WO2019205173A1 - 一种无线接入网络、构建方法及通信装置 - Google Patents

一种无线接入网络、构建方法及通信装置 Download PDF

Info

Publication number
WO2019205173A1
WO2019205173A1 PCT/CN2018/085193 CN2018085193W WO2019205173A1 WO 2019205173 A1 WO2019205173 A1 WO 2019205173A1 CN 2018085193 W CN2018085193 W CN 2018085193W WO 2019205173 A1 WO2019205173 A1 WO 2019205173A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
service
communication device
multiplexer
optical fiber
Prior art date
Application number
PCT/CN2018/085193
Other languages
English (en)
French (fr)
Inventor
王玉
孙天兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/085193 priority Critical patent/WO2019205173A1/zh
Publication of WO2019205173A1 publication Critical patent/WO2019205173A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to the field of optical communication technologies, and in particular, to a wireless access network, a construction method, and a communication device.
  • the radio access network includes a radio remote unit (RRU) and a baseband unit (BBU), wherein the RRU and the BBU are separately deployed, and the middle is mainly directly connected through the optical fiber, that is,
  • the BBU side and the RRU side respectively use a single-fiber bidirectional small form-factor pluggable (SFP) module, and the optical communication is directly connected through a fiber.
  • SFP small form-factor pluggable
  • the maximum bandwidth supported by the SFP is limited. Therefore, if there are many services between the RRU and the BBU, and the bandwidth occupied by the service exceeds the maximum bandwidth supported by the SFP, multiple SFPs need to be established in the RRU and the BBU to ensure the communication. Business can be achieved. To add one SFP to each of the RRU and the BBU, you need to lay a new fiber to connect the two new SFPs, as shown in Figure 1.
  • the number of services between the RRU and the BBU may increase, and the number of SFPs required will also increase, so that the demand for optical fibers will become larger and larger.
  • the embodiment of the present application provides a radio access network, a construction method, and a communication device, which are used to solve the problem that the demand for the optical fiber is relatively large when there are more and more services between the RRU and the BBU in the radio access network.
  • an embodiment of the present application provides a wireless access network, including a first communication device, a second communication device, a first multiplexer unit, a second multiplexer unit, and an optical fiber.
  • the first communication device includes at least two first service bearer units, and the at least two first service bearer units are respectively connected to the first multiplexer unit.
  • the second communication device includes at least two second service bearer units, and the at least two second service bearer units are respectively connected to the second multiplexer unit.
  • the first multiplexer unit and the second multiplexer unit are connected by the optical fiber.
  • the at least two first service carrying units are respectively configured to carry different service signals, and the first combining and separating unit is configured to use optical signals corresponding to the service signals respectively carried by the at least two first service carrying units
  • a light signal is synthesized and transmitted to the second multiplexer unit through the optical fiber.
  • the at least two second service bearers are respectively configured to carry different service signals, and the second multiplexer unit is configured to receive, by using the optical fiber, an optical signal sent by the first multiplexer unit, and The received optical signal is demultiplexed to obtain at least two optical signals, and the obtained at least two optical signals are respectively sent to each of the corresponding second service carrying units.
  • the BBU is connected to the RRU by installing a splitting and splitting unit (for example, a wavelength division multiplexer WDM) on the BBU side and the RRU side.
  • a splitting and splitting unit for example, a wavelength division multiplexer WDM
  • the optical signals corresponding to at least two communication services between the BBU side and the RRU side can be combined into one communication light wave by the two multiplexer units, so that the multiplex communication between the BBU side and the RRU side can be performed.
  • the optical signals corresponding to the service are multiplexed into one optical fiber, thereby reducing the demand for the number of optical fibers.
  • the embodiment of the present application can reduce the usage of at least one optical fiber. For example, when the amount of traffic between the RRU and the BBU is increasing in the radio access network, the demand for the number of optical fibers can be reduced.
  • the first communication device may be a baseband processing unit
  • the second communication device may be a radio remote unit
  • the first communication device may be a radio remote unit
  • the second communication device can be a baseband processing unit.
  • the first service bearer unit and the second service bearer unit may be an SFP, or may be a tunable small form-factor pluggable (TSFP). .
  • TSFP small form-factor pluggable
  • the first multiplexer unit and the second multiplexer unit may select a passive multiplexer (MUX).
  • MUX passive multiplexer
  • the first multiplexer unit and the second multiplexer unit may adopt a coarse wavelength division multiplexing (CWDM) method or a dense wavelength division multiplexing (dens wavelength).
  • CWDM coarse wavelength division multiplexing
  • dens wavelength dense wavelength division multiplexing
  • the division multiplexing (DWDM) method performs multiplexing multiplexing and splitting processing on multiple optical signals.
  • the multiplexer unit when the CWDM mode and the DWDM mode multiplexer unit are installed on the BBU side and the RRU side, when the communication service between the BBU side and the RRU side is relatively small, the multiplexer unit can use CWDM to communicate each other.
  • the optical signals corresponding to the service are multiplexed into one optical fiber, and when the communication service between the BBU side and the RRU side is upgraded and expanded, the multiplexing and splitting unit can use the DWDM method to multiplex the optical signals corresponding to the respective communication services into one.
  • the multiplexer unit can have good multiplexing performance when multiplexing the optical signals corresponding to the communication service between the BBU side and the RRU side onto one optical fiber.
  • the embodiment of the present application provides a communications apparatus, including at least two service carrying units and a splitting and splitting unit, where the at least two service carrying units are respectively connected to the combining and splitting unit.
  • the at least two service bearers are respectively configured to carry different service signals.
  • the multiplexing and splitting unit is configured to synthesize an optical signal corresponding to a service signal respectively carried by the at least two service carrying units into one optical signal, and perform the combined optical signal on the optical fiber connected by the multiplexer unit send.
  • the multiplexer unit can also receive the optical signal through the connected optical fiber, and demultiplex the received optical signal to obtain at least two optical signals, and send the obtained at least two optical signals to each corresponding one.
  • the service bearer unit processes.
  • the multiplexer unit may perform split combining processing on multiple optical signals by using a CWDM method or a DWDM method.
  • the service bearer unit may be an SFP or a TSFP.
  • the multiplexer unit may select a passive MUX, and may also select other types of MUXs.
  • the communication device may be a baseband processing unit or a radio remote unit.
  • the embodiment of the present application provides a wireless access network, including at least one pair of communication devices described in any one of the foregoing second aspect or the second aspect, wherein each pair of communication devices is connected by an optical fiber.
  • each pair of communication devices may be specifically a baseband processing unit BBU and a radio remote unit RRU.
  • FIG. 1 is a schematic structural diagram of a radio access network according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a radio access network according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a multiplexer unit according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another multiplexer unit according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another multiplexer unit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another multiplexer unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a radio access network according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a radio access network according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of step 1 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of step 2 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of step 3 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of step 4 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of step 5 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of step 6 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of step 7 of constructing a radio access network according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • a radio remote unit (RRU) and a base band unit (BBU) are usually deployed separately when constructing a radio access network.
  • the BBU side and the RRU side respectively use a single-fiber bidirectional small form-factor pluggable (SFP) module for communication service processing.
  • SFP small form-factor pluggable
  • Each pair of SFPs in the BBU and the RRU is directly connected through a single fiber.
  • Communication between the BBU side and the RRU side is implemented.
  • the two SFP modules located on the BBU side and the RRU side respectively communicate in a coarse wavelength division multiplexing (CWDM) manner through the connected optical fibers.
  • CWDM coarse wavelength division multiplexing
  • the embodiment of the present application provides a radio access network, a construction method, and a communication device, which are used to solve the problem that the radio access network is optical fiber when the communication traffic between the BBU side and the RRU side increases.
  • the radio access network provided by the embodiment of the present invention can be applied to a global mobile communication system (English: global system for mobile communication, GSM for short), and can also be applied to a wideband code division multiple access mobile communication system (English: wideband code division multiple Access, referred to as WCDMA, can also be applied to third-generation mobile communication systems (English: 3rd generation, 3G for short), and can also be applied to long term evolution (LTE), and can also be applied to fifth-generation communication.
  • GSM global system for mobile communication
  • WCDMA wideband code division multiple Access
  • the system (5G) can also be applied to the LTE and 5G hybrid architecture, and can also be applied to other communication systems.
  • the embodiments of the present invention are not specifically limited herein.
