 유형의 데이터베이스를 포함할 수 있다. 일부 실시예에서, 지도 데이터베이스(160)는 도로, 하천 지형, 지리적 지형, 사업체, 관심 지점, 식당, 주유소 등의 다양한 항목의 기준 좌표계 상 위치와 관련된 데이터를 포함할 수 있다. 지도 데이터베이스(160)는 이런 항목의 위치뿐만 아니라, 예를 들면, 저장된 지점 관련 명칭 등을 포함하는 설명을 저장할 수 있다. 일부 실시예에서, 지도 데이터베이스(160)는 시스템(100)의 다른 구성요소와 함께 물리적으로 배치될 수 있다. 대안적으로, 또는 추가적으로, 지도 데이터베이스(160) 또는 지도 데이터베이스(160)의 일부는 시스템(100)의 다른 구성요소(예, 처리부(110))에 대하여 원격으로 배치될 수 있다. 이 경우, 지도 데이터베이스(160)로부터의 정보는 네트워크와의 유선 또는 무선 데이터 연결(예, 이동통신망 및/또는 인터넷 등)을 통하여 다운로드 될 수 있다. 일부의 경우, 지도 데이터베이스(160)는 특정 도로 특징(예, 차로 표시) 또는 호스트 차량의 목표 궤적의 다항식 표현을 포함하는 스파스 맵 모델을 저장할 수 있다. 지도 데이터베이스(160)는 또한 목표 궤적에 대한 호스트 차량의 알려진 위치를 판단 또는 업데이트하기 위해 사용될 수 있는 다양한 인지된 랜드마크의 저장된 표현을 포함할 수 있다. 랜드마크 표현은 랜드마크 식별자, 랜드마크 위치, 기타 잠재적 식별자와 같은 데이터 필드를 포함할 수 있다.
이미지캡처장치(122, 124, 126)는 각각 주변 환경으로부터 적어도 하나의 이미지를 캡처하기에 적합한 유형의 장치를 포함할 수 있다. 또한, 이미지 프로세서로의 입력에 필요한 이미지를 캡처하기 위하여 여러 개의 이미지캡처장치를 사용할 수 있다. 일부 실시예는 단일 이미지캡처장치를 포함할 수 있는 반면, 다른 실시예는 두 개, 세 개, 또는 4개 이상의 이미지캡처장치를 포함할 수 있다. 이미지캡처장치(122, 124, 126)는 도 2B 내지 도 2E를 참조하여 하기에 추가로 설명한다.
하나 이상의 카메라(예, 이미지캡처장치(122, 124, 126))는 차량에 포함된 감지 블록(sensing block)의 일부일 수 있다. 다양한 기타 센서들이 감지 블록에 포함될 수 있으며, 센서들의 일부 또는 모두에 의존하여 차량의 항법 상태에 대한 파악을 구축할 수 있다. 카메라(전방, 측방, 후방 등) 외에도 레이더, 라이더, 음향 센서와 같은 기타 센서들이 감지 블록에 포함될 수 있다. 추가적으로, 감지 블록은 차량의 주변환경에 관한 정보를 통신 및 송수신하도록 구성된 하나 이상의 구성요소를 포함할 수 있다. 예를 들면, 이러한 구성요소는 호스트 차량에 관한 센서 기반 정보 또는 기타 유형의 정보를 호스트 차량에 대해 원격으로 위치한 소스로부터 수신할 수 있는 무선 송수신기(RF 등)를 포함할 수 있다. 이러한 정보는 호스트 차량이 아닌 다른 차량으로부터 수신한 센서 출력 정보 또는 관련 정보를 포함할 수 있다. 일부 실시예에서, 이러한 정보는 원격 컴퓨팅 장치, 중앙 서버 등으로부터 수신된 정보를 포함할 수 있다. 나아가, 카메라는 단일 카메라 장치, 복수의 카메라, 카메라 클러스터, 망원 시야, 근거리 시야, 광각, 어안 등, 다양한 구성을 가질 수 있다.
시스템(100), 혹은 시스템(100)의 다양한 구성요소는 다양한 플랫폼에 구현될 수 있다. 일부 실시예에서, 시스템(100)은, 도 2A에 예시된 바와 같이, 차량(200)에 포함될 수 있다. 예를 들면, 차량(200)에는 도 1에 설명한 처리부(110) 및 시스템(100)의 기타 구성요소가 구비될 수 있다. 일부 실시예의 차량(200)에는 단일 이미지캡처장치(예, 카메라)만 구비될 수 있는 반면, 다른 실시예의 차량에는, 도 2B 내지 2E에 예시된 바와 같이, 여러 개의 이미지캡처장치가 사용될 수 있다. 예를 들어, 도 2A에 예시된 차량(200)의 이미지캡처장치(122, 124)는 첨단 운전자 지원 시스템(Advanced Driver Assistance Systems; ADAS) 이미징 세트의 일부일 수 있다.
이미지획득부(120)의 일부로서 차량(200)에 포함된 이미지캡처장치는 적합한 장소에 위치될 수 있다. 일부 실시예에서, 도 2A 내지 2E, 3A 내지 3C에 도시된 바와 같이, 이미지캡처장치(122)는 백미러 주위에 배치될 수 있다. 이 위치는 차량(200)의 운전자와 유사한 시선을 제공할 수 있으며, 이에 따라 운전자에게 보이는 것과 보이지 않는 것을 판단하는데 도움이 될 수 있다. 이미지캡처장치(122)는 백미러 주변의 임의의 위치에 배치될 수 있지만, 백미러의 운전자 측에 이미지캡처장치(122)를 배치하면 운전자의 시야 및/또는 시선을 나타내는 이미지를 획득하는데 더욱 도움이 될 수 있다.
이미지획득부(120)의 이미지캡처장치는 다른 위치에 배치될 수도 있다. 예를 들면, 이미지캡처장치(124)는 차량(200)의 범퍼 내부 또는 범퍼 상에 배치될 수 있다. 이런 위치는 광시야를 가진 이미지캡처장치에 특히 적합할 수 있다. 범퍼에 위치한 이미지캡처장치의 시선은 운전자의 시선과 다를 수 있기 때문에 범퍼에 위치한 이미지캡처장치와 운전자는 항상 같은 대상을 보는 것이 아닐 수 있다. 이미지캡처장치(예, 122, 124, 126)는 또한, 다른 위치에 배치될 수 있다. 예를 들어, 이미지캡처장치는 차량(200)의 일측 또는 양측의 사이드 미러 상 또는 내부에, 차량(200)의 지붕 상에, 차량(200)의 보닛 상에, 차량(200)의 측면에, 차량(200)의 윈도우 상, 후면 또는 전면에, 차량(200)의 전면 및/또는 후면 등화장치 상에 또는 주변 등의 위치에 배치될 수 있다.
차량(200)은 이미지캡처장치 외에도 시스템(100)의 다양한 기타 구성요소를 포함할 수 있다. 예를 들면, 처리부(110)는 차량(200)의 엔진제어장치(engine control unit, ECU)와 일체 또는 분리된 형태로 차량(200)에 포함될 수 있다. 차량(200)은 또한, GPS 수신기 등과 같은 위치센서(130), 지도 데이터베이스(160), 메모리부(140, 150)도 포함할 수 있다.
앞서 설명한 바와 같이, 무선 송수신기(172)는 하나 이상의 네트워크(예, 이동통신망, 인터넷 등)를 통하여 데이터를 송신 및/또는 수신할 수 있다. 예를 들어, 무선 송수신기(172)는 시스템(100)이 수집한 데이터를 하나 이상의 서버로 업로드하고 하나 이상의 서버로부터 데이터를 다운로드할 수 있다. 시스템(100)은 무선 송수신기(172)를 통하여, 예를 들어, 지도 데이터베이스(160) 및/또는 메모리(140, 150)에 저장된 데이터의 주기적 또는 일시적 업데이트를 수신할 수 있다. 마찬가지로, 무선 송수신기(172)는 시스템(100)으로부터의 데이터(예, 이미지획득부(120)가 캡처한 이미지, 위치센서(130), 기타 센서, 또는 차량 제어 시스템이 수신한 데이터 등) 및/또는 처리부(110)에 의해 처리된 데이터를 하나 이상의 서버에 업로드할 수 있다.
시스템(100)은 개인정보보호 설정에 근거하여 서버(예, 클라우드)로 데이터를 업로드할 수 있다. 예를 들면, 시스템(100)은 개인정보보호 설정을 실행하여 서버로 보내지는 차량과 차량의 운전자/소유자를 개별적으로 확인해주는 데이터(메타데이터 포함)의 유형을 규제 또는 제한할 수 있다. 이런 설정은, 예를 들어 사용자에 의해 무선 송수신기(172)를 통해 설정되거나, 공장설정으로 초기화되거나, 무선 송수신기(172)가 수신한 데이터에 의해 설정될 수 있다.
일부 실시예에서, 시스템(100)은 "높은(high)" 개인정보보호 수준에 의거하여 데이터를 업로드할 수 있으며, 이렇게 설정하면 시스템(100)은 특정 차량 및/또는 운전자/소유자 정보 없이 데이터(예, 경로 관련 위치정보, 캡처 이미지 등)를 전송할 수 있다. 예를 들어, "높은(high)" 개인정보보호 수준에 의거하여 데이터를 업로드할 경우, 시스템(100)은 차대번호 또는 차량 운전자 또는 소유자의 이름을 포함하지 않을 수 있고, 그 대신 캡처 이미지 및/또는 경로와 관련된 제한된 위치 정보 등의 데이터를 전송할 수 있다.
다른 개인정보보호 수준도 가능하다. 예를 들어, 시스템(100)은 "중간(intermediate)" 개인정보보호 수준에 의거하여 서버로 데이터를 전송할 수 있으며, 이 경우, "높은" 개인정보보호 수준하에서 포함되지 않은 차량의 제조사 및/또는 모델 및/또는 차량 종류(예, 승용차, SUV, 트럭 등) 등의 추가 정보를 포함할 수 있다. 일부 실시예에서, 시스템(100)은 "낮은(low)" 개인정보보호 수준에 의거하여 데이터를 업로드할 수 있다. "낮은" 개인정보보호 수준하에서, 시스템(100)은 개별 차량, 소유자/운전자, 및/또는 차량이 이동한 전체 또는 일부 경로 등을 특정할 수 있는 정보를 포함하는 데이터를 업로드할 수 있다. 이러한 "낮은" 개인정보보호 수준 데이터는 예를 들어, 차대번호, 운전자/소유자 이름, 차량의 출발점, 차량의 목적지, 차량의 제조사 및/또는 모델, 차량의 종류 등을 포함할 수 있다.
도 2A는 기재된 실시예에 따른 차량 이미징 시스템의 일례의 측면도이다. 도 2B는 도 2A에 도시된 실시예의 평면도이다. 도 2B에 도시된 바와 같이, 본 실시예에 따른 차량(200)은 백미러 주변 및/또는 운전자 가까이 배치된 제1 이미지캡처장치(122), 범퍼 영역(예, 범퍼 영역(210)의 일 영역) 상 또는 내부에 배치된 제2 이미지캡처장치(124), 및 처리부(110)를 구비한 시스템(100)을 차체 내부에 포함한다.
도 2C에 도시된 바와 같이, 이미지캡처장치(122, 124)는 모두 차량(200)의 백미러 주변 및/또는 운전자 가까이 배치될 수 있다. 또한, 도 2B와 2C에는 이미지캡처장치(122, 124)가 두 개로 예시되었지만, 다른 실시예에서는 세 개 이상의 이미지캡처장치가 포함될 수 있음은 당연할 것이다. 예를 들어, 도 2D와 2E에 도시된 실시예에서는, 제1, 제2, 제3 이미지캡처장치(122, 124, 126)가 차량(200)의 시스템(100)에 포함되어 있다.
도 2D에 도시된 바와 같이, 이미지캡처장치(122)는 차량(200)의 백미러 주변 및/또는 운전자 가까이 배치될 수 있고, 이미지캡처장치(124, 126)는 차량(200)의 범퍼 영역(예, 범퍼 영역(210)의 일 영역) 상 또는 범퍼 내부에 배치될 수 있다. 또한, 도 2E에 도시된 바와 같이, 이미지캡처장치(122, 124, 126)는 차량(200)의 백미러 주변 및/또는 운전자 가까이 배치될 수 있다. 본 실시예는 특정 수량 및 구성의 이미지캡처장치에 제한되지 않고, 이미지캡처장치는 차량의 내부 및/또는 차량 상의 적절한 모든 위치에 배치될 수 있다.
기재된 실시예들은 차량에 한정되는 것이 아니라 당연히 다른 상황에도 적용될 수 있다. 또한, 기재된 실시예들은 특정 유형의 차량(200)에 한정되는 것이 아니라, 당연히 자동차, 트럭, 트레일러, 및 기타 유형의 차량 등, 모든 유형의 차량에 적용될 수 있다.
제1 이미지캡처장치(122)는 적합한 유형의 이미지캡처장치를 포함할 수 있다. 이미지캡처장치(122)는 광축을 포함할 수 있다. 일례에서, 이미지캡처장치(122)는 글로벌 셔터 방식의 Aptina M9V024 WVGA 센서를 포함할 수 있다. 다른 실시예에서, 이미지캡처장치(122)는 1280x960 픽셀의 해상도를 제공하고 롤링 셔터 방식을 포함할 수 있다. 이미지캡처장치(122)는 다양한 광학 소자를 포함할 수 있다. 일부 실시예에서, 하나 이상의 렌즈를 포함하여 이미지캡처장치가 요구하는 초점거리 및 시야 등을 제공할 수 있다. 일부 실시예에서, 이미지캡처장치(122)는 6mm 렌즈 또는 12mm 렌즈와 결합될 수 있다. 일부 실시예에서, 이미지캡처장치(122)는, 도 2D에 도시된 바와 같이, 필요한 시야(202)를 확보하도록 구성될 수 있다. 예를 들면, 이미지캡처장치(122)는, 46도 시야, 50도 시야, 52도 또는 그 이상의 시야 등과 같은, 40 내지 56도 범위의 일반 시야를 확보하도록 구성될 수 있다. 또는, 이미지캡처장치(122)는, 28도 시야 또는 36도 시야 등과 같은, 23 내지 40도 범위의 좁은 시야를 확보하도록 구성될 수 있다. 또한, 이미지캡처장치(122)는 100 내지 180도 범위의 넓은 시야를 확보하도록 구성될 수 있다. 일부 실시예에서, 이미지캡처장치(122)는 광각 범퍼 카메라 또는 180도 시야까지 확보 가능한 카메라를 포함할 수 있다. 일부 실시예에서, 이미지캡처장치(122)는 약 2:1(예, HxV=3800x1900 픽셀)의 종횡비와 약 100도의 수평 시야를 가진 7.2 메가픽셀 이미지캡처장치일 수 있다. 이러한 이미지캡처장치는 3개의 이미지캡처장치 구성을 대신할 수 있다. 방사상으로 대칭인 렌즈를 사용하는 이러한 이미지캡처장치의 수직 시야는 렌즈 왜곡으로 인하여 50도 이하로 구현될 수 있다. 예를 들어, 방사상으로 비대칭인 렌즈를 사용하여 수평 시야가 100도인 경우에 수직 시야가 50도 이상이 되게 할 수 있다.
제1 이미지캡처장치(122)는 차량(200)과 관련된 장면에 대한 복수의 제1 이미지를 획득할 수 있다. 복수의 제1 이미지 각각은 롤링 셔터를 사용하여 캡처 된 연속 주사선으로 획득될 수 있다. 각 주사선은 복수의 픽셀을 포함할 수 있다.
제1 이미지캡처장치(122)는 제1 연속 주사선 획득 관련 주사율을 가질 수 있다. 주사율이란 이미지 센서가 특정 주사선에 포함된 각 픽셀과 관련된 이미지 데이터를 획득하는 속도를 의미할 수 있다.
이미지캡처장치(122, 124, 126)는, 예를 들어, CCD 센서 또는 CMOS 센서와 같은, 적합한 유형과 개수의 이미지 센서를 포함할 수 있다. 일 실시예에서, 롤링 셔터 방식의 CMOS 이미지 센서를 도입하여 한 열의 각 픽셀을 하나씩 읽고, 전체 이미지 프레임이 캡처될 때까지 열별로 주사가 진행될 수 있다. 일부 실시예에서, 프레임에 대하여 각 열이 위에서 아래로 순차적으로 캡처될 수 있다.
일부 실시예에서, 여기에 기재된 하나 이상의 이미지캡처장치(122, 124, 126)는 고해상 이미저를 구성하고 5메가, 7메가, 10메가 또는 그 이상의 픽셀의 해상도를 가질 수 있다.
롤링 셔터를 사용하면, 서로 다른 열의 픽셀이 서로 다른 시간에 노출되고 캡처 될 수 있어서, 캡처 된 이미지 프레임에 왜곡(skew)과 기타 이미지 결함(artifact)이 나타날 수 있다. 반면, 이미지캡처장치(122)가 글로벌 셔터 방식 또는 동기화 셔터(synchronous shutter) 방식으로 작동하도록 구성된 경우, 모든 픽셀은 동일 시간만큼 그리고 일반적인 노출 시간 동안 노출될 수 있다. 그 결과, 글로벌 셔터 방식을 적용한 시스템에서 수집된 프레임의 이미지 데이터는 특정 시간의 전체 시야(예, 202)의 스냅샷을 나타낸다. 반면, 롤링 셔터 방식에서는, 서로 다른 시간에 한 프레임의 각 열이 노출되고 데이터가 수집된다. 따라서, 롤링 셔터 방식 이미지캡처장치의 이미지 내의 움직이는 물체는 왜곡돼 보일 수 있다. 이 현상에 대해서는 하기에서 더 자세히 설명한다.
제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 각각 적합한 유형의 이미지캡처장치일 수 있다. 제1 이미지캡처장치(122)와 마찬가지로, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 각각 광축을 포함할 수 있다. 일 실시예에서, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 각각 글로벌 셔터 방식의 Aptina M9V024 WVGA 센서를 포함할 수 있다. 또는, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 각각 롤링 셔터 방식을 포함할 수 있다. 제1 이미지캡처장치(122)와 마찬가지로, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 각각 다양한 렌즈와 광학 소자를 포함하도록 구성될 수 있다. 일부 실시예에서, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)와 관련된 렌즈는 제1 이미지캡처장치(122)와 관련된 시야(예, 202)와 동일하거나 이보다 좁은 시야(204, 206)를 제공할 수 있다. 예를 들어, 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)의 시야는 각각 40도, 30도, 26도, 20도, 또는 그 이하일 수 있다.
제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 차량(200)과 관련된 장면에 대한 복수의 제2 및 제3 이미지를 획득할 수 있다. 복수의 제2 및 제3 이미지 각각은 롤링 셔터를 사용하여 캡처 된 제2 및 제3 연속 주사선으로 획득될 수 있다. 각 주사선 또는 열은 복수의 픽셀을 포함할 수 있다. 제2 이미지캡처장치(124)와 제3 이미지캡처장치(126)는 제2 및 제3 연속 주사선 획득 관련 제2 및 제3 주사율을 가질 수 있다.
이미지캡처장치(122, 124, 126)는 각각 차량(200)의 적합한 위치와 자세로 배치될 수 있다. 이미지캡처장치(122, 124, 126)의 상대적 배치는 이미지캡처장치로부터 획득된 정보의 융합이 용이하도록 선택될 수 있다. 예를 들어, 일부 실시예에서, 제2 이미지캡처장치(124)의 시야(예, 204)는 제1 이미지캡처장치(122)의 시야(예, 202) 및 제3 이미지캡처장치(126)의 시야(예, 206)와 부분적으로 또는 완전히 겹칠 수도 있다.
이미지캡처장치(122, 124, 126)는 차량(200)의 적합한 상대 높이에 배치될 수 있다. 일례에서, 이미지캡처장치(122, 124, 126) 사이의 높이에 차이를 두어 입체 분석을 가능하게 하는 시차 정보를 제공할 수 있다. 예를 들면, 도 2A에 도시된 바와 같이, 이미지캡처장치(122)와 이미지캡처장치(124)는 서로 높이가 다르다. 이미지캡처장치(122, 124, 126) 사이에 횡방향 변위 차이도 있어 처리부(110) 등에 의한 입체 분석을 위한 추가 시차 정보도 제공할 수 있다. 도 2C와 도 2D에 도시된 바와 같이, 횡방향 변위의 차이는 dx로 표시될 수 있다. 일부 실시예에서, 이미지캡처장치(122, 124, 126) 사이에 전방 또는 후방 변위(예, 범위 변위)가 있을 수 있다. 예를 들어, 이미지캡처장치(122)는 이미지캡처장치(124) 및/또는 이미지캡처장치(126)의 0.5 내지 2미터 후방에 배치될 수 있다. 이런 유형의 변위로 인해, 이미지캡처장치 중 하나가 나머지 이미지캡처장치의 사각 지대를 보완할 수 있다.
