KR20190045929A - 모바일 프론트홀을 위한 통합 모바일 및 tdm-pon 업링크 mac 스케줄링 - Google Patents

모바일 프론트홀을 위한 통합 모바일 및 tdm-pon 업링크 mac 스케줄링 Download PDF

Info

Publication number
KR20190045929A
KR20190045929A KR1020197009545A KR20197009545A KR20190045929A KR 20190045929 A KR20190045929 A KR 20190045929A KR 1020197009545 A KR1020197009545 A KR 1020197009545A KR 20197009545 A KR20197009545 A KR 20197009545A KR 20190045929 A KR20190045929 A KR 20190045929A
Authority
KR
South Korea
Prior art keywords
bbu
rru
rrus
mobile
pon
Prior art date
Application number
KR1020197009545A
Other languages
English (en)
Other versions
KR102221647B1 (ko
Inventor
시유 저우
시앙 리우
프랭크 에펜버거
Original Assignee
후아웨이 테크놀러지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후아웨이 테크놀러지 컴퍼니 리미티드 filed Critical 후아웨이 테크놀러지 컴퍼니 리미티드
Publication of KR20190045929A publication Critical patent/KR20190045929A/ko
Application granted granted Critical
Publication of KR102221647B1 publication Critical patent/KR102221647B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0836Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability to enhance reliability, e.g. reduce downtime
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/084Configuration by using pre-existing information, e.g. using templates or copying from other elements
    • H04L41/0843Configuration by using pre-existing information, e.g. using templates or copying from other elements based on generic templates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0852Delays
    • H04L43/0858One way delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5041Network service management, e.g. ensuring proper service fulfilment according to agreements characterised by the time relationship between creation and deployment of a service
    • H04L41/5054Automatic deployment of services triggered by the service manager, e.g. service implementation by automatic configuration of network components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/58Association of routers
    • H04L45/586Association of routers of virtual routers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

모바일 네트워크를 지원하기 위한 방법 및 수동형 광 네트워크(passive optical network, PON)를 포함하는 다양한 실시예가 개시된다. 다양한 실시예에서, 기저대역 유닛(baseband unit, BBU)은 초기화 단계 중에 복수의 원격 무선 유닛(remote radio unit, RRU)의 각각으로부터 BBU까지의 광 경로 지연을 측정하도록 구성된다. BBU는 각 RRU와 BBU 사이의 광 경로 지연에 기초하여 각 경로의 타이밍을 조정하여 모바일 시스템 내의 모든 RRU를 동기화시킨다. BBU는 복수의 RRU의 각각에 할당된 각 자원 블록을 다른 PON 전송 블록에 매핑하는 매핑 규칙을 결정한다. BBU는 매핑 규칙을 복수의 RRU의 각각에게 전송한다. 특정 실시예에서, 매핑 규칙은 초기화 단계 후에 동적으로 재계산될 수 있다.