  • the radio access network provided by the embodiment of the present invention may be a centralized radio access network (CRAN).
  • a plurality of the following references in the embodiments of the present invention mean two or more.
  • an embodiment of the present invention provides a radio access network, including a first communication device 201, a second communication device 202, a first multiplexer unit 203, a second multiplexer unit 204, and an optical fiber 205.
  • the first communication device 201 includes at least two first service bearer units 2011 and 2012, and may further include more service bearer units. In the embodiment of the present invention, only two service bearer units are used as an example for description, and more The case may be referred to two cases, and the at least two first service carrying units 2011 and 2012 are respectively connected to the first combining/demultiplexing unit 203.
  • the second communication device 202 may also include at least two second service bearers 2021 and 2022.
  • the second communication device 202 may further include more service bearers, which are only two in the embodiment of the present invention.
  • the service bearer unit is described as an example. In more cases, two cases may be referred to, and the at least two second service bearers 2021 and 2022 are respectively connected to the second splitter unit 204.
  • the first multiplexer unit 203 and the second multiplexer unit 204 may be connected by one optical fiber 205.
  • the at least two first service bearers, 2011 and 2012, respectively, may be configured to carry different service signals, and the first multiplexer unit 203 is configured to separately carry the service signals carried by the first service bearer units 2011 and 2012.
  • the corresponding optical signal is combined into one optical signal and transmitted to the second multiplexer unit 204 through the optical fiber 205.
  • the at least two second service carrying units 2021 and 2022 are also respectively configured to carry different service signals, and the second combining and separating unit 204 is configured to receive the first combining and separating unit 203 through the optical fiber 205. Transmitting an optical signal, and dividing the received optical signal to obtain at least two optical signals, and transmitting the obtained at least two optical signals to each of the corresponding second service carrying units 2021 and 2022 .
  • the first service bearer unit 2011 is configured to process the service a
  • the first service bearer unit 2012 is configured to process the service b.
  • the second multiplexer unit 204 performs optical signal splitting, the optical signal corresponding to the service a can be obtained.
  • the optical signal corresponding to the service b if the second service carrying unit 2021 is used to process the service b, and the second service carrying unit 2022 is used to process the service a, the second combining and separating unit 204 corresponds to the service a obtained by the branching.
  • the optical signal is sent to the second service carrying unit 2022, and the optical signal corresponding to the obtained service b is sent to the second service carrying unit 2021.
  • the first communication device may be a BBU, and the second communication device may be an RRU. Conversely, the first communication device may also be an RRU, and the second communication device may also be a BBU.
  • the first service bearer unit and the second service bearer unit may be implemented by selecting an SFP or selecting a Tunable small form-factor pluggable (TSFP).
  • the first multiplexer unit and the second multiplexer unit may be implemented by using a passive multiplexer (MUX), and of course, other types of combined light splitting devices may be selected.
  • the first multiplexer unit 203 may be a function module built in the first communication device 201 or a device independent of the first communication device 201.
  • the second multiplexer unit 204 can be a function module built in the second communication device 202, or can be a device independent of the second communication device 202.
  • the first multiplexer unit and the second multiplexer unit may adopt a CWDM method or a dense wavelength division multiplexing (DWDM) method to combine multiple optical signals. , or split the optical signal of one way.
  • CWDM mode and the DWDM mode multiplexer unit are installed on the BBU side and the RRU side
  • the multiplexer unit can use the CWDM method to respectively correspond to each communication service.
  • the optical signal is multiplexed into one optical fiber, and when the communication service between the BBU side and the RRU side is upgraded and expanded, the multiplexing and splitting unit can use the DWDM method to multiplex the optical signals corresponding to the respective communication services into one optical fiber. Therefore, the multiplexer unit can have better multiplexing performance when multiplexing the optical signals corresponding to the communication services between the BBU side and the RRU side onto one optical fiber.
  • the first multiplexer unit and the second multiplexer unit may be implemented by any one of the following four structures:
  • the multiplexer unit includes an arrayed waveguide grating (AWG) and a coarse wavelength division multiplexing filter (CWDM filter), wherein the OUT port of the AWG and the input port of the CWDM filter (port) 1 is connected, the input port of the AWG is connected to the TSFP, the AWG can include multiple input ports, and each input port of the AWG can be connected to one TSFP.
  • the port 2 of the CWDM filter is connected to the SFP. If the communication device includes multiple SFPs, multiple SFPs can be cascaded and connected to the port 2 of the CWDM filter.
  • the COM port of the CWDM filter is connected to the fiber.
  • the AWG is used to cascade the TSFP to realize the DWDM function of the splitting and splitting unit.
  • the CWDM filter is used to combine the multiple optical signals transmitted by the AWG and/or the SFP, or to split the optical signals received through the optical fiber.
  • the multiplexer unit includes a periodic AWG (CAWG) and a coarse wavelength division multiplexing filter (CWDM filter), wherein the OUT port of the CAWG is connected to the port 1 of the CWDM filter, and the input port of the CAWG.
  • CAWG periodic AWG
  • CWDM filter coarse wavelength division multiplexing filter
  • the CAWG can include multiple input ports, and each input port in the CAWG can be connected to one TSFP.
  • the port 2 of the CWDM filter is connected to the SFP. If the communication device includes multiple SFPs, multiple SFPs can be cascaded and connected to the port 2 of the CWDM filter.
  • the COM port of the CWDM filter is connected to the fiber.
  • the CAWG is used to cascade the TSFP to implement the DWDM function of the splitting unit.
  • Structure 3 As shown in FIG. 5, it includes a plurality of DWDM filters and a CWDM filter, wherein a plurality of DWDM filters are connected in parallel, and a plurality of DWDM filters are connected in parallel with an OUT port and a CWDM filter port. 1 connected, the input port of each DWDM filter can be connected to a TSFP. The port 2 of the CWDM filter is connected to the SFP. If the communication device includes multiple SFPs, multiple SFPs can be cascaded and connected to the port 2 of the CWDM filter. The COM port of the CWDM filter is connected to the fiber. Multiple DWDM filters are used to cascade the TSFPs to implement DWDM functions of the splitting and splitting units.
  • Each DWDM filter combination includes three DWDM filters, specifically a first DWDM filter, a second DWDM filter, and a third DWDM filter, wherein the first DWDM filter is connected in series with the second DWDM filter, and the third CWDM filter is connected in parallel.
  • the DWDM filter is connected in series with the second DWDM filter.
  • the input port of each DWDM filter combination can be connected to a TSFP, and the OUT port of each DWDM filter combination is connected to the OUT port of the CWDM filter.
  • the port 2 of the CWDM filter is connected to the SFP.
  • multiple SFPs can be cascaded and connected to the port 2 of the CWDM filter.
  • the COM port of the CWDM filter is connected to the fiber.
  • the multiple DWDM filters are used to cascade the TSFPs to implement the DWDM function of the splitting and splitting units.
  • the transmitting-side communication device can input the optical signals corresponding to the respective communication services of the respective ones to the AWG of the structure one or the second structure through the plurality of TSFPs.
  • the densely wavelength division multiplexing is performed in the CAWG, or the DWDM filter of the structure 3, or the DWDM filter combination of the structure 4, and then the CWDM filter combines the multi-path optical signals subjected to the dense wavelength division multiplexing, and passes through one
  • the optical fiber is sent to the receiving side communication device.
  • the transmitting side communication device can input the optical signals corresponding to the respective communication services to the CWDM filter through the SFP for combining processing, and send the optical signals to the receiving side through one optical fiber.
  • Communication device is used to input the optical signals corresponding to the respective communication services of the respective ones to the AWG of the structure one or the second structure through the plurality of TSFPs.
  • At least one service bearer unit is a TSFP, and at least one service bearer unit is an SFP.
  • the plurality of service bearers included in the second communication device 202 at least one service bearer unit is a TSFP, and at least one service bearer unit is an SFP.
  • the first communication device 201 includes a service bearer unit that is an SFP, and a service bearer unit that is a TSFP.
  • the SFP and the TSFP are respectively connected to the first split/wavelength unit.
  • the second communication device 202 also includes a service bearer unit that is an SFP, and a service bearer unit that is a TSFP.
  • the SFP and the TSFP are respectively connected to the second multiplexer unit.
  • the first multiplexer unit and the second multiplexer unit are connected by an optical fiber.
  • the first communication device 201 and the second communication device 202 may further include more service bearer units that are SFPs, or include more service bearer units that are TSFPs.
  • the unit and a service bearer unit that is a TSFP are described as an example. For more cases, the structure shown in FIG. 7 can be referred to.
  • the TSFP can communicate in the DWDM mode through the connected optical fibers, and the SFP can communicate in the CWDM mode through the connected optical fibers. Therefore, when the communication service between the BBU side and the RRU side is relatively small, the SFP can be combined with the CWDM mode of the splitting unit.
  • the optical signals corresponding to the respective communication services are multiplexed onto one optical fiber, and when the communication services between the BBU side and the RRU side are upgraded and expanded, the communication services are respectively corresponding to each communication service by the TSFP in the DWDM mode of the splitting and splitting unit.
  • the optical signals are multiplexed onto one optical fiber, so that the multiplexing and splitting unit can multiplex the optical signals corresponding to the communication services between the BBU side and the RRU side to one optical fiber, and has good multiplexing performance.