이미지캡처장치(122)는 적합한 해상도(예, 이미지 센서 관련 픽셀 수)를 가질 수 있고, 이미지캡처장치(122)와 연관된 이미지 센서의 해상도는 이미지캡처장치(124, 126)와 연관된 이미지 센서의 해상도와 비교하여 높거나, 낮거나, 같을 수 있다. 일부 실시예에서, 이미지캡처장치(122) 및/또는 이미지캡처장치(124, 126)와 연관된 이미지 센서의 해상도는 640 x 480, 1024 x 768, 1280 x 960, 또는 기타 적합한 해상도일 수 있다.
프레임 속도(frame rate, 즉, 이미지캡처장치가 다음 이미지 프레임의 픽셀 데이터를 획득하기 위해 넘어가기 전에 한 이미지 프레임의 픽셀 데이터 집합을 획득하는 속도)는 제어 가능하다. 이미지캡처장치(122)의 프레임 속도는 이미지캡처장치(124, 126)의 프레임 속도보다 높거나, 낮거나, 같을 수 있다. 이미지캡처장치(122, 124, 126)의 프레임 속도는 프레임 속도의 타이밍에 영향을 주는 다양한 요소에 의거할 수 있다. 예를 들면, 하나 이상의 이미지캡처장치(122, 124, 126)는 탑재한 이미지 센서의 하나 이상의 픽셀 관련 이미지 데이터를 획득하기 전 또는 후에 부과되는 선택적 픽셀 지연 기간(selectable pixel delay period)을 포함할 수 있다. 일반적으로, 각 픽셀에 상응하는 이미지 데이터는 해당 장치의 클락 속도(clock rate)에 의거하여(예, 클락 주파수(clock cycle) 당 1 픽셀) 획득된다. 또한, 롤링 셔터 방식을 포함하는 실시예에서, 하나 이상의 이미지캡처장치(122, 124, 126)는 탑재한 이미지 센서의 한 열의 픽셀 관련 이미지 데이터를 획득하기 전 또는 후에 부과되는 선택적 수평 귀선 기간(selectable horizontal blanking period)을 포함할 수 있다. 나아가, 하나 이상의 이미지캡처장치(122, 124, 126)는 이미지 프레임 관련 이미지 데이터를 획득하기 전 또는 후에 부과되는 선택적 수직 귀선 기간(selectable vertical blanking period)을 포함할 수 있다.
이러한 타이밍 제어로 인해, 이미지캡처장치(122, 124, 126)의 선주사 속도(line scan rate)가 서로 다른 경우에도 이미지캡처장치(122, 124, 126)의 프레임 속도의 동기화가 가능하다. 또한, 하기에 더 자세히 설명하겠지만, 여러 요소(예, 이미지 센서 해상도, 최고 선주사 속도 등) 중에서 이러한 타이밍 제어로 인해, 이미지캡처장치(122)의 시야가 이미지캡처장치(124, 126)의 시야와 다른 경우에도, 이미지캡처장치(122)의 시야와 이미지캡처장치(124, 126)의 하나 이상의 시야가 겹치는 영역으로부터 캡처 된 이미지의 동기화가 가능할 수 있다.
이미지캡처장치(122, 124, 126)의 프레임 속도 타이밍은 상응하는 이미지 센서의 해상도에 의거할 수 있다. 예를 들어, 두 장치의 선주사 속도가 유사하다고 가정할 때, 한 장치의 이미지 센서의 해상도가 640 X 480이고 다른 장치의 이미지 센서의 해상도가 1280 X 960일 경우, 높은 해상도를 가진 센서로부터 이미지 데이터의 프레임을 획득하는데 더 많은 시간이 걸릴 것이다.
이미지캡처장치(122, 124, 126)의 이미지 데이터 획득 타이밍에 영향을 주는 또 다른 요소는 최고 선주사 속도(maximum line scan rate)이다. 예를 들면, 이미지캡처장치(122, 124, 126)에 포함된 이미지 센서로부터 한 열의 이미지 데이터를 획득하려면 최소 시간 이상이 걸릴 수 있다. 픽셀 지연 기간이 추가되지 않았다고 가정할 때, 한 열의 이미지 데이터를 획득하기 위한 최저 시간은 특정 장치의 최고 선주사 속도와 관계가 있을 것이다. 최고 선주사 속도가 높은 장치는 최고 선주사 속도가 낮은 장치보다 높은 프레임 속도를 제공할 가능성이 있다. 일부 실시예에서, 하나 이상의 이미지캡처장치(124, 126)의 최고 선주사 속도는 이미지캡처장치(122)의 최고 선주사 속도보다 높을 수 있다. 일부 실시예에서, 이미지캡처장치(124 및/또는 126)의 최고 선주사 속도는 이미지캡처장치(122)의 최고 선주사 속도보다 1.25배, 1.5배, 1.75배, 2배, 또는 그 이상 높을 수 있다.
다른 실시예에서, 이미지캡처장치(122, 124, 126)의 최고 선주사 속도는 모두 동일하지만, 이미지캡처장치(122)는 최고 주사 속도 이하의 주사 속도로 동작할 수 있다. 시스템은 하나 이상의 이미지캡처장치(124, 126)가 이미지캡처장치(122)의 선주사 속도와 동일한 선주사 속도로 동작하도록 구성될 수 있다. 다른 예에서, 시스템은 이미지캡처장치(124 및/또는 126)의 선주사 속도가 이미지캡처장치(122)의 선주사 속도보다 1.25배, 1.5배, 1.75배, 2배, 또는 그 이상 높도록 구성될 수 있다.
일부 실시예에서, 이미지캡처장치(122, 124, 126)는 비대칭일 수 있다. 즉, 이미지캡처장치(122, 124, 126)는 시야와 초점거리가 서로 다른 카메라를 포함할 수 있다. 이미지캡처장치(122, 124, 126)의 시야는 차량(200)의 주변상황 등과 관련된 필요 영역을 포함할 수 있다. 일부 실시예에서, 하나 이상의 이미지캡처장치(122, 124, 126)는 차량(200)의 전방, 후방, 측방, 또는 그 조합의 주변상황으로부터 이미지 데이터를 획득하도록 구성될 수 있다.
또한, 각 이미지캡처장치가 차량(200)에 대한 특정 거리 범위에 있는 물체의 이미지를 획득하도록 각 이미지캡처장치(122, 124, 126)의 초점거리가 선택될(예, 적합한 렌즈 적용) 수 있다. 예를 들어, 일부 실시예에서, 이미지캡처장치(122, 124, 126)는 차량으로부터 몇 미터 내에 있는 물체의 클로즈업 이미지를 획득할 수 있다. 이미지캡처장치(122, 124, 126)는 차량으로부터 멀리 떨어진 범위(예, 25m, 50m, 100m, 150m, 또는 그 이상)에 있는 물체의 이미지를 획득하도록 구성될 수도 있다. 또한, 하나의 이미지캡처장치(예, 122)는 차량과 상대적으로 가까운(예, 10m 또는 20m 이내) 물체의 이미지를 획득하고 나머지 이미지캡처장치(예, 124, 126)는 이보다 멀리 있는(예, 20m, 50m, 100m, 150m 이상) 물체의 이미지를 획득하도록 이미지캡처장치(122, 124, 126)의 초점거리가 선택될 수 있다.
일부 실시예에 의하면, 하나 이상의 이미지캡처장치(122, 124, 126)의 시야는 광각일 수 있다. 예를 들면, 차량(200) 주변 영역의 이미지를 획득하기 위해 사용되는 이미지캡처장치(122, 124, 126)의 시야는 140도일 경우가 유리할 수 있다. 예를 들어, 이미지캡처장치(122)는 차량(200)의 우측 또는 좌측 영역의 이미지를 캡처하기 위해 사용될 수 있고, 이런 실시예에서 이미지캡처장치(122)는 넓은 시야(예, 140도 이상)를 가지는 것이 바람직할 수 있다.
이미지캡처장치(122, 124, 126)의 시야는 각 초점거리에 의존할 수 있다. 예를 들어, 초점거리가 증가하면, 이에 상응하는 시야는 감소한다.
이미지캡처장치(122, 124, 126)는 적합한 시야를 가지도록 구성될 수 있다. 일례에서, 이미지캡처장치(122)의 수평 시야는 46도이고, 이미지캡처장치(124)의 수평 시야는 23도이며, 이미지캡처장치(126)의 수평 시야는 23도 내지 46도일 수 있다. 다른 예에서, 이미지캡처장치(122)의 수평 시야는 52도이고, 이미지캡처장치(124)의 수평 시야는 26도이며, 이미지캡처장치(126)의 수평 시야는 26도 내지 52도일 수 있다. 일부 실시예에서, 이미지캡처장치(122)의 시야 대 이미지캡처장치(124) 및/또는 이미지캡처장치(126)의 시야 비율은 1.5 내지 2.0일 수 있다. 다른 실시예에서, 이 비율은 1.25 내지 2.25일 수 있다.
시스템(100)은 이미지캡처장치(126)의 일부 또는 전체 시야가 이미지캡처장치(124) 및/또는 이미지캡처장치(126)의 시야와 겹치도록 구성될 수 있다. 일부 실시예에서, 시스템(100)은 이미지캡처장치(124, 126)의 시야가 이미지캡처장치(126)의 시야의 중심에 들어가고(예를 들어, 시야가 좁은 경우) 중심이 서로 맞도록 구성될 수 있다. 다른 실시예에서, 이미지캡처장치(122, 124, 126)는 인접하는 시야를 캡처하거나 인접하는 시야와 부분적으로 겹칠 수 있다. 일부 실시예에서, 이미지캡처장치(122, 124, 126)의 시야는 시야가 좁은 이미지캡처장치(124 및/또는 126)의 중심이 시야가 넓은 이미지캡처장치(122)의 시야의 하부에 배치되도록 정렬될 수 있다.
도 2F는 기재된 실시예에 따른 자동차 제어 시스템의 일례의 개략도이다. 도 2F에 도시된 바와 같이, 차량(200)은 구동 시스템(220), 제동 시스템(230), 조향 시스템(240)을 포함할 수 있다. 시스템(100)은 하나 이상의 데이터 링크(예, 데이터 송신용 유선 및/또는 무선 링크)를 통하여 구동 시스템(220), 제동 시스템(230), 조향 시스템(240) 중 하나 이상으로 입력(예, 제어신호)을 제공할 수 있다. 예를 들어, 이미지캡처장치(122, 124, 126)가 획득한 이미지의 분석에 근거하여, 시스템(100)은 차량(200)을 주행(예, 가속, 회전, 차선 변경 등)하기 위한 제어 신호를 구동 시스템(220), 제동 시스템(230), 조향 시스템(240) 중 하나 이상으로 제공할 수 있다. 또한, 시스템(100)은 차량(200)의 작동 상황(예, 속도, 제동 및/또는 회전 여부 등)을 나타내는 입력을 구동 시스템(220), 제동 시스템(230), 조향 시스템(240) 중 하나 이상으로부터 수신할 수 있다. 이에 대하여는 도 4 내지 7을 참조하여 하기에 자세히 설명한다.
도 3A에 도시된 바와 같이, 차량(200)은 또한 차량(200)의 운전자 또는 탑승자와 상호 작용하기 위한 사용자 인터페이스(170)를 포함한다. 예를 들어, 차량에 적용된 사용자 인터페이스(170)는 터치스크린(320), 다이얼(330), 버튼(340), 마이크(350)를 포함할 수 있다. 차량(200)의 운전자 혹은 탑승자는 또한 손잡이(예, 차량의 조향축 상 또는 주위에 배치된 방향등 손잡이 등), 버튼(예, 차량의 조향 핸들에 배치된 버튼 등) 등을 사용하여 시스템(100)과 상호 작용할 수도 있다. 일부 실시예에서, 마이크(350)는 백미러(310)에 인접하여 배치될 수 있다. 이와 유사하게, 일부 실시예에서, 이미지캡처장치(122)는 백미러(310) 부근에 배치될 수 있다. 일부 실시예에서, 사용자 인터페이스(170)는 또한 하나 이상의 스피커(360: 예, 차량 오디오 시스템의 스피커)도 포함할 수 있다. 예를 들어, 시스템(100)은 스피커(360)를 통하여 다양한 안내(예, 경보)를 제공할 수 있다.
도 3B 내지 3D는 기재된 실시예에 따른 백미러(예, 310) 뒤의 차량 전면 유리에 위치되도록 구성된 카메라 마운트(370)의 일례이다. 도 3B에 도시된 바와 같이, 카메라 마운트(370)는 이미지캡처장치(122, 124, 126)를 포함할 수 있다. 이미지캡처장치(124, 126)는, 차량 전면 유리에 맞닿아 있고 필름 및/또는 반사 방지 물질의 구조를 포함하는, 눈부심 가림막(380) 후면에 배치될 수 있다. 예를 들어, 눈부심 가림막(380)은 차량 전면 유리에 상응하는 기울기를 가지고 차량 전면 유리에 대해 정렬되도록 배치될 수 있다. 일부 실시예에서, 각 이미지캡처장치(122, 124, 126)는 도 3D에 도시된 바와 같이 눈부심 가림막(380)의 후면에 배치될 수 있다. 여기에 기재된 실시예들은 어느 특정한 구성의 이미지캡처장치(122, 124, 126), 카메라 마운트(370), 눈부심 가림막(380)으로 한정되지 않는다. 도 3C는 도 3B에 도시된 카메라 마운트(370)를 정면에서 바라본 예시이다.
상기 실시예들은 다양한 변형 및/또는 수정이 가능함을 본 발명의 당업자는 이해할 것이다. 예를 들어, 시스템(100)의 동작을 위하여 모든 구성요소가 반드시 필요한 것은 아니다. 또한, 기재된 실시예들의 기능을 제공하면서, 어느 구성요소라도 시스템(100)의 적합한 부분에 배치될 수 있으며, 구성요소들은 다양한 구성으로 재배치될 수 있다. 따라서, 상기 구성들은 예시에 불과하고, 시스템(100)은 상기 구성들과 무관하게 광범위한 기능을 제공하여 차량(200)의 주변상황을 분석하고 이 분석에 대응하여 차량(200)을 주행할 수 있다.
하기의 설명과 기재된 다양한 실시예에 따라, 시스템(100)은 자율 주행 및/또는 운전자 보조 기술과 관련된 다양한 특징을 제공할 수 있다. 예를 들면, 시스템(100)은 이미지 데이터, 위치 데이터(예, GPS 위치 정보), 지도 데이터, 속도 데이터, 및/또는 차량(200)에 포함된 센서들로부터의 데이터를 분석할 수 있다. 시스템(100)은 분석할 데이터를, 예를 들어, 이미지획득부(120), 위치센서(130), 및 기타 센서들로부터 수집할 수 있다. 또한, 시스템(100)은 수집한 데이터를 분석하여 차량(200)이 특정 동작을 수행해야 할지 여부를 판단한 후, 판단한 동작을 인간의 개입 없이 자동으로 수행할지 여부를 판단할 수 있다. 예를 들어, 차량(200)이 인간의 개입 없이 주행하는 경우, 시스템(100)은 차량(200)의 제동, 가속, 및/또는 조향을 자동으로 제어(예, 구동 시스템(220), 제동 시스템(230), 조향 시스템(240)의 하나 이상에 제어신호를 전송)할 수 있다. 또한, 시스템(100)은 수집된 데이터를 분석하고 이 분석 결과에 따라 차량 탑승자들에게 주의 및/또는 경보를 제공할 수 있다. 시스템(100)이 제공하는 다양한 실시예들에 관해서는 하기에 추가로 설명한다.
상기에 설명한 바와 같이, 시스템(100)은 다중 카메라 시스템을 사용하는 운전 지원 기능을 제공할 수 있다. 다중 카메라 시스템은 차량의 전방을 향하는 하나 이상의 카메라를 사용할 수 있다. 다른 실시예에서, 다중 카메라 시스템은 차량의 측방 또는 후방을 향하는 하나 이상의 카메라를 포함할 수 있다. 예를 들어, 일 실시예에서, 시스템(100)은 이중 카메라 이미징 시스템을 사용하여, 제1 카메라와 제2 카메라(예, 이미지캡처장치(122, 124))가 차량(200)의 전방 및/또는 측방에 배치될 수 있다. 기재된 실시예에 따른 다른 카메라 구성도 있으며, 여기에 기재된 구성은 예시일 뿐이다. 예를 들면, 시스템(100)은 다양한 개수의 카메라(예, 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개 등)의 구성을 포함할 수 있다. 나아가, 시스템(100)은 카메라의 "클러스터(clusters)"를 포함할 수 있다. 예를 들어, 카메라 클러스터(1개, 4개, 8개 등과 같은 다양한 개수의 카메라를 포함함)는 차량의 전방을 향하거나 다른 방향(예, 후방, 측방, 특정 각도 등)을 향하고 있을 수 있다. 이에 따라, 시스템(100)은 복수의 카메라 클러스터를 포함하고, 각 클러스터는 특정 방향을 향하여 차량 주변의 특정 영역으로부터 이미지를 캡처할 수 있다.
제1 카메라의 시야는 제2 카메라의 시야보다 넓거나, 좁거나, 부분적으로 겹칠 수 있다. 뿐만 아니라, 제1 카메라는 제1 이미지 프로세서와 연결되어 제1 카메라가 제공한 이미지의 단안 이미지 분석을 수행하고, 제2 카메라는 제2 이미지 프로세서와 연결되어 제2 카메라가 제공한 이미지의 단안 이미지 분석을 수행할 수 있다. 제1 및 제2 이미지 프로세서의 출력(예, 처리된 정보)은 합쳐질 수 있다. 일부 실시예에서, 제2 이미지 프로세서는 제1 및 제2 카메라 모두로부터 이미지를 수신하여 입체 분석을 수행할 수 있다. 다른 실시예에서, 시스템(100)은 각 카메라의 시야가 서로 다른 3중 카메라 이미징 시스템을 사용할 수 있다. 따라서, 이런 시스템은 차량의 전방 및 측방의 다양한 거리에 위치한 물체로부터 얻은 정보에 근거한 판단을 내릴 수 있다. 단안 이미지 분석이란 단일 시야로부터 캡처 된 이미지(예, 단일 카메라에서 캡처 된 이미지)에 근거하여 이미지 분석을 수행하는 경우를 말할 수 있다. 입체 이미지 분석이란 하나 이상의 이미지 캡처 파라미터로 캡처 된 두 개 이상의 이미지에 근거하여 이미지 분석을 수행하는 경우를 말할 수 있다. 예를 들면, 입체 이미지 분석에 적합한 캡처 된 이미지는 둘 이상의 위치로부터 캡처 된 이미지, 서로 다른 시야로부터 캡처 된 이미지, 서로 다른 초점거리를 사용하여 캡처 된 이미지, 시차 정보에 따라 캡처 된 이미지 등을 포함할 수 있다.
예를 들어, 일 실시예에서, 시스템(100)은 이미지캡처장치(122 내지 126)를 사용하여 3중 카메라 구성을 구현할 수 있다. 이런 구성에서, 이미지캡처장치(122)는 좁은 시야(예, 34도, 또는 약 20 내지 45도 범위에서 선택한 시야)를 제공할 수 있고, 이미지캡처장치(124)는 광시야(예, 150도 또는 약 100 내지 180도 범위에서 선택한 시야)를 제공할 수 있으며, 이미지캡처장치(126)는 중간 시야(예, 46도 또는 약 35 내지 60도 범위에서 선택한 시야)를 제공할 수 있다. 일부 실시예에서, 이미지캡처장치(126)는 주 카메라 역할을 할 수 있다. 이미지캡처장치(122 내지 126)는 백미러(310) 후면에 배치되고 실질적으로 서로 나란히(예, 6cm 간격으로) 배치될 수 있다. 또한, 상기에 설명한 바와 같이, 일부 실시예에서, 하나 이상의 이미지캡처장치(122 내지 126)는 차량(200)의 전면 유리에 맞닿아 있는 눈부심 가림막(380) 뒤에 탑재될 수 있다. 이러한 가림막은 차량 내부로부터의 반사가 이미지캡처장치(122 내지 126)에 끼치는 영향을 최소화할 수 있다.
다른 실시예에서, 상기에 도 3B 내지 3C를 참조하여 설명한 바와 같이, 광시야 카메라(예, 상기 예에서의 이미지캡처장치(124))는 좁은 시야 카메라와 주 시야 카메라(예, 상기 예에서의 이미지캡처장치(122, 126))보다 낮은 위치에 탑재될 수 있다. 이런 구성은 광시야 카메라로부터 탁 트인 시선을 제공할 수 있다. 반사를 줄이기 위하여, 카메라들은 차량(200)의 전면 유리 가까이 탑재될 수 있고, 반사광을 완화하기 위하여 편광판을 포함할 수 있다.
3중 카메라 시스템은 특정 성능을 제공할 수 있다. 예를 들면, 일부 실시예는 한 카메라가 검출한 물체에 대해 다른 카메라의 검출 결과에 근거하여 검증하는 능력을 포함할 수 있다. 상기에 설명한 3중 카메라 구성에서, 처리부(110)는 예를 들어 3개의 처리장치(예, 3개의 EyeQ 시리즈 프로세서 칩)를 포함하고, 각 처리장치는 하나 이상의 이미지캡처장치(122 내지 126)가 캡처한 이미지를 전용으로 처리할 수 있다.