Description

모바일 프론트홀을 위한 통합 모바일 및 TDM-PON 업링크 MAC 스케줄링
본 출원은 2017년 8월 24일에 출원된 미국 정규 출원 제15/685,629호 ('Unified Mobile and TDM-PON Uplink MAC Scheduling for Mobile Front-Haul') 및 2016년 9월 15일에 출원된 미국 가특허 출원 제62/395,058호 ('Method of a Unified Mobile and TDM-PON Uplink MAC Scheduling for Mobile Front-haul')의 우선권을 주장하며, 이들 둘 다 그 전체가 참조로서 본 명세서 포함된다.
클라우드 무선 액세스 네트워크 또는 중앙집중형 무선 액세스 네트워크(centralized radio access network)(C-RAN)는 2G, 3G, 4G 및 미래의 무선 통신 표준을 지원하는 무선 액세스 네트워크를 위한 중앙집중형 클라우드 컴퓨팅 기반 구조이다. 연결에 대한 수요가 폭발적으로 증가함에 따라, 모바일 사업자는 그들 장비의 설치 면적과 비용을 최소화하기 위한 방법을 모색해 왔다. 이것은 무선 액세스 네트워크(RAN)(즉, 셀룰러 안테나에 연결하고, 신호를 처리하여 코어 네트워크로 전송하는 장비) 부분의 중앙집중화를 유도한다. 특히, RAN의 일부인 기저대역 처리 유닛(baseband processing unit, BBU)은 다수의 원격 무선 헤드(remote radio head, RRH) 또는 원격 무선 유닛(remote radio, unit, RRU)이 서비스될 수 있는 중앙 위치로 이동되었다.
본 개시의 제1 측면에 따르면, 모바일 네트워크를 지원하기 위한 방법 및 수동형 광 네트워크(passive optical network, PON)가 제공된다. 다양한 실시예에서, 상기 PON은 복수의 원격 무선 유닛(remote radio unit, RRU), 및 상기 복수의 RRU와 통신하는 기저대역 유닛(baseband unit, BBU)을 포함한다. 다양한 실시예에서, 상기 BBU는, 초기화 단계 중에 상기 복수의 RRU의 각각으로부터 상기 BBU까지의 광 경로 지연을 측정하도록 구성된다. 상기 BBU는 각각의 RRU와 상기 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 상기 모바일 시스템 내의 모든 RRU를 동기화시킨다. 상기 BBU는 상기 복수의 RRU의 각각에 할당된 각각의 자원 블록을 다른 PON 전송 블록에 매핑하는 매핑 규칙을 결정한다. 상기 BBU는 상기 복수의 RRU의 각각으로 상기 매핑 규칙을 전송한다. 다양한 실시예에서, 상기 BBU는 RRU의 가장 큰 광 경로 지연을 기본 지연으로 설정하고, 임의의 RRU에 의해 전송되는 각각의 PON 전송 블록의 리딩 에지(leading edge)가 동시에 상기 BBU에 도달하도록 상기 기본 지연과 상기 RRU의 광 경로 지연 사이의 차이만큼 각각의 RRU를 지연시켜서 상기 모바일 시스템 내의 모든 RRU를 동기화시킨다. 특정 실시예에서, 상기 매핑 규칙은 각각의 RRU와 상기 BBU 사이의 광 경로 지연의 차이를 설명한다.
특정 실시예에서, 모바일 매체 액세스 제어(medium access control, MAC) 업링크 스케줄링은 상기 BBU와 상기 복수의 RRU 사이의 통신에 적용된다. 예를 들어, 다양한 실시예에서, 상기 BBU는 시분할 다중 수동형 광 네트워크(time division multiplexing-passive optical network, TDM-PON) 업링크 MAC 스케줄과 매칭하도록 모바일 MAC 업링크 스케줄을 설정한다. 다양한 실시예에서, 상기 BBU는 상기 복수의 RRU로부터 다중화된 업링크 데이터 스트림을 수신한다.
본 개시의 제2 측면에 따르면, 각각의 RRU는 모바일 장치로부터 제공되는 신호에 대해 고속 푸리에 변환(fast Fourier transform, FFT)을 수행하고, 신호로부터 사이클릭 프리픽스(cyclic prefix)를 제거하며, 자원 블록 디매핑(demapping)을 수행하도록 구성된다. 다양한 실시예에서, 각각의 RRU는 상기 매핑 규칙에 기초하여 상기 RRU에 할당된 전송 블록 내에 저장된 데이터 및 상기 모바일 PON 프레임의 나머지 내의 빈 블록을 갖는 모바일 PON 프레임을 생성하고, 업링크 내의 생성된 모바일 PON 프레임을 상기 BBU에게 전송하도록 추가로 구성된다.
본 개시의 제3 측면에 따르면, 상기 BBU는 동적 모드에 놓여질 수 있으며, 여기서 업데이트된 매핑 규칙을 생성하기 위해 상기 초기화 단계 이후에 상기 복수의 RRU로부터의 복수의 예상된 자원 블록에 기초하여 상기 매핑 규칙을 재계산하도록 구성된다. 상기 BBU는 업데이트된 매핑 규칙을 각각의 RRU에게 전송하며, 여기서 각각의 RRU는 업데이트된 매핑 규칙을 상기 모바일 PON 프레임을 생성하는 데 적용한다. 하나의 실시예에서, 상기 매핑 규칙의 재계산은 상기 사용자 장치(user equipment, UE)에 의해 저장된 많은 양의 버퍼 데이터를 상기 BBU에게 통지하고 추가 전송 블록을 요청하기 위해 상기 RRU를 통해 상기 UE로부터 요청 메시지를 수신함에 의해 트리거된다.
본 개시의 보다 완전한 이해를 위해, 첨부된 도면 및 상세한 설명과 관련하여 취해진 다음의 간단한 설명이 참조될 것이며, 동일한 참조 번호는 동일한 부분을 나타낸다.
도 1은 본 개시의 다양한 실시예에 따른 C-RAN을 도시한다.
도 2a는 본 개시의 실시예에 따른 BBU 및 RRU 구조의 예를 도시한다.
도 2b-2c는 본 개시의 다양한 실시예에 따른 종래의 물리 계층 기능과 물리 계층 기능의 분할의 비교를 도시한다.
도 3a는 본 개시의 실시예에 따른 BBU에 의해 수행되는 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법의 흐름도이다.
도 3b는 본 개시의 실시예에 따른 RRU에 의한 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법의 흐름도이다.
도 4는 본 개시의 다양한 실시예에 따른 자원 블록 매핑을 구현하는 C-RAN을 도시한다.
도 5는 본 개시의 다양한 실시예에 따른 정적 OFDMA 프레임 자원 블록에 대한 모바일-PON 프레임 전송 블록 매핑을 도시한다.
도 6a-6d는 본 개시의 다양한 실시예에 따른 복수의 유닛의 정적 자원 블록 매핑을 도시한다.
도 7a-7e는 본 개시의 다양한 실시예에 따른 정적 자원 블록 매핑을 도시한다.
도 8a-8e는 본 개시의 다양한 실시예에 따른 동적 자원 블록 매핑을 도시한다.
도 9는 본 개시의 다양한 실시예에 따른 최적화된 레이턴시(latency)를 갖는 동적 자원 블록 매핑을 도시한다.
도 10은 본 개시의 실시예에 따fms 동적 모드에서 BBU에 의해 수행되는 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법의 흐름도이다.
하나 이상의 실시예의 예시적인 구현이 아래에 제공되지만, 개시된 시스템 및/또는 방법은 현재 공지되어 있거나 존재하는 임의의 수의 기술을 사용하여 구현될 수 있다는 것이 처음부터 이해되어야 한다. 본 개시는 여기에 도시되고 설명 된 예시적인 설계 및 구현을 포함하여, 이하에 도시된 예시적인 구현예, 도면 및 기술에 결코 제한되어서는 안되며, 첨부된 청구항의 범위 내에서 균등물의 전체 범위와 함께 수정될 수 있다.
여기에서 참조된 모듈은 전기 회로, 프로세서 및 메모리와 같은 하나 이상의 하드웨어 또는 전기 컴포넌트를 포함할 수 있다. 메모리는 컴퓨터 실행가능 명령, 기계 코드 및 기타 다양한 형태의 데이터와 같지만 이것으로만 한정되지 않는 데이터를 저장하는 휘발성 메모리 또는 비휘발성 메모리일 수 있다. 모듈은 하나 이상의 작업을 수행하기 위한 하나 이상의 명령을 실행하기 위해 데이터를 사용하도록 구성될 수 있다.
낮은 레이턴시를 갖는 비용 효율적인 TDM-PON 기반 모바일 프론트홀(mobile fronthaul, MFH)을 공급하기 위한 모바일 스케줄링/대역폭 할당과 협력하는 다양한 모바일 동적 대역폭 할당(dynamic bandwidth allocation, DBA) 방식이 있다. 그러한 모바일 DBA 방식 중 하나는 T. Tashiro 등에 의한 ( "Tashiro scheme")의 "A Novel DBA Scheme for TDM-PON based Mobile Fronthaul"(OFC 2014, Paper Tu3F.3)("the Tashiro 방식")이다. Tashiro 방식은 BBU와 광 네트워크 장치(optical network unit, ONU) 사이의 시그널링 및 협력을 필요로 한다. Tashiro 방식은 고정된 전송 속도를 갖는 CPRI(Common Public Radio Interface)에 적용되므로, ONU는 동일한 업링크 속도를 갖는다. Tashiro 방식의 한 가지 단점은 UE로부터 전송할 데이터가 없는 경우에도 RRH가 항상 데이터 메시지를 전송하기 때문에 잡음을 전송할 수 있다는 점이다.