  • the multiplex and splitting unit can be installed in the wireless access network step by step.
  • the radio access network shown in FIG. 8 includes a first communication device and a second communication device, where the first communication device includes a first service bearer unit, and the second communication device includes a second service bearer unit
  • the first service bearer unit and the second service bearer unit are connected by using a first optical fiber, where the first service bearer unit and the second service bearer unit are used to carry service signals.
  • the first service bearer unit may be an SFP or may be a TSFP.
  • the second service carrying unit may be an SFP or a TSFP.
  • the first communication device may be a BBU and the second communication device is an RRU.
  • the first communication device can also be an RRU and the second communication device is a BBU.
  • the first communication device may include a service bearer unit, and may further include more service bearer units.
  • the first service bearer unit It may be any one of a plurality of service bearer units included in the first communication device.
  • the second communication device may include a service bearer unit, and may further include more service bearer units.
  • the second service bearer unit may be the second communication device. Any one of the plurality of service bearer units included in the service bearer unit.
  • the construction process may be specifically as follows:
  • the first multiplexer unit is mounted on the first communication device side.
  • the third service bearer unit may be installed on the first communication device side, and the third service bearer unit and the first split wave unit are connected.
  • the third service carrying unit may be a TSFP.
  • the light in the process of installing the first multiplexer unit on the first communication device side, after the third service bearer unit is powered on, the light may not be sent by default when there is no optical input (that is, no service signal is carried). signal.
  • the connection between the first optical fiber and the first service carrying unit may be interrupted, the first optical fiber is connected to the first combining and separating unit, and the first service carrying unit is connected to the first combining and separating unit.
  • the service signal carried by the first service bearer unit is automatically migrated to other service bearer units in the first communication device, and the first optical fiber is combined with the first optical fiber.
  • the first service bearer unit may multiplex the optical signal corresponding to the carried service signal into the first optical fiber by using the first multiplexer unit.
  • the second multiplexer unit is mounted on the second communication device side.
  • the fourth service carrying unit may be installed on the second communication device side, and the fourth service carrying unit and the second combining and separating unit may be connected.
  • the fourth service carrying unit may be a TSFP.
  • the first multiplexer unit and the second multiplexer unit may be the multiplexer unit described in the radio access network shown in FIGS. 2 to 7.
  • A4 Connect the second service carrying unit to the first optical fiber by using the second multiplexer unit.
  • the process of connecting the second service bearer unit to the first optical fiber by using the second multiplexer unit may refer to the process of connecting the first service bearer unit to the first optical fiber by using the first multiplexer unit, and is not repeated here. Narration.
  • the fourth service bearer can be powered on. That is, the laser of the fourth service carrying unit is turned on, and the optical signal is sent to be received by the third service carrying unit to implement communication between the third service carrying unit and the fourth service carrying unit.
  • two multiplexer units are sequentially connected to two multiplexer units, and the two multiplexer units are connected by one optical fiber.
  • the target service carried in the communication link is automatically migrated to other links, and the first multiplexer unit is successfully accessed on the BBU side, and After the first multiplexer unit is connected to the RRU side of the communication link by the transmission unit of the communication link, the target service is automatically migrated from the other link to the communication link connected to the first multiplexer unit and the RRU side.
  • the target service is automatically migrated to the other link by the first multiplexer unit and the communication link connected to the RRU side, and on the RRU side.
  • the target service is automatically migrated from the other link to the first multiplexer unit. In the communication link connected to the second multiplexer unit.
  • communication between the two side communication devices can be realized by one inbound station installation for one side communication device site, and the operation of the communication service between the two side communication devices can be interrupted during installation, thereby
  • the smoothing of the traffic carried in the communication link is migrated to the communication link where the first multiplexer unit and the second multiplexer unit are connected.
  • the second communication device further includes a sixth service bearer unit
  • the fifth service may also be interrupted.
  • the bearer unit and the sixth service bearer are connected to the second optical fiber, so that the service signal carried in the fifth service bearer unit is automatically migrated to the service bearer unit connected to the first splitter unit (such as the first service bearer unit, and the third In the service bearer unit, the service signal carried in the sixth service bearer unit is automatically migrated to the service bearer unit (such as the second service bearer unit and the fourth service bearer unit) connected to the second multiplexer unit.
  • the fifth service carrying unit is connected to the first combining and splitting unit
  • the sixth service carrying unit is connected to the second combining and separating unit.
  • the bandwidth of the service bearer unit included in the first communication device and the bandwidth of the service bearer unit included in the second communication device are insufficient
  • a new service bearer unit needs to be added in the first communication device and the second communication device the new service bearer unit in the first communication device is connected to the first multiplexer unit, and the new service bearer unit in the second communication device is connected to the second multiplexer unit.
  • the link-SFP in the BBU, the link-SFP in the RRU, and the fiber connecting the two links-SFP modules form a link one, and the link one is used to carry the first A communication service.
  • the link 2 SFP in the BBU, the link 2 SFP in the RRU, and the fiber connecting the two SFP modules of the two links form a link 2, and the link 2 is used to carry the second communication service.
  • Step 1 Install the first MUX and the TSFP on the BBU side, and connect the TSFP to the DWDM input port of the first MUX, as shown in FIG.
  • the TSFP side TSFP does not send optical signals by default when there is no optical input (that is, no bearer service signal) after power-on.
  • Step 2 The connection between the link-SFP module and the optical fiber in the BBU is interrupted. At this time, the first communication service carried in the link 1 is automatically migrated to the link 2, as shown in FIG.
  • Step 3 Connect the link-SFP module in the BBU to the CWDM input port in the first MUX, and connect the COM port of the passive MUX to the fiber of the link one, so that the newly established link can operate normally.
  • the first communication service is automatically migrated to the newly established link, as shown in Figure 11.
  • Step 4 Install a second MUX and a TSFP on the RRU side, and connect the TSFP to the DWDM input port of the second MUX, as shown in FIG.
  • Step 5 The connection between the link-SFP module and the optical fiber in the RRU is interrupted.
  • the first communication service carried in the newly established link in step 3 is automatically migrated to the link 2, as shown in FIG.
  • Step 6 Connect the link-SFP module in the RRU to the CWDM input port in the second MUX, and connect the COM port of the passive MUX to the fiber of the link one, so that the newly established link can operate normally.
  • the first communication service is automatically migrated to the newly established link, as shown in Figure 14.
  • the steps 1 to 3 can be performed first, and then the steps 4 to 6 are performed. Steps 4 to 6 may be performed first, and then steps 1 to 3 are performed.
  • the embodiment of the present application is not specifically limited herein.
  • Step 7 Turn on the laser of the TSFP on the RRU side, and send an optical signal to receive the TSFP in the BBU to implement communication between the TSFP side TSFP and the RRU side TSFP.
  • step 8 the link 2 module is removed, and the second communication service carried in the link 2 is automatically migrated to the newly established link in step 6, as shown in FIG.
  • other links can be connected to the newly established link in step 6 by referring to link 2.
  • the SFP module added to the BBU can be connected to the CWDM input port of the first MUX, and the SFP module added to the RRU can be connected to the second MUX.
  • CWDM input port When an SFP module is added to the radio access network, the SFP module added to the BBU can be connected to the CWDM input port of the first MUX, and the SFP module added to the RRU can be connected to the second MUX.
  • the multiplexer unit can be a functional module in the communication device or a separate device.
  • the embodiment of the present application provides a communication device 1600, including at least two service bearers 1601 and 1602, and a multiplexer unit 1603, the at least two services.
  • the carrier units 1601 and 1602 are respectively connected to the multiplexer unit 1603.
  • the at least two service carrying units 1601 and 1602 are respectively configured to carry different service signals.
  • the combining and dividing unit 1603 is configured to synthesize an optical signal corresponding to the service signal respectively carried by the at least two service carrying units 1601 and 1602 into one optical signal, and pass the synthesized optical signal to the combining and splitting unit. 1603 connected fiber for transmission.
  • the communication device 1600 is a BBU or an RRU.
  • the embodiment of the present application provides another wireless access network, including at least one pair of communication devices described in FIG. 16, each pair of communication devices being connected by an optical fiber.
  • one communication device of each pair of communication devices is a BBU, and the other communication device is an RRU.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种无线接入网络、构建方法及通信装置。无线接入网络包括两个通信装置、两个合分波单元、光纤。其中,第一通信装置包括至少两个第一业务承载单元,至少两个第一业务承载单元分别与第一合分波单元相连。第二通信装置包括至少两个第二业务承载单元,至少两个第二业务承载单元分别与第二合分波单元相连。第一合分波单元与第二合分波单元通过光纤相连。第一合分波单元用于将至少两个第一业务承载单元分别承载的业务信号所对应的光信号合成一路光信号,并通过光纤发送给第二合分波单元。第二合分波单元用于通过光纤接收第一合分波单元发送的一路光信号,并将接收的光信号进行分波后得到的至少两路光信号分别发送给对应的每个第二业务承载单元。