3중 카메라 시스템에서, 제1 처리장치는 주 카메라와 좁은 시야 카메라로부터 이미지를 수신하고, 좁은 시야 카메라의 시각 처리를 수행하여, 예를 들어, 다른 차량, 보행자, 차로 표시, 교통 표지, 신호등, 기타 도로 상의 물체 등을 검출할 수 있다. 나아가, 제1 처리장치는 주 카메라와 좁은 시야 카메라 사이의 픽셀 차이를 산출하여 차량(200) 주변상황의 3차원 재구성(3D reconstruction)을 생성한 후, 3차원 재구성을 3D 지도 데이터 또는 다른 카메라로부터 수신한 정보에 근거하여 계산한 3D 정보와 조합할 수 있다.
제2 처리장치는 주 카메라로부터 이미지를 수신하고, 시각 처리를 수행하여 다른 차량, 보행자, 차로 표시, 교통 표지, 신호등, 기타 도로 상의 물체 등을 검출할 수 있다. 뿐만 아니라, 제2 처리장치는 카메라 변위를 계산하고, 계산된 변위에 근거하여 연속된 이미지 사이의 픽셀 차이를 계산하여 장면(예, 동작의 구조)의 3차원 재구성을 생성할 수 있다. 제2 처리장치는 3차원 재구성에 근거한 동작의 구조를 제1 처리장치에 전송하여 3D 입체 이미지와 조합할 수 있다.
제3 처리장치는 광시야 카메라로부터 이미지를 수신하고 이미지를 처리하여 차량, 보행자, 차로 표시, 교통 표지, 기타 도로 상의 물체 등을 검출할 수 있다. 제3 처리장치는 또한 이미지 분석을 위한 추가 처리 명령을 수행하여 차선을 변경하는 차량, 보행자 등과 같은 움직이는 물체를 식별할 수 있다.
일부 실시예에서, 이미지 기반 정보의 스트림을 독립적으로 캡처하고 처리함으로써, 시스템 상의 중복성을 제공할 수 있다. 여기서, 중복성이란, 예를 들면, 제1 이미지캡처장치와 이 제1 이미지캡처장치로부터 처리된 이미지를 사용하여 적어도 제2 이미지캡처장치로부터 이미지 정보를 캡처하고 처리하여 획득된 정보를 검증 및/또는 보완하는 것을 포함할 수 있다.
일부 실시예에서, 시스템(100)은 2개의 이미지캡처장치(예, 122, 124)를 사용하여 차량(200)의 항법 보조를 제공하고 제3 이미지캡처장치(예, 126)를 사용하여 상기 2개의 이미지캡처장치로부터 수신한 데이터의 분석 결과의 중복성 및 검증을 제공할 수 있다. 예를 들면, 이런 구성에서, 이미지캡처장치(122, 124)는 차량(200)의 항법을 위해 시스템(100)에 의한 입체 분석을 위한 이미지를 제공하고, 이미지캡처장치(126)는 시스템(100)에 의한 단안 분석을 위한 이미지를 제공하여 이미지캡처장치(122 및/또는 126)가 캡처한 이미지에 근거하여 캡처한 정보의 중복성 및 검증을 제공할 수 있다. 즉, 이미지캡처장치(126)(및 상응하는 처리장치)는 이미지캡처장치(122, 124)로부터 얻은 분석에 대한 확인을 제공(예, 자동긴급제동(AEB, automatic emergency braking) 제공) 하기 위한 중복 서브시스템을 제공하는 것으로 간주될 수 있다. 나아가, 일부 실시예에서, 수신된 데이터의 중복성 및 검증은 하나 이상의 센서로부터 수신된 정보(예, 레이더, 라이더, 음향 센서, 차량 외부의 하나 이상의 송수신기로부터 수신된 정보 등)에 기반하여 보완될 수 있다.
상기 카메라의 구성, 배치, 개수, 위치 등은 예시에 불과하다는 것을 당업자는 인식할 수 있을 것이다. 전체적인 시스템과 연관하여 설명하는 이러한 구성요소들과 기타 구성요소들은 기재된 실시예들의 범위를 벗어나지 않고 다양한 구성으로 조합되고 사용될 수 있다. 운전자 지원 및/또는 자율 주행 기능을 제공하기 위한 다중 카메라 시스템의 사용과 관련된 내용은 하기에 설명한다.
도 4는 기재된 실시예에 따른 하나 이상의 동작의 수행을 위한 명령을 저장/프로그램하도록 구성된 메모리(140 및/또는 150)를 예시한 기능 구성도이다. 하기에는 메모리(140)에 관하여 설명하지만, 명령이 메모리(140) 및/또는 메모리(150)에 저장될 수 있음은 당업자에게 당연할 것이다.
도 4에 도시된 바와 같이, 메모리(140)은 단안 이미지 분석 모듈(monocular image analysis module, 402), 입체 이미지 분석 모듈(stereo image analysis module, 404), 속도 및 가속 모듈(406), 주행 반응 모듈(408)을 저장할 수 있다. 여기에 기재된 실시예들은 메모리(14)의 어느 특정 구성으로 한정되지 않는다. 또한, 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)는 메모리(140)에 포함된 모든 모듈(402-408)에 저장된 명령을 실행할 수 있다. 본 발명의 기술분야의 당업자라면 하기의 설명에서 처리부(110)란 애플리케이션 프로세서(180) 및/또는 이미지 프로세서(190)를 개별적으로 또는 총괄하여 지칭할 수 있다는 것을 이해할 것이다. 이에 따라, 하기에 설명한 프로세스의 단계들은 하나 이상의 처리장치에 의해 수행될 수 있다.
일 실시예에서, 단안 이미지 분석 모듈(402)은, 처리부(110)에 의해 실행될 경우 이미지캡처장치(122, 124, 126) 중의 하나가 확보한 이미지 세트의 단안 이미지 분석을 수행하는, 명령(예, 컴퓨터 시각 소프트웨어)을 저장할 수 있다. 일부 실시예에서, 처리부(110)는 이미지 세트의 정보를 추가 감지 정보(예, 레이더로부터 얻은 정보)와 병합하여 단안 이미지 분석을 수행할 수 있다. 하기에 도 5A 내지 5D를 참조하여 설명하겠지만, 단안 이미지 분석 모듈(402)은 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등, 위험 물체, 및 차량의 주변상황과 연관된 기타 특성 등과 같은 특징들을 이미지 세트 내에서 검출하기 위한 명령을 포함할 수 있다. 시스템(100)은 이 분석에 근거하여, 예를 들어 처리부(110)를 통하여, 차량(200)의 회전, 차선 변경, 가속 변화 등과 같은 하나 이상의 주행 반응을 야기할 수 있으며, 이에 대해서는 하기에 주행 반응 모듈(408)에서 설명한다.
일 실시예에서, 단안 이미지 분석 모듈(402)은, 처리부(110)에 의해 실행될 경우 이미지캡처장치(122, 124, 126) 중의 하나가 확보한 이미지 세트의 단안 이미지 분석을 수행하는, 명령(예, 컴퓨터 시각 소프트웨어)을 저장할 수 있다. 일부 실시예에서, 처리부(110)는 이미지 세트의 정보를 추가 감지 정보(예, 레이더, 라이더 등으로부터 얻은 정보)와 병합하여 단안 이미지 분석을 수행할 수 있다. 하기에 도 5A 내지 5D를 참조하여 설명하겠지만, 단안 이미지 분석 모듈(402)은 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등, 위험 물체, 및 차량의 주변상황과 연관된 기타 특성 등과 같은 특징들을 이미지 세트 내에서 검출하기 위한 명령을 포함할 수 있다. 시스템(100)은 이 분석에 근거하여, 예를 들어 처리부(110)를 통하여, 차량(200)의 회전, 차선 변경, 가속 변화 등과 같은 하나 이상의 주행 반응을 야기할 수 있으며, 이에 대해서는 하기에 주행 반응의 판단에서 설명한다.
일 실시예에서, 입체 이미지 분석 모듈(404)은, 처리부(110)에 의해 실행될 경우 이미지캡처장치(122, 124, 126) 중에서 선택된 이미지캡처장치의 조합에 의해 확보된 제1 및 제2 이미지 세트의 입체 이미지 분석을 수행하는, 명령(예, 컴퓨터 시각 소프트웨어)을 저장할 수 있다. 일부 실시예에서, 처리부(110)는 제1 및 제2 이미지 세트의 정보를 추가 감지 정보(예, 레이다로부터 얻은 정보)와 병합하여 입체 이미지 분석을 수행할 수 있다. 예를 들어, 입체 이미지 분석 모듈(404)은 이미지캡처장치(124)가 확보한 제1 이미지 세트와 이미지캡처장치(126)가 확보한 제2 이미지 세트에 근거하여 입체 이미지 분석을 수행하기 위한 명령을 포함할 수 있다. 하기에 도 6을 참조하여 설명하겠지만, 입체 이미지 분석 모듈(404)은 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등, 위험 물체, 및 차량의 주변환경과 연관된 기타 특성 등과 같은 특징들을 제1 및 제2 이미지 세트 내에서 검출하기 위한 명령을 포함할 수 있다. 처리부(110)는 이 분석에 근거하여 차량(200)의 회전, 차선 변경, 가속 변화 등과 같은 하나 이상의 주행 반응을 야기할 수 있으며, 이에 대해서는 하기에 주행 반응 모듈(408)에서 설명한다. 또한, 일부 실시예에서, 입체 이미지 분석 모듈(404)은 학습 시스템(예, 신경망 또는 심층 신경망) 또는 비학습 시스템과 관련된 방법을 구현할 수 있다.
일 실시예에서, 속도 및 가속 모듈(406)은 차량(200)의 속도 및/또는 가속 변화를 야기하도록 구성된 차량(200)에 구비된 하나 이상의 컴퓨팅 및 기전 장치로부터 수신한 데이터를 분석하도록 구성된 소프트웨어를 저장할 수 있다. 예를 들어, 처리부(110)는 속도 및 가속 모듈(406)과 연계된 명령을 수행함으로써 단안 이미지 분석 모듈(402) 및/또는 입체 이미지 분석 모듈(404)을 실행하여 얻은 데이터에 근거하여 차량(200)의 목표 속도를 산출할 수 있다. 상기 데이터는 예를 들어 목표 위치, 속도, 및/또는 가속, 부근의 차량, 보행자 또는 도로 상의 물체에 대한 차량(200)의 위치 및/또는 속도, 도로의 차로 표시에 대한 차량(200)의 위치 정보 등을 포함할 수 있다. 또한, 처리부(110)는 감지 입력(예, 레이더로부터 얻은 정보) 및 차량(200)의 구동 시스템(220), 제동 시스템(230), 및/또는 조향 시스템(240)과 같은 기타 시스템의 입력에 근거하여 차량(200)의 목표 속도를 산출할 수 있다. 산출된 목표 속도에 근거하여, 처리부(110)는 차량(200)의 구동 시스템(220), 제동 시스템(230), 및/또는 조향 시스템(240)으로 전자 신호를 전송하여, 예를 들면, 물리적으로 차량(200)의 브레이크 페달을 누르거나 가속 페달을 감압하여 속도 및/또는 가속의 변화를 일으킬 수 있다.
일 실시예에서, 주행 반응 모듈(408)은 단안 이미지 분석 모듈(402) 및/또는 입체 이미지 분석 모듈(404)을 실행하여 얻은 데이터에 근거하여 필요한 주행 반응을 판단하기 위하여 처리부(110)에 의해 실행 가능한 소프트웨어를 저장할 수 있다. 상기 데이터는 부근의 차량, 보행자, 및 도로 상의 물체에 대한 위치 및 속도, 차량(200)의 목표 위치 정보 등을 포함할 수 있다. 뿐만 아니라, 일부 실시예에서, 주행 반응은 지도 데이터, 미리 설정한 차량(200)의 위치, 및/또는 단안 이미지 분석 모듈(402) 및/또는 입체 이미지 분석 모듈(404)을 실행하여 얻은 차량(200)과 하나 이상의 물체 사이의 상대 속도 또는 상대 가속에 부분적으로 또는 전적으로 근거할 수 있다. 주행 반응 모듈(408)은 또한 감지 입력(예, 레이더로부터 얻은 정보) 및 차량(200)의 구동 시스템(220), 제동 시스템(230), 및/또는 조향 시스템(240)과 같은 기타 시스템의 입력에 근거하여 필요한 주행 반응을 판단할 수 있다. 필요한 주행 반응에 근거하여, 처리부(110)는 차량(200)의 구동 시스템(220), 제동 시스템(230), 및/또는 조향 시스템(240)으로 전자 신호를 전송하여, 예를 들면, 차량(200)의 조향 핸들을 회전하여 미리 설정한 각도의 회전을 유도함으로써 필요한 주행 반응을 일으킬 수 있다. 일부 실시예에서, 처리부(110)는 주행 반응 모듈(408)의 출력(예, 필요한 주행 반응)을 차량(200)의 속도 변경을 산출하기 위한 속도 및 가속 모듈(406)의 실행을 위한 입력으로 사용할 수 있다.
또한, 여기에 기재된 어느 모듈(예, 402, 404, 406)이든 학습 시스템(예, 신경망 또는 심층 신경망) 또는 비학습 시스템과 연관된 방법을 구현할 수 있도록 구성된다.
도 5A는 기재된 실시예에 따른 단안 이미지 분석에 근거한 하나 이상의 주행 반응을 야기하는 프로세스(500A)의 일례를 예시한 순서도이다. 단계 510에서, 처리부(110)는 처리부(110)와 이미지획득부(120) 사이의 데이터 인터페이스(128)를 통하여 복수의 이미지를 수신할 수 있다. 예를 들어, 이미지획득부(120)에 포함된 카메라(예, 시야(202)를 가진 이미지캡처장치(122))는 차량(200)의 전방 영역(또는 측방 또는 후방 영역)의 복수의 이미지를 캡처하고 이 이미지를 데이터 연결(예, 디지털, 유선, USB, 무선, 블루투스 등)을 통하여 처리부(110)로 전송할 수 있다. 처리부(110)는 단계 520에서 단안 이미지 분석 모듈(402)을 실행하여 복수의 이미지를 분석할 수 있다. 이에 대해서는 도 5B 내지 5D를 참조하여 상세히 설명한다. 분석을 수행함으로써, 처리부(110)는 이미지 세트에서 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등 등의 특징들을 검출할 수 있다.
처리부(110)는 또한 단계 520에서 단안 이미지 분석 모듈(402)을 실행하여, 예를 들면, 트럭 타이어 조각, 도로에 떨어진 표지판, 적재 불량 차량, 동물 등의 다양한 도로 상의 위험을 검출할 수 있다. 도로 상의 위험은 그 구조, 모양, 크기, 색 등이 다양하여 이런 위험을 검출하는 것은 더욱 어렵다. 일부 실시예에서, 처리부(110)는 단안 이미지 분석 모듈(402)을 실행하여 복수의 이미지에 대한 다중 프레임 분석을 수행하여 도로상의 위험을 검출할 수 있다. 예를 들어, 처리부(110)는 연속 프레임 사이의 카메라 움직임을 예측하고 프레임 사이의 픽셀 차이를 계산하여 도로의 3차원 지도(3D map)를 구축할 수 있다. 이후, 처리부(110)는 3차원 지도를 사용하여 도로면 뿐만 아니라 도로면 상에 존재하는 위험을 검출할 수 있다.
단계 530에서, 처리부(110)는 주행 반응 모듈(408)을 실행하여 단계 520에서 수행한 분석 및 상기에서 도 4를 참조하여 설명한 방법에 근거하여 차량(200)에 하나 이상의 주행 반응을 일으킬 수 있다. 주행 반응은 예를 들어 회전, 차선 변경, 가속 변경 등을 포함할 수 있다. 일부 실시예에서, 처리부(110)는 속도 및 가속 모듈(406)을 실행하여 얻은 데이터를 활용하여 하나 이상의 주행 반응을 야기할 수 있다. 또한, 복수의 주행 반응이 동시에, 순차적으로, 또는 결합된 형태로 일어날 수 있다. 예를 들면, 처리부(110)는 제어 신호를 차량(200)의 조향 시스템(240)과 구동 시스템(220)에 순차적으로 전송하여 차량(200)이 차로를 변경한 후 가속을 하게 할 수 있다. 또는, 처리부(110)는 차량(200)의 제동 시스템(230)과 조향 시스템(240)에 제어 신호를 동시에 전송하여 차량(200)이 제동을 하면서 동시에 차로를 변경하게 할 수 있다.
도 5B는 본 발명의 실시예에 따른 이미지 세트에서 하나 이상의 차량 및/또는 보행자를 검출하는 프로세스(500B)의 일례를 예시한 순서도이다. 처리부(110)는 단안 이미지 분석 모듈(402)을 실행하여 이 프로세스(500B)를 구현할 수 있다. 단계 540에서, 처리부(110)는 차량 및/또는 보행자일 가능성을 나타내는 후보 물체 모음을 판단할 수 있다. 예를 들어, 처리부(110)는 하나 이상의 이미지를 스캔하고, 이 이미지를 하나 이상의 미리 설정한 패턴과 비교하여, 각 이미지 내에서 관심 물체(예, 차량, 보행자 등)가 있을 만한 위치를 파악할 수 있다. 미리 설정한 패턴은 높은 비율의 오탐(false hits)과 낮은 비율의 누락(misses)을 달성하도록 설계될 수 있다. 예를 들어, 처리부(110)는 차량 또는 보행자일 가능성이 있는 후보 물체를 식별하기 위하여 미리 설정한 패턴에 낮은 유사 한계치를 사용할 수 있다. 이 결과, 처리부(110)가 차량 또는 보행자를 나타내는 후보 물체를 놓칠(즉, 식별하지 못할) 확률을 낮출 수 있다.
단계 542에서, 처리부(110)는 분류 기준에 근거하여 후보 물체 모음을 필터링하여 특정 후보(예, 관련이 없거나 적은 물체)를 제외할 수 있다. 여기서, 기준은 데이터베이스(예, 메모리(140)에 저장된 데이터베이스)에 저장된 물체 유형의 다양한 성질로부터 확보할 수 있다. 여기서, 물체 유형의 성질은 물체의 모양, 크기, 질감, 위치(예, 차량(200)에 대한 상대적 위치) 등을 포함할 수 있다. 따라서, 처리부(110)는 하나 이상의 기준을 사용하여 후보 물체 모음 중에서 거짓 후보를 제외시킬 수 있다.
단계 544에서, 처리부(110)는 이미지의 다중 프레임을 분석하여 후보 물체 모음의 물체가 차량 및/또는 보행자를 나타내는지 여부를 판단할 수 있다. 예를 들면, 처리부(110)는 검출된 후보 물체를 연속 프레임에 걸쳐 추적하여 검출된 물체와 연관된 프레임별 데이터(예, 차량(200)과 관련된 크기, 위치 등)를 축적할 수 있다. 또한, 처리부(110)는 검출된 물체의 파라미터를 추정하고 물체의 프레임별 위치 데이터를 예측 위치와 비교할 수 있다.
단계 546에서, 처리부(110)는 검출된 물체의 측정치 모음을 구성할 수 있다. 여기서, 측정치는 예를 들어 검출된 물체와 연계된 위치, 속도, 및 가속값(즉, 차량(200)에 대한 상대 가속값)을 포함할 수 있다. 일부 실시예에서, 처리부(110)는 칼만 필터(Kalman filters) 또는 선형 2차 곡선 추정(LQE, linear quadratic estimation) 등과 같은 시간 기준 관찰을 사용한 추정 방법 및/또는 기타 물체 유형(예, 차, 트럭, 보행자, 자전거, 도로 표시 등)에 대한 기존 모델링 데이터에 근거하여 측정치를 구성할 수 있다. 칼만 필터는 물체 크기의 측정치에 근거하고, 크기 측정치는 충돌까지의 시간(예, 차량(200)이 물체에 도달하는 시간)에 비례할 수 있다. 따라서, 단계 540 내지 546을 수행함으로써, 처리부(110)는 캡처 된 이미지 세트 내에 등장하는 차량과 보행자를 식별하고 이 차량과 보행자와 관련된 정보(예, 위치, 속도, 크기)를 도출할 수 있다. 식별된 내용과 도출한 정보에 근거하여, 처리부(110)는 상기에서 도 5A를 참조하여 설명한 바와 같이, 차량(200)이 하나 이상의 주행 반응을 하도록 할 수 있다.