또 다른 모바일 DBA 업링크 방식은 T. Kobayashi 등에 의한 "Bandwidth Allocation Scheme based on Simple Statistical Traffic Analysis for TDM-PON based Mobile Fronthaul"(OFC 2016, paper W3C.7)("the Kobayashi 방식")을 포함한다. 이러한 DBA 방식은 비용 효율적인 TDM-PON 기반 MFH를 구현하기 위한 간단한 통계 트래픽 분석에 기초한 대역폭 할당 방식을 제안하고, 준(quasi) 고정 대역폭 할당(fixed bandwidth allocation, FAB)을 사용한다. 대역폭 할당은 수십 분 또는 수 시간에 걸쳐 점진적으로 변경된다. Kobayashi 방식의 한 가지 단점은 모바일 트래픽이 본질적으로 너무 랜덤하며 평균적인 통계 결과에 기초한 예측이 어긋난다는 것이다. 따라서, Kobayashi 방식은 통계 분석을 위해 교통 정보의 장기간 타임라인을 필요로 하므로, 빠른 변화에 대응할 수 없다. 이러한 방식은 또한 이더넷 수동형 광 네트워크(Ethernet passive optical network, E-PON)에서 주기 시간에 의해 유도되는 지연을 고려하지 않는다.
상기한 바와 같이, C-RAN에서, BBU는 복수의 RRU가 서비스될 수 있는 중앙 위치로 이동되었다. 파이버(fiber)는 일반적으로 BBU를 셀 사이트의 RRU에 연결하는 데 사용되며, 이러한 연결은 종종 "프론트홀(fronthaul)"로서 불린다. 프론트홀은 다지점 협력 통신(Coordinated Multi-Point, CoMP) 및 매시브(massive) 다중 입출력(multiple-input multiple-output, MIMO) 등과 같은 새로운 무선 기술을 가능하게 하는 C-RAN에서 중요한 부분이 되었다.
개시된 실시예들은 공지된 모바일 DBA 업링크 방식을 개선하고자 하는 모바일 프론토홀 위한 통합 모바일 및 TDM-PON 업링크 MAC 스케줄링을 가능하게 한다. 다양한 실시예들에 따르면, ONU들이 동일한 광 인터페이스를 공유하고 RRU들이 동일한 무선 매체를 공유하기 때문에, 하나의 스케줄링이 (LTE(Long-Term Evolution)과 같은) 무선 시스템 및 광 시스템 모두에 사용될 수 있다. 하나의 실시예에서, 이러한 프로세스는 LTE 무선 MAC 스케줄링을 TDM-PON MAC 스케줄링으로 매핑하거나 또는 변환하는 것을 포함한다. 예를 들어, 하나의 실시예에서, 미리 정의된 매핑 규칙은 각각의 LTE 자원 블록을 PON 전송 블록에 매핑하고 그 후 대역폭 할당을 위한 지연을 제거하는 데 사용된다. 자원 블록은 UE에 할당될 수 있는 자원의 최소 단위이다. 다양한 실시예에서, 스케줄링은 전파 경로 타이밍 차이에 의해 야기되는 업링크 간섭을 피하기 위해 RRU들을 동기화함으로써 각각의 RRU로부터 BBU로의 광 경로 지연의 변화를 고려한다.
또한, 개시된 실시예는 모바일 프론트홀에 대한 대역폭 요구사항을 낮추는 최적의 물리 계층 기능 분할을 제공한다. 예를 들어, 다양한 실시예에서, 원시 디지털화된 무선 신호를 파이버를 통해 직접 전송하는 대신에, RRU는 고속 푸리에 변환(fast Fourier Transform, FFT), 사이클릭 프리픽스 제거 및 자원 디매핑(demapping)을 수행한다. 따라서, 파이버를 통해 전송되는 실제 데이터는 CPRI의 데이터보다 작을뿐만 아니라, 부하에 종속적인 반면에, CPRI에서의 데이터 전송속도는 시스템이 항상 최대 부하(peak load) 상태인 것처럼 고정되어 있다. 또한, 다중화 이득은 동일한 모바일 PON 대역폭을 공유하는 복수의 RRU들로 달성될 수 있다. 개시된 실시예의 장점은 더 낮은 장비 비용 TDM-PON 및 더 낮은 파이버 프로비저닝(provisioning) 요구사항을 포함한다.
도 1은 본 개시의 다양한 실시예에 따른 C-RAN(100)을 도시한다. 도시된 실시예에서, C-RAN(100)은 BBU(101), 광 회선 단말(optical line terminal, OLT)(102), RRU(110), RRU(120) 및 RRU(130)을 포함한다. C-RAN(100)은 RRU(110, 120, 130)로부터 BBU(101)로의 신뢰할만하고 과도한 대역폭 및 낮은 레이턴시 프론트홀 전송을 필요로 한다. BBU(101) 및 OLT(102)는 중앙국과 같은 중앙 위치에 배치된다. BBU(101)는 기저대역 처리에서 패킷 처리에 이르는 기지국 기능을 구현하는 디지털 유닛으로서 작용한다. 기저대역은 변조되기 전의 전송 신호의 원래 주파수 범위를 지칭한다. 비록 하나의 BBU(101)만 도시되었지만, 복수의 BBU(101)가 중앙 위치에 배치되어 BBU 풀을 형성할 수 있다. 일부 실시예에서, BBU(101)는 링크되어 정보를 공유할 수 있지만, 다른 곳에서는 BBU(101)가 단순히 동일한 위치에 위치한다. OLT(102)는 BBU(101)가 PON(105)을 통해 통신할 수 있게 하는 액세스 노드이다.
RRU(110), RRU(120) 및 RRU(130)는 (예를 들어 eNB(evolved node B)와 같은) 기지국에 각각 위치되고, 하나 이상의 UE(150)와 무선으로 통신한다. UE(150)는 모바일 전화 또는 모바일 컴퓨팅 장치와 같은 임의 종류의 전자 장치일 수 있다. 다양한 실시예에서, RRU(110), RRU(120) 및 RRU(130)는 서로 멀리 떨어져 위치되지 않으며, 동일한 하나의 또는 동일한 집합의 반송파 주파수에서 동작할 수 있다. RRU(110, 120, 130)는 본 예에서 ONU(111, 121, 131)를 사용하여 PON(105)을 통해 BBU(101)와 통신한다. 예를 들어, 도시된 실시예에서, RRU(110)는 ONU(111)에 통신가능하게 결합되고, RRU(120)는 ONU(121)에 통신가능하게 결합되며, RRU(130)는 ONU(131)에 통신가능하게 결합된다. ONU(111), ONU(121) 및 ONU(131)는 PON(105)의 광섬유 라인(104)을 통해 통신을 가능하게 하기 위해 전기 신호를 광 신호로(및 그 반대의 경우) 변환하는 액세스 노드이다. OLT(102)는 BBU(101)를 위해 중앙 위치에서 유사한 기능을 수행한다. 특정 실시예에서, BBU(101)/OLT(102) 및 RRU(110, 120, 130)/ONU(111, 121, 131)는 단일 장치로서 구성될 수 있다. 따라서, 달리 언급되지 않는 한, 여기에서 사용된 바와 같이, BBU에 대한 임의의 참조는 독립형 장치로서의 BBU와 OLT와 결합된 BBU 모두를 포함한다. 유사하게, 달리 언급되지 않는 한, 여기에서 사용된 바와 같이, RRU에 대한 임의의 참조는 독립형 장치로서의 RRU 및 ONU와 결합된 RRU 모두를 포함한다.
도 1에 도시된 바와 같이, RRU(110), RRU(120) 및 RRU(130)는 각각 광섬유 라인(104)을 통해 다중화기/역다중화기(103)에 연결된다. 다중화기/역다중화기(103)는 또한 다른 광 라인(106)을 통해 BBU(101)에 연결된다. 다중화기/역다중화기(103)는 광 신호를 RRU(110), RRU(120) 및 RRU(130)로 전송하기 위해 단일 광 신호를 다중 광 신호로 분할하거나 또는 역다중화하도록 구성된다. 또한, 다중화기/역다중화기(103)는 결합된 광 신호를 BBU(101)로 전송하기 위해 RRU(110), RRU(120) 및 RRU(130)로부터의 광 신호를 단일 광 신호로 결합하거나 또는 다중화하도록 구성된다.
전형적으로, RRU는 주파수 변환, 증폭, 아날로그 대 디지털(A/D) 및 디지털 대 아날로그(D/A) 변환을 포함하는 무선 기능을 수행한다. 예를 들어, 도 2a는 본 개시의 실시예에 따른 BBU(201) 및 RRU(202) 구조의 일례를 도시한 블록도이다. 도시된 실시예에서, RRU(202)는 전력 증폭기, 듀플렉서 및 저잡음 증폭기 모듈(231), 프로세서 모듈(232), 및 광섬유 트랜시버 모듈(233)을 포함한다. 프로세서 모듈(232)은 전력 증폭기, 듀플렉서 및 저잡음 증폭기 모듈(231) 및 광섬유 트랜시버 모듈(233)에 통신가능하게 결합된다. 전력 증폭기, 듀플렉서 및 저잡음 증폭기 모듈(231)은 하나 이상의 안테나를 통해 무선 주파수 신호를 전송하고 수신하며, 저전력 무선 주파수 신호를 더 높은 전력 신호로 변환하고, 2개 이상의 전력 증폭기 출력을 하나로 결합하도록 구성된다. 프로세서 모듈(232)은 아날로그 및/또는 디지털 신호를 처리하도록 구성된다. 광섬유 트랜시버 모듈(233)은 광섬유 라인을 통해 RRU(202)와 BBU(201) 사이에 네트워크 액세스를 제공하기 위해 복수의 신호를 동시에 운반하도록 설계된 통신 라인 또는 링크를 제공한다.