Description

一种无线接入网络、构建方法及通信装置 技术领域
本申请涉及光通信技术领域,尤其涉及一种无线接入网络、构建方法及通信装置。
背景技术
目前,无线接入网络通过包括射频拉远单元(radio remote unit,RRU)和基带处理单元(base band unit,BBU)两部分,其中,RRU和BBU分开部署,中间主要是通过光纤直连,即BBU侧和RRU侧分别使用单纤双向的小封装热插拔收发器(small form-factor pluggable,SFP)模块,中间通过一根光纤直连,实现业务的通信。由于SFP支持的最大带宽有限,因此,若RRU和BBU之间的业务较多,业务所占用的带宽超出了SFP支持的最大带宽,则需要在RRU和BBU中分别建立多个SFP以保证各个通信业务能够实现。而RRU和BBU中每各增加一个SFP,则需要铺设一根新的光纤将新增的两个SFP进行连接,如图1所示。
随着通信网络的演进,RRU和BBU之间的业务可能会越来越多,从而需要的SFP的数量也会越来越多,这样对光纤的需求量就会越来越大。
发明内容
本申请实施例提供了一种无线接入网络、构建方法及通信装置,用于解决当无线接入网络中RRU和BBU之间的业务越来越多时对光纤的需求量比较大的问题。
第一方面,本申请实施例提供一种无线接入网络,包括第一通信装置、第二通信装置、第一合分波单元、第二合分波单元以及光纤。所述第一通信装置包括至少两个第一业务承载单元,所述至少两个第一业务承载单元分别与所述第一合分波单元相连。所述第二通信装置包括至少两个第二业务承载单元,所述至少两个第二业务承载单元分别与所述第二合分波单元相连。所述第一合分波单元与所述第二合分波单元通过所述光纤相连。所述至少两个第一业务承载单元分别用于承载不同的业务信号,所述第一合分波单元用于将所述至少两个第一业务承载单元分别承载的业务信号所对应的光信号合成一路光信号,并通过所述光纤发送给所述第二合分波单元。所述至少两个第二业务承载单元分别用于承载不同的业务信号,所述第二合分波单元用于通过所述光纤接收所述第一合分波单元发送的一路光信号,并将接收的所述光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述第二业务承载单元。
本申请实施例中针对无线接入网络对光纤数量的需求量较大的问题,通过在BBU侧以及RRU侧分别安装合分波单元(例如波分复用器WDM),使得BBU在与RRU进行通信业务时,可以通过两个合分波单元将BBU侧以及RRU侧之间的至少两路通信业务分别对应的光信号合成一路通信光波,从而可以使BBU侧以及RRU侧之间的多路通信业务对应的光信号复用到一根光纤,从而可以降低对光纤数量的需求。以图1所示的结构为例,BBU侧的两个SFP与RRU侧的两个链路一SFP通过一根光纤连接,BBU侧的两个SFP与RRU侧的两个链路二SFP通过另一根光纤连接,而本申请实施例中可以将BBU侧的链 路一SFP、链路二SFP与一个合分波单元相连,将RRU侧的链路一SFP、链路二SFP与一个合分波单元相连,两个合分波单元仅通过一根光纤连接即可,相比于图1中使用两根光纤连接,本申请实施例可以减少至少一根光纤的使用量,可见,本申请实施例在无线接入网络中RRU和BBU之间的业务量越来越多时,可以降低对光纤数量的需求。
在一种可能的设计中,所述第一通信装置可以为基带处理单元,所述第二通信装置可以为射频拉远单元,或者,所述第一通信装置可以为射频拉远单元,所述第二通信装置可以为基带处理单元。
在一种可能的设计中,所述第一业务承载单元、所述第二业务承载单元可以为SFP,还可以为可调小封装热插拔收发器(tunable small form-factor pluggable,TSFP)等。
在一种可能的设计中,所述第一合分波单元、所述第二合分波单元可以选择无源多路复用器(multiplexer,MUX)。
在一种可能的设计中,所述第一合分波单元、第二合分波单元可以采用粗波分复用(coarse wavelength division multiplexing,CWDM)方式,或者采用密集波分复用(dense wavelength division multiplexing,DWDM)方式对多路光信号进行复用合路分路处理。
上述设计中,通过在BBU侧以及RRU侧安装兼容CWDM方式以及DWDM方式的合分波单元,可以使得BBU侧以及RRU侧之间的通信业务比较少时,合分波单元可以采用CWDM方式将各通信业务对应的光信号复用到一根光纤上,而当BBU侧以及RRU侧之间的通信业务进行升级扩容时,合分波单元可以采用DWDM方式将各通信业务对应的光信号复用到一根光纤上,从而可以使合分波单元将BBU侧以及RRU侧之间的通信业务对应的光信号复用到一根光纤上时有较好的复用性能。
第二方面,本申请实施例提供一种通信装置,包括至少两个业务承载单元、以及合分波单元,所述至少两个业务承载单元分别与所述合分波单元相连。所述至少两个业务承载单元分别用于承载不同的业务信号。所述合分波单元,用于将所述至少两个业务承载单元分别承载的业务信号所对应的光信号合成一路光信号,并将合成的光信号通过所述合分波单元连接的光纤进行发送。以及,所述合分波单元还可以通过连接的光纤接收光信号,并将接收的光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述业务承载单元处理。
在一种可能的设计中,所述合分波单元可以采用CWDM方式或者采用DWDM方式对多路光信号进行分路合路处理。
在一种可能的设计中,所述业务承载单元可以为SFP,还可以为TSFP。
在一种可能的设计中,所述合分波单元可以选择无源MUX,还可以选择其他类型的MUX。
在一种可能的设计中,所述通信装置可以为基带处理单元,也可以为射频拉远单元。
第三方面,本申请实施例提供一种无线接入网络,包括至少一对上述第二方面或者第二方面中任一种设计中所述的通信装置,每对通信装置通过光纤相连。在一种可能的设计中,每对通信装置可以具体为基带处理单元BBU和射频拉远单元RRU。
附图说明
图1为本申请实施例提供的一种无线接入网络的结构示意图;
图2为本申请实施例提供的一种无线接入网络的结构示意图;
图3为本申请实施例提供的一种合分波单元的结构示意图;
图4为本申请实施例提供的另一种合分波单元的结构示意图;
图5为本申请实施例提供的另一种合分波单元的结构示意图;
图6为本申请实施例提供的另一种合分波单元的结构示意图;
图7为本申请实施例提供的一种无线接入网络的结构示意图;
图8为本申请实施例提供的一种无线接入网络的结构示意图;
图9为本申请实施例提供的构建无线接入网络步骤1的示意图;
图10为本申请实施例提供的构建无线接入网络步骤2的示意图;
图11为本申请实施例提供的构建无线接入网络步骤3的示意图;
图12为本申请实施例提供的构建无线接入网络步骤4的示意图;
图13为本申请实施例提供的构建无线接入网络步骤5的示意图;
图14为本申请实施例提供的构建无线接入网络步骤6的示意图;
图15为本申请实施例提供的构建无线接入网络步骤7的示意图;
图16为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
目前,在构建无线接入网络时通常分开部署射频拉远单元(radio remote unit,RRU)和基带处理单元(base band unit,BBU)。BBU侧和RRU侧分别使用单纤双向的小封装热插拔收发器(small form-factor pluggable,SFP)模块来进行通信业务处理,BBU和RRU中的每对SFP一般通过一根光纤直连,实现BBU侧和RRU侧之间的通信。具体的,分别位于BBU侧和RRU侧的两个SFP模块通过连接的光纤以粗波分复用(coarse wavelength division multiplexing,CWDM)方式进行通信。随着5G网络的演进,BBU侧和RRU侧之间的通信业务量随时可能进行升级扩容,而一个SFP支持的最大带宽有限,因此,若RRU和BBU之间的通信业务量较多,则需要在RRU和BBU中分别建立增加SFP模块的数量以保证有足够的带宽实现各个通信业务。而RRU和BBU中每各增加一个SFP模块,则需要增设一根新的光纤将新增的两个SFP连接,如图1所示,因此随着BBU侧和RRU侧之间的通信业务量越来越多,需要的SFP模块的数量也会越来越多,这样对光纤的需求量也就会越来越大。
基于此,本申请实施例提供了一种无线接入网络、构建方法及通信装置,用于解决随着BBU侧和RRU侧之间的通信业务量越来越多时,无线接入网络对光纤的需求量比较大的问题。本发明实施例提供的无线接入网络可以应用于全球移动通信系统(英文:global system for mobile communication,简称:GSM),也可以应用于宽带码分多址移动通信系统(英文:wideband code division multiple access,简称:WCDMA),也可以应用于第三代移动通信系统(英文:3rd generation,简称:3G),也可以应用于长期演进(long term evolution,LTE),也可以应用于第五代通信系统(5G),还可以应用于LTE与5G混合架构,也可以应用于其他通信系统,本发明实施例在这里不做具体限定。本发明实施例提供的无线接入网络可以为集中式无线接入网络(central radio access network,CRAN)。