단계 548에서, 처리부(110)는 하나 이상의 이미지에 대한 광류 분석(optical flow analysis)을 수행하여 차량 또는 보행자를 나타내는 후보 물체에 대한 오탐(false hit)을 검출하고, 누락 확률을 낮출 수 있다. 여기서, 광류 분석이란, 예를 들어, 다른 차량과 보행자와 관련된 하나 이상의 이미지에서 차량(200)에 대한, 그리고 도로 표면 움직임과 다른, 동작 패턴을 분석하는 것을 의미할 수 있다. 처리부(110)는 후보 물체의 움직임을 계산하기 위하여 위치값 및 시간값을 수학적 모델의 입력으로 사용할 수 있다. 따라서, 광류 분석은 차량(200)에 근접한 차량과 보행자를 검출하는 또 다른 방법을 제공할 수 있다. 처리부(110)는 광류 분석을 단계 540 내지 546과 함께 수행함으로써 차량과 보행자를 검출하는 중복성을 제공하고 시스템(100)의 신뢰도를 향상시킬 수 있다.
도 5C는 기재된 실시예에 따른 이미지 세트에서 도로 표시 및/또는 차로 형상 정보를 검출하는 프로세스(500C)의 일례를 예시한 순서도이다. 처리부(110)는 단안 이미지 분석 모듈(402)을 실행하여 본 프로세스(500C)를 구현할 수 있다. 단계 550에서, 처리부(110)는 하나 이상의 이미지를 스캔하여 물체 모음을 검출할 수 있다. 차로 표시의 일부분, 차로 형상 정보, 및 기타 해당 도로 표시를 검출하기 위하여, 처리부(110)는 물체 모음을 필터링하여 관련 없는 것으로 판단된 물체(예, 대수롭지 않은 포트홀(pothole), 자갈 등)를 제외시킬 수 있다. 단계 552에서, 처리부(110)는 동일 도로 표시 또는 차로 표시에 속하는, 단계 550에서 검출된, 조각들을 함께 묶을 수 있다. 이러한 묶음에 근거하여, 처리부(110)는 검출된 조각들을 나타낼 모델, 예를 들면, 수학적 모델을 생성할 수 있다.
단계 554에서, 처리부(110)는 검출된 조각들에 상응하는 측정치 모음을 구성할 수 있다. 일부 실시예에서, 처리부(110)는 검출된 조각들을 이미지 플레인(image plane)으로부터 리얼-월드 플레인(real-world plane)으로 투영할 수 있다. 여기서, 투영은 검출된 도로의 위치, 경사, 곡률, 및 곡률 미분 등과 같은 물리적 성질에 상응하는 계수를 가진 3차 다항식을 사용하는 특징이 있을 수 있다. 투영을 생성할 때, 처리부(110)는 도로면의 변화뿐만 아니라 차량(200)의 피치(pitch)와 롤(roll)을 고려할 수 있다. 또한, 처리부(110)는 도로면에 존재하는 위치 및 모션 신호를 분석하여 도로의 높낮이를 추정할 수 있다. 나아가, 처리부(110)는 하나 이상의 이미지의 특징점 모음을 추적하여 차량(200)의 피치 및 롤 비율을 추정할 수 있다.
단계 556에서, 처리부(110)는 예를 들어 검출된 조각들을 연속 이미지 프레임에 걸쳐 추적하고 검출된 조각과 관련된 프레임별 데이터를 축적하여 다중 프레임 분석을 수행할 수 있다. 처리부(110)가 다중 프레임 분석을 수행함에 따라, 단계 554에서 구성된 측정치 모음은 더욱 신뢰할 수 있게 되고 더욱 높은 신뢰 수준을 갖게 된다. 따라서, 단계 550 내지 556을 수행함으로써, 처리부(110)는 캡처 된 이미지 세트 내에 등장하는 도로 표시를 식별하고 차로 형상 정보를 도출할 수 있게 된다. 이러한 식별과 도출된 정보에 근거하여, 처리부(110)는, 상기에서 도 5A를 참조하여 설명한 바와 같이, 차량(200)이 주행 반응을 취하게 할 수 있다.
단계 558에서, 처리부(110)는 추가 정보를 고려하여 차량(200) 주변에 관한 안전 모델을 생성할 수 있다. 처리부(110)는 안전 모델을 사용하여 시스템(100)이 차량(200)의 자율 제어를 안전하게 할 수 있는 환경을 정의할 수 있다. 일부 실시예에서, 안전 모델을 생성하기 위하여, 처리부(100)는 다른 차량의 위치와 움직임, 검출된 도로 가장자리 및 배리어(barrier), 및/또는 지도 데이터(예, 지도 데이터베이스(160)의 데이터)에서 추출한 일반적인 도로 형상 설명을 고려할 수 있다. 추가 정보를 고려함으로써, 처리부(110)는 도로 표시 및 차로 형상에 대한 중복성을 제공하고 시스템(100)의 신뢰도를 향상시킬 수 있다.
도 5D는 기재된 실시예에 따른 이미지 세트에서 신호등을 검출하는 프로세스(500D)의 일례를 예시한 순서도이다. 처리부(110)는 단안 이미지 분석 모듈(402)을 실행하여 본 프로세스(500D)를 구현할 수 있다. 단계 560에서, 처리부(110)는 이미지 세트를 스캔하고 신호등 포함 가능성이 있는 이미지의 위치에 나타나는 물체를 식별한다. 예를 들면, 처리부(110)는 식별된 물체를 필터링하여 신호등에 상응할 가능성이 없는 물체들을 제외한 후보 물체 모음을 구성할 수 있다. 필터링은 신호등의 모양, 크기, 질감, 위치(예, 차량(200)에 대한 상대적 위치) 등의 다양한 성질에 근거하여 수행될 수 있다. 이러한 성질은 여러 예의 신호등과 교통 제어 신호에 근거할 수 있고 데이터베이스에 저장될 수 있다. 일부 실시예에서, 처리부(110)는 신호등 가능성이 있는 후보 물체 모음에 대한 다중 프레임 분석을 수행할 수 있다. 예를 들어, 처리부(110)는 연속 이미지 프레임에 걸쳐 후보 물체를 추적하고, 후보 물체의 실세계 위치를 추정하고, 움직이는 물체(즉, 신호등일 가능성이 적은 물체)를 필터링할 수 있다. 일부 실시예에서, 처리부(110)는 후보 물체에 대한 색 분석을 실시하고 신호등 가능성이 있는 물체 내부에서 검출된 색의 상대적 위치를 식별할 수 있다.
단계 562에서, 처리부(110)는 교차로의 기하학적 구조를 분석할 수 있다. 이 분석은 (i) 차량(200) 양측에 검출된 차로의 수, (ii) 도로 상에 검출된 표시(화살표 등), (iii) 지도 데이터(예, 데이터베이스(160)에 저장된 지도 데이터)에서 추출된 교차로 설명의 조합에 근거하여 수행될 수 있다. 처리부(110)는 단안 분석 모듈(402)을 실행하여 도출한 정보를 활용하여 분석을 수행할 수 있다. 또한, 처리부(110)는 단계 560에서 검출된 신호등이 차량(200) 부근에 보이는 차로와 상응하는지 판단할 수 있다.
차량(200)이 교차로에 접근함에 따라, 단계 564에서, 처리부(110)는 분석된 교차로 기하학적 구조와 검출된 신호등에 관한 신뢰 수준을 업데이트 할 수 있다. 예를 들어, 교차로에 나타날 것으로 추정된 신호등의 수와 실제로 교차로에 나타난 신호등의 수를 비교하면 신뢰 수준을 파악할 수 있다. 따라서, 이 신뢰 수준에 근거하여, 처리부(110)는 안전 조건을 향상하기 위하여 차량(200)의 제어를 운전자에게 맡길 수 있다. 단계 560 내지 564를 수행함으로써, 처리부(110)는 캡처 된 이미지 세트 내에 나타나는 신호등을 식별하고 교차로 기하학적 정보를 분석할 수 있다. 이러한 식별과 분석을 근거로, 처리부(110)는 상기에 도 5A를 참조하여 설명한 하나 이상의 주행 반응을 차량(200)이 하도록 할 수 있다.
도 5E는 기재된 실시예에 따른 차량 경로에 근거한 하나 이상의 주행 반응을 차량(200)에 야기하는 프로세스(500E)의 일례를 예시한 순서도이다. 단계 570에서, 처리부(110)는 차량(200)의 초기 차량 경로를 구성할 수 있다. 차량 경로는 좌표 (x, z)로 표현되는 한 세트의 점으로 나타낼 수 있고, 한 세트의 점의 두 점 간의 간격인 d1는 1 내지 5미터의 범위 내에 있을 수 있다. 일 실시예에서, 처리부(110)는 좌측 도로 다항식과 우측 도로 다항식과 같은 두 개의 다항식을 사용하여 초기 차량 경로를 구성할 수 있다. 처리부(110)는 두 개의 다항식 사이의 중간점을 계산하고, 오프셋이 있는 경우(오프셋이 0인 경우는 차로의 중앙을 주행하는 경우에 해당함), 차량 경로 결과에 포함된 각 점을 미리 설정한 오프셋(예, 스마트 차로 오프셋)만큼 오프셋 할 수 있다. 오프셋은 차량 경로 내의 두 점 사이의 구간에 수직인 방향일 수 있다. 다른 실시예에서, 처리부(110)는 하나의 다항식과 추정된 차로 폭을 사용하여 차량 경로의 각 점을 추정된 차로 폭에 미리 설정한 오프셋(예, 스마트 차선 오프셋)을 더한 값만큼 오프셋 할 수 있다.
단계 572에서, 처리부(110)는 단계 570에서 구성한 차량 경로를 업데이트 할 수 있다. 처리부(110)는 단계 570에서 구성한 차량 경로를 더 높은 해상도를 사용하여 재구성하여 차량 경로를 나타내는 한 세트의 점의 두 점 사이의 거리 dk가 상기에 설명한 거리 d1보다 작도록 할 수 있다. 예를 들어, dk는 0.1 내지 0.3 미터의 범위 내에 있을 수 있다. 처리부(110)는 차량 경로의 전체 길이에 해당하는(즉, 차량 경로를 나타내는 점들의 세트에 근거한) 누적 거리 벡터 S를 산출하는 파라볼릭 스플라인 알고리즘(parabolic spline algorithm)을 사용하여 차량 경로를 재구성할 수 있다.
단계 574에서, 처리부(110)는 단계 572에서 구성된 업데이트된 차량 경로에 근거하여 예견점(look-ahead point)(좌표 (x l , z l )로서 표현)을 결정할 수 있다. 처리부(110)는 누적 거리 벡터 S로부터 예견점을 추출할 수 있고, 예견점은 예견 거리 및 예견 시간과 연계될 수 있다. 하한계가 10 내지 20미터일 수 있는 예견 거리는 차량(200)의 속도와 예견 시간을 곱한 값으로 산출될 수 있다. 예를 들어, 차량(200)의 속도가 감소하면, 예견 거리도 감소(예, 하한계에 도달할 때까지)할 수 있다. 범위가 0.5 내지 1.5초일 수 있는 예견 시간은 차량(200)에 주행 반응을 야기하는 것과 관계있는 하나 이상의 제어 루프(control loop)(예, 방위각 오차 추적 제어 루프)의 게인(gain)에 반비례할 수 있다. 예를 들어, 방위각 오차 추적 제어 루프의 게인은 요 레이트 루프(yaw rate loop)의 대역폭, 조향 액추에이터 루프, 차량 측방향 동역학 등에 따라 다를 수 있다. 따라서, 방위각 오차 추적 제어 루프의 게인이 클수록, 예견 시간은 작아질 수 있다.
단계 576에서, 처리부(110)는 단계 574에서 판단한 예견점에 근거하여 방위각 오차 및 요 레이트 명령을 결정할 수 있다. 처리부(110)는 예견점의 아크탄젠트, 예를 들어 arctan (x l / z l )를 산출하여 결정할 수 있다. 처리부(110)는 방위각 오차와 고레벨 제어 게인의 곱을 산출하여 요 레이트(yaw rate) 명령을 결정할 수 있다. 고레벨 제어 게인은, 예견 거리가 하한계에 있지 않은 경우, (2/예견 시간)과 같을 수 있다. 아니면, 고레벨 제어 게인은 (2 * 차량(200)의 속도/예견 거리)와 같을 수 있다.
도 5F는 기재된 실시예에 따른 선두 차량이 차로 변경을 하는지를 판단하는 프로세스(500F)의 일례를 예시한 순서도이다. 단계 580에서, 처리부(110)는 선두 차량(예, 차량(200)에 앞서 주행하는 차량)에 대한 항법 정보를 판단할 수 있다. 예를 들면, 처리부(110)는, 선두 차량의 위치, 속도(예, 방향과 속력), 및/또는 가속도를 판단할 수 있다. 처리부(110)는 또한 상기의 도 5E를 참조하여 설명한 방법을 활용하여 하나 이상의 도로 다항식, 예견점(차량(200)과 관련된 예견점), 및/또는 스네일 트레일(snail trail: 선두 차량의 경로를 묘사하는 한 세트의 점)을 판단할 수 있다.
단계 582에서 처리부(110)는 단계 580에서 판단한 항법 정보를 분석할 수 있다. 일 실시예에서, 처리부(110)는 스네일 트레일과 도로 다항식(예, 스네일 트레일을 따라가는 다항식) 사이의 거리를 계산할 수 있다. 스네일 트레일을 따라가는 거리의 분산이 미리 설정한 임계치(예, 직선 도로에서 0.1 내지 0.2, 완만한 커브길에서 0.3 내지 0.4, 급커브길에서 0.5 내지 0.6)를 초과하는 경우, 처리부(110)는 선두 차량이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다. 차량(200)의 앞에 여러 차량이 검출된 경우, 처리부(110)는 각 차량의 스네일 트레일을 비교할 수 있다. 처리부(110)는 비교 결과에 근거하여 다른 차량들의 스네일 트레일과 일치하지 않는 스네일 트레일의 차량이 차로 변경의 가능성이 있는 것으로 판단할 수 있다. 처리부(110)는 추가적으로 선두 차량의 스네일 트레일의 곡률과 선두 차량이 주행하고 있는 도로 구간의 예상 곡률을 비교할 수 있다. 예상 곡률은 지도 데이터(예, 데이터베이스(160)의 데이터), 도로 다항식, 다른 차량의 스네일 트레일, 도로에 대한 사전 지식 등으로부터 추출될 수 있다. 스네일 트레일의 곡률과 도로 구간의 예상 곡률의 차이가 미리 설정된 임계값을 초과하는 경우, 처리부(110)는 선두 차량이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다.
다른 실시예에서, 처리부(110)는 특정 시간(예, 0.5 내지 1.5초)에 대한 선두 차량의 순간 위치와 예견점(차량(200)의 예견점)을 비교할 수 있다. 특정 시간 동안에 선두 차량의 순간 위치와 예견점 사이의 거리가 변화하고 변화의 누적 합이 미리 설정한 임계치(예, 직선도로 상 0.3 내지 0.4 미터, 완만한 커브길의 0.7 내지 0.8 미터, 급커브길의 1.3 내지 1.8 미터)를 초과할 경우, 처리부(110)는 선두 차량이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다. 다른 실시예에서, 처리부(110)는 스네일 트레일을 따라 주행한 횡방향 거리와 스네일 트레일의 예상 곡률을 비교하여 스네일 트레일의 기하를 분석할 수 있다. 예상 곡률 반경은 수학식
Figure pct00001
을 통하여 판단할 수 있다. 여기서,
Figure pct00002
는 횡방향 주행 거리이고,
Figure pct00003
는 종방향 주행 거리이다. 횡방향 주행 거리와 예상 곡률 사이의 차이가 미리 설정한 임계치(예, 500 내지 700미터)를 초과하는 경우, 처리부(110)는 선두 차량이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다. 다른 실시예에서, 처리부(110)는 선두 차량의 위치를 분석할 수 있다. 선두 차량의 위치가 도로 다항식을 안 보이게 하는 경우(예, 선두 차량이 도로 다항식의 상부에 덮어씌워 있는 경우), 처리부(110)는 선두 차량이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다. 다른 차량이 선두 차량의 앞에 검출되고 선두 차량과 앞 차량의 스네일 트레일이 서로 평행하지 않은 경우, 처리부(110)는 선두 차량(즉, 차량(200)과 가까운 차량)이 차로 변경을 하고 있을 가능성이 있는 것으로 판단할 수 있다.
단계 584에서, 처리부(110)는 단계 582에서 수행한 분석에 근거하여 선두 차량의 차로 변경 여부를 판단할 수 있다. 예를 들어, 처리부(110)는 단계 582에서 수행한 개별 분석의 가중 평균에 근거하여 판단을 할 수 있다. 이 방법에서, 예를 들면, 특정 유형의 분석에 근거하여 선두 차량이 차로 변경을 하고 있을 가능성이 있다는 판단을 처리부(110)가 내릴 경우, "1"의 값을 부여할 수 있다(선두 차량이 차로 변경을 하지 않고 있을 가능성 판단일 경우, "0"의 값 부여). 단계 582에서 수행되는 다른 분석에는 다른 가중치가 부여될 수 있으며, 본 실시예는 특정 조합의 분석 및 가중치에 한정되지 않는다. 또한, 일부 실시예에서, 예를 들어 현재 위치에서 캡처된 이미지에 기반하여 차량의 현재 위치 전방의 향후 경로를 추정할 수 있는, 학습 시스템(예, 머신러닝 도는 딥러닝 시스템)을 활용하여 분석을 할 수 있다.
도 6은 기재된 실시예에 따른 입체 이미지 분석에 근거한 하나 이상의 주행 반응을 야기하는 프로세스(600)의 일례를 예시한 순서도이다. 단계 610에서, 처리부(110)는 복수의 제1 및 제2 이미지를 데이터 인터페이스(128)를 통하여 수신할 수 있다. 예를 들면, 이미지획득부(120, 시야(202, 204)를 가진 이미지캡처장치(122, 124) 등)에 포함된 카메라가 차량(200) 전면 영역의 복수의 제1 및 제2 이미지를 캡처하고 디지털 연결(예, USB, 무선통신, 블루투스 등)을 통해 처리부(110)로 전송할 수 있다. 일부 실시예에서, 처리부(110)는 둘 이상의 데이터 인터페이스를 통해 복수의 제1 및 제2 이미지를 수신할 수 있다. 여기에 기재된 실시예들은 특정 데이터 인터페이스 구성 또는 프로토콜에 제한되지 않는다.
단계 620에서, 처리부(110)는 입체 이미지 분석 모듈(404)을 실행하여 복수의 제1 및 제2 이미지에 대한 입체 이미지 분석을 수행하여 차량 전면 도로의 3차원 지도를 생성하고, 이미지 내에서 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등, 도로 상의 위험물 등과 같은 특징을 검출할 수 있다. 입체 이미지 분석은 상기에서 도 5A 내지 5D를 참조하여 설명한 단계와 유사한 방법으로 수행될 수 있다. 예를 들어, 처리부(110)는 입체 이미지 분석 모듈(404)을 실행하여 복수의 제1 및 제2 이미지 내에서 후보 물체(예, 차량, 보행자, 도로 표시, 신호등, 도로 상의 위험물 등)을 검출하고, 다양한 기준에 근거하여 후보 물체의 모음을 필터링하고, 다중 프레임 분석을 수행하고, 측정치를 구성하고, 나머지 후보 물체에 대한 신뢰 수준을 판단할 수 있다. 상기 단계들을 수행함에 있어서, 처리부(110)는 한 세트의 이미지보다는 복수의 제1 및 제2 이미지 모두의 정보를 고려할 수 있다. 예를 들어, 처리부(110)는 복수의 제1 및 제2 이미지에 모두 등장하는 후보 물체에 대한 픽셀 단계 데이터(또는 두 스트림의 캡처된 이미지의 기타 데이터 서브세트)의 차이를 분석할 수 있다. 다른 예로서, 처리부(110)는 후보 물체가 복수의 이미지 중 하나에 등장하지만 다른 이미지에 등장하지 않는다는 것을 관찰하거나, 두 이미지 스트림에 등장하는 물체와 관련하여 존재하는 다른 차이점들을 통하여, 후보 물체(예, 차량(200)에 대한 후보 물체)의 위치 및/또는 속도를 추정할 수 있다. 예를 들어, 차량(200)과 관련된 위치, 속도, 및/또는 가속도는 이미지 스트림의 하나 또는 모두에 등장하는 물체와 연관된 특징의 궤적, 위치, 동작 특성 등에 근거하여 판단될 수 있다.
단계 630에서, 처리부(110)는 주행 반응 모듈(408)을 실행하여 단계 620에서 수행한 분석 및 도 4를 참조하여 상기에 설명한 방법에 근거한 하나 이상의 주행 반응을 차량(200)에 발생시킬 수 있다. 주행 반응은, 예를 들어, 회전, 차로 변경, 가속도 변경, 속도 변경, 제동 등을 포함할 수 있다. 일부 실시예에서, 처리부(110)는 속도 및 가속 모듈(406)을 실행하여 도출한 데이터를 사용하여 하나 이상의 주행 반응을 발생시킬 수 있다. 뿐만 아니라, 다중 주행 반응이 동시에, 순차적으로, 또는 이들의 조합으로 발생될 수 있다.