BBU(201)는 인터페이스 모듈(221), 마스터 제어 및 클록(clock) 모듈(222), 기저대역 처리 모듈(223) 및 GPS(global positioning system) 수신기 모듈(224)을 포함한다. 기저대역 처리 모듈(223)은 RRU(202)와 통신하고 후술하는 바와 같이 기저대역 신호를 처리하도록 구성된다. 마스터 제어 및 클록 모듈(222)은 GPS 수신기 모듈(224)로부터 위치 좌표를 수신하고 신호의 타이밍을 제어한다. 인터페이스 모듈(221)은 BBU(201)가 다른 네트워크 장치들과 통신할 수 있도록 구성된다.
예시적인 실시예에서, BBU(201)는 초기화 단계 동안 복수의 RRU의 각각의 원격 무선 유닛(RRU)으로부터 BBU로의 광 경로 지연을 측정하는 지연 측정 모듈, 각각의 RRU와 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 복수의 RRU 내의 모든 RRU를 동기화시키는 동기화 모듈, 복수의 RRU 각각에 할당된 각각의 자원 블록을 다른 PON 전송 블록에 매핑하는 매핑 규칙을 결정하는 매핑 모듈, 및 매핑 규칙을 복수의 RRU의 각각에 전송하는 전송 모듈을 포함한다. 일부 실시예에서, BBU(201)는 실시예에서 설명된 단계들 중 임의의 하나 또는 조합을 수행하기 위한 다른 또는 추가 모듈을 포함할 수 있다. 또한, 임의의 도면에 도시되거나 또는 임의의 청구항에서 제시된 바와 같이, 임의의 추가 또는 대안의 실시예 또는 방법의 측면은 또한 유사한 모듈을 포함하는 것으로 고려된다.
예시적인 실시예에서, RRU(202)는 모바일 장치로부터 제공된 신호에 대해 고속 푸리에 변환(FFT)을 수행하는 FFT 모듈, 신호로부터 사이클릭 프리픽스를 제거하는 프리픽스 제거 모듈, 및 자원 블록 디매핑(demapping)을 수행하는 디매핑 모듈을 포함한다. 일부 실시예에서, RRU(202)는 실시예에서 설명된 단계들 중 임의의 하나 또는 조합을 수행하기 위한 다른 또는 추가 모듈을 포함할 수 있다. 또한, 임의의 도면에 도시되거나 또는 청구항 중 어느 하나에 제시된 바와 같이, 임의의 추가 또는 대안의 실시예 또는 방법의 측면은 유사한 모듈을 포함하는 것으로 고려된다.
도 2b는 종래의 시스템에서 RRU(202)와 BBU(201) 사이의 물리 계층에서의 기능 분할을 도시한다. RRU(202)는 블록(210)에서, 예를 들어 UE(150)로부터, 무선 주파수(RF) 신호를 수신하고, 기저대역 신호로 변환한다. 그 후, RRU(202)는 블록(211)에서 아날로그 대 디지털 변환기(ADC)에서 CPRI 인코딩을 사용하여 아날로그 기저대역 신호를 디지털 신호로 변환한다. RRU(202)는 파이버(DRoF)(212)를 통한 디지털 무선을 사용하여 ONU(204)를 통해 BBU(201)에게 전체 원시(raw) 데이터를 전송한다.
BBU(201)는 OLT(203)를 통해 RRU(202)로부터 원시 신호를 수신한다. BBU(201)는 블록(213)에서 사이클릭 프리픽스(CP)를 제거하고 FFT를 수행한다. 사이클릭 프리픽스라는 용어는 단부의 반복이 있는 심볼의 접두사를 말한다. 사이클릭 프리픽스는 보호 구간(guard interval)으로서 역할을 하고, 이전의 심볼로부터의 심볼간 간섭을 제거한다. 심볼의 단부를 반복시킴으로써, 주파수 선택적 다중경로 채널의 선형 컨볼루션(convolution)을 FFT를 사용하여 순환 컨벌루션(circular convolution)으로 모델링할 수 있다.
블록(214)에서, BBU(201)는 UE(150)의 신호를 추출하기 위해 자원 블록 디매핑을 수행한다. 블록(215)에서 BBU(201)는 직교 진폭 변조(quadrature amplitude modulation, QAM) 등화 및 처리된 신호 디코딩을 수행한다. QAM은 두 개의 진폭 변조된(amplitude-modulated, AM) 신호를 단일 채널로 결합하여, 유효 대역폭을 두 배로 늘릴 수 있다. 블록(216)에서, BBU(201)는 디코딩된 신호에 대해 순방향 에러 정정(forward error correction, FEC)을 수행한다. FEC는 소스(전송기)가 중복 데이터를 전송하고 데스티네이션(수신기)이 명백한 오류가 없는 데이터 부분만을 인식하는 데이터 전송에서 오류 제어를 획득하는 방법이다. 그 후, 신호는 물리 계층(예를 들어, LTE 계층 1)으로부터 세 개의 서브계층, 즉 MAC 계층(217), 무선 링크 제어(Radio Link Control, RLC) 계층(218) 및 패킷 데이터 컨버전스 프로토콜(Packet Data Convergence Protocol, PDCP) 계층(219)으로 구성된 다음의 계층(예를 들어, LTE 계층 2)으로 전달된다.
도 2c는 본 개시의 실시예에 따른 RRU(252)와 BBU(251) 사이의 물리 계층에서의 기능 분할을 도시한다. RRU(202)와 유사하게, RRU(252)는 UE(150)로부터 RF 신호를 수신하여 이를 블록(260)에서 기저대역 신호로 변환한다. ADC 블록(261)에서, 아날로그 기저대역 신호는 CPRI 인코딩을 사용하여 디지털 신호로 변환된다. 그러나, RRU(202)에 의해 수행된 바와 같이 파이버를 통해 직접 원시 디지털화된 무선 신호를 전송하는 대신에, RRU(252)는 블록(262)에서 사이클릭 프리픽스를 제거하고 FFT를 수행하여 BBU(251)에게 처리된 데이터를 전송하고, DROF(270)를 사용하여 ONU(254)를 통해 BBU(251)로 PON을 통해 처리된 신호를 전송하기 전에 블록(263)에서 자원 블록 디 매핑을 수행한다. BBU(251)는 OLT(253)를 통해 처리된 신호를 수신하고 블록(264)에서 QAM 등화 및 처리된 신호 디코딩을 수행한다. 블록(265)에서, BBU(251)는 디코딩된 신호에 대해 FEC를 수행하고 물리 계층으로부터의 신호를 MAC 계층(266), RLC 계층(267), 및 PDCP 계층(268)을 포함하는 다음의 계층으로 전달한다.
다양한 실시예의 장점은 TDM-PON에 대한 더 낮은 장비 비용 및 더 낮은 파이버 프로비저닝 요구사항을 포함한다. 파이버를 통해 전송되는 실제 데이터는 시스템이 항상 피크 부하(peak load) 상태 인 것처럼 CPRI에서의 데이터 속도가 고정되어 있기 때문에 CPRI의 실제 데이터보다 적을뿐만 아니다. 실제 처리된 데이터 양은 CPRI 방식에서 발생하는 것처럼, 부하 종속적일 수도 있고 잡음을 전송하지 않을 수도 있다. 또한, 다중화 이득은 동일한 모바일-PON 대역폭을 공유하는 복수의 RRU로 달성될 수 있다.
도 3a는 본 발명의 실시예에 따라 BBU에 의해 수행되는 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법(300)의 흐름도이다. 본 방법(300)은 블록(302)에서, BBU가 초기화 단계 중에 복수의 RRU 각각으로부터 BBU로의 광 경로 지연을 측정하는 것으로 시작한다. 블록(304)에서, BBU는 각각의 RRU와 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정함으로써 모바일 시스템 내의 모든 RRU를 동기화한다. 하나의 실시예에서, 모바일 시스템 내의 모든 RRU를 동기화하는 것은 가장 큰 광 경로 지연을 기본 지연으로 설정하고 RRU의 기본 지연과 광 경로 지연 사이의 차이만큼 각각의 RRU를 지연시킴으로써 수행된다. 하나의 실시예에서, 임의의 RRU에 의해 전송된 각각의 전송 블록의 리딩 에지(leading edge)가 동시에 BBU에 도달하도록 RRU가 동기화된다.
블록(306)에서, BBU는 각각의 RRU를 직교 주파수 분할 다중 접속 액세스(Orthogonal Frequency-Division Multiple Access, OFDMA) 프레임의 하나 이상의 자원 블록에 할당한다. 블록(308)에서, BBU는 OFDMA 프레임의 각각의 자원 블록을 PON 전송 블록에 매핑하는 미리 정의된 매핑 규칙을 결정한다. 블록(310)에서, BBU는 미리 정의된 매핑 규칙을 각각의 RRU에 전송하고, 그 후에 본 방법(300)은 종료한다.