本发明实施例中下述提及的多个,是指两个或两个以上。
另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述 的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
如图2所示,本发明实施例提供了一种无线接入网络,包括第一通信装置201、第二通信装置202、第一合分波单元203、第二合分波单元204以及光纤205。所述第一通信装置201包括至少两个第一业务承载单元2011和2012,当然还可以包含更多个业务承载单元,本发明实施例仅以2个业务承载单元为例进行说明,更多个的情况可以参照两个的情况,所述至少两个第一业务承载单元2011和2012分别与所述第一合分波单元203相连。所述第二通信装置202也可以包括至少两个第二业务承载单元2021和2022,同理,所述第二通信装置202还可以包含更多个业务承载单元,本发明实施例仅以2个业务承载单元为例进行说明,更多个的情况可以参照两个的情况,所述至少两个第二业务承载单元2021和2022分别与所述第二合分波单元204相连。所述第一合分波单元203与所述第二合分波单元204可以通过一根光纤205相连。所述至少两个第一业务承载单元2011和2012可以分别用于承载不同的业务信号,所述第一合分波单元203用于将所述第一业务承载单元2011和2012分别承载的业务信号所对应的光信号合成一路光信号,并通过所述光纤205发送给所述第二合分波单元204。所述至少两个第二业务承载单元2021和2022也可以分别用于承载不同的业务信号,所述第二合分波单元204用于通过所述光纤205接收所述第一合分波单元203发送的一路光信号,并将接收的所述光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述第二业务承载单元2021和2022。
比如,第一业务承载单元2011用于处理业务a,第一业务承载单元2012用于处理业务b,则第二合分波单元204进行光信号分路后,可以得到业务a对应的光信号和业务b对应的光信号,如果第二业务承载单元2021用于处理业务b,而第二业务承载单元2022用于处理业务a,则第二合分波单元204将分路得到的业务a对应的光信号发给第二业务承载单元2022,把得到的业务b对应的光信号发给第二业务承载单元2021。
其中,所述第一通信装置可以为BBU,所述第二通信装置可以为RRU。相反的,所述第一通信装置也可以为RRU,所述第二通信装置还可以为BBU。第一业务承载单元、第二业务承载单元可以选择SFP或者选择可调小封装热插拔收发器(Tunable small form-factor pluggable,TSFP)来实现。所述第一合分波单元、所述第二合分波单元可以选择无源多路复用器(multiplexer,MUX)实现,当然还可以选择其他类型的合光分光器件来实现。第一合分波单元203可以为第一通信装置201中内置的一个功能模块,也可以为一个独立于第一通信装置201的器件。同理,第二合分波单元204可以为第二通信装置202中内置的一个功能模块,也可以为一个独立于第二通信装置202的器件。
示例性的,所述第一合分波单元、第二合分波单元可以采用CWDM方式,或者采用密集波分复用(dense wavelength division multiplexing,DWDM)方式来对多路光信号进行合路处理,或对一路光信号进行分路处理。这样通过在BBU侧以及RRU侧安装兼容CWDM方式以及DWDM方式的合分波单元,使得BBU侧以及RRU侧之间的通信业务比较少时,合分波单元可以采用CWDM方式将各通信业务分别对应的光信号复用到一根光纤上,而当BBU侧以及RRU侧之间的通信业务进行升级扩容时,合分波单元可以采用DWDM方式将各通信业务分别对应的光信号复用到一根光纤上,从而可以使合分波单元将BBU侧以及RRU侧之间的通信业务分别对应的光信号复用到一根光纤上时有较好的复用性能。
所述第一合分波单元、第二合分波单元可以通过如下四种结构中的任一种结构实现:
结构一:如图3所示,合分波单元包括阵列波导光栅(arrayed waveguide grating,AWG)、 粗波分复用滤波器(CWDM filter),其中AWG的OUT端口与CWDM filter的输入端口(port)1相连,AWG的输入端口连接TSFP,AWG可以包括多个输入端口,AWG中每个输入端口均可以连接一个TSFP。CWDM filter的port 2与SFP相连,若通信装置中包括多个SFP,则可以将多个SFP进行级联之后与CWDM filter的port 2相连。CWDM filter的COM端口与光纤相连。其中,AWG用于对TSFP进行级联,实现合分波单元的DWDM功能。CWDM filter用于对AWG和/或SFP传输过来的多路光信号进行合路处理,或者,将通过光纤接收的一路光信号进行分路处理。
结构二:如图4所示,合分波单元包括周期性AWG(CAWG)、粗波分复用滤波器(CWDM filter),其中CAWG的OUT端口与CWDM filter的port 1相连,CAWG的输入端口连接TSFP,CAWG可以包括多个输入端口,CAWG中每个输入端口可以连接一个TSFP。CWDM filter的port 2与SFP相连,若通信装置中包括多个SFP,则可以将多个SFP进行级联之后与CWDM filter的port 2相连。CWDM filter的COM端口与光纤相连。其中,CAWG用于对TSFP进行级联,实现合分波单元的DWDM功能。
结构三:如图5所示,包括多个密集波分复用滤波器(DWDM filter)、一个CWDM filter,其中,多个DWDM filter并联,多个DWDM filter并联后的OUT端口与CWDM filter的port 1相连,每个DWDM filter的输入端口可以连接一个TSFP。CWDM filter的port 2与SFP相连,若通信装置中包括多个SFP,则可以将多个SFP进行级联之后与CWDM filter的port 2相连。CWDM filter的COM端口与光纤相连。多个DWDM filter用于对TSFP进行级联,实现合分波单元的DWDM功能。
结构四:如图6所示,包括多个DWDM filter组合、一个CWDM filter。其中,每个DWDM filter组合包括三个DWDM filter,具体为第一DWDM filter、第二DWDM filter和第三DWDM filter,其中第一DWDM filter与第二DWDM filter串联,第三CWDM filter并联在第一DWDM filter与第二DWDM filter串联构成的连接两端。每个DWDM filter组合的输入端口可以连接一个TSFP,每个DWDM filter组合的OUT端口与CWDM filter的OUT端口相连。CWDM filter的port 2与SFP相连,若通信装置中包括多个SFP,则可以将多个SFP进行级联之后与CWDM filter的port 2相连。CWDM filter的COM端口与光纤相连。其中,多个DWDM filter用于对TSFP进行级联,实现合分波单元的DWDM功能。
通过上述4种结构,两个通信装置之间的通信业务进行升级扩容时,发送侧通信装置可以通过多个TSFP将各自承载的通信业务分别对应的光信号输入到结构一的AWG、或者结构二的CAWG、或者结构三的DWDM filter、或者结构四的DWDM filter组合中进行密集波分复用,然后由CWDM filter对经过密集波分复用的多路光信号进行合路处理,并通过一根光纤发送给接收侧通信装置。而两个通信装置之间的通信业务比较少时,发送侧通信装置可以通过SFP将各自承载的通信业务分别对应的光信号输入到CWDM filter中进行合路处理,并通过一根光纤发送给接收侧通信装置。
一种可能的实现方式中,第一通信装置201中包括的多个业务承载单元中,存在至少一个业务承载单元为TSFP,并存在至少一个业务承载单元为SFP。同理。第二通信装置202中包括的多个业务承载单元中,存在至少一个业务承载单元为TSFP、也存在至少一个业务承载单元为SFP。例如,如图7所示,第一通信装置201中包括一个为SFP的业务承载单元,一个为TSFP的业务承载单元,SFP与TSFP分别与第一合分波单元相连。第二 通信装置202中同样包括一个为SFP的业务承载单元,一个为TSFP的业务承载单元,SFP与TSFP分别与第二合分波单元相连。第一合分波单元与第二合分波单元之间通过一根光纤相连。当然,第一通信装置201、第二通信装置202还可以包含更多个为SFP的业务承载单元,或者包括更多个为TSFP的业务承载单元,本申请实施例仅以一个为SFP的业务承载单元以及一个为TSFP的业务承载单元为例进行说明,更多个的情况可以参照图7所示的结构。TSFP可以通过连接的光纤以DWDM方式进行通信,而SFP可以通过连接的光纤以CWDM方式进行通信,因此BBU侧以及RRU侧之间的通信业务比较少时,可以通过SFP以合分波单元的CWDM方式将各通信业务分别对应的光信号复用到一根光纤上,而当BBU侧以及RRU侧之间的通信业务进行升级扩容时,通过TSFP以合分波单元的DWDM方式将各通信业务分别对应的光信号复用到一根光纤上,从而可以使合分波单元将BBU侧以及RRU侧之间的通信业务分别对应的光信号复用到一根光纤上时有较好的复用性能。