도 7은 본 발명의 실시예에 따른 3세트의 이미지에 근거한 하나 이상의 주행 반응을 발생시키는 프로세스(700)의 일례를 예시한 순서도이다. 단계 710에서, 처리부(110)는 데이터 인터페이스(128)를 통하여 복수의 제1, 제2, 제3 이미지를 수신할 수 있다. 예를 들어, 이미지획득부(120, 시야(202, 204, 206)를 가진 이미지캡처장치(122, 124, 126) 등)에 포함된 카메라가 차량(200) 전면 및/또는 측면 영역의 복수의 제1, 제2, 제3 이미지를 캡처하고 디지털 연결(예, USB, 무선통신, 블루투스 등)을 통해 처리부(110)로 전송할 수 있다. 일부 실시예에서, 처리부(110)는 셋 이상의 데이터 인터페이스를 통해 복수의 제1, 제2, 제3 이미지를 수신할 수 있다. 예를 들어, 이미지캡처장치(122, 124, 126)는 처리부(110)와 데이터를 통신하기 위해 각 장치에 연관된 데이터 인터페이스가 있을 수 있다. 기재된 실시예들은 특정 데이터 인터페이스 구성 또는 프로토콜로 제한되지 않는다.
단계 720에서, 처리부(110)는 복수의 제1, 제2, 제3 이미지를 분석하여 차로 표시, 차량, 보행자, 도로 표지, 고속도로 나들목, 신호등, 도로 상의 위험물 등과 같은 특징을 이미지 내에서 검출할 수 있다. 본 분석은 상기에서 도 5A 내지 5D 및 도 6을 참조하여 설명한 단계와 유사한 방법으로 수행될 수 있다. 예를 들어, 처리부(110)는 복수의 제1, 제2, 제3 이미지 각각에 대한 단안 이미지 분석(예, 단안 이미지 분석 모듈(402) 실행 및 도 5A 내지 5D를 참조하여 설명한 상기 단계)을 수행할 수 있다. 또는, 처리부(110)는 복수의 제1 및 제2 이미지, 복수의 제2 및 제3 이미지, 및/또는 복수의 제1 및 제3 이미지에 대한 입체 이미지 분석(예, 입체 이미지 분석 모듈(404) 실행 및 도 6을 참조하여 설명한 상기 단계)을 수행할 수 있다. 복수의 제1, 제2 및/또는 제3 이미지에 상응하는 처리 정보는 병합될 수 있다. 일부 실시예에서, 처리부(110)는 단안 이미지 분석과 입체 이미지 분석을 조합하여 수행할 수 있다. 예를 들면, 처리부(110)는 복수의 제1 이미지에 대해 단안 이미지 분석(예, 단안 이미지 분석 모듈(402) 실행)을 수행하고, 복수의 제2 및 제3 이미지에 대해 입체 이미지 분석(예, 입체 이미지 분석 모듈(404) 실행)을 수행할 수 있다. 상응하는 위치와 시야(202, 204, 206)를 가진 이미지캡처장치(122, 124, 126)의 구성은 복수의 제1, 제2, 제3 이미지에 대해 수행되는 분석의 유형에 영향을 줄 수 있다. 기재된 실시예들은 특정 구성의 이미지캡처장치(122, 124, 126) 또는 복수의 제1, 제2, 제3 이미지에 수행되는 분석의 유형으로 제한되지 않는다.
일부 실시예에서, 처리부(110)는 단계 710과 720에서 획득하고 분석한 이미지에 근거하여 시스템(100)의 검사를 수행할 수 있다. 이러한 검사는 이미지캡처장치(122, 124, 126)의 특정 구성을 위한 시스템(100)의 전체적인 성능에 대한 지시자를 제공할 수 있다. 예를 들어, 처리부(110)는 "오탐"(예, 시스템(100)이 차량 또는 보행자가 존재하는 것으로 오판하는 경우) 및 "누락"의 비율을 판단할 수 있다.
단계 730에서, 처리부(110)는 복수의 제1, 제2, 제3 이미지 중 둘로부터 도출된 정보에 근거하여 차량(200)에 하나 이상의 주행 반응을 발생시킬 수 있다. 복수의 제1, 제2, 제3 이미지 중 둘은, 예를 들어, 복수의 이미지 각각에 검출된 물체의 개수, 유형, 크기 등과 같은 다양한 요소에 의거하여 선택될 수 있다. 처리부(110)는 또한, 이미지의 품질 및 해상도, 이미지에 반영된 유효 시야, 캡처 된 프레임의 수, 관심 물체가 프레임에 실제로 등장하는 정도(예, 물체가 등장하는 프레임의 퍼센트, 각 프레임에 등장하는 물체가 차지하는 비율 등) 등에 따라 이미지를 선택할 수 있다.
일부 실시예에서, 처리부(110)는 한 이미지 소스로부터 도출된 정보가 다른 이미지 소스로부터 도출된 정보와 어느 정도 일관되는지를 판단하여 복수의 제1, 제2, 제3 이미지 중 둘로부터 도출된 정보를 선택할 수 있다. 예를 들어, 처리부(110)는 이미지캡처장치(122, 124, 126) 각각으로부터 도출(단안 분석, 입체 분석, 또는 이들의 조합)된 처리 정보를 병합하고 이미지캡처장치(122, 124, 126) 각각으로부터 캡처 된 이미지 전반에 걸쳐 일관된 시각적 지시자(예, 차로 표시, 검출된 차량 및 그 위치 및/또는 경로, 검출된 신호등 등)를 판단할 수 있다. 처리부(110)는 또한, 캡처 된 이미지 전반에 걸쳐 일관되지 않은 정보(예, 차로를 변경하는 차량, 차량(200)과 너무 가까운 차량을 나타내는 차로 모델 등)를 제외시킬 수 있다. 따라서, 처리부(110)는 일관된 정보 및 일관되지 않은 정보의 판단에 근거하여 복수의 제1, 제2, 제3 이미지 중 둘로부터 도출된 정보를 선택할 수 있다.
주행 반응은, 예를 들면, 회전, 차로 변경, 가속도 변경 등을 포함할 수 있다. 처리부(110)는 단계 720에서 수행된 분석과 도 4를 참조하여 설명한 방법에 근거하여 하나 이상의 주행 반응을 발생시킬 수 있다. 처리부(110)는 또한 속도 및 가속 모듈(406)을 실행하여 도출한 데이터를 사용하여 하나 이상의 주행 반응을 발생시킬 수 있다. 일부 실시예에서, 처리부(110)는 차량(200)과 복수의 제1, 제2, 제3 이미지 중 어느 하나 내에서 검출된 물체 사이의 상대적 위치, 상대적 속도, 및/또는 상대적 가속도에 근거하여 하나 이상의 주행 반응을 발생시킬 수 있다. 다중 주행 반응은 동시에, 순차적으로 또는 이들의 조합으로 발생될 수 있다.
검출된 배리어에 기반한 차량의 항법
기재된 실시예에 따라, 시스템은 이미지캡처장치에 의해 캡처 된 이미지로부터 판단된 적어도 하나의 배리어(barrier)에 기반하여 차량의 주행 경로를 결정할 수 있다. 시스템은 횡단 가능 배리어(traversable barrier; 예, 도로 경계석, 차로 표시, 도로 가장자리 등)와 횡단 불가능 배리어(non-traversable barrier; 예, 콘크리트 장벽, 차로 분리 구조물, 타 차량, 터널 벽, 교량 구조물 등) 사이의 차이를 구분할 수 있다. 차량의 전방에 장애물(예, 보행자, 동물, 잔해, 또는 기타 도로 이외의 물체)이 등장하는 비상 상황에서, 시스템은 사고를 회피하기 위하여 횡단 가능 배리어를 통과하여 이동할 주행 경로를 결정할 수 있다.
또한, 시스템은 이동 가능 배리어(예, 타 차량, 원뿔형 도로표지 등)와 고정 배리어(예, 도로 가장자리, 도로 경계석, 차로 분리 구조물, 터널 벽, 교량 구조물 등) 사이의 차이를 구분할 수 있다. 시스템은 고정 배리어의 위치를 판단하고, 자율 주행을 위한 지도에 대한 업데이트를 판단된 고정 배리어의 위치에 근거하여 서버로 전송할 수 있다.
도 8은 기재된 실시예에 따른 차량의 항법 시스템을 도시한 것이다. 도시의 편의상, 차량은 차량(800)으로 표시하였다. 도 8에 도시된 차량은, 예를 들어 다른 실시예에서 도시된 차량(200)을 포함하는, 여기에 기재된 모든 차량의 하나 이상일 수 있다. 도 8에 도시된 바와 같이, 차량(800)은 원격 서버(850)와 통신할 수 있다. 차량(800)은 적어도 하나의 이미지캡처장치(예, 카메라(812, 814))를 포함할 수 있다. 차량(800)은 차량(800)의 도로 상 이동을 위한 항법 안내를 제공하도록 구성된 항법 시스템(820)을 포함할 수 있다. 차량(800)은 자율주행차일 수 있고, 항법 시스템(820)은 자율 주행을 위한 항법 안내를 제공하기 위해 활용될 수 있다. 또는, 다른 실시예에서, 차량(800)은 자율 주행차량이 아니고 사람이 제어하는 차량일 수도 있지만, 항법 시스템(820)은 여전히 항법 안내를 제공하기 위해 활용될 수 있다.
항법 시스템(820)은 통신 경로(860)를 통해 서버(850)와 통신하도록 구성된 통신부(822)를 포함할 수 있다. 항법 시스템(820)은 GPS(Global Positioning System) 신호를 수신하고 처리하도록 구성된 GPS부(824)를 포함할 수 있다. 항법 시스템(820)은 GPS 신호, 카메라(812, 814)에 의해 캡처 된 이미지, 및/또는 서버(850)로부터의 지도 데이터와 같은 데이터를 처리하도록 구성된 적어도 하나의 프로세서(826)를 포함할 수 있다. 항법 시스템(820)은 프로세서(826)에 의해 실행되는 경우에 프로세서로 하여금 기재된 실시예에 따른 다양한 방법을 수행하게 하는 다양한 모듈을 저장하는 메모리(828)을 포함할 수 있다.
원격 서버(850)는 차량(800)과 통신하는 원격 서버(850) 상에 제공된 저장 장치(852)(예, 컴퓨터 가독 매체)를 포함할 수 있다. 원격 서버(850)는 저장 장치(852) 내에 지도 데이터베이스(854)를 저장할 수 있다. 지도 데이터베이스(854)는 특징 지역의 지도를 포함할 수 있다. 차량(800)은 원격 서버(850)와 통신하여 지도 데이터베이스(854)에 포함된 데이터를 수신할 수 있다. 차량(800)은 또한 원격 서버(850)와 통신하여 지도 데이터베이스(854) 내 지도 데이터의 업데이트를 전송할 수 있다.
도 9는 기재된 실시예에 따른 메모리(900)의 일례를 도시한 것이다. 메모리(900)는 차량(800)의 항법 시스템(820) 내에 포함된 메모리(828)일 수 있다. 메모리(900)는 프로세서(예, 826)에 의해 실행되는 경우에 프로세서로 하여금 다양한 방법을 수행하게 하는 다양한 모듈을 포함할 수 있다.
예를 들어, 메모리(900)는 항법 구역 판단 모듈(910)을 포함할 수 있다. 항법 구역 판단 모듈(910)은 프로세서에 의해 실행되는 경우에 프로세서로 하여금 이미지캡처장치(예, 카메라(812, 814)의 하나)로부터 수신된 복수의 이미지의 적어도 하나를 분석하여 차량(예, 800)의 주변 환경 내에서 항법 가능한 구역(navigable region)을 식별하게 할 수 있다.
메모리(900)는 또한 배리어 식별 모듈(920)을 포함할 수 있다. 배리어 식별 모듈(920)은 프로세서로 하여금 이미지캡처장치로부터 수신된 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 복수의 이미지의 적어도 하나에 기반하여 식별하게 할 수 있다. 적어도 하나의 배리어는 도로 경계석, 차로 표시, 도로 가장자리, 콘크리트 장벽, 차로 분리 구조물, 터널 벽, 교량 구조물 등을 포함할 수 있다. 배리어는 물리적 물체(예, 배리어)나 도로 표시, 또는 특정 가장자리 너머의 영역은 항법 가능한 구역 바깥임을 나타내는 일체의 기타 모든 표시를 포함할 수 있다. 일례로, 특정 물리적 물체 또는 도로 표시가 특정 상황하에서 또는 특정 차량에 대해서 도로 배리어로 분류될 수 있지만, 동일한 물리적 물체 또는 도로 표시가 다른 차량에 대해서나 다른 상황 하에서는 배리어가 아닌 것으로 간주될 수 있다. 이러한 유동적 배리어의 일례에는 하루 중 특정 시간 동안에는 일방향으로 진행하는 차량들에 차로를 배정하지만 하루 중 다른 시간 동안에는 반대 방향으로 진행하는 차량들에 차로를 배정하는 차로배정표지판이 있을 수 있다. 차로 표시는 하루 중 어느 시간인지와 차량의 움직임 방향에 따라 배리어(차량의 차로 진입 방지)이거나 일반 차로 표시일 수 있다. 다른 예에서, 차로 표시는 특정 수의 사람 미만이 탑승한 차량에 대해서는 배리어인 동시에, 특정 수의 사람 이상이 탑승한 차량이나 대중교통에 대해서는 일반 차로 표시일 수 있다.
배리어 식별 모듈(920)은 또한 프로세서로 하여금 적어도 하나의 배리어의 유형을 판단하게 할 수 있다. 배리어는 횡단 가능 유형 또는 횡단 불가능 유형일 수 있다. 횡단 가능 배리어는 차량, 배리어, 또는 배리어 근처 및 배리어 반대편의 일체의 물체에 실질적인 손상을 가하지 않으면서 차량이 가로지를 수 있는 배리어를 포함할 수 있다. 횡단 가능 배리어의 예에는 도로 경계석, 차로 표시, 도로 가장자리 등이 포함될 수 있다. 횡단 불가능 배리어는 차량이 가로지를 수 없는, 즉, 차량, 배리어, 또는 배리어 근처의 일체의 물체에 중대한 손상을 입힐 수 있는 배리어를 포함한다. 횡단 불가능 배리어의 예에는 콘크리트 장벽, 차로 분리 구조물, 타 차량, 터널 벽, 교량 구조물 등이 포함될 수 있다.
배리어 식별 모듈(920)은 또한, 구체적으로 적어도 하나의 배리어가 횡단 가능 배리어인 경우에, 적어도 하나의 배리어 바깥의 영역을 분류하도록 구성될 수 있다. 예를 들어, 높지 않은 인도 경계석(횡단 가능한 것으로 판단될 수 있음) 바깥으로 보행자가 검출되는 경우, 배리어 식별 모듈(920)은 적어도 하나의 배리어 바깥의 영역을 위험한 것으로 또는 보행자를 포함할 가능성이 있는 것으로 분류할 수 있다.
일부 실시예에서, 배리어는 이동 가능 유형 또는 고정된 유형일 수 있다. 이동 가능 배리어는 그 위치가 변화하고 고정되지 않은 배리어를 포함할 수 있다. 이동 가능 배리어의 예에는 타 차량, 원뿔형 도로표지, 넘어진 나무, 또는 앞서 설명한 유동적 배리어가 포함될 수 있다. 고정된 배리어는 도로 또는 도로 환경의 일부인 배리어를 포함할 수 있다. 고정된 배리어의 예에는 도로 가장자리, 도로 경계석, 차로 분리 구조물, 터널 벽, 또는 교량 구조물이 포함될 수 있다.
메모리(900)는 또한 장애물 식별 모듈(930)을 포함할 수 있다. 장애물 식별 모듈(930)은 프로세서로 하여금 이미지캡처장치로부터 수신된 복수의 이미지 중 적어도 하나를 분석하고 복수의 이미지 중 적어도 하나의 분석에 근거하여 차량 전방의 장애물을 식별하게 할 수 있다. 장애물은 도로 이외의 물체, 즉, 도로에 속하지 않는 물체일 수 있다. 예를 들어, 장애물은 보행자, 동물, 잔해(예, 나무, 가로등 등)일 수 있다. 장애물은 차량의 전방에 그리고 가까이 위치할 수 있다. 장애물은 이전에 결정된 차량의 주행 경로 내에 위치하여, 차량이 주행 경로로부터 우회하지 않으면 장애물과 충돌하여 교통사고가 발생할 수도 있다. 일부 다른 예에서, 장애물 식별 모듈(930)은 프로세서로 하여금 레이더 또는 라이더로부터의 정보를 분석하여 차량 전방의 장애물을 식별하게 할 수 있다.
메모리(900)는 주행 경로 결정 모듈(940)을 더 포함할 수 있다. 주행 경로 결정 모듈(940)은 프로세서로 하여금 적어도 하나의 배리어의 유형에 근거하여 차량의 주행 경로를 결정하게 할 수 있다. 예를 들면, 프로세서는 목적지 위치와 차량의 현 위치를 분석하여 차량을 목적지까지 이끌고 갈 주행 경로를 결정할 수 있다. 주행 경로는 횡단 가능 또는 횡단 불가능 배리어에 부분적으로 둘러싸인 항법 가능한 구역 내에 위치할 수 있다. 프로세서가 차량 전방에 그리고 가까이 위치한 장애물을 식별하는 경우, 프로세서는 식별된 장애물을 회피하기 위한 주행 경로를 결정할 수 있다. 식별된 장애물의 회피가 불가능한 경우, 프로세서는 횡단 가능 배리어를 통과하는 주행 경로를 결정할 수 있다. 다른 예에서, 식별된 장애물의 회피가 불가능한 경우, 프로세서는 배리어 너머의 영역과 관련된 센서 데이터를 프로세스하여 횡단 가능 배리어를 가로지르는 것이 안전한지 여부를 판단하고, 가능하다면, 횡단 가능 배리어 너머의 적어도 한 영역을 포함하는 안전한 또는 심지어 가장 안전한 경로를 산출할 수도 있다.
메모리(900)는 지도 업데이트 모듈(950)을 더 포함할 수 있다. 지도 업데이트 모듈(950)은 프로세서로 하여금 배리어의 판단된 유형에 근거하여 지도(예, 지도 데이터베이스(854))에 대한 업데이트를 원격 서버(예, 850)로 전송할지 여부를 판단하게 할 수 있다. 배리어가 이동 가능 유형인 것으로 판단된 경우, 프로세서는 업데이트를 전송하지 않기로 결정할 수 있다. 반대로, 배리어가 고정된 유형인 것으로 판단된 경우, 프로세서는 고정된 배리어에 관한 지도 업데이트를 원격 서버로 전송하기로 결정할 수 있다. 지도 업데이트는 고정된 배리어의 위치, 형상, 크기, 및/또는 식별자를 포함할 수 있고, 가능한 경우, 배리어 너머 영역에 관한 데이터(예를 들면, 보행자와 같은 위험 요소가 배리어 너머 영역에서 식별됐는지 여부)도 포함할 수 있다.
도 10A는 기재된 실시예에 따른 예시적인 차량(1010)의 주변상황(1000)의 조감도를 개략적으로 도시한 것이다. 예시적인 차량(1010)은, 예를 들어, 상기에 도 8을 참조하여 설명한 차량(800)일 수 있고, 차량(800)의 항법 시스템(820)과 같은 항법 시스템을 포함할 수 있다.
도 10A에 도시된 바와 같이, 차량(1010)의 주변상황(1000)은 콘크리트 장벽(1022)과 도로 경계석(1024)에 의해 정의된 도로 영역(1020) 및 도로 경계석(1024)과 콘크리트 장벽(1026)에 의해 정의된 비도로 영역(1030)을 포함한다. 도로 영역(1020)은 차로 표시(1028)에 의해 구분된 좌측 차로(1020A)와 우측 차로(1020B)를 포함한다. 차량은 우측 차로(1020B) 상에서 운행하고 있다. 다른 차량(1015)(예, 트럭)은 우측 차로(1020B) 상에서 차량(1010)의 전방에 운행하고 있다. 복수의 차량(1011, 1012, 1013, 1014)은 좌측 차로(1020A) 상에서 운행하고 있다. 보행자(1018)는 우측 차로(1020B) 상에서 보행하고 있다.
도 10B는 예시적인 차량(1010)의 전방 이미지캡처장치에 의해 캡처된 주변상황(1000)의 이미지(1040)를 개략적으로 도시한 것이다. 전방 이미지캡처장치는, 예를 들어, 차량(800)의 카메라(812, 814) 중의 하나일 수 있다. 프로세서(예, 차량(800)의 항법 시스템(820)에 포함된 프로세서(826))는 이미지(1040)를 분석하여 가장자리(1060)를 가진 항법 가능한 구역(1050)을 판단한다. 가장자리(1060)는 차량(1010)(즉, 이미지(1040)의 뷰어) 인근의 차량(1011-1014)의 측면, 차량(1015)의 후방, 및 도로 경계석(1024)을 따라 배치될 수 있다. 가장자리(1060)의 적어도 일부와 관련된 배리어(예, 차량(1011-1014)와 도로 경계석(1024))은 차량(1010)에 대한 주행 경로(1070)를 결정하는데 활용될 수 있다.