도 3b는 본 발명의 실시예에 따라 RRU에 의한 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법(350)의 흐름도이다. 본 방법(300)은 블록(352)에서, RRU가 BBU로부터의 자원 블록 할당과 OFDMA 프레임의 각각의 자원 블록을 PON 전송 블록에 매핑하는 미리 정의된 매핑 규칙을 수신하는 것으로 시작한다. 블록(354)에서, RRU는 UE로부터 RF 신호를 수신하여 이를 기저대역 신호로 변환한다. 블록(356)에서, RRU는 아날로그 기저대역 신호를 디지털 신호로 변환한다. 블록(358)에서, RRU는 디지털 신호로부터 사이클릭 프리픽스(CP)를 제거하고 디지털 신호에 대해 FFT를 수행한다.
블록(360)에서, RRU는 데이터를 추출하기 위해 자원 블록 디매핑을 수행한다. 하나의 실시예에서, RRU는 각각의 자원 블록 사이의 경계를 알고 있다. RRU는 전체 스펙트럼 대신에 각각의 자원 블록을 샘플링하여 양자화한다. RRU는 데이터가 있는 경우에 자원 블록을 BBU에게 저농한다. RRU는 데이터가 없는 경우에 데이터가 없는 프레임을 전송하지 않고 자원 블록을 폐기한다. 다양한 실시예에 따르면, 양자화 해상도는 물리 계층 분할 후에 CPRI보다 낮을 수 있다. 샘플 당 2*8 양자화 비트를 갖는 자원 블록 당 12*7 = 84개의 샘플을 예로 들 수 있다. 특정 실시예에서, 셀간 간섭을 피하기 위해, 인접한 RRU들은 동일한 자원 블록을 사용할 수 없다. 따라서, RRU 대역폭 다중화 이득이 중요하다.
블록(362)에서, RRU는 미리 정의된 매핑 규칙에 따라 자신의 할당된 자원 블록을 PON 전송 블록에 매핑한다. 예를 들어, OFDMA 프레임에서의 그 위치에 기초하여, 각각의 자원 블록은 BBU에 의해 미리 정의된 매핑 규칙에 기초하여 특정 모바일 PON 전송 블록에 매핑된다. 특정 실시예에 따르면, 매핑 규칙은 RRU와 BBU 사이의 광 경로 지연 차이를 고려한다. 하나의 실시예에서, 광 경로 지연 및 매핑 규칙은 네트워크의 초기화 중에 계산된다. BBU는 동일한 영역 내의 UE들이 서로 간섭하지 않도록 무선 인터페이스를 스케줄링한다.
도 4는 본 발명의 다양한 실시예에 따른 자원 블록 할당을 구현하는 C-RAN(100)을 도시한다. 도시된 실시예에서, BBU(101)는 OFDMA 프레임(400)의 자원 블록(1-5 및 8)을 RRU(110)에게, OFDMA 프레임(410)의 자원 블록(6-7 및 9-11)을 RRU(120)에게, 그리고 OFDMA 프레임(420)의 자원 블록(12-16)을 RRU(130)에게 할당한다.
도 5는 본 개시의 다양한 실시예에 따른 모바일-PON 프레임(510)의 전송 블록에 대한 OFDMA 프레임(500)의 자원 블록의 정적 매핑을 도시한다. 하나의 실시예에서, 정적 매핑 모드에서, 요구되는 대역폭 프로비저닝(provisioning)은 모든 RRU 피크 부하의 합보다는 전체 영역에서의 피크 부하보다 크거나 같다. 또한, 자원 블록 매핑에 대한 자원 블록은 초기화 단계 후에 결코 변경되지 않는다.
설명의 편의를 위해, 도 5에서, OFDMA 프레임(500)은 자원 블록(1-16)을 포함하고, 모바일-PON 프레임(510)은 전송 블록(1-16)을 포함한다. 그러나, OFDMA 프레임(500) 및 모바일-PON 프레임 (510)은 각각 추가적인 자원 블록 및 전송 블록을 포함할 수 있다. 도시된 실시예에서, OFDMA 프레임(500)의 동일한 자원 블록 번호는 모바일-PON 프레임(510)의 대응하는 번호가 매겨진 전송 블록에 매핑된다. 그러나, 자원 블록은 다른 실시예에서 다양한 방식으로 전송 블록에 매핑될 수 있다.
다양한 실시예에서, 낮은 레이턴시를 보장하기 위해 모바일-MAC 업링크 스케줄링에 기초하여 각각의 모바일-PON 프레임(510)의 듀레이션(duration)이 각각의 OFDMA 프레임(500)과 동일할 수 있도록 RRU는 자신의 타이밍을 BBU와 동기화한다. 다시 말해, BBU는 TDM-PON 업링크 MAC 스케줄을 매치(match)시키기 위해 모바일-MAC 업링크 스케쥴을 설정하도록 구성될 수 있다. 예를 들어, 각각의 OFDMA 프레임(500)의 듀레이션이 10ms이면, 각각의 모바일-PON 프레임(510)은 또한 동일한 10ms에 동기화된다. 특정 실시예에서, 모바일-PON 프레임(510)은 각각의 전송 블록(512) 사이에 가드 블록(guard block)(511)을 포함한다. 상기한 바와 같이, 본 개시의 다양한 실시예에 따르면, 2개의 인접한 전송 블록(512)은 상이한 RRU)로부터 전송될 수 있다. 가드 블록(511)은 BBU에서의 적절한 수신을 보장하기 위해 상이한 가입자로부터의 패킷이 정확한 슬롯에 맞는 것을 보장한다. 다양한 실시예에서, 40 비트의 가드 블록(511)은 전송 블록이 BBU에 도달하는 경우 2개의 인접한 전송 블록 신호가 서로 중첩되지 않는 것을 보장하기 위해 작은 타이밍 에러를 보상하기에 충분할 수 있다. 다양한 실시예에서, 가드 블록 또는 가드 블록(들)이 가능한 타이밍 에러에 대한 충분한 보상을 제공하는 한, 가드 블록(511)은 40 비트보다 많거나 적을 수 있다.
또한, 도6a 내지 6d는 본 개시의 다양한 실시예에 따른 모바일-PON 프레임(510)의 전송 블록에 대한 각각의 RRU의 정적 자원 블록 매핑을 도시한다. 도 6a에 도시된 바와 같이, RRU(110)는 OFDMA 프레임(400)의 자원 블록(1-5 및 8)을 모바일-PON 프레임(510A)의 전송 블록(1-5 및 8)에 매핑한다. 도 6B에서, RRU(120)는 OFDMA 프레임(410)의 자원 블록(6-7 및 9-11)을 모바일-PON 프레임(510B)의 전송 블록(6-7 및 9-11)에 매핑한다. 도 6c에서, RRU(130)는 OFDMA 프레임(420)의 자원 블록(12-16)을 모바일-PON 프레임(510C)의 전송 블록(12-16)에 매핑한다. 하나의 실시예에서, RRU(110), RRU(120) 및 RRU(130) 각각은 예에 따라 16개의 전송 블록일 수 있는 그들의 전체 모바일-PON 프레임(510A, 510B, 510C)을 전송한다. 하나의 실시예에서, RRU(110), RRU(120) 및 RRU(130)는 할당된 자원 블록 내의 처리된 데이터만을 전송하고, 할당되지 않은 자원 블록 내의 빈 블록을 전송한다. 이러한 방식으로, 각각의 RRU는 다른 RRU와 동기화된 프레임을 전송하고, 자원 블록 내의 데이터는 중첩되지 않는다.
도 6d는 RRU(110), RRU(120) 및 RRU(130)로부터의 신호를 결합하는 모바일-PON 프레임(510D)을 포함하는 다중화된 신호를 도시한다. 도 6d에 도시된 바와 같이, 모바일-PON 프레임(510D)은 임의의 중첩 또는 충돌없이 스케줄링된 공간에 할당된 다양한 자원 블록과 RRU(110), RRU(120) 및 RRU(130)의 결합된 스케줄링을 포함한다. 하나의 실시예에서, BBU(401)는 독립적인 프레임이 각각의 RRU의 데이터를 중첩하지 않고 맞물리기(mesh) 때문에 RRU로부터 모바일-PON 프레임(510D)을 포함하는 다중화된 신호를 생성할 수 있다. 다른 실시예에서, BBU(401)는 OLT(402)를 통해 모바일-PON 프레임(510D)을 포함하는 다중화된 신호를 수신한다. 예를 들어, 일부 실시예에서, 모바일-PON 프레임(510D)을 포함하는 다중화된 신호는 도 1 및 4에 도시된 멀티플렉서/디멀티플렉서(103) 및/또는 OLT(402)와 같은 다른 네트워크 장치에 의해 BBU(401) 전에 생성될 수 있지만 이것으로만 한정되는 것은 아니다.
도 7a 내지 도 7d는 본 개시의 실시예에 따른 2차원 시간(0.5ms/자원 블록, 20 블록/프레임) 및 주파수(180kHz/자원 블록, 총 10 MHz) 표현에서 할당된 자원 블록의 예를 도시한다. 도 7a는 RRU(110)에 대해 할당된 자원 블록을 도시한다. 도 7b는 RRU(120)에 대해 할당된 자원 블록을 도시한다. 도 7c는 RRU(130)에 대해 할당된 자원 블록을 도시한다. 도 7d는 RRU(110), RRU(120) 및 RRU(130)에 대해 결합된 할당된 자원 블록을 도시한다. 도 7e는 2차원, 시간 및 주파수 다중 액세스 방식에서 모바일-PON에 대한 시간 분할 다중화 방식만으로의 정적 규칙 매핑의 샘플 스냅샷(snapshot)을 도시한다. 도 7e에 도시된 바와 같이, 20 x 50 LTE 자원 블록은 1000개의 PON 전송 블록에 매핑된다. 상기 참조된 바와 같이, BBU(101)는 초기화 단계 후에 PON 전송 블록에 대한 자원 블록의 매핑이 변경되지 않는 정적 모드에서 충돌을 방지하기 위해 중첩하지 않는 RRU(110), RRU(120) 및 RRU(130)에게 자원 블록을 할당한다.