在将现有技术中的无线接入网络改建成本申请实施例提供的无线接入网络时,可以将合分波单元分步安装到无线接入网络中。
以图8所示的无线接入网络为例,对构建图2至图7所示的无线接入网络的过程进行说明。图8所示的无线接入网络中包括第一通信装置、第二通信装置,其中,所述第一通信装置中包括第一业务承载单元,所述第二通信装置中包括第二业务承载单元,其中,所述第一业务承载单元与所述第二业务承载单元通过第一光纤相连,所述第一业务承载单元、所述第二业务承载单元用于承载业务信号。第一业务承载单元可以为SFP,或者也可以为TSFP。第二业务承载单元可以为SFP,或者也可以为TSFP。第一通信装置可以为BBU,第二通信装置为RRU。相反的,第一通信装置也可以为RRU,第二通信装置为BBU。待改建的无线接入网络中,第一通信装置可以包括一个业务承载单元,当然还可以包含更多个业务承载单元,当第一通信装置中包括多个业务承载单元时,第一业务承载单元可以为第一通信装置中包括的多个业务承载单元中的任意一个业务承载单元。同样的,第二通信装置可以包括一个业务承载单元,当然还可以包含更多个业务承载单元,当第二通信装置中包括多个业务承载单元时,第二业务承载单元可以为第二通信装置中包括的多个业务承载单元中的任意一个业务承载单元。
将图8所示的无线接入网络改建成图2至图7所示的无线接入网络时,构建过程具体可以如下:
A1,在第一通信装置侧安装第一合分波单元。其中,可以在第一通信装置侧安装第三业务承载单元,并连接第三业务承载单元与第一合分波单元。其中,第三业务承载单元可以为TSFP。在本申请实施例中,在第一通信装置侧安装第一合分波单元过程中,第三业务承载单元上电之后在没有光输入(也就是没有承载业务信号)时可以默认为不发送光信号。
A2,将第一业务承载单元通过第一合分波单元与第一光纤相连。其中,可以中断第一光纤与第一业务承载单元的连接,将第一光纤与第一合分波单元进行连接,并将第一业务承载单元接入第一合分波单元。当第一光纤与第一业务承载单元之间的连接中断时,第一业务承载单元承载的业务信号自动迁移到第一通信装置中的其他业务承载单元上,并在第一光纤与第一合分波单元连接以及第一业务承载单元接入第一合分波单元之后,第一业务 承载单元承载的业务信号由第一通信装置中的其他业务承载单元自动迁移回第一业务承载单元中,从而第一业务承载单元可以通过第一合分波单元将承载的业务信号对应的光信号复用到第一光纤中。
A3,在第二通信装置侧安装第二合分波单元。其中,可以在第二通信装置侧安装第四业务承载单元,并连接第四业务承载单元与第二合分波单元。其中,第四业务承载单元可以为TSFP。
第一合分波单元、第二合分波单元可以为图2至图7所示的无线接入网络中所描述的合分波单元。
A4,将第二业务承载单元通过第二合分波单元与第一光纤相连。
这里,将第二业务承载单元通过第二合分波单元与第一光纤相连的过程,可以参阅将第一业务承载单元通过第一合分波单元与第一光纤相连的过程,这里不再重复赘述。
在第一业务承载单元通过第一合分波单元与第一光纤相连,且第二业务承载单元通过第二合分波单元与第一光纤相连之后,可以使第四业务承载单元上电发光,也就是打开第四业务承载单元的激光器,发送光信号,使第三业务承载单元接收,以实现第三业务承载单元与第四业务承载单元之间的通信。
本申请实施例中通过将两侧通信装置中依次接入两个合分波单元,两个合分波单元通过一根光纤进行连接。在通信链路的BBU侧接入第一合分波模的过程中,该通信链路中承载的目标业务自动迁移到其他链路,而在BBU侧成功接入第一合分波单元,并且第一合分波单元通过该通信链路的传输单元与该通信链路的RRU侧连接后,目标业务由其他链路自动迁移到第一合分波单元与RRU侧所连接的通信链路中。在该通信链路的RRU侧接入第二合分波模的过程中,目标业务由第一合分波单元与该RRU侧所连接的通信链路自动迁移到其他链路,而在RRU侧成功接入第二合分波单元,并且第二合分波单元通过该通信链路的传输单元与第一合分波单元连接后,目标业务由其他链路自动迁移到第一合分波单元与第二合分波单元连接的通信链路中。通过上述过程,可以分别针对一侧通信装置站点,通过一次进站安装即可实现两侧通信装置之间的通信,并且在安装时可以不中断两侧通信装置之间通信业务的运行,从而可以较好的实现平滑的将该通信链路中承载的业务迁移到第一合分波单元与第二合分波单元连接的通信链路中。
当第一通信装置还包括第五业务承载单元,第二通信装置还包括第六业务承载单元,且第五业务承载单元与第六业务承载单元通过第二光纤相连时,还可以中断第五业务承载单元、第六业务承载单元与第二光纤的相连,使得第五业务承载单元中承载的业务信号自动迁移到第一合分波单元连接的业务承载单元(如第一业务承载单元、第三业务承载单元)中,使得第六业务承载单元中承载的业务信号自动迁移到第二合分波单元连接的业务承载单元(如第二业务承载单元、第四业务承载单元)中。
若中断第五业务承载单元、第六业务承载单元与第二光纤的连接之后,第一通信装置中包括的业务承载单元的带宽、第二通信装置中包括的业务承载单元的带宽不够,则可以将第五业务承载单元接入第一合分波单元、将第六业务承载单元接入第二合分波单元。同样,当第一通信装置中包括的业务承载单元的带宽、第二通信装置中包括的业务承载单元的带宽不够,第一通信装置、第二通信装置中需要增加新的业务承载单元时,可以将第一通信装置中新增的业务承载单元接入到第一合分波单元中,将第二通信装置中新增的业务承载单元接入到第二合分波单元中。
下面结合图1所示的无线接入网络,对本申请实施例提供的无线接入网络的搭建过程进行说明。在图1所示的无线接入网络中,BBU中的链路一SFP、RRU中的链路一SFP以及连接两个链路一SFP模块的光纤组成链路一,链路一用于承载第一通信业务。BBU中的链路二SFP、RRU中的链路二SFP以及连接两个链路二SFP模块的光纤组成链路二,链路二用于承载第二通信业务。
在将图1所示的无线接入网络改建成图2所示的无线接入网络时,可以通过如下步骤实现:
步骤1,在BBU侧安装第一MUX和TSFP,并将TSFP与第一MUX的DWDM输入端口相连,如图9所示。在BBU侧安装TSFP时,BBU侧TSFP在上电之后在没有光输入(也就是没有承载业务信号)时默认为不发送光信号。
步骤2,中断BBU中链路一SFP模块与光纤的连接,此时链路一中承载的第一通信业务自动迁移到链路二,如图10所示。
步骤3,将BBU中链路一SFP模块连接到第一MUX中的CWDM输入端口,并将无源MUX的COM端口与链路一的光纤相连,使得新搭建的链路能够正常运行,当新搭建的链路正常运行时,第一通信业务自动迁移到新搭建的链路上,如图11所示。
步骤4,在RRU侧安装第二MUX和TSFP,并将TSFP与第二MUX的DWDM输入端口相连,如图12所示。
步骤5,中断RRU中链路一SFP模块与光纤的连接,此时步骤3新搭建的链路中承载的第一通信业务自动迁移到链路二,如图13所示
步骤6,将RRU中链路一SFP模块连接到第二MUX中的CWDM输入端口,并将无源MUX的COM端口与链路一的光纤相连,使得新搭建的链路能够正常运行,当新搭建的链路正常运行时,第一通信业务自动迁移到新搭建的链路上,如图14所示。
其中,可以先执行步骤1至步骤3,后执行步骤4至步骤6。也可以先执行步骤4至步骤6,后执行步骤1至步骤3,本申请实施例在这里不做具体限定。
步骤7,开启RRU侧TSFP的激光器,发送光信号,使BBU中的TSFP接收,以实现BBU侧TSFP与RRU侧TSFP之间的通信。
步骤8,移除链路二模块,此时链路二中承载的第二通信业务自动迁移到步骤6新搭建的链路中,如图15所示。这里,也可以只移除链路二中的光纤,并将BBU中链路二SFP模块连接到第一MUX中的CWDM输入端口,将RRU中链路二SFP模块连接到第二MUX中的CWDM输入端口。当无线接入网络中还包括其他链路时,可以将其他链路参照链路二的方式接入步骤6新搭建的链路中。当无线接入网络中新增SFP模块时,可以将BBU侧新增的SFP模块接入连接到第一MUX中的CWDM输入端口,将RRU侧新增的SFP模块接入连接到第二MUX中的CWDM输入端口。
合分波单元可以为通信装置中的一个功能模块,也可以为一个独立的设备。当合分波单元为通信装置中的一个功能模块时,本申请实施例提供一种通信装置1600,包括至少两个业务承载单元1601和1602、以及合分波单元1603,所述至少两个业务承载单元1601和1602分别与所述合分波单元1603相连。所述至少两个业务承载单元1601和1602分别用于承载不同的业务信号。所述合分波单元1603,用于将所述至少两个业务承载单元1601和1602分别承载的业务信号所对应的光信号合成一路光信号,并将合成的光信号通过所 述合分波单元1603连接的光纤进行发送。以及,通过所述合分波单元1603连接的光纤接收光信号,并将接收的光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述业务承载单元1601和1602。其中,合分波单元1603可以参阅图2所述的第一合分波单元、第二合分波单元,本申请实施例在这里不再重复赘述。通信装置1600为BBU或者为RRU。
基于图16所述的通信装置,本申请实施例提供另一种无线接入网络,包括至少一对图16所述的通信装置,每对通信装置通过光纤相连。其中,每对通信装置中的一个通信装置为BBU,另一个通信装置为RRU。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (18)