도 11은 기재된 실시예에 따른 검출된 배리어에 근거한 차량의 항법을 위한 예시적인 프로세스(1100)를 도시한 순서도이다. 프로세스(1100)는 차량(예, 800)에 탑재된 프로세서(예, 826)에 의해 수행될 수 있다. 프로세스(1100)는 전방 이미지캡처장치(예, 카메라(812, 814) 중의 하나)에 의해 확보된 적어도 하나의 이미지를 분석하여 차량에 대한 주행 경로를 결정할 수 있다.
단계 1110에서, 프로세서(826)는 차량(800)의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신할 수 있다. 도 10B에 도시된 이미지(1040)는 차량(800)에 탑재된 이미지캡처장치(예, 카메라(812, 814) 중의 하나)로부터 수신될 수 있는 차량(800)의 주변상황(1000)의 이미지의 일례이다. 일부 실시예에서, 복수의 이미지는 이미지캡처장치에 의해 서로 다른 시간에 캡처(예, 1초 미만, 1초, 2초 등의 간격으로 캡처)될 수 있다. 일부 실시예에서, 차량(800)은 복수의 이미지캡처장치(예, 카메라(812, 814))를 포함하고, 프로세서(826)는 각 이미지캡처장치로부터 차량(800)의 주변상황(1000)과 관련된 복수의 이미지를 수신할 수 있다. 각 이미지캡처장치로부터 수신된 복수의 이미지는 각 이미지캡처장치에 의해 서로 다른 시간에 캡처 된 이미지일 수 있다.
단계 1120에서, 프로세서(826)는 이미지캡처장치로부터 수신된 복수의 이미지의 적어도 하나를 분석할 수 있다. 복수의 이미지캡처장치로부터 수신된 이미지에 의거하여 하나의 복수의 이미지가 생성되는 실시예에서, 프로세서(826)는 이러한 하나의 복수의 이미지의 적어도 한 이미지를 분석할 수 있다. 또는, 각 이미지캡처장치로부터 수신된 각 이미지를 개별적으로 분석할 수도 있다.
프로세서(826)는 또한 복수의 이미지의 적어도 하나의 분석에 의거하여 차량(800)의 주변상황의 항법 가능한 구역을 식별할 수 있다. 예를 들어, 프로세서(826)는 이미지(1040)에 의거하여 가장자리(1060)를 가진 항법 가능한 구역(1050)을 식별할 수 있다.
일 실시예에서, 프로세서(826)는 컨볼루션 신경망(convolutional neural network 또는 CNN)을 활용하여 항법 가능한 구역을 판단할 수 있다. 예를 들어, 프로세서(826)는 빈 공간 픽셀과 비어있지 않은 공간 픽셀로 수동 라벨링 된 복수의 학습 이미지를 활용하여 학습될 수 있다. 학습의 결과, 프로세서(826)는 이미지(1040) 내의 픽셀을 빈 공간 픽셀과 비어있지 않은 공간 픽셀로 라벨링 할 수 있다. 이후, 프로세서(826)는 빈 공간 픽셀과 비어있지 않은 공간 픽셀 사이의 경계를 판단할 수 있다. 프로세서(826)는 이 경계에 의해 둘러싸인 또는 부분적으로 둘러싸인 구역을 항법 가능한 구역으로 식별할 수 있다.
단계 1130에서, 프로세서(826)는 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 식별할 수 있다. 적어도 하나의 배리어는 도로 경계석, 차로 표시, 도로 가장자리, 콘크리트 장벽, 차로 분리 구조물, 터널 벽, 교량 구조물 등을 포함할 수 있다. 예를 들어, 프로세서(826)는 차량(1011-1015)과 도로 경계석(1024)을 항법 가능한 구역(1050)의 가장자리(1060)와 관련된 배리어로 식별할 수 있다.
일 실시예에서, 메모리(예, 828)는 다양한 배리어의 복수의 학습 이미지를 저장할 수 있다. 프로세서(826)는 이미지(1040)를 복수의 학습 이미지와 비교하여 학습 이미지 내의 배리어의 특징과 일치하는 적어도 하나의 특징(예, 형상, 색 등)이 있는 물체를 이미지(1040) 내에서 식별할 수 있다. 프로세서(826)는 식별된 물체를 배리어로 판단할 수 있다.
일부 실시예에서, 학습 이미지 내의 배리어 각각은 배리어 식별자와 연계될 수 있다. 배리어 식별자의 예에는 "차량", "차로 표시", "도로 가장자리", "콘크리트 장벽", "차로 분리 구조물", "터널 벽", "교량 구조물" 등이 포함될 수 있다. 프로세서(826)가 학습 이미지 내의 배리어와 일치하는 물체를 식별하는 경우, 프로세서(826)는 식별된 물체를 일치하는 배리어와 연계된 배리어 식별자로 라벨링 할 수 있다.
단계 1140에서, 프로세서(826)는 단계 1130에서 식별된 적어도 하나의 배리어의 유형을 판단할 수 있다. 배리어는 횡단 가능 유형 또는 횡단 불가능 유형일 수 있다. 횡단 가능 배리어의 예에는 도로 경계석, 차로 표시, 도로 가장자리 등이 포함될 수 있다. 횡단 불가능 배리어의 예에는 콘크리트 장벽, 차로 분리 구조물, 타 차량, 터널 벽, 교량 구조물 등이 포함될 수 있다. 도 10B에 도시된 이미지(1040)에서, 프로세서(826)는 차량(1011-1015)을 횡단 불가능 배리어로 식별하고, 도로 경계석(1024)을 횡단 가능 배리어로 식별할 수 있다. 배리어는 또한, 이동 가능 유형 또는 고정된 유형일 수 있다. 이동 가능 배리어의 예에는 타 차량, 원뿔형 도로표지, 넘어진 나무 등이 포함될 수 있다. 고정된 배리어의 예에는 도로 가장자리, 도로 경계석, 차로 분리 구조물, 터널 벽, 또는 교량 구조물이 포함될 수 있다. 도 10B에 도시된 이미지(1040)에서, 프로세서(826)는 차량(1011-1015)을 이동 가능 배리어로 식별하고, 도로 경계석(1024)을 고정된 배리어로 식별할 수 있다.
일 실시예에서, 메모리(예, 차량(800)의 메모리(828))는 각각 하나 이상의 배리어 유형에 상응하는 복수의 배리어 식별자를 포함하는 데이터베이스를 저장할 수 있다. 프로세서(826)가 이미지 내에서 배리어를 식별하고 배리어 식별자로 라벨링 하는 경우, 프로세서(826)는 데이터베이스를 참조하여 이 배리어 식별자에 상응하는 하나 이상의 배리어 유형을 식별할 수 있다. 식별된 배리어 유형은 이미지 내에서 식별된 배리어의 배리어 유형으로 프로세서(826)에 의해 고려될 수 있다.
배리어 유형을 판단하기 위한 다른 실시예에서, 프로세서(826)는 다양한 배리어에 각각 상응하는 빈 공간 픽셀, 비어있지 않은 공간 픽셀, 및 다양한 유형의 배리어 픽셀로 수동 라벨링 된 복수의 학습 이미지에 의해 학습될 수 있다. 이러한 학습 이미지를 활용한 학습의 결과, 프로세서(826)는 이미지(1040) 내의 픽셀을 빈 공간 픽셀, 비어있지 않은 공간 픽셀, 및 다양한 유형의 배리어 픽셀로 라벨링 할 수 있다. 라이더, 레이더, 또는 초음파 센서와 같은 기타 유형의 센서에 의해 생성된 특징들도 프로세서(826)의 학습에 활용될 수 있고, 학습된 프로세서(826)는 빈 공간 픽셀, 비어있지 않은 공간 픽셀, 및 다양한 유형의 배리어 픽셀을 라벨링 하도록 상응하는 센서로부터의 입력에 의거하여 활성화될 수 있다. 다른 유형의 센서로부터의 데이터는 융합될 수 있고, 프로세서(826)는 다른 유형의 센서로부터의 입력에 의거하여 빈 공간 픽셀, 비어있지 않은 공간 픽셀, 및 다양한 유형의 배리어 픽셀을 라벨링 하도록 구성될 수 있다.
단계 1150에서, 프로세서(826)는 적어도 하나의 이미지의 분석에 의거하여 차량(800) 전방의 장애물을 식별할 수 있다. 장애물은 도로 이외의 물체, 즉, 도로에 속하지 않는 물체일 수 있다. 장애물은 차량의 전방에 그리고 가까이 위치할 수 있다. 예를 들어, 장애물은 보행자, 동물, 잔해(예, 나무, 가로등 등)일 수 있다. 이미지(1040)에서, 프로세서(826)는 보행자(1018)를 장애물로 식별할 수 있다.
일 실시예에서, 메모리(예, 828)는 다양한 장애물의 복수의 학습 이미지를 저장할 수 있다. 프로세서(826)는 이미지(1040)를 복수의 학습 이미지와 비교하여 학습 이미지 내의 장애물의 특징과 일치하는 적어도 하나의 특징(예, 형상, 색 등)을 가진 물체를 이미지(1040) 내에서 식별할 수 있다. 프로세서(826)는 식별된 물체를 장애물로 판단할 수 있다. 또는, 다양한 장애물의 복수의 학습 이미지를 활용하여 신경망 또는 심층 신경망과 같은 학습 시스템을 생성하고, 프로세서(826)는 학습 시스템을 활용하여 이미지(1040) 내에서 장애물을 검출하거나 이미지(1040) 내의 물체가 장애물인지를 판단할 수 있고, 어떤 유형의 장애물인지의 판단도 가능할 수 있다.
프로세서(826)는 또한 적어도 하나의 이미지의 분석에 의거하여 차량에 대한 장애물의 위치를 판단할 수 있다. 예를 들면, 프로세서(826)는 이미지(1040) 내에 보이는 장애물의 크기, 해당 장애물 유형의 일반적인 크기, 및/또는 장애물과 배리어 사이의 도로 상의 상대적 위치에 의거하여 장애물의 위치를 판단할 수 있다.
프로세서(826)는 또한, 장애물의 위치에 의거하여, 장애물이 이전에 결정된 차량의 주행 경로 내에 위치하는지 여부와 차량이 이전에 결정된 주행 경로로부터 우회하지 않으면 장애물과 충돌하여 교통사고가 발생할 수 있는지 여부를 판단할 수 있다. 도 10B의 예에서, 보행자(1018)가 이전에 결정된 주행 경로(1080)에 위치해 있고, 보행자(1018)와 차량(1010) 사이의 거리는 임계 거리값보다 작아서 차량(1010)이 이전에 결정된 주행 경로(1080)로부터 우회하지 않으면 보행자와 충돌할 수 있다.
단계 1160에서, 프로세서(826)는 식별된 장애물과 판단된 장애물 유형에 의거하여 차량의 주행 경로를 결정할 수 있다. 예를 들면, 프로세서(826)는 장애물을 회피하기 위하여 항법 가능한 구역을 통과하는 주행 경로를 결정할 수 있다. 항법 가능한 구역을 통과하는 이러한 주행 경로가 없는 경우, 프로세서(826)는 항법 가능한 구역의 가장자리와 관련된 배리어의 유형을 분석할 수 있다. 배리어가 횡단 가능 유형인 경우, 프로세서(826)는 횡단 가능 배리어를 통과하는 주행 경로를 결정할 수 있다. 도 10B의 예에서, 프로세서(826)는 보행자(1018)를 회피하기 위하여 횡단 가능 배리어인 도로 경계석(1024)을 넘어가는 새로운 주행 경로(1070)를 결정할 수 있다.
단계 1170에서, 프로세서(826)는 차량으로 하여금 판단된 주행 경로의 적어도 일부분 상에서 이동하게 할 수 있다. 일부 실시예에서, 프로세서(826)는 차량(800)에 하나 이상의 주행 반응을 발생시켜 결정된 주행 경로를 따라 주행하게 할 수 있다. 주행 반응은, 예를 들면, 회전, 차로 변경, 가속도 변경 등을 포함할 수 있다. 또한, 복수의 주행 반응이 동시에, 순차적으로, 또는 결합된 형태로 일어나 결정된 주행 경로를 따라 주행할 수 있다. 예를 들면, 프로세서(826)는 제어 신호를 조향 시스템(예, 240)과 구동 시스템(예, 220)에 순차적으로 전송하여 차량(800)이 횡방향으로 이동한 후 가속을 하게 할 수 있다. 또는, 프로세서(826)는 제동 시스템(예, 230)과 조향 시스템(예, 240)에 제어 신호를 동시에 전송하여 차량(800)이 제동을 하면서 동시에 횡방향으로 이동하게 할 수 있다.
도 12는 기재된 실시예에 따른 예시적인 프로세스(1200)를 도시한 순서도이다. 프로세스(1200)는 차량(예, 800)에 탑재된 프로세서(예, 826)에 의해 수행될 수 있다. 프로세스(1200)는 전방 이미지캡처장치(예, 카메라(812, 814) 중의 하나)에 의해 캡처 된 적어도 하나의 이미지를 분석하여 지도를 업데이트 하기 위한 정보를 확보할 수 있다.
단계 1210에서, 프로세서(826)는 차량(800)의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신할 수 있다. 단계 1220에서, 프로세서(826)는 이미지캡처장치로부터 수신된 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 차량(800)의 주변상황 내에서 식별할 수 있다. 단계 1230에서, 프로세서(826)는 항법 가능한 구역의 가장자리와 연계된 적어도 하나의 배리어를 식별할 수 있다. 단계 1240에서, 프로세서(826)는 적어도 하나의 배리어의 유형을 판단할 수 있다. 단계 1210 내지 1240은 프로세스(1100)의 단계 1110 내지 1140과 실질적으로 동일하다. 따라서, 단계 1210 내지 1240의 설명은 여기서 생략하기로 한다.
적어도 하나의 배리어의 유형을 판단한 후에, 프로세서(826)는 판단된 배리어 유형에 의거한 자율 주행을 위한 지도 데이터베이스(예, 854)의 지도에 대한 업데이트를 원격 서버(예, 850)로 전송할 수 있다. 구체적으로, 단계 1250에서, 프로세서(826)는 배리어가 고정 유형인지 여부를 판단할 수 있다. 앞서 설명한 바와 같이, 고정 배리어는 도로나 도로 환경의 일부인 배리어를 포함할 수 있다. 고정된 배리어의 예에는 도로 가장자리, 도로 경계석, 차로 분리 구조물, 터널 벽, 또는 교량 구조물이 포함될 수 있다. 도 10B의 예에서, 프로세서(826)는 도로 경계석(1024)을 고정된 배리어로 판단할 수 있다
고정된 배리어인 경우(단계 1250: 예), 단계 1260에서, 프로세서(826)는 고정된 배리어와 관련된 지도에 대한 업데이트(즉, 지도 업데이트)를 원격 서버로 전송할 수 있다. 지도 업데이트는 고정된 배리어의 배리어 식별자, 배리어 유형, 및 위치를 포함할 수 있다.
예를 들어, 프로세서(826)는 다음의 방법을 활용하여 고정된 배리어의 위치를 판단할 수 있다. 첫째, 프로세서(826)가 GPS부(예, 824)에 의해 수신된 GPS 데이터에 의거하여 차량(800)의 위치를 확보할 수 있다. 프로세서(826)는 또한 적어도 하나의 이미지를 분석하여 차량(800)에 대한 고정된 배리어의 상대적 위치를 판단할 수 있다. 이후, 프로세서(826)는 차량(800)의 위치에 의거한 고정된 배리어의 위치와 차량(800)에 대한 고정된 배리어의 상대적 위치를 판단할 수 있다.
이동 가능 배리어인 경우(단계 1250: 아니오), 프로세서(826)는 지도를 업데이트 하지 않기로 결정할 수 있다. 대신, 프로세서(826)는 프로세스(1200)를 종료할 수 있다. 지도가 업데이트 되면, 지도는 차량(800) 또는 다른 차량의 항법 시스템에 의해 자율 주행을 위해 활용될 수 있다.
도 13은 기재된 실시예에 따른 검출된 배리어에 의거한 차량의 항법을 위한 예시적인 프로세스(1300)를 도시한 순서도이다. 프로세스(1300)는 차량(예, 800)에 탑재된 프로세서(예, 826)에 의해 수행될 수 있다. 프로세스(1300)는 전방 이미지캡처장치(예, 카메라(812, 814) 중의 하나)에 의해 캡처된 적어도 하나의 이미지를 분석하여 차량의 주행 경로를 결정할 수 있다.
단계 1310에서, 프로세서(826)는 차량(800)의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신할 수 있다. 단계 1320에서, 프로세서(826)는 이미지캡처장치로부터 수신된 복수의 이미지의 적어도 하나를 분석할 수 있다. 단계 1310과 1320은 프로세스(1100)의 단계 1110과 1120과 실질적으로 동일하다. 따라서, 단계 1310과 1320의 설명은 여기서 생략하기로 한다.
단계 1330에서, 프로세서(826)는 항법 가능한 구역의 가장자리의 제1 부분과 관련된 제1 배리어와 항법 가능한 구역의 가장자리의 제2 부분과 관련된 제2 배리어를 식별할 수 있다. 제1 배리어는 도로 가장자리 또는 도로 경계석일 수 있다. 제2 배리어는 차로 분리 구조물, 다른 차량, 터널 벽, 또는 교량 구조물일 수 있다. 도 10B의 예에서, 프로세서(826)는 항법 가능한 구역(1050)의 가장자리(1060)의 우측 부분과 관련된 도로 경계석(1024)을 제1 배리어로 식별할 수 있다. 프로세서(826)는 가장자리(1060)의 전방측 부분과 관련된 차량(1015)을 제2 배리어로 식별할 수 있다.
단계 1340에서, 프로세서(826)는 제1 배리어의 유형과 제2 배리어의 유형을 판단할 수 있다. 도 10B의 예에서, 프로세서(826)는 도로 경계석(1024)을 횡단 가능 배리어로 식별하고 차량(1015)을 횡단 불가능 배리어로 식별할 수 있다.
단계 1350에서, 프로세서(826)는 제1 배리어의 유형과 제2 배리어의 유형에 의거하여 차량의 주행 경로를 결정할 수 있다. 도 10B의 예에서, 프로세서(826)는, 횡단 불가능 배리어인 차량(1015)을 회피하기 위하여, 횡단 가능 배리어인 도로 경계석(1024)을 넘어 운행하도록 주행 경로(1070)를 결정할 수 있다.
단계 1360에서, 프로세서(826)는 차량으로 하여금 결정된 주행 경로의 적어도 일부 경로상에서 운행하게 할 수 있다. 도 10B의 예에서, 프로세서(826)는 차량(1010)으로 하여금 결정된 주행 경로(1070)의 적어도 일부 경로 상을 운행하도록 할 수 있다.
상기의 설명은 예시의 목적으로 제시되었다. 이 설명은 모든 것을 망라한 것이 아니며 기재된 그대로의 형태 또는 실시예로 제한되는 것이 아니다. 수정 및 응용은 본 명세서를 고려하고 기재된 실시예를 실시함으로써 당업자에게 당연할 것이다. 또한, 기재된 실시예의 양상들이 메모리에 저장되는 것으로 설명되었지만, 당업자라면 이러한 양상들이, 예를 들어, 하드 디스크 또는 CD ROM, 또는 다른 유형의 RAM 또는 ROM, USB 매체, DVD, 블루레이, 4K UHD 블루레이, 또는 기타 광드라이브 매체 등의 2차 저장장치와 같은 다른 유형의 컴퓨터 가독 매체에 저장될 수도 있음을 이해할 것이다.
기재된 설명과 방법에 기반한 컴퓨터 프로그램은 당업자에게는 당연한 기술이다. 다양한 프로그램 또는 프로그램 모듈이 당업자에게 공지인 기술을 사용하여 생성되거나 기존의 소프트웨어와 관련되어 설계될 수 있다. 예를 들어, 프로그램 섹션 또는 프로그램 모듈은 .Net Framework, .Net Compact Framework (및 Visual Basic, C 등과 같은 관련 언어), Java, C++, Objective-C, HTML, HTML/AJAX 조합, XML, 또는 자바 애플릿(Java applet)을 포함하는 HTML로 설계될 수 있다.
또한, 예시된 실시예들을 여기에 설명하였지만, 모든 실시예의 범위는 균등한 구성요소, 수정, 누락, 조합(예, 다양한 실시예에 걸친 양상의 조합), 응용, 및/또는 변경을 가짐은 본 발명의 당업자에게 당연하다. 청구항의 한정은 청구항에 사용된 언어에 근거하여 넓게 해석되어야 하며 본 명세서에서 또는 본 발명의 출원 중에 설명된 예시에 한정되지 않는다. 예시들은 배타적이지 않은 것으로 이해되어야 한다. 나아가, 기재된 방법의 단계들은 단계들의 순서를 재배열 및/또는 단계를 삽입 또는 삭제하는 등의 다양한 방법으로 수정될 수 있다. 따라서, 본 명세서와 예시들은 예시의 목적으로만 고려되고, 진정한 범위와 기술적 사상은 하기의 청구항과 그 균등한 범위에 의해 정의된다.

Claims (20)

  1. 차량의 항법을 위한 시스템에 있어서,
    상기 시스템은 적어도 하나의 처리장치를 포함하고,
    상기 적어도 하나의 처리장치는:
    상기 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신;
    상기 복수의 이미지의 적어도 하나를 분석하여 상기 차량의 상기 주변상황 내에서 항법 가능한 구역을 식별;
    상기 복수의 이미지의 상기 적어도 하나에 의거하여 상기 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 식별;
    상기 적어도 하나의 배리어의 유형을 판단;
    상기 적어도 하나의 배리어의 상기 판단된 유형에 의거하여 상기 차량의 주행 경로를 결정; 및
    상기 차량이 상기 결정된 주행 경로의 적어도 일부분 상에서 운행하게 유발하도록 프로그램된, 시스템.
  2. 제1항에 있어서, 상기 적어도 하나의 처리장치는 상기 복수의 이미지의 적어도 하나의 분석에 의거하여 상기 차량의 전방의 장애물을 식별하도록 더 프로그램되고, 상기 차량의 상기 결정된 주행 경로는 상기 식별된 장애물을 회피하는 것을 특징으로 하는, 시스템.
  3. 제2항에 있어서, 상기 장애물은 보행자를 포함하는 것을 특징으로 하는, 시스템.
  4. 제2항에 있어서, 상기 장애물은 다른 차량을 포함하는 것을 특징으로 하는, 시스템.
  5. 제2항에 있어서, 상기 배리어의 상기 판단된 유형은 횡단 가능 배리어를 포함하고, 상기 결정된 주행 경로는 상기 횡단 가능 배리어의 적어도 일부분을 통과하여 운행하는 것을 포함하는 것을 특징으로 하는, 시스템.
  6. 제5항에 있어서, 상기 횡단 가능 배리어는 도로 경계석 또는 차로 표시를 포함하는 것을 특징으로 하는, 시스템.
  7. 제1항에 있어서, 상기 적어도 하나의 처리장치는 상기 배리어의 상기 판단된 유형에 의거하여 자율 주행을 위한 지도에 대한 업데이트를 원격 서버로 전송할지 여부를 판단하도록 더 프로그램 된 것을 특징으로 하는, 시스템.
  8. 제7항에 있어서, 상기 배리어의 상기 판단된 유형은 고정된 배리어를 포함하고, 상기 적어도 하나의 처리장치는 상기 고정된 배리어의 위치를 상기 원격 서버로 전송하도록 더 프로그램 된 것을 특징으로 하는, 시스템.
  9. 제8항에 있어서, 상기 고정된 배리어는 도로 가장자리, 도로 경계석, 차로 분리 구조물, 터널 벽, 및 교량 구조물 중의 적어도 하나를 포함하는 것을 특징으로 하는, 시스템.
  10. 차량의 항법을 위한 시스템에 있어서,
    상기 시스템은 적어도 하나의 처리장치를 포함하고,
    상기 적어도 하나의 처리장치는:
    상기 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신;
    상기 복수의 이미지의 적어도 하나를 분석하여 상기 차량의 상기 주변상황 내에서 항법 가능한 구역을 식별;
    상기 복수의 이미지의 상기 적어도 하나에 의거하여 상기 항법 가능한 구역의 적어도 하나의 가장자리와 관련된 제1 배리어와 상기 항법 가능한 구역의 적어도 하나의 가장자리와 관련된 제2 배리어를 식별;
    상기 제1 배리어의 유형과 제2 배리어의 유형을 판단―여기서, 상기 제1 배리어의 상기 판단된 유형은 횡단 가능 배리어를 포함하고, 상기 제2 배리어의 상기 판단된 유형은 횡단 불가능 배리어를 포함함;
    상기 제1 배리어와 상기 제2 배리어의 상기 판단된 유형에 의거하여 상기 차량의 주행 경로를 결정―여기서, 상기 결정된 주행 경로는 상기 제2 배리어를 회피하기 위하여 상기 제1 배리어를 통과하여 운행하는 것을 포함함; 및
    상기 차량이 상기 결정된 주행 경로의 적어도 일부분 상에서 운행하게 유발하도록 프로그램된, 시스템.
  11. 제10항에 있어서, 상기 제1 배리어는 도로 가장자리 또는 도로 경계석을 포함하는 것을 특징으로 하는, 시스템.
  12. 제10항에 있어서, 상기 제2 배리어는 차로 분리 구조물, 다른 차량, 터널 벽, 또는 교량 구조물을 포함하는 것을 특징으로 하는, 시스템.
  13. 차량의 항법을 위한 방법에 있어서,
    상기 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하는 단계;
    상기 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 상기 차량의 상기 주변상황 내에서 식별하는 단계;
    상기 항법 가능한 구역의 가장자리와 관련된 적어도 하나의 배리어를 상기 복수의 이미지의 상기 적어도 하나에 의거하여 식별하는 단계;
    상기 적어도 하나의 배리어의 유형을 판단하는 단계;
    상기 적어도 하나의 배리어의 상기 판단된 유형에 의거하여 상기 차량의 주행 경로를 결정하는 단계; 및
    상기 차량으로 하여금 상기 결정된 주행 경로의 적어도 일부 상에서 이동하게 하는 단계를 포함하는, 방법.
  14. 제13항에 있어서, 상기 복수의 이미지의 적어도 하나의 분석에 의거하여 상기 차량의 전방의 장애물을 식별하는 단계를 더 포함하고, 상기 차량의 상기 결정된 주행 경로는 상기 식별된 장애물을 회피하는 것을 특징으로 하는, 방법.
  15. 제13항에 있어서, 상기 배리어의 상기 판단된 유형은 횡단 가능 배리어를 포함하고, 상기 결정된 주행 경로는 상기 횡단 가능 배리어의 적어도 일부분을 통과하여 운행하는 것을 포함하는 것을 특징으로 하는, 방법.
  16. 제13항에 있어서, 상기 배리어의 상기 판단된 유형에 의거하여 자율 주행을 위한 지도에 대한 업데이트를 원격 서버로 전송할지 여부를 판단하는 단계를 더 포함하는, 방법.
  17. 제16항에 있어서, 상기 배리어의 상기 판단된 유형은 고정된 배리어를 포함하고,
    상기 고정된 배리어의 위치를 상기 원격 서버로 전송하는 단계를 더 포함하는, 방법.
  18. 차량의 항법을 위한 방법에 있어서,
    상기 차량의 주변상황과 관련된 복수의 이미지를 이미지캡처장치로부터 수신하는 단계;
    상기 복수의 이미지의 적어도 하나를 분석하여 항법 가능한 구역을 상기 차량의 상기 주변상황 내에서 식별하는 단계;
    상기 항법 가능한 구역의 적어도 한 가장자리와 관련된 제1 배리어와 상기 항법 가능한 구역의 적어도 한 가장자리와 관련된 제2 배리어를 상기 복수의 이미지의 적어도 하나에 의거하여 식별하는 단계;
    상기 제1 배리어의 유형과 상기 제2 배리어의 유형을 판단하는 단계―여기서, 상기 제1 배리어의 상기 판단된 유형은 횡단 가능 배리어를 포함하고, 상기 제2 배리어의 상기 판단된 유형은 횡단 불가능 배리어를 포함함;
    상기 제1 배리어와 상기 제2 배리어의 상기 판단된 유형에 의거하여 상기 차량의 주행 경로를 결정하는 단계―여기서, 상기 결정된 주행 경로는 상기 제2 배리어를 피하기 위해 상기 제1 배리어를 통과하는 것을 포함함;
    상기 차량으로 하여금 상기 결정된 주행 경로의 적어도 일부 상에서 이동하게 하는 단계를 포함하는, 방법.
  19. 제18항에 있어서, 상기 제1 배리어는 도로 가장자리 또는 도로 경계석을 포함하는 것을 특징으로 하는, 방법.
  20. 제18항에 있어서, 상기 제2 배리어는 차로 분리 구조물, 다른 차량, 터널 벽, 또는 교량 구조물을 포함하는 것을 특징으로 하는, 방법.
KR1020197006678A 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법 KR20190062390A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020207027886A KR102534353B1 (ko) 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662406604P 2016-10-11 2016-10-11
US62/406,604 2016-10-11
PCT/IB2017/000895 WO2018069757A2 (en) 2016-10-11 2017-06-22 Navigating a vehicle based on a detected barrier