다른 실시예에서, 개시된 실시예는 동적 자원 블록 매핑을 제공하도록 구성될 수 있으며, 여기서 BBU는 초기화 단계 후에 자원 블록의 PON 전송 블록에 대한 매핑을 재계산하고, 이에 따라 매핑 규칙을 업데이트하도록 구성된다. 다양한 실시예에서, 재계산 및 업데이트는 무선 스케줄링이 변경될 때마다 발생하는데, 이는 매 1 ms마다 또는 매 서브 프레임 듀레이션마다 변경될 수 있다. RRU는 업링크 중에 RRU들 사이에 간섭을 갖지 않기 위해 업데이트된 매핑 규칙을 제공받는다. 다양한 실시예에서, 동적 매핑은 다중화 대역폭 이득을 증가시킬 수 있다.
다양한 실시예에서, UE(150)는 RRU(110), RRU(120) 및 RRU(130) 중 하나를 통해 BBU(101)에게 전송을 위해 버퍼링된 데이터의 양을 통지하는 요청 메시지를 전송한다. BBU(101)는 각각의 RRU(및 그에 따라 업링크 데이터를 전송하고자 하는 각각의 UE(150))로부터 정보를 수신하고, 각각의 UE(150)에 대한 자원 전송 블록을 할당한다. 그 후, BBU(101)는 RRU(110), RRU(120) 및 RRU(130) 및 UE(150)를 업데이트된 자원 매핑으로 업데이트한다. RRU(110), RRU(120) 및 RRU(130)는 업데이트된 자원 매핑을 사용하여 업링크 데이터를 전송한다.
다양한 실시예에서, 동적 매핑 모드에서, RRU(110), RRU(120) 및 RRU(130)는 데이터를 전송하기 위해 동일한 자원 블록이 할당될 수 있다. 업데이트된 매핑은 자원 블록을 개별적인 전송 블록에 매핑함으로써 임의의 간섭을 피한다. 예를 들어, 도 8a 내지 8e는 동일한 자원 블록이 2개의 RRU에 할당되고 전송을 위해 다른 전송 블록으로 매핑되는 동적 매핑 규칙의 예를 도시한다. 구체적으로, 도 8a는 자원 블록 8(RB8)이 RRU1 및 RRU2 모두에 할당되는 매핑 규칙을 도시한다. 예를 들어, 도시된 실시예에서, 전송 블록(T1-T5 및 T8)은 도 8b에 도시된 바와 같이 RRU1의 대응하는 자원 블록(RB1-RB5 및 RB8)에 매핑된다. 전송 블록(T6, T7)은 도 8c에 도시된 바와 같이 RRU2의 대응하는 자원 블록(RB6 및 RB7)에 매핑된다. 그러나, 전송 블록(T8)이 RRU1의 RB8에 매핑되었기 때문에, RRU2의 자원 블록(RB8-RB10)은 각각 전송 블록(T9-T11)에 매핑된다. RRU3의 자원 블록(RB11-RB16은) 도 8d에 도시된 바와 같이 각각 전송 블록(T12-T17)에 매핑된다. 도 8e는 RRU(110), RRU(120) 및 RRU(130)로부터의 신호를 결합하는 다중화된 신호(800)를 도시한다. 다중화된 신호(800)는 BBU에게 전송된다. 따라서, 동적 모드에서, 2개 이상의 RRU는 데이터를 전송하기 위해 동일한 자원 블록을 할당받을 수 있다. 상이한 전송 블록에 대한 동적/수정된(revised) 매핑은 RRU들의 데이터 사이의 임의의 간섭을 회피한다.
도 9는 업링크 내의 그룹화된 이전의 전송 블록에 자원 블록을 할당하는 동적 매핑을 제공하는 BBU의 예를 도시한다. 당업자가 알 수 있는 바와 같이, 데이터를 포함하는 전송 블록을 그룹화하는 것은 전송되는 데이터가 없는 간격 구간(interval period)을 제공할 수 있다. 이들 다운 구간(down period)은 원하는 대체 전송을 위해 사용될 수 있다. 동적 매핑 모드의 다양한 장점은 전송 블록의 레이턴시를 최적화하기 위해 다양한 자원 블록을 매핑하는 것을 포함한다. 동적 매핑은 프로비저닝된 광 대역폭이 최대 무선 데이터 속도보다 낮은 경우, 또는 2개의 RRU가 동일한 자원 블록을 사용하는 경우 발생할 수 있다. 동적 매핑에서, BBU는 변경이 있는 경우 각각의 프레임에 대한 매핑 규칙을 재계산하고, 이어서 재계산된 매핑 규칙의 RRU를 업데이트하도록 구성될 수 있다.
도 10은 본 개시의 실시예에 따른 동적 모드에서 BBU에 의해 수행되는 PON 업링크 스케줄링을 수행하기 위한 예시적인 방법(1000)의 흐름도이다. 본 방법(1000)은 BBU가 초기화 단계 중에 복수의 각각의 RRU로부터 BBU까지의 광 경로 지연을 측정하는 블록(1002)에서 시작한다. 블록(1004)에서, BBU는 각각의 RRU와 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정함으로써 모바일 시스템 내의 모든 RRU를 동기화한다. 블록(1006)에서, BBU는 각각의 RRU에게 하나 이상의 OFDMA 프레임의 자원 블록을 할당한다. 블록(1008)에서, BBU는 OFDMA 프레임의 각각의 자원 블록을 PON 전송 블록에 매핑하는 매핑 규칙을 계산한다. 블록(1010)에서, BBU는 각각의 RRU에게 매핑 규칙을 전송한다. 블록(1012)에서, BBU는 무선 스케줄링에서의 변화를 모니터링한다. 블록(1014)에서, BBU는 무선 스케줄링 변경이 발생하는지를 결정한다. BBU가 무선 스케줄링에서 변경이 없는 것으로 결정하면, BBU는 블록(1012)으로 되돌아가 무선 스케줄의 변경을 계속 모니터링한다. BBU가 무선 스케줄링에 변경이 있는 것으로 결정하면, BBU는 블록(1016)에서 무선 스케줄의 변경에 기초하여 매핑 규칙을 재계산한다. BBU는 블록(1018)에서 재 계산된 매핑 규칙을 RRU에게 전송하고, 블록(1012)으로 복귀하여 무선 스케줄의 변경을 계속 모니터링한다.
본 개시에서 몇몇 실시예가 제공되었지만, 개시된 시스템 및 방법은 본 개시의 사상 또는 범위를 벗어나지 않고 많은 다른 특정 형태로 구현될 수 있음이 이해되어져야 한다. 본 실시예는 제한적인 것이 아니라 예시적인 것으로 간주되어야 하며, 의도는 본 명세서에서 주어진 세부사항으로 한정되지 않는다. 예를 들어, 다양한 엘리먼트 또는 컴포넌트가 다른 시스템에서 결합되거나 통합될 수 있거나 또는 특정 특징들이 생략되거나 구현되지 않을 수 있다.
따라서, 개시된 실시예들은 모바일 프론토홀을 위한 통합 모바일 및 TDM-PON 업링크 MAC 스케줄링을 제공한다. 개시된 실시예의 장점은 더 낮은 장비 비용 TDM-PON 및 더 낮은 파이버 프로비저닝 요구사항을 포함한다. 예를 들어, 개시된 실시예들은 모바일 프론트홀상에서 요구되는 업링크 대역폭을 약 10 배 감소시키고, TDM-PON에서 대역폭 스케줄링 지연을 제거하며, 모바일 프론트홀 대 매우 비용 효율적인 TDM 포인트가 가능하도록 할 수 있다.
또한, 개시된 실시예들은 최적의 물리 계층 기능 분할을 제공하며, 이는 DRoF 대역폭 요구사항을 감소시킨다. 상기한 바와 같이, 원시 디지털화된 무선 신호를 파이버를 통해 직접 전송하는 대신, RRU는 FFT, 사이클릭 프리픽스 제거 및 자원 디매핑을 수행한다. 파이버를 통해 전송되는 실제 데이터는 CPRI의 데이터보다 작을뿐만 아니라 부하에 따라 달라진다. 따라서, 다중화 이득은 동일한 모바일-PON 대역폭을 공유하는 복수의 RRU로 달성될 수 있다.
본 개시가 다양한 실시예와 관련하여 설명되었다. 그러나, 개시된 실시예에 대한 다른 변형 및 수정은 도면, 개시 및 첨부된 청구범위의 연구로부터 이해되고 이루어질 수 있으며, 그러한 변형 및 수정은 첨부된 청구범위에 의해 포함되는 것으로 해석되어야 한다. 청구범위에서, "포함하는(comprising)"이란 용어는 다른 엘리먼트 또는 단계를 배제하지 않으며, 부정 관사 "a" 또는 "an"은 복수를 배제하지 않는다. 단일 프로세서 또는 다른 유닛은 청구범위에서 언급된 여러 항목의 기능을 수행할 수 있다. 특정 측정들이 서로 다른 종속항에 인용되어 있다는 단순한 사실은 이러한 측정들의 조합이 이점을 얻는 데 사용될 수 없다는 것을 나타내거나, 배제하거나 제안하지 않는다. 컴퓨터 프로그램은 다른 하드웨어와 함께 또는 그 일부로서 제공되는 광학 저장 매체 또는 고체 상태 매체와 같은 적절한 매체 상에 저장되거나 분배될 수 있지만, 인터넷 또는 기타 유무선 통신 시스템과 같은 다른 형태로 배포될 수도 있다.
또한, 본 개시의 범위를 벗어나지 않으면서, 다양한 실시예에서 개별적으로 또는 분리되어 기술되고 예시된 기술, 시스템, 서브시스템 및 방법은 다른 시스템, 모듈, 기술 또는 방법과 결합되거나 통합될 수 있다. 서로 결합되거나 직접 결합되거나 통신하는 것으로 예시되거나 설명된 다른 항목은 전기적으로, 기계적으로 또는 다른 방법으로 어떤 인터페이스, 장치 또는 중간 컴포넌트를 통해 간접적으로 결합되거나 통신될 수 있다. 변경, 대체 및 변형의 다른 예들은 당업자에 의해 확인될 수 있으며, 본 명세서에 개시된 사상 및 범위를 벗어나지 않고 이루어질 수 있다.