  1. 一种无线接入网络,其特征在于,包括第一通信装置、第二通信装置、第一合分波单元、第二合分波单元以及光纤;
    所述第一通信装置包括至少两个第一业务承载单元,所述至少两个第一业务承载单元分别与所述第一合分波单元相连;
    所述第二通信装置包括至少两个第二业务承载单元,所述至少两个第二业务承载单元分别与所述第二合分波单元相连;
    所述第一合分波单元与所述第二合分波单元通过所述光纤相连;
    所述至少两个第一业务承载单元分别用于承载不同的业务信号,所述第一合分波单元用于将所述至少两个第一业务承载单元分别承载的业务信号所对应的光信号合成一路光信号,并通过所述光纤发送给所述第二合分波单元;
    所述至少两个第二业务承载单元分别用于承载不同的业务信号,所述第二合分波单元用于通过所述光纤接收所述第一合分波单元发送的一路光信号,并将接收的所述光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述第二业务承载单元。
  2. 如权利要求1所述的无线接入网络,其特征在于,所述第一通信装置为基带处理单元,所述第二通信装置为射频拉远单元;或者
    所述第一通信装置为射频拉远单元,所述第二通信装置为基带处理单元。
  3. 如权利要求1或2所述的无线接入网络,其特征在于,所述第一业务承载单元、所述第二业务承载单元为小封装热插拔收发器SFP或者为可调小封装热插拔收发器TSFP。
  4. 如权利要求1、2或3所述的无线接入网络,其特征在于,所述第一合分波单元、所述第二合分波单元为无源多路复用器MUX。
  5. 如权利要求1至4任一项所述的无线接入网络,其特征在于,所述第一合分波单元、第二合分波单元具备粗波分复用方式以及密集波分复用方式。
  6. 一种通信装置,其特征在于,包括至少两个业务承载单元、以及合分波单元,所述至少两个业务承载单元分别与所述合分波单元相连;
    所述至少两个业务承载单元分别用于承载不同的业务信号;
    所述合分波单元,用于将所述至少两个业务承载单元分别承载的业务信号所对应的光信号合成一路光信号,并将合成的光信号通过所述合分波单元连接的光纤进行发送;以及
    通过所述合分波单元连接的光纤接收光信号,并将接收的光信号分波后得到至少两路光信号,并将得到的至少两路光信号分别发送给对应的每个所述业务承载单元。
  7. 如权利要求6所述的通信装置,其特征在于,所述合分波单元具备粗波分复用方式以及密集波分复用方式。
  8. 如权利要求6或7所述的通信装置,其特征在于,所述业务承载单元为小封装热插拔收发器SFP或者为可调小封装热插拔收发器TSFP。
  9. 如权利要求6、7或8所述的通信装置,其特征在于,所述合分波单元为无源多路复用器MUX。
  10. 如权利要求6至9任一项所述的通信装置,其特征在于,所述通信装置为基带处理单元或者为射频拉远单元。
  11. 一种如权利要求1至5任一项所述的无线接入网络的构建方法,其特征在于,所述方法应用于目标无线接入网络中,所述目标无线接入网络中包括第一通信装置、第二通信装置,其中,所述第一通信装置中包括第一业务承载单元,所述第二通信装置中包括第二业务承载单元,其中,所述第一业务承载单元与所述第二业务承载单元通过第一光纤相连;所述第一业务承载单元、所述第二业务承载单元用于通过第一光纤承载一路业务信号;
    所述方法包括:
    在所述第一通信装置侧安装第一合分波单元,所述第一合分波单元用于将所述第一业务承载单元承载的业务信号所对应的光信号复用到所述第一光纤;
    将所述第一业务承载单元通过所述第一合分波单元与所述第一光纤相连;
    在所述第二通信装置侧安装第二合分波单元,所述第二合分波单元用于将所述第二业务承载单元承载的业务信号所对应的光信号复用到所述第一光纤;
    将所述第二业务承载单元通过所述第二合分波单元与所述第一光纤相连。
  12. 如权利要求11所述的方法,其特征在于,在所述第一通信装置侧安装第一合分波单元,包括:
    在所述第一通信装置侧安装第三业务承载单元,并连接所述第三业务承载单元与所述第一合分波单元;
    在所述第二通信装置侧安装第二合分波单元,包括:
    在所述第二通信装置侧安装第四业务承载单元,并连接所述第四业务承载单元与所述第二合分波单元。
  13. 如权利要求12所述的方法,其特征在于,所述第三业务承载单元为可调小封装热插拔收发器TSFP;所述第四业务承载单元为TSFP。
  14. 如权利要求11至13任一项所述的方法,其特征在于,所述第一业务承载单元为小封装热插拔收发器SFP或者TSFP;所述第二业务承载单元为SFP或者TSFP。
  15. 如权利要求11至13任一项所述的方法,其特征在于,所述第一通信装置还包括第五业务承载单元,所述第二通信装置还包括第六业务承载单元,所述第五业务承载单元与所述第六业务承载单元通过第二光纤相连,所述第一业务承载单元、所述第二业务承载单元用于通过第二光纤承载一路业务信号;所述方法还包括:
    中断所述第五业务承载单元、所述第六业务承载单元与第二光纤的相连。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    将所述第五业务承载单元接入所述第一合分波单元;
    将所述第六业务承载单元接入所述第二合分波单元。
  17. 如权利要求11-16任一项所述的方法,其特征在于,将所述第一业务承载单元通过所述第一合分波单元与所述第一光纤相连,包括:
    中断所述第一光纤与所述第一业务承载单元的连接,并将所述第一光纤与所述第一合分波单元进行连接;
    将所述第一业务承载单元接入所述第一合分波单元;
    将所述第二业务承载单元通过所述第二合分波单元与所述第一光纤相连,包括:
    中断所述第一光纤与所述第二业务承载单元的连接,并将所述第一光纤与所述第二合分波单元进行连接;
    将所述第二业务承载单元接入所述第二合分波单元。
  18. 如权利要求11-17任一项所述的方法,其特征在于,所述第一通信装置为基带处理单元,所述第二通信装置为射频拉远单元;或者
    所述第一通信装置为射频拉远单元,所述第二通信装置为基带处理单元。
PCT/CN2018/085193 2018-04-28 2018-04-28 一种无线接入网络、构建方法及通信装置 WO2019205173A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085193 WO2019205173A1 (zh) 2018-04-28 2018-04-28 一种无线接入网络、构建方法及通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085193 WO2019205173A1 (zh) 2018-04-28 2018-04-28 一种无线接入网络、构建方法及通信装置