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020207027886A Division KR102534353B1 (ko) 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법

Publications (1)

Publication Number Publication Date
KR20190062390A true KR20190062390A (ko) 2019-06-05

Family

ID=59579794

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197006678A KR20190062390A (ko) 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법
KR1020207027886A KR102534353B1 (ko) 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020207027886A KR102534353B1 (ko) 2016-10-11 2017-06-22 검출된 배리어에 기반한 차량의 항법

Country Status (6)

Country Link
US (4) US10296010B2 (ko)
EP (2) EP3736537A1 (ko)
JP (4) JP7329298B2 (ko)
KR (2) KR20190062390A (ko)
CN (2) CN109804223A (ko)
WO (1) WO2018069757A2 (ko)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10949773B2 (en) 2005-10-26 2021-03-16 Cortica, Ltd. System and methods thereof for recommending tags for multimedia content elements based on context
US11403336B2 (en) 2005-10-26 2022-08-02 Cortica Ltd. System and method for removing contextually identical multimedia content elements
US10742340B2 (en) 2005-10-26 2020-08-11 Cortica Ltd. System and method for identifying the context of multimedia content elements displayed in a web-page and providing contextual filters respective thereto
US11361014B2 (en) 2005-10-26 2022-06-14 Cortica Ltd. System and method for completing a user profile
US11620327B2 (en) 2005-10-26 2023-04-04 Cortica Ltd System and method for determining a contextual insight and generating an interface with recommendations based thereon
US20160321253A1 (en) 2005-10-26 2016-11-03 Cortica, Ltd. System and method for providing recommendations based on user profiles
US20160085733A1 (en) 2005-10-26 2016-03-24 Cortica, Ltd. System and method thereof for dynamically associating a link to an information resource with a multimedia content displayed in a web-page
US11604847B2 (en) 2005-10-26 2023-03-14 Cortica Ltd. System and method for overlaying content on a multimedia content element based on user interest
US8326775B2 (en) 2005-10-26 2012-12-04 Cortica Ltd. Signature generation for multimedia deep-content-classification by a large-scale matching system and method thereof
US10848590B2 (en) 2005-10-26 2020-11-24 Cortica Ltd System and method for determining a contextual insight and providing recommendations based thereon
US20140156901A1 (en) 2005-10-26 2014-06-05 Cortica Ltd. Computing device, a system and a method for parallel processing of data streams
US11386139B2 (en) 2005-10-26 2022-07-12 Cortica Ltd. System and method for generating analytics for entities depicted in multimedia content
US9646005B2 (en) 2005-10-26 2017-05-09 Cortica, Ltd. System and method for creating a database of multimedia content elements assigned to users
US11216498B2 (en) 2005-10-26 2022-01-04 Cortica, Ltd. System and method for generating signatures to three-dimensional multimedia data elements
US11019161B2 (en) 2005-10-26 2021-05-25 Cortica, Ltd. System and method for profiling users interest based on multimedia content analysis
US11032017B2 (en) 2005-10-26 2021-06-08 Cortica, Ltd. System and method for identifying the context of multimedia content elements
US11537636B2 (en) 2007-08-21 2022-12-27 Cortica, Ltd. System and method for using multimedia content as search queries
DE102014008578B4 (de) * 2014-06-12 2016-02-18 Audi Ag Verfahren zur Ermittlung von Positionsdaten zur Nutzung beim Betrieb eines Fahrzeugsystems eines Kraftfahrzeugs und Positionsdatenermittlungs- und-verteilssystem
US11195043B2 (en) 2015-12-15 2021-12-07 Cortica, Ltd. System and method for determining common patterns in multimedia content elements based on key points
WO2017105641A1 (en) 2015-12-15 2017-06-22 Cortica, Ltd. Identification of key points in multimedia data elements
JP6616257B2 (ja) * 2016-07-13 2019-12-04 株式会社Soken 位置推定装置
KR20190062390A (ko) 2016-10-11 2019-06-05 모빌아이 비젼 테크놀로지스 엘티디. 검출된 배리어에 기반한 차량의 항법
JP6741871B2 (ja) * 2016-12-06 2020-08-19 ニッサン ノース アメリカ,インク 自律走行車両のソリューションパスオーバーレイインタフェース
JP6710426B2 (ja) * 2016-12-19 2020-06-17 深▲せん▼前海達闥云端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co.,Ltd. 障害物検出方法及び装置
JP2019008519A (ja) * 2017-06-23 2019-01-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 移動体検出方法、移動体学習方法、移動体検出装置、移動体学習装置、移動体検出システム、および、プログラム
WO2019008581A1 (en) 2017-07-05 2019-01-10 Cortica Ltd. DETERMINATION OF DRIVING POLICIES
US10474908B2 (en) * 2017-07-06 2019-11-12 GM Global Technology Operations LLC Unified deep convolutional neural net for free-space estimation, object detection and object pose estimation
US11899707B2 (en) 2017-07-09 2024-02-13 Cortica Ltd. Driving policies determination
US20190033859A1 (en) * 2017-07-27 2019-01-31 Aptiv Technologies Limited Sensor failure compensation system for an automated vehicle
US10140530B1 (en) * 2017-08-09 2018-11-27 Wipro Limited Method and device for identifying path boundary for vehicle navigation
WO2019049664A1 (ja) * 2017-09-08 2019-03-14 日本精工株式会社 自走装置、自走装置の走行制御方法及び走行制御プログラム
KR102374919B1 (ko) * 2017-10-16 2022-03-16 주식회사 만도모빌리티솔루션즈 자율주행 지원 장치 및 방법
US10816990B2 (en) * 2017-12-21 2020-10-27 Baidu Usa Llc Non-blocking boundary for autonomous vehicle planning
US10816977B2 (en) * 2018-01-26 2020-10-27 Baidu Usa Llc Path and speed optimization fallback mechanism for autonomous vehicles
US10678249B2 (en) * 2018-04-20 2020-06-09 Honda Motor Co., Ltd. System and method for controlling a vehicle at an uncontrolled intersection with curb detection
DE102018210692B4 (de) * 2018-06-29 2020-07-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen von Stützpunkten zum Schätzen eines Verlaufs einer Randbebauung einer Fahrbahn, computerlesbares Medium, System, und Fahrzeug
US10846544B2 (en) 2018-07-16 2020-11-24 Cartica Ai Ltd. Transportation prediction system and method
JP7156848B2 (ja) 2018-08-01 2022-10-19 Jfe物流株式会社 経路探索方法
US10663963B2 (en) * 2018-08-03 2020-05-26 Here Global B.V. Method and apparatus for visualizing future events for passengers of autonomous vehicles
CN109101022A (zh) * 2018-08-09 2018-12-28 北京智行者科技有限公司 一种作业路径更新方法
CN109358612B (zh) * 2018-08-29 2022-08-09 上海商汤智能科技有限公司 智能驾驶控制方法和装置、车辆、电子设备、存储介质
US10800409B2 (en) * 2018-09-04 2020-10-13 Caterpillar Paving Products Inc. Systems and methods for operating a mobile machine using detected sounds
US11613261B2 (en) 2018-09-05 2023-03-28 Autobrains Technologies Ltd Generating a database and alerting about improperly driven vehicles
WO2020051469A1 (en) 2018-09-06 2020-03-12 Apple Inc. Ultrasonic sensor
CN112753212A (zh) 2018-09-26 2021-05-04 祖克斯有限公司 图像扫描线时间戳
US11495028B2 (en) * 2018-09-28 2022-11-08 Intel Corporation Obstacle analyzer, vehicle control system, and methods thereof
US20200133308A1 (en) 2018-10-18 2020-04-30 Cartica Ai Ltd Vehicle to vehicle (v2v) communication less truck platooning
US10839694B2 (en) 2018-10-18 2020-11-17 Cartica Ai Ltd Blind spot alert
US11904863B2 (en) 2018-10-26 2024-02-20 AutoBrains Technologies Ltd. Passing a curve
US11392738B2 (en) 2018-10-26 2022-07-19 Autobrains Technologies Ltd Generating a simulation scenario
US11126869B2 (en) 2018-10-26 2021-09-21 Cartica Ai Ltd. Tracking after objects
US10843694B2 (en) * 2018-11-19 2020-11-24 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle height detection and environmental warning system
US10853670B2 (en) * 2018-11-21 2020-12-01 Ford Global Technologies, Llc Road surface characterization using pose observations of adjacent vehicles
US10789535B2 (en) 2018-11-26 2020-09-29 Cartica Ai Ltd Detection of road elements
US10627512B1 (en) * 2018-11-29 2020-04-21 Luminar Technologies, Inc. Early fusion of lidar return data with camera information
CN109533154B (zh) * 2018-12-07 2020-10-16 纳恩博(北京)科技有限公司 滑板车
US11170647B2 (en) 2019-02-07 2021-11-09 Cartica Ai Ltd. Detection of vacant parking spaces
CN109703569B (zh) * 2019-02-21 2021-07-27 百度在线网络技术(北京)有限公司 一种信息处理方法、装置及存储介质
US11643005B2 (en) 2019-02-27 2023-05-09 Autobrains Technologies Ltd Adjusting adjustable headlights of a vehicle
US11285963B2 (en) 2019-03-10 2022-03-29 Cartica Ai Ltd. Driver-based prediction of dangerous events
US11694088B2 (en) 2019-03-13 2023-07-04 Cortica Ltd. Method for object detection using knowledge distillation
US11132548B2 (en) 2019-03-20 2021-09-28 Cortica Ltd. Determining object information that does not explicitly appear in a media unit signature
US11222069B2 (en) 2019-03-31 2022-01-11 Cortica Ltd. Low-power calculation of a signature of a media unit
US11488290B2 (en) 2019-03-31 2022-11-01 Cortica Ltd. Hybrid representation of a media unit
US10776669B1 (en) 2019-03-31 2020-09-15 Cortica Ltd. Signature generation and object detection that refer to rare scenes
US11908242B2 (en) 2019-03-31 2024-02-20 Cortica Ltd. Efficient calculation of a robust signature of a media unit
CN110147106A (zh) * 2019-05-29 2019-08-20 福建(泉州)哈工大工程技术研究院 具激光和视觉融合避障系统的智能移动服务机器人
WO2020240284A2 (en) 2019-05-30 2020-12-03 Mobileye Vision Technologies Ltd. Vehicle environment modeling with cameras
CN112149458A (zh) * 2019-06-27 2020-12-29 商汤集团有限公司 障碍物检测方法、智能驾驶控制方法、装置、介质及设备
CN110598563A (zh) * 2019-08-15 2019-12-20 北京致行慕远科技有限公司 可移动设备行进的处理方法、装置及存储介质
CN110608739B (zh) * 2019-08-21 2021-07-27 深圳市人工智能与机器人研究院 干扰环境下运动目标的定位方法、系统及电子装置
EP4052222A1 (en) * 2019-09-20 2022-09-07 Continental Automotive GmbH Method for determining a model of a traffic barrier
US11704292B2 (en) 2019-09-26 2023-07-18 Cortica Ltd. System and method for enriching a concept database
US11511666B2 (en) * 2019-10-28 2022-11-29 Verizon Patent And Licensing Inc. Systems and methods for utilizing machine learning to identify vehicle surroundings, route conditions, and points of interest
DE112020003411T5 (de) * 2019-10-29 2022-05-05 Sony Group Corporation Fahrzeugsteuerung in geographischen steuerzonen
EP3822140B1 (en) * 2019-11-18 2022-06-22 Zenuity AB Operational design domain validation coverage for road and lane type
CN111144228B (zh) * 2019-12-05 2023-09-12 超越科技股份有限公司 基于3d点云数据的障碍物识别方法和计算机设备
US11593662B2 (en) 2019-12-12 2023-02-28 Autobrains Technologies Ltd Unsupervised cluster generation
CN110979321B (zh) * 2019-12-30 2021-03-19 北京深测科技有限公司 一种用于无人驾驶车辆的障碍物躲避方法
CN111231965B (zh) * 2020-01-14 2021-07-13 北京小马慧行科技有限公司 车辆控制模式的调整方法及装置、无人驾驶车辆
CN111291680B (zh) * 2020-02-06 2023-10-10 北京百度网讯科技有限公司 障碍物的关联处理方法、装置及设备
US11741675B2 (en) * 2020-03-10 2023-08-29 Niantic, Inc. Determining traversable space from single images
US11590988B2 (en) 2020-03-19 2023-02-28 Autobrains Technologies Ltd Predictive turning assistant
CN111368794B (zh) * 2020-03-19 2023-09-19 北京百度网讯科技有限公司 障碍物检测方法、装置、设备和介质
US11827215B2 (en) 2020-03-31 2023-11-28 AutoBrains Technologies Ltd. Method for training a driving related object detector
DE102020111557A1 (de) 2020-04-28 2021-10-28 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung und Verfahren zur Erkennung eines statischen Objektes
CN111703421A (zh) * 2020-05-13 2020-09-25 重庆长安汽车股份有限公司 车辆自动驾驶脱困的轨迹规划系统、方法及存储介质
CN111610865B (zh) * 2020-05-20 2022-03-22 河北工业大学 一种基于多感知系统的电容式触觉手柄的控制方法
CN111703422B (zh) * 2020-06-24 2021-06-29 北京经纬恒润科技股份有限公司 智能驾驶车辆的目标跟踪路径选择方法及装置
US11495064B2 (en) * 2020-08-12 2022-11-08 Toyota Motor Engineering & Manufacturing North America, Inc. Value-anticipating cooperative perception with an intelligent transportation system station
TWI758970B (zh) * 2020-11-24 2022-03-21 鴻海精密工業股份有限公司 可移動障礙物位置判斷方法、裝置、電子設備及系統
CN112356815B (zh) * 2020-12-01 2023-04-25 吉林大学 一种基于单目相机的行人主动避撞系统及方法
US11610332B2 (en) * 2020-12-22 2023-03-21 Here Global B.V. Method and apparatus for detecting a start location and end location of a bridge
CN112902981B (zh) * 2021-01-26 2024-01-09 中国科学技术大学 机器人导航方法和装置
DE112021004501T5 (de) 2021-03-01 2023-09-07 Mobileye Vision Technologies Ltd. Modellierung der fahrzeugumgebung mit einer kamera
US20220291681A1 (en) * 2021-03-12 2022-09-15 6 River Systems, Llc Systems and methods for edge and guard detection in autonomous vehicle operation
CN112883909A (zh) * 2021-03-16 2021-06-01 东软睿驰汽车技术(沈阳)有限公司 基于包围盒的障碍物位置检测方法、装置和电子设备
CN113022593B (zh) * 2021-04-09 2022-10-14 长沙智能驾驶研究院有限公司 障碍物处理方法、装置和行驶设备
CN113281760A (zh) * 2021-05-21 2021-08-20 阿波罗智能技术(北京)有限公司 障碍物检测方法、装置、电子设备、车辆和存储介质
CN113341824A (zh) * 2021-06-17 2021-09-03 鄂尔多斯市普渡科技有限公司 一种开放式自动驾驶避障控制系统及控制方法
CN114407901B (zh) * 2022-02-18 2023-12-19 北京小马易行科技有限公司 自动驾驶车辆的控制方法、装置以及自动驾驶系统
CN114739384A (zh) * 2022-03-04 2022-07-12 净豹智能机器人(台州)有限公司 一种快速特征估计的无人驾驶车辆定位系统及方法
CN115147838B (zh) * 2022-06-30 2023-08-29 小米汽车科技有限公司 图像处理方法、装置、车辆、介质及程序产品

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US296010A (en) * 1884-04-01 ibelle
JP2002220015A (ja) * 2001-01-26 2002-08-06 Auto Network Gijutsu Kenkyusho:Kk 走行判断補助装置
DE102005036714A1 (de) 2005-08-04 2007-02-08 Daimlerchrysler Ag Verfahren zur Unterstützung des Fahrers eines Fahrzeugs bei einem Spurwechsel und Fahrerassistenzsystem zur Durchführung des Verfahrens
KR100587405B1 (ko) 2005-11-24 2006-06-08 (주)대한지적기술단 Gps수신기, 레이저 계측기 및 사진기 장착 차량을이용한 도로 주변 시설물 측량정보의 gis 수치지도업데이트 방법
JP2010055587A (ja) * 2008-02-08 2010-03-11 Toyota Motor Corp 運転支援システム、運転支援装置、標識部、車両用安全制御装置、安全制御システム、及び交通安全制御システム
US8605947B2 (en) 2008-04-24 2013-12-10 GM Global Technology Operations LLC Method for detecting a clear path of travel for a vehicle enhanced by object detection
US8751154B2 (en) * 2008-04-24 2014-06-10 GM Global Technology Operations LLC Enhanced clear path detection in the presence of traffic infrastructure indicator
US8755997B2 (en) * 2008-07-30 2014-06-17 Honeywell International Inc. Laser ranging process for road and obstacle detection in navigating an autonomous vehicle
TWI434239B (zh) * 2011-08-26 2014-04-11 Ind Tech Res Inst 後方來車變換車道預警方法及其系統
JP5977047B2 (ja) 2012-02-29 2016-08-24 株式会社日本自動車部品総合研究所 車両走行制御装置
US8825371B2 (en) * 2012-12-19 2014-09-02 Toyota Motor Engineering & Manufacturing North America, Inc. Navigation of on-road vehicle based on vertical elements
JP6137979B2 (ja) * 2013-07-30 2017-05-31 株式会社Subaru 車線逸脱防止支援装置
EP3514032B1 (en) 2013-12-04 2024-02-07 Mobileye Vision Technologies Ltd. Adjusting velocity of a vehicle for a curve
US9340207B2 (en) * 2014-01-16 2016-05-17 Toyota Motor Engineering & Manufacturing North America, Inc. Lateral maneuver planner for automated driving system
US9365214B2 (en) * 2014-01-30 2016-06-14 Mobileye Vision Technologies Ltd. Systems and methods for determining the status of a turn lane traffic light
KR20150113589A (ko) * 2014-03-31 2015-10-08 팅크웨어(주) 전자 장치 및 그의 제어 방법
KR101610502B1 (ko) * 2014-09-02 2016-04-07 현대자동차주식회사 자율주행차량의 주행환경 인식장치 및 방법
US9248834B1 (en) 2014-10-02 2016-02-02 Google Inc. Predicting trajectories of objects based on contextual information
JP6363516B2 (ja) * 2015-01-21 2018-07-25 株式会社デンソー 車両の走行制御装置
WO2016130719A2 (en) 2015-02-10 2016-08-18 Amnon Shashua Sparse map for autonomous vehicle navigation
US10077050B2 (en) * 2016-05-24 2018-09-18 GM Global Technology Operations LLC Automated driving system for evaluating lane cut-out and method of using the same
KR20190062390A (ko) * 2016-10-11 2019-06-05 모빌아이 비젼 테크놀로지스 엘티디. 검출된 배리어에 기반한 차량의 항법
US11761790B2 (en) * 2016-12-09 2023-09-19 Tomtom Global Content B.V. Method and system for image-based positioning and mapping for a road network utilizing object detection
JP6558356B2 (ja) * 2016-12-22 2019-08-14 トヨタ自動車株式会社 自動運転システム
CN110869981B (zh) * 2016-12-30 2023-12-01 辉达公司 用于自主车辆的高清晰度地图数据的向量数据编码
JP6984312B2 (ja) * 2017-10-26 2021-12-17 トヨタ自動車株式会社 車載装置、情報処理システム、及び情報処理方法

Also Published As

Publication number Publication date
US20200319653A1 (en) 2020-10-08
JP2019537080A (ja) 2019-12-19
US20180101177A1 (en) 2018-04-12
WO2018069757A3 (en) 2019-04-18
CN112214022A (zh) 2021-01-12
EP3736537A1 (en) 2020-11-11
US11669102B2 (en) 2023-06-06
JP7081875B2 (ja) 2022-06-07
KR20200127219A (ko) 2020-11-10
JP7329298B2 (ja) 2023-08-18
US20210271260A1 (en) 2021-09-02
WO2018069757A2 (en) 2018-04-19
US10296010B2 (en) 2019-05-21
US10649463B2 (en) 2020-05-12
CN109804223A (zh) 2019-05-24
EP3526548A2 (en) 2019-08-21
US11029699B2 (en) 2021-06-08
JP2023153943A (ja) 2023-10-18
US20190243377A1 (en) 2019-08-08
JP2023153944A (ja) 2023-10-18
JP2021012709A (ja) 2021-02-04
KR102534353B1 (ko) 2023-05-22

Similar Documents

Publication Publication Date Title
KR102534353B1 (ko) 검출된 배리어에 기반한 차량의 항법
KR102524851B1 (ko) 차로 병합 및 차로 분리의 항법을 위한 시스템 및 방법
JP6997106B2 (ja) 車両をナビゲートするためのシステム、方法およびコンピュータプログラム
EP3657130B1 (en) Navigation based on vehicle activity
US20220221862A1 (en) Predicting and responding to cut in vehicles and altruistic responses
KR20200123474A (ko) 자율 주행을 위한 항법 정보의 융합 프레임워크 및 배치 정렬
KR20200006556A (ko) 자율주행차 시스템을 위한 교차 시야
EP3183688A1 (en) Recognition and prediction of lane constraints and construction areas in navigation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application