Claims (20)

  1. 모바일 네트워크를 지원하기 위한 수동형 광 네트워크(passive optical network, PON)로서,
    복수의 원격 무선 유닛(remote radio unit, RRU),
    상기 복수의 RRU와 통신하는 기저대역 유닛(baseband unit, BBU)
    을 포함하고,
    상기 BBU는,
    초기화 단계 중에 상기 복수의 RRU의 각각의 RRU로부터 상기 BBU까지의 광 경로 지연을 측정하고,
    각각의 RRU와 상기 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 상기 복수의 RRU 내의 모든 RRU를 동기화시키며,
    상기 복수의 RRU의 각각의 RRU에 할당된 각각의 자원 블록을 서로 다른 PON 전송 블록에 매핑하는 매핑 규칙을 결정하고,
    상기 복수의 RRU의 각각의 RRU에 상기 매핑 규칙을 전송하도록
    구성되는, 수동형 광 네트워크.
  2. 제1항에 있어서,
    모바일 매체 액세스 제어(medium access control, MAC) 업링크 스케줄링은 상기 BBU와 상기 복수의 RRU 사이의 통신에 적용되는,
    수동형 광 네트워크.
  3. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 BBU는 시분할 다중 수동형 광 네트워크(time division multiplexing-passive optical network, TDM-PON) 업링크 MAC 스케줄과 매칭하도록 모바일 MAC 업링크 스케줄을 설정하는,
    수동형 광 네트워크.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    각각의 RRU와 상기 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 상기 복수의 RRU 내의 모든 RRU를 동기화시키는 것은,
    가장 큰 광 경로 지연을 기본 지연으로 설정하고,
    상기 기본 지연과 상기 RRU의 광 경로 지연 사이의 차이만큼 각각의 RRU를 지연시키는 것 ― 각각의 RRU에 의해 전송되는 각각의 PON 전송 블록의 리딩 에지(leading edge)가 동시에 상기 BBU에 도달하도록 상기 복수의 RRU가 동기화됨 ―
    을 포함하는, 수동형 광 네트워크.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 BBU는 상기 복수의 RRU로부터 다중화된 업링크 데이터 스트림을 수신하는,
    수동형 광 네트워크.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 매핑 규칙은 각각의 대응하는 RRU와 상기 BBU 사이의 각각의 광 경로 지연의 차이를 설명하는,
    수동형 광 네트워크.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    각각의 RRU는,
    모바일 장치로부터 제공되는 신호에 대해 고속 푸리에 변환(fast Fourier transform, FFT)을 수행하고,
    신호에서 사이클릭 프리픽스(cyclic prefix)를 제거하며,
    자원 블록 디매핑(demapping)을 수행하도록
    구성되는, 수동형 광 네트워크.
  8. 제7항에 있어서,
    각각의 RRU는,
    상기 매핑 규칙에 기초하여 상기 RRU에 할당된 전송 블록 내에 저장된 데이터 및 상기 모바일 PON 프레임의 나머지 내의 빈 블록을 갖는 모바일 PON 프레임을 생성하고,
    생성된 모바일 PON 프레임을 업링크에서 상기 BBU에게 전송하도록
    추가로 구성되는, 수동형 광 네트워크.
  9. 제8항에 있어서,
    상기 BBU는,
    업데이트된 매핑 규칙을 생성하기 위해 상기 초기화 단계 이후에 상기 복수의 RRU로부터의 복수의 예상된 자원 블록에 기초하여 상기 매핑 규칙을 재계산하고,
    업데이트된 매핑 규칙을 각각의 RRU에게 전송하도록 ― 각각의 RRU는 업데이트된 매핑 규칙을 상기 모바일 PON 프레임을 생성하는 데 적용함 ―
    추가로 구성되는, 수동형 광 네트워크.
  10. 제9항에 있어서,
    많은 양의 버퍼 데이터를 통지하고 추가 전송 블록을 요청하기 위해 상기 RRU를 통해 상기 BBU에게 요청 메시지를 전송하도록 구성된 사용자 장치(user equipment, UE) ― 상기 요청 메시지는 상기 BBU에 의해 상기 매핑 규칙의 재계산을 트리거시킴 ―
    를 더 포함하는 수동형 광 네트워크.
  11. 수동형 광 네트워크(passive optical network, PON)에서의 모바일 스케줄링 방법으로서,
    기저대역 유닛(baseband unit, BBU)에 의해, 초기화 단계 중에 상기 복수의 원격 무선 유닛(remote radio unit, RRU)의 각각의 RRU로부터 상기 BBU까지의 광 경로 지연을 측정하는 단계;
    상기 BBU에 의해, 각각의 RRU와 상기 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 상기 복수의 RRU 내의 모든 RRU를 동기화시키는 단계;
    상기 BBU에 의해, 상기 복수의 RRU의 각각의 RRU에 할당된 각각의 자원 블록을 서로 다른 PON 전송 블록에 매핑하는 매핑 규칙을 결정하는 단계; 및
    상기 BBU에 의해, 상기 복수의 RRU의 각각의 RRU에 상기 매핑 규칙을 전송하는 단계
    를 포함하는 모바일 스케줄링 방법.
  12. 제11항에 있어서,
    모바일 매체 액세스 제어(medium access control, MAC) 업링크 스케줄링은 상기 BBU와 상기 복수의 RRU 사이의 통신에 적용되는,
    모바일 스케줄링 방법.
  13. 제11항 내지 제12항 중 어느 한 항에 있어서,
    상기 BBU는 시분할 다중 수동형 광 네트워크(time division multiplexing-passive optical network, TDM-PON) 업링크 MAC 스케줄과 매칭하도록 모바일 MAC 업링크 스케줄을 설정하는,
    모바일 스케줄링 방법.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서,
    각각의 RRU와 상기 BBU 사이의 광 경로 지연에 기초하여 각각의 경로의 타이밍을 조정하여 상기 복수의 RRU 내의 모든 RRU를 동기화시키는 단계는,
    가장 큰 광 경로 지연을 기본 지연으로 설정하는 단계; 및
    상기 기본 지연과 상기 RRU의 광 경로 지연 사이의 차이만큼 각각의 RRU를 지연시키는 단계 ― 각각의 RRU에 의해 전송되는 각각의 PON 전송 블록의 리딩 에지(leading edge)가 동시에 상기 BBU에 도달하도록 상기 복수의 RRU가 동기화됨 ―
    를 포함하는, 모바일 스케줄링 방법.
  15. 제11항 내지 제14항 중 어느 한 항에 있어서,
    상기 BBU는 상기 복수의 RRU로부터 다중화된 업링크 데이터 스트림을 수신하는,
    모바일 스케줄링 방법.
  16. 제11항 내지 제15항 중 어느 한 항에 있어서,
    상기 매핑 규칙은 각각의 대응하는 RRU와 상기 BBU 사이의 각각의 광 경로 지연의 차이를 설명하는,
    모바일 스케줄링 방법.
  17. 제11항 내지 제16항 중 어느 한 항에 있어서,
    상기 BBU에 의해, 업데이트된 매핑 규칙을 생성하기 위해 상기 초기화 단계 이후에 상기 복수의 RRU로부터의 복수의 예상된 자원 블록에 기초하여 상기 매핑 규칙을 재계산하는 단계; 및
    업데이트된 매핑 규칙을 각각의 RRU에게 전송하는 단계
    를 더 포함하는, 모바일 스케줄링 방법.
  18. 제17항에 있어서,
    상기 BBU에 의해, 사용자 장치(user equipment, UE)에 의해 저장된 많은 양의 버퍼 데이터를 상기 BBU에게 통지하고 추가 전송 블록을 요청하기 위해 상기 복수의 RRU 중 하나의 RRU를 통해 상기 UE로부터 요청 메시지를 수신하는 단계 ― 상기 요청 메시지는 상기 BBU에 의해 상기 매핑 규칙의 재계산을 트리거시킴 ―
    를 더 포함하는 모바일 스케줄링 방법.
  19. 수동형 광 네트워크(passive optical network, PON)에서의 모바일 스케줄링 방법으로서,
    원격 무선 유닛(remote radio unit, RRU)에 의해, 모바일 장치로부터 제공되는 신호에 대해 고속 푸리에 변환(fast Fourier transform, FFT)을 수행하는 단계;
    상기 RRU에 의해, 신호에서 사이클릭 프리픽스(cyclic prefix)를 제거하는 단계; 및
    상기 RRU에 의해, 자원 블록 디매핑(demapping)을 수행하는 단계
    를 포함하는 모바일 스케줄링 방법.
  20. 제19항에 있어서,
    상기 RRU에 의해, 기저대역 유닛(baseband unit, BBU)으로부터 매핑 규칙을 수신하는 단계;
    상기 RRU에 의해, 상기 매핑 규칙에 기초하여 상기 RRU에 할당된 전송 블록 내에 저장된 데이터 및 상기 모바일 PON 프레임의 나머지 내의 빈 블록을 갖는 모바일 PON 프레임을 생성하는 단계; 및
    업링크 내의 생성된 모바일 PON 프레임을 상기 BBU에게 전송하는 단계
    를 더 포함하는, 모바일 스케줄링 방법.
KR1020197009545A 2016-09-15 2017-08-31 모바일 프론트홀을 위한 통합 모바일 및 tdm-pon 업링크 mac 스케줄링 KR102221647B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662395058P 2016-09-15 2016-09-15
US62/395,058 2016-09-15
US15/685,629 US10355801B2 (en) 2016-09-15 2017-08-24 Unified mobile and TDM-PON uplink MAC scheduling for mobile front-haul
US15/685,629 2017-08-24
PCT/CN2017/099866 WO2018049987A1 (en) 2016-09-15 2017-08-31 Unified mobile and tdm-pon uplink mac scheduling for mobile front-haul