Publications (1)

Publication Number Publication Date
WO2019205173A1 true WO2019205173A1 (zh) 2019-10-31

Family

ID=68293713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085193 WO2019205173A1 (zh) 2018-04-28 2018-04-28 一种无线接入网络、构建方法及通信装置

Country Status (1)

Country Link
WO (1) WO2019205173A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060377A (zh) * 2006-04-17 2007-10-24 中兴通讯股份有限公司 一种密集波分复用传输系统中组合合分波的方法
CN102710361A (zh) * 2012-06-01 2012-10-03 华为技术有限公司 一种分布式基站信号传输系统及通信系统
CN205510056U (zh) * 2016-03-22 2016-08-24 湖北邮电规划设计有限公司 一种波分复用无源光网络的射频拉远系统
CN106302166A (zh) * 2015-05-26 2017-01-04 中兴通讯股份有限公司 一种数据传输方法和装置
WO2018049987A1 (en) * 2016-09-15 2018-03-22 Huawei Technologies Co., Ltd. Unified mobile and tdm-pon uplink mac scheduling for mobile front-haul

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060377A (zh) * 2006-04-17 2007-10-24 中兴通讯股份有限公司 一种密集波分复用传输系统中组合合分波的方法
CN102710361A (zh) * 2012-06-01 2012-10-03 华为技术有限公司 一种分布式基站信号传输系统及通信系统
CN106302166A (zh) * 2015-05-26 2017-01-04 中兴通讯股份有限公司 一种数据传输方法和装置
CN205510056U (zh) * 2016-03-22 2016-08-24 湖北邮电规划设计有限公司 一种波分复用无源光网络的射频拉远系统
WO2018049987A1 (en) * 2016-09-15 2018-03-22 Huawei Technologies Co., Ltd. Unified mobile and tdm-pon uplink mac scheduling for mobile front-haul

Similar Documents

Publication Publication Date Title
KR101410158B1 (ko) 신호 전송 시스템, 방법 및 관련 장치
CN101076961B (zh) 通信方法,尤其是用于移动无线电网络的通信方法
CN111355554B (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
US10454608B2 (en) Methods and apparatus for logical associations between routers and optical nodes within a wavelength division multiplexing (WDM) system
EP3840259A1 (en) Optical transceiver and method for automatic setting wavelength thereof
Ponzini et al. Centralized radio access networks over wavelength-division multiplexing: a plug-and-play implementation
EP2982066B1 (en) Optical switch
US10085077B2 (en) Optical switch for radio access network
JP6589714B2 (ja) 光伝送装置及び光波長デフラグ方法
EP2852081B1 (en) Optical ring network
US20180314008A1 (en) Optical communication system and method of multi-channel optical transmission and reception
WO2019205173A1 (zh) 一种无线接入网络、构建方法及通信装置
WO2021120203A1 (zh) 一种海底光缆系统
JP5312553B2 (ja) 光分岐挿入多重化装置
JP2015056747A (ja) ネットワーク設計装置、ネットワーク設計方法、及びネットワーク設計プログラム
CN110011732B (zh) 光纤传输系统和信号传输方法
US10790924B2 (en) Method and node for facilitating optical supervisory channel communications in an optical network
US10700805B2 (en) Method and network node for communication over a bidirectional communication link
JP2007300167A (ja) 光ネットワーク設計方法
KR20160035675A (ko) 멀티드롭채널을 갖는 분산안테나시스템
US20240072897A1 (en) Apparatus and methods for fiber optic bi-directional local area networks
TWI792618B (zh) 共用光纖的光濾波系統和光濾波方法
EP3823186A1 (en) Optical communication system and method of monitoring thereof
JP2012023781A (ja) 光分岐挿入多重化装置
JPWO2020230195A1 (ja) 光通信システムおよび光通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916742

Country of ref document: EP

Kind code of ref document: A1