Publications (2)

Publication Number Publication Date
KR20190045929A true KR20190045929A (ko) 2019-05-03
KR102221647B1 KR102221647B1 (ko) 2021-03-02

Family

ID=61560856

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197009545A KR102221647B1 (ko) 2016-09-15 2017-08-31 모바일 프론트홀을 위한 통합 모바일 및 tdm-pon 업링크 mac 스케줄링

Country Status (6)

Country Link
US (1) US10355801B2 (ko)
EP (1) EP3501222B1 (ko)
JP (1) JP6742512B2 (ko)
KR (1) KR102221647B1 (ko)
CN (1) CN109716841B (ko)
WO (1) WO2018049987A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107599A1 (ko) * 2019-11-25 2021-06-03 주식회사 쏠리드 통신 시스템, 및 이의 동작 방법
US11770341B2 (en) 2021-11-23 2023-09-26 Electronics And Telecommunications Research Institute Bandwidth allocating apparatus and method for providing low-latency fronthaul service in passive optical network

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087306A (zh) * 2016-02-12 2017-08-22 台扬科技股份有限公司 用于无线信源调度的方法
US10886976B2 (en) * 2017-07-31 2021-01-05 Mavenir Networks, Inc. Method and apparatus for flexible fronthaul physical layer split for cloud radio access networks
US10009673B1 (en) * 2017-09-15 2018-06-26 Futurewei Technologies, Inc. Efficient CPRI transmission
US10623129B2 (en) * 2017-09-15 2020-04-14 Futurewei Technologies, Inc. Control and management of a first PON using a second PON
WO2019205173A1 (zh) * 2018-04-28 2019-10-31 华为技术有限公司 一种无线接入网络、构建方法及通信装置
EP3783985B1 (en) * 2018-05-16 2023-08-02 Huawei Technologies Co., Ltd. Data transmission method and device
US11533777B2 (en) * 2018-06-29 2022-12-20 At&T Intellectual Property I, L.P. Cell site architecture that supports 5G and legacy protocols
CN110798334B (zh) * 2018-08-03 2022-04-05 上海华为技术有限公司 一种带宽调度方法及装置
CN109041008A (zh) * 2018-08-20 2018-12-18 成都吉纬科技有限公司 一种共小区的毫米波基站切换抑制同频干扰的方法
CN112640379A (zh) * 2018-09-04 2021-04-09 康普技术有限责任公司 用于集中式无线电接入网络中的前传速率降低
US11936441B2 (en) * 2018-11-09 2024-03-19 Ntt Docomo, Inc. Signal processing device, radio device, front haul multiplexer, beam control method, and signal combining method
JP7071642B2 (ja) * 2018-12-19 2022-05-19 日本電信電話株式会社 光無線通信システム、無線送受信装置及び光無線通信方法
US10992385B2 (en) 2019-04-08 2021-04-27 Netsia, Inc. Apparatus and method for joint profile-based slicing of mobile access and optical backhaul
EP3963898A1 (en) * 2019-04-29 2022-03-09 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for controlling transmission of an upstream packet traffic in a tdm pon-based fronthaul
CN111010731A (zh) * 2019-12-17 2020-04-14 四川天邑康和通信股份有限公司 一种用于基站的集中单元的射频拉远单元的同步装置
EP3883258A1 (en) * 2020-03-20 2021-09-22 Nokia Solutions and Networks Oy An optical network unit and an optical line terminal
CN115516777A (zh) * 2020-05-07 2022-12-23 瑞典爱立信有限公司 用于可缩放分发无线电系统的基于波束索引的数据分发
JP7443937B2 (ja) 2020-06-01 2024-03-06 船井電機株式会社 点鼻装置、および、プログラム
CN112073927A (zh) * 2020-08-11 2020-12-11 北京华电天仁电力控制技术有限公司 一种基于eLTE和GPON的生态网络系统
US11588671B2 (en) * 2020-08-17 2023-02-21 Corning Research & Development Corporation Cyclic prefix (CP) detection and removal in a wireless communications system (WCS)
US20230389011A1 (en) 2020-10-13 2023-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Management of uplink transmission of user data
CN114448503A (zh) * 2020-11-04 2022-05-06 南京中兴软件有限责任公司 下行数据传输方法、装置、存储介质及电子装置
CN114448543B (zh) * 2020-11-05 2023-07-21 大唐移动通信设备有限公司 Gps时间同步方法、bbu系统、电子设备及存储介质
WO2022133757A1 (zh) * 2020-12-23 2022-06-30 华为技术有限公司 一种时延补偿方法及设备
CN112865913B (zh) * 2021-01-20 2023-03-28 重庆邮电大学 一种基于移动前传的放大饱和rsoa光源装置
WO2023018897A1 (en) * 2021-08-12 2023-02-16 Intel Corporation Delay measurements between gnb-cu and gnb-du
WO2023162209A1 (ja) * 2022-02-28 2023-08-31 日本電気株式会社 通信装置、方法、記録媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883190B2 (ja) * 2008-01-22 2012-02-22 日本電気株式会社 無線アクセスシステムの送信機及び受信機、無線アクセスシステムの送信方法及び受信方法、並びにプログラム
US8705483B2 (en) * 2010-12-21 2014-04-22 Huawei Technologies Co., Ltd. Downlink baseband signal generating method, relevant device and system
US8942561B2 (en) * 2008-10-21 2015-01-27 Broadcom Corporation Synchronization transport over passive optical networks
US9112758B2 (en) * 2011-10-01 2015-08-18 Intel Corporation Remote radio unit (RRU) and base band unit (BBU)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442798B (zh) * 2007-11-22 2011-10-26 中兴通讯股份有限公司 无线基站控制节点及其级联远端节点上下行同步通信方法
CN101471724B (zh) * 2007-12-28 2013-01-16 鼎桥通信技术有限公司 一种时分双工系统中的上行数据同步方法
JP5109710B2 (ja) * 2008-02-22 2012-12-26 日本電気株式会社 帯域割当方法、局側装置、加入者局装置、通信システム、および装置のプログラム
CN101895344A (zh) 2010-05-26 2010-11-24 中国联合网络通信集团有限公司 一种融合无源光网络与移动网络的方法及系统
JP5503463B2 (ja) 2010-08-30 2014-05-28 沖電気工業株式会社 帯域割当制御装置および帯域割当制御プログラム
CN201947457U (zh) 2010-10-12 2011-08-24 京信通信系统(中国)有限公司 一种基于pon的光纤分布式射频拉远系统
CN102131131B (zh) * 2010-10-14 2013-09-25 华为技术有限公司 一种实现无源光网络拉远的方法和系统及中继装置
WO2013007318A1 (en) * 2011-07-11 2013-01-17 Telefonaktiebolaget L M Ericsson (Publ) Apparatus and method for a passive optical network
US9184842B2 (en) * 2011-10-06 2015-11-10 Telefonaktiebolaget L M Ericsson (Publ) Apparatus for communicating a plurality of antenna signals at different optical wavelengths
WO2012092903A2 (zh) * 2012-02-14 2012-07-12 华为技术有限公司 延迟的测量方法及光传送网络设备
US9125047B2 (en) * 2012-07-26 2015-09-01 Nec Laboratories America, Inc. Cloud-based radio access network for small cells
JP5856310B2 (ja) * 2012-10-19 2016-02-09 日本電信電話株式会社 分散型無線通信基地局システム、信号処理装置、無線装置、及び分散型無線通信基地局システムの動作方法
CN104782084B (zh) * 2012-11-14 2018-01-02 日本电信电话株式会社 光用户通信系统、光用户通信方法、上位装置和光用户线路终端装置
US9258629B2 (en) * 2012-12-11 2016-02-09 Huawei Technologies Co., Ltd. System and method for an agile cloud radio access network
JP6022921B2 (ja) * 2012-12-13 2016-11-09 日本電信電話株式会社 セル間の干渉抑制方法及び分散無線通信基地局システム
KR20160133503A (ko) * 2014-05-12 2016-11-22 인텔 코포레이션 C-ran 프론트엔드 전처리 및 시그널링 유닛
ES2858302T3 (es) * 2015-03-11 2021-09-30 Commscope Technologies Llc Red de acceso por radio distribuida con Fronthaul adaptativa

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883190B2 (ja) * 2008-01-22 2012-02-22 日本電気株式会社 無線アクセスシステムの送信機及び受信機、無線アクセスシステムの送信方法及び受信方法、並びにプログラム
US8942561B2 (en) * 2008-10-21 2015-01-27 Broadcom Corporation Synchronization transport over passive optical networks
US8705483B2 (en) * 2010-12-21 2014-04-22 Huawei Technologies Co., Ltd. Downlink baseband signal generating method, relevant device and system
US9112758B2 (en) * 2011-10-01 2015-08-18 Intel Corporation Remote radio unit (RRU) and base band unit (BBU)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107599A1 (ko) * 2019-11-25 2021-06-03 주식회사 쏠리드 통신 시스템, 및 이의 동작 방법
US11770341B2 (en) 2021-11-23 2023-09-26 Electronics And Telecommunications Research Institute Bandwidth allocating apparatus and method for providing low-latency fronthaul service in passive optical network

Also Published As

Publication number Publication date
KR102221647B1 (ko) 2021-03-02
US10355801B2 (en) 2019-07-16
CN109716841A (zh) 2019-05-03
EP3501222A1 (en) 2019-06-26
EP3501222B1 (en) 2021-06-30
WO2018049987A1 (en) 2018-03-22
JP6742512B2 (ja) 2020-08-19
US20180076914A1 (en) 2018-03-15
JP2019535170A (ja) 2019-12-05
CN109716841B (zh) 2021-04-09
EP3501222A4 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
KR102221647B1 (ko) 모바일 프론트홀을 위한 통합 모바일 및 tdm-pon 업링크 mac 스케줄링
US10009673B1 (en) Efficient CPRI transmission
US10575271B2 (en) Synchronisation of wireless base stations
KR102057932B1 (ko) 필터링된 ofdm을 갖는 적응형 프레임 구조를 위한 시스템 및 방법
US9866347B2 (en) Band control system, band control apparatus and communication apparatus
KR101925428B1 (ko) 유연한 서브-캐리어 간격 및 심볼 지속시간을 가진 ofdm을 위한 시스템 및 방법
CN110915150B (zh) 使用第二pon控制和管理第一pon
Zhou et al. Mobile-PON: A high-efficiency low-latency mobile fronthaul based on functional split and TDM-PON with a unified scheduler
CN104782064A (zh) 通过非对称网络的公用公共无线电接口的使用
CN104581446A (zh) Pon系统中支持基站间直接通信的方法和装置
JP6022921B2 (ja) セル間の干渉抑制方法及び分散無線通信基地局システム
CN107979421B (zh) 一种在rru侧进行时延补偿的方法及装置
EP3461070B1 (en) Optical transmission device and bandwidth allocating method
JP2015082666A (ja) 無線通信装置
KR20170006234A (ko) 이동통신 서비스 기지국 장치
JP6461765B2 (ja) 端局装置及び帯域割当方法
JP6599063B2 (ja) 光通信システム
Lee et al. A traffic-efficient fronthaul for the cloud-RAN
JP2018098548A (ja) Ponシステム、olt、onuおよび通信方法
WO2019003442A1 (ja) 光ネットワークの光端局装置および光ネットワークの上りスケジューリング方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant