WO2023162209A1 - 通信装置、方法、記録媒体 - Google Patents

通信装置、方法、記録媒体 Download PDF

Info

Publication number
WO2023162209A1
WO2023162209A1 PCT/JP2022/008235 JP2022008235W WO2023162209A1 WO 2023162209 A1 WO2023162209 A1 WO 2023162209A1 JP 2022008235 W JP2022008235 W JP 2022008235W WO 2023162209 A1 WO2023162209 A1 WO 2023162209A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
reference signal
interface
channel
communication
Prior art date
Application number
PCT/JP2022/008235
Other languages
English (en)
French (fr)
Inventor
玄弥 岩崎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/008235 priority Critical patent/WO2023162209A1/ja
Publication of WO2023162209A1 publication Critical patent/WO2023162209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • the present invention generally relates to mobile communication networks.
  • the base station In recent years, in mobile communication networks that have adopted New Radio (NR), the base station (BS) is divided into several devices. For example, a base station adopting NR is divided into Centralized Unit (CU), Distributed Unit (DU) and Radio Unit (RU). Among these Units, for example, the CU hosts the Packet Data Convergence Protocol (PDCP) layer. Additionally, for example, the DU hosts a Radio Link Control (RLC) layer, a Media Access Control (MAC) layer, and a higher part of the Physical (PHY) layer (High PHY layer). Also, for example, the RU hosts a lower part (Low PHY layer) of the PHY layer. Furthermore, DU and RU are connected by an interface called Fronthaul.
  • CU Centralized Unit
  • DU Distributed Unit
  • RU Radio Unit
  • the CU hosts the Packet Data Convergence Protocol
  • the DU hosts a Radio Link Control (RLC) layer, a Media Access Control (MAC) layer, and a higher part of the
  • DU is also called a digital device
  • RU is also called a radio device.
  • Open Radio Access Network which configures a base station by combining equipment from different vendors.
  • Open RAN Open Radio Access Network
  • the adoption of Open RAN enables more flexible combinations of CUs, DUs, RUs, etc. that were previously provided by a single vendor.
  • O-RAN Alliance an industry group, is playing a central role in formulating O-RAN specifications, which is one of the Open RAN specifications.
  • Non-Patent Document 1 describes architectures of O-RAN, O-DU, and O-RU. Furthermore, Patent Literature 1 describes a method of arranging various functional units in DUs and RUs.
  • Non-Patent Document 2 the beamforming technology described in Non-Patent Document 2 is used.
  • Ta That is, the method of distributing a plurality of functions related to beamforming in the base station to the first communication device and the second communication device, and the accompanying communication between the first communication device and the second communication device.
  • the information amount of the control signal exchanged between the first communication device and the second communication device increases. As a result, it is necessary to provide an interface with a very large bandwidth between the first communication device and the second communication device.
  • the communication device is the first communication device among the first communication device and the second communication device, which are connected to each other via an interface and in which base station functions are distributed.
  • a device wherein the second communication device has a beamforming weight calculator and a channel estimator, and the first communication device transmits information about a reference signal transmitted from a terminal device through the interface. between the terminal device and the second communication device, calculated by the second communication device using a received reference signal that corresponds to information about the reference signal, transmitted to the second communication device via a scheduler for receiving, via the interface, a channel estimate for a channel of , and determining resources to allocate for communication with the terminal based on the channel estimate.
  • the communication device is the second communication of the first communication device and the second communication device, which are connected to each other via an interface and in which the functions of the base stations are distributed.
  • a device which receives information about a reference signal transmitted from a terminal device from the first communication device via the interface, and uses a received reference signal corresponding to the information about the reference signal to transmit the terminal device a channel estimation unit that calculates a channel estimation value for a channel between the terminal device and the second communication device; and a beamforming weight that is used for communication with the terminal device based on the calculated channel estimation value. and a beamforming weight calculator.
  • a method wherein the first communication device of a first communication device and a second communication device interconnected via an interface and having base station functionality distributed.
  • the second communication device has a beamforming weight calculator and a channel estimator, and transmits information about a reference signal transmitted from a terminal device to the second communication device via the interface a channel estimate for a channel between the terminal device and the second communication device, transmitted to a device and calculated by the second communication device using a received reference signal corresponding to the information about the reference signal; and determining resources to allocate to communication with the terminal device based on the channel estimate received over the interface.
  • the recording medium is the first communication of the first communication device and the second communication device, which are connected to each other via an interface and in which base station functions are distributed.
  • a program is the second communication device among the first communication device and the second communication device, which are connected to each other via an interface and in which base station functions are distributed.
  • receiving information about a reference signal transmitted from a terminal device from the first communication device via the interface and using a received reference signal corresponding to the information about the reference signal, the terminal A channel estimation value for a channel between the device and the second communication device is calculated, and beamforming weights used for communication with the terminal device are calculated based on the calculated channel estimation value.
  • FIG. 1 is an explanatory diagram for explaining an example of a communication device 1 according to a first embodiment
  • FIG. FIG. 2 is an explanatory diagram for explaining an example of the communication device 2 according to the first embodiment
  • FIG. 3 is an explanatory diagram for explaining an example of the communication device 3 according to the first embodiment
  • FIG. 4 is a sequence diagram for explaining an operation example of the communication device 2 according to the first embodiment
  • FIG. FIG. 2 is an explanatory diagram for explaining an example of the communication device 2 according to the first embodiment
  • FIG. FIG. 11 is an explanatory diagram for explaining an example of a communication device 5 according to a second embodiment
  • FIG. FIG. 11 is an explanatory diagram for explaining an example of a communication device 6 according to a second embodiment
  • FIG. 11 is a sequence diagram for explaining an operation example of the communication device 7 according to the second embodiment
  • FIG. 12 is a sequence diagram for explaining an operation example of the communication device 6 according to the third embodiment
  • FIG. 2 is an explanatory diagram for explaining a configuration example of a communication device in each embodiment
  • ⁇ if'' is ⁇ when'', ⁇ at or around the time'', ⁇ after ( “after”, “upon”, “in response to determining", “in accordance with a determination", or “detecting may be interpreted to mean “in response to detecting”. These expressions may be interpreted to have the same meaning depending on the context.
  • FIG. 1 shows a configuration example of a communication device 1 according to this embodiment
  • FIG. 2 shows a configuration example of a communication device 2 according to this embodiment
  • FIG. 3 shows a configuration example of a communication device 3 according to this embodiment.
  • the communication device 1 may be a base station that supports communication schemes defined by the Third Generation Partnership Project (3GPP) such as Long Term Evolution (LTE) and New Radio (NR).
  • 3GPP Third Generation Partnership Project
  • LTE Long Term Evolution
  • NR New Radio
  • the communication device 1 includes a communication device 2 and a communication device 3.
  • the communication device 2 serves as a first communication device and the communication device 3 serves as a second communication device.
  • the communication device 1 is a base station, so the communication devices 2 and 3 have all or part of the functions of the base stations distributed.
  • the communication device 1 may include other communication devices in addition to the communication device 2 and the communication device 3 .
  • the functionality of the base station may be distributed among multiple communication devices including communication device 2 and communication device 3 .
  • Base stations are connected to terminal devices and core networks that support LTE and NR, for example.
  • a base station and a core network are connected by an S1 interface or an NG interface, and between base stations are connected by an X2 interface or an Xn interface, but they are not limited to these.
  • a base station that uses NR is divided into, for example, Centralized Units (CU), Distributed Units (DU), and Radio Units (RU).
  • the CU hosts the Packet Data Convergence Protocol (PDCP) layer.
  • the DU hosts a Radio Link Control (RLC) layer, a Media Access Control (MAC) layer, and a higher part of the Physical (PHY) layer (High PHY layer).
  • the RU hosts a lower part (Low PHY layer) of the PHY layer.
  • DU and RU are connected by an interface called Fronthaul.
  • CU and DU are also connected by an interface.
  • the communication device 2 may be an O-DU (or DU) defined by the O-RAN Alliance
  • the communication device 3 may be an O-RU (or RU) defined by the O-RAN Alliance. good too.
  • the communication device 2 and the communication device 3 are connected by an interface 4 .
  • Interface 4 may be Open Fronthaul defined by the O-RAN Alliance.
  • the communication device 2, the communication device 3, and the interface 4 are not limited to these.
  • communication device 2, communication device 3 and interface 4 may be devices or interfaces defined by 3GPP.
  • communication device 2 may be DU
  • communication device 3 may be RU
  • interface 4 may be Fronthaul.
  • the other communication device included in the communication device 1 in addition to the communication device 2 and the communication device 3 may be a CU.
  • the interface connecting the CU and the communication device 2 may be the F1 interface.
  • the communication device 2 includes an encoding unit 21, a modulation unit 22, a demodulation unit 23, a decoding unit 24, and a scheduler unit 25.
  • the communication device 2 may separately include a receiving section for receiving data from the interface 4 and the host device, and a transmitting section for transmitting data to the interface 4 and the host device.
  • An encoding unit (COD) 21 of the communication device 2 encodes transmission data directed to a communication partner terminal device (hereinafter sometimes referred to as a “target terminal device”) scheduled by the scheduler unit 25, and encodes the data.
  • the converted transmission data is output to the modulation section 22 .
  • the number of target terminal apparatuses at one timing is not particularly limited, and may be one or more than one. In the following, for simplicity of explanation, a case where there is one target terminal apparatus at one timing will be explained as an example.
  • the transmission data may be, for example, downlink data (User Plane, U-Plane) and control plane (Control Plane, C-Plane) signals from the host device.
  • the host device may be a CU connected via an interface.
  • the interface is for example the F1-U interface or the F1-C interface.
  • the modulation unit 22 of the communication device 2 modulates the transmission data received from the encoding unit 21 and outputs the obtained modulated signal.
  • This modulated signal may be, for example, an IQ sample sequence corresponding to L (L is a natural number) layers.
  • the modulated signal of each layer can also be called a transmission sequence. That is, L transmission sequences are output from the modulation section 22 .
  • the modulated signal output from the modulating section 22 is passed to the communication device 3 via the interface 4 .
  • a message format used for passing modulated signals between the communication devices 2 and 3 may be used.
  • a demodulator (DEM) 23 of the communication device 2 receives a received signal from the communication device 3 (to be described later) via the interface 4 .
  • the received signal received from the communication device 3 may be, for example, an IQ sample sequence corresponding to M (M is a natural number) layers.
  • the received signal of each layer can also be called a received sequence. That is, the demodulator (DEM) 23 receives M received sequences from the communication device 3 .
  • the demodulator obtains received data by demodulating the M received sequences, and outputs this received data to the decoder 24 .
  • the decoding unit 24 decodes the received data received from the demodulation unit 23 and outputs the data after decoding processing.
  • the data after this decoding process may be transmitted to a host device connected via an interface.
  • the host device may be the same host device to which the encoding unit 21 is connected.
  • the scheduler unit 25 generates first radio resource allocation information based on the state of the terminal device connected to the communication device 1 or the communication device 3 . For example, the scheduler unit 25 determines whether the terminal device wishes to communicate with the communication device 1 or the communication device 3, or whether the terminal device is waiting for communication from the communication device 1 or the communication device 3. The state may be determined and the first radio resource allocation information may be generated. Also, the scheduler unit 25 transmits the first radio resource allocation information to the channel estimation unit 36 of the communication device 3 through the interface 4 .
  • the first radio resource allocation information is information necessary for the communication device 3 to perform channel estimation using the reference signal included in the received signal received from the terminal device.
  • the reference signal is a reference signal for the base station to measure the channel quality of the propagation path with the terminal device, the reception timing of the signal from the terminal device, and the like.
  • a reference signal is included in a received signal received from a terminal device.
  • the reference signal is the Sounding Reference Signal (SRS).
  • the reference signal may be Demodulation Reference Signal (DMRS, DM-RS), but is not limited to these.
  • the first radio resource allocation information includes a “first parameter group” used to calculate resources (for example, time-frequency resources) to which reference signals are mapped, and a “first parameter group” used to calculate patterns of reference signals. and the "second parameter group”.
  • the "first parameter group” includes, for example, the symbol number l in the time axis slot, the frequency start position k 0 and the bandwidth N BW .
  • the “second parameter group” includes, for example, transmission comb number K TC , cyclic shift number n CS , and hopping coefficients u and v.
  • the frequency start position k0 is sometimes called a subcarrier number.
  • the transmission com number K TC takes any value of 2, 4, and 8, for example.
  • the cyclic shift number n CS takes any value among 0, 1, 2, . . . N CS ⁇ 1, for example.
  • N CS is a cyclic shift maximum value, which will be described later.
  • the hopping coefficient u takes any value of 0, 1, 2 . . . 29, and the hopping coefficient v takes 0 or 1, for example.
  • the bandwidth N BW may be a value in resource block (RB) units.
  • the scheduler unit 25 uses the channel estimation value received from the communication device 3 to select the target terminal device.
  • the scheduler unit 25 uses the channel estimation value received from the communication device 2 to map the transmission signal addressed to the target terminal device to a radio resource (for example, specified by at least one of an antenna port, time, and frequency). resource) to the target terminal device. Then, the scheduler unit 25 generates "second radio resource allocation information" including information about resources allocated to this target terminal device.
  • the scheduler unit 25 transmits the second radio resource allocation information to the communication device 3, which will be described later, through the interface 4.
  • the first radio resource allocation information and the second radio resource allocation information are included in a management message used between the communication device 2 and the communication device 3, and are transmitted from the communication device 2 to the communication device 3. good too.
  • the interface 4 is Fronthaul or Open Fronthaul
  • the first radio resource allocation information and the second radio resource allocation information are transmitted from communication device 2 to communication device 3 using C-Plane provided by Fronthaul or Open Fronthaul. may be sent to
  • various information transmitted and received by the scheduler unit 25 may be data-compressed.
  • the first radio resource allocation information and the second radio resource allocation information transmitted by the scheduler section 25 may be data-compressed. Thereby, the transmission band in the interface 4 can be reduced.
  • the communication device 3 includes a beamforming weight multiplier 31, an inverse fast Fourier transform (IFFT) 32, a radio unit (TRX) 33, and a fast Fourier transform (Fast Fourier Transform, FFT) 34 , a beamforming weight multiplier 35 , a channel estimator 36 , a beamforming weight generator 37 , and N antennas 38 .
  • IFFT inverse fast Fourier transform
  • TRX radio unit
  • FFT fast Fourier transform
  • FFT Fast Fourier Transform
  • the beamforming weight multiplier 31 receives transmission beam weights used for the target terminal device from the beamforming weight generator 37 .
  • the transmit beam weights are, for example, a matrix of N rows and L columns. Then, the beamforming weight multiplier 31 obtains N transmission signal sequences by multiplying the L transmission sequences received from the communication device 2 by the transmission beam weights.
  • Each of the N transmission signal sequences is an IQ sample sequence of an OFDM signal in the frequency domain.
  • N is the number of antennas included in the communication device 2 and is a natural number of 2 or more.
  • the beamforming weight multiplier 31 outputs the obtained N transmission signal sequences to the inverse fast Fourier transform unit 32 .
  • the inverse fast Fourier transform unit 32 obtains N time-domain transmission signal sequences by performing an inverse fast Fourier transform on the N frequency-domain transmission signal sequences received from the beamforming weight multiplier 31 .
  • Each of the N transmission signal sequences in the time domain is an OFDM signal in the time domain.
  • the inverse fast Fourier transform unit 32 also outputs the N transmission signal sequences in the time domain to the radio unit 33 .
  • the radio unit 33 receives the N transmission signal sequences in the time domain from the inverse fast Fourier transform unit 32, and transforms the N transmission signal sequences in the time domain into N-sequence wireless transmission signals.
  • N-sequence radio transmission signals are transmitted from N antennas 38, respectively.
  • the radio unit 33 performs reception radio processing (for example, down-conversion, analog-to-digital conversion, etc.) on the N-sequence radio reception signals received by the N antennas to generate N time-domain reception signals. Convert to series.
  • the N received signal sequences in the time domain are baseband signals.
  • the radio unit 33 outputs the obtained N received signal sequences in the time domain to the fast Fourier transform unit 34 .
  • Each of the N received signal sequences in the time domain is an OFDM signal in the time domain.
  • the fast Fourier transform unit 34 obtains N received signal sequences in the frequency domain by performing fast Fourier processing on the N received signal sequences in the time domain received from the radio unit 33 .
  • Each of the N received signal sequences in the frequency domain is an OFDM signal in the frequency domain.
  • the fast Fourier transform unit 34 outputs the obtained N received signal sequences in the frequency domain to the beamforming weight multiplier 35 .
  • the beamforming weight multiplier 35 receives received beam weights from the beamforming weight generator 37 .
  • the receive beam weights are, for example, a matrix of M rows and N columns. Then, the beamforming weight multiplier 35 multiplies the N received signal sequences in the frequency domain received from the fast Fourier transform unit 34 by the received beam weights to obtain M (M is a natural number) (that is, M layer) received sequence is obtained.
  • M is a natural number
  • M layer IQ sample sequence.
  • the beamforming weight multiplier 35 outputs the obtained M received sequences.
  • the M received sequences output from the beamforming weight multiplier 35 are transferred to the communication device 2 through the interface 4 .
  • the channel estimation unit 36 receives the first radio resource allocation information. Then, the channel estimator 36 extracts reference signals from the N received signal sequences in the frequency domain output from the fast Fourier transform unit 34 based on the first radio resource allocation information. For example, since the resource to which the reference signal is mapped is known based on the "first parameter group", the channel estimation unit 36 can extract the reference signal from the N received signal sequences in the frequency domain. .
  • the channel estimation unit 36 calculates a channel estimation value based on the first radio resource allocation information and the extracted reference signal. For example, the channel estimator 36 forms a reference signal replica based on the above "second parameter group". Then, the channel estimation unit 36 compares the extracted reference signal with the formed reference signal replica to obtain fading, interference components, noise components, etc. in the space between the communication device 3 and the target terminal device, Calculate the channel estimate (ie, the channel estimation matrix) at .
  • the reference signal replica is formed as follows based on the "second parameter group".
  • the "second parameter group” includes the transmission comb number KTC , the cyclic shift number nCS , and the hopping coefficients: u, v.
  • the channel estimation unit 36 calculates the cyclic shift maximum value N CS , ZC code length N ZC , and sequence coefficients q and p from the “second parameter group”.
  • the cyclic shift maximum value N CS takes, for example, one of 8, 12, and 16 for each value taken by the transmission comb number K TC .
  • the ZC code length N ZC is, for example, the largest prime number that does not exceed 12N BW /K TC .
  • the sequence coefficients q and p take values determined by the following equations (1) and (2), for example.
  • the channel estimation unit 36 can calculate the pattern x(n) of the reference signal replicas by substituting the values obtained in this way and the second parameter group into the following equation (3).
  • m in Formula (3) can be represented by following Formula (4), for example.
  • the channel estimator 36 outputs the calculated channel estimation value to the beamforming weight generator 37 . Also, the channel estimator 36 transmits the calculated channel estimation value to the communication device 2 via the interface 4 .
  • Various information transmitted and received by the channel estimator 36 may be data-compressed.
  • the channel estimation unit 36 data-compresses the channel estimation value to be transmitted and transmits it to the communication device 2 . Thereby, the transmission band in the interface 4 can be reduced.
  • the beamforming weight generation unit 37 determines the beamforming weight used for the target terminal device (the above transmission beam weight, Receive beam weights described above).
  • each of the above transmit beam weights and receive beam weights is, for example, a matrix indicating beamforming weights. For example, when generating a transmission beam weight matrix, if the number of antennas 38 is N and the number of layers of transmission signals received by the beamforming weight multiplier 31 is L, the transmission beam weights are N rows and L columns.
  • the receive beam weight matrix when generating receive beam weights, if the number of antennas 38 is N and the number of layers of received signals generated by the beamforming weight multiplier 35 is M, the receive beam weight matrix is M rows by N columns. may be a matrix of
  • the beamforming weight generator 37 outputs the generated transmission beam weights to the beamforming weight multiplier 31 and outputs the reception beam weights to the beamforming weight multiplier 35 .
  • FIG. 4 is a sequence diagram showing an operation example of the communication device 2 according to the first embodiment.
  • the scheduler unit 25 of the communication device 2 generates first radio resource allocation information from various types of information regarding radio resources of terminal devices preconfigured in the communication device 2 or 3 (S101).
  • the scheduler unit 25 of the communication device 2 transmits the first radio resource allocation information to the channel estimation unit 36 of the communication device 3 (S102).
  • the scheduler unit 25 of the communication device 2 receives the channel estimation value calculated using the first radio resource allocation information and the reference signal from the communication device 3 (S103).
  • the scheduler unit 25 of the communication device 2 calculates second radio resource allocation information from the channel estimation value (S104).
  • the scheduler unit 25 of the communication device 2 transmits the second radio resource allocation information to the communication device 3 (S105).
  • the above operations may be performed independently, or may be performed in combination as appropriate.
  • the communication device 2 can transmit information necessary for beamforming to the communication device 3 while avoiding pressure on the band of the interface 4 .
  • the scheduler unit 25 transmits the “first parameter group” and the “second parameter group” to the communication device 3, and the channel estimation unit 36 of the communication device 3 uses the “second parameter group”.
  • the maximum cyclic shift value N CS the ZC code length N ZC , and the sequence coefficients q and p are calculated.
  • the channel estimation unit 36 calculates the reference signal replica pattern using the cyclic shift maximum value N CS , the ZC code length N ZC , and the sequence coefficients q and p, but the present invention is not limited to this.
  • the scheduler unit 25 transmits the cyclic shift maximum value N CS and the ZC code length N ZC to the communication device 3 in addition to the “second parameter group”, and the channel estimation unit 36 of the communication device 3 transmits the “second parameter group Groups” may be used to calculate the sequence coefficients q, p. Then, the channel estimation unit 36 may calculate the reference signal replica pattern using the cyclic shift maximum value N CS , ZC code length N ZC , and sequence coefficients q and p. In this case as well, the scheduler unit 25 transmits the “first parameter group” to the communication device 3 as a matter of course.
  • the scheduler unit 25 may calculate the sequence coefficients q and p based on the "second parameter group". Then, the scheduler unit 25 transmits a second parameter group including the sequence coefficients q and p instead of the hopping coefficients u and v to the communication device 3, and the channel estimation unit 36 of the communication device 3 transmits this second parameter group. may be used to calculate the pattern of reference signal replicas. Thereby, the processing load of the communication device 3 can be suppressed. In this case as well, the scheduler unit 25 transmits the “first parameter group” to the communication device 3 as a matter of course.
  • the scheduler unit 25 may form a reference signal replica pattern and transmit the formed reference signal replica pattern to the communication device 3 . Then, the channel estimation unit 36 may use the pattern of the reference signal replica received from the scheduler unit 25 to calculate the channel estimation value. Thereby, the processing load of the communication device 3 can be suppressed. In this case as well, the scheduler unit 25 transmits the “first parameter group” to the communication device 3 as a matter of course.
  • the channel estimation unit 36 uses signals received from the respective terminal devices to determine the channels with the respective terminal devices. A plurality of estimated values may be calculated. Then, the communication device 2 or the communication device 3 may associate a plurality of channel estimation values with respective target terminal devices and store them in a memory provided in the communication device 2 or the communication device 3 . Further, the scheduler unit 25 may allocate a plurality of target terminal devices to radio resources, and transmit the allocation status of the target terminal devices to the radio resources to the communication device 3 as second radio resource allocation information.
  • the beamforming weight generation unit 37 causes the communication device 2 or the communication device 3 to generate the channel estimation value associated with each target terminal device. Beamforming weights may be generated based on the channel estimates, recalled from an on-board memory. Thereby, communication more suitable for each terminal device can be performed.
  • the communication device 2 may include the channel estimation unit 26 separately from the channel estimation unit 36 included in the communication device 3 . That is, both the communication device 2 and the communication device 3 may be provided with the channel estimator.
  • FIG. 5 shows a configuration example in which the communication device 2 includes the channel estimator 26. As shown in FIG. In that case, the channel estimator 26 receives the first radio resource allocation information from the scheduler 25 in the same manner as the channel estimator 36 described above. The channel estimator 26 also receives N received signals in the frequency domain output from the fast Fourier transform unit 34 through the interface 4 . Then, for example, the reference signal is extracted from the received signal in the same manner as the channel estimation unit 36 described above, and the channel estimation value is calculated.
  • the channel estimation unit 26 then transmits the channel estimation value to the scheduler unit 25 .
  • the scheduler section 25 may generate the second radio resource allocation information using the channel estimation value calculated by the channel estimation section 26 .
  • the channel estimator 26 may calculate channel estimation values different from the values calculated by the channel estimator 36 using parameters or methods different from those used by the channel estimator 36 . That is, for example, various parameters having values different from those used by the channel estimator 36 to calculate the channel estimation value may be used.
  • the channel estimation value used by the scheduler unit 25 and the channel estimation value used by the beamforming weight generation unit 37 can be separated. can be used.
  • FIG. 6 shows a configuration example of the communication device 5 in this embodiment
  • FIG. 7 shows a configuration example of the communication device 6 in this embodiment
  • FIG. 8 shows a configuration example of the communication device 7 in this embodiment.
  • a communication device 5 corresponds to the communication device 1 in the first embodiment
  • a communication device 6 corresponds to the communication device 2 in the first embodiment
  • a communication device 7 corresponds to the communication device 3 in the first embodiment.
  • Interface 8 corresponds to interface 4 in the first embodiment.
  • the communication device 6 has a scheduler section 61 .
  • the scheduler unit 61 transmits information about the reference signal transmitted from the terminal device to the communication device 7 via the interface 8, for example.
  • the scheduler unit 61 provides a schedule between the terminal device and the communication device 7 calculated from the communication device 7 via the interface 8, for example, by the communication device 7 using the received reference signal corresponding to the information on the reference signal described above. receive channel estimates for the channels of .
  • the scheduler unit 61 determines resources to be allocated for communication with the terminal device based on the channel estimation value described above.
  • the communication device 7 includes a channel estimator 71 and a beamforming weight calculator 72 .
  • the channel estimator 71 receives from the communication device 6 via the interface 8 information about the reference signal transmitted from the terminal device.
  • the channel estimation unit 71 calculates a channel estimation value for the channel between the terminal device and the communication device 7 using the received reference signal corresponding to the information on the reference signal described above.
  • the beamforming weight calculation unit 72 calculates beamforming weights used for communication with the terminal device based on the channel estimation values described above.
  • FIG. 8 is a sequence diagram showing an operation example of the communication device 6 according to the second embodiment.
  • the scheduler unit 61 of the communication device 6 transmits information regarding the reference signal transmitted from the terminal device to the communication device 7 (S201).
  • the scheduler unit 61 of the communication device 6 receives the channel estimation value regarding the channel between the terminal device and the communication device 7 calculated by the communication device 7 using the received reference signal corresponding to the information regarding the reference signal described above. (S202).
  • the scheduler unit 63 of the communication device 6 determines resources to be allocated to communication with the terminal device based on the channel estimation values described above (S203).
  • the above operations may be performed independently, or may be performed in combination as appropriate.
  • the communication device 6 can transmit information necessary for beamforming to the communication device 7 while avoiding compression of the bandwidth of the interface 8 .
  • FIG. 10 is a block diagram illustrating a hardware configuration of a computer (information processing device) that can implement the communication device according to each embodiment.
  • the communication device 1 and the like include a network interface 1000, a processor 1001 and a memory 1002.
  • Network interface 1000 is used to communicate with other wireless communication devices, including multiple communication terminals.
  • Network interface 1000 may include, for example, a network interface card (NIC) compliant with the IEEE 802.11 series, IEEE 802.3 series, and the like.
  • NIC network interface card
  • the processor 1001 reads and executes software (computer program) from the memory 1002 to perform the processing of the communication device 1 and the like described using the flowcharts and sequence diagrams in the above embodiments.
  • the processor 1001 may be, for example, a microprocessor, an MPU (Micro Processing Unit), or a CPU (Central Processing Unit).
  • Processor 1001 may include multiple processors.
  • the memory 1002 is configured by a combination of volatile memory and nonvolatile memory.
  • Memory 1002 may include storage remotely located from processor 1001 .
  • processor 1001 may access memory 1002 via an I/O interface (not shown).
  • memory 1002 is used to store software modules.
  • the processor 1001 reads and executes these software modules from the memory 1002, thereby performing the processing of the communication device 1 and the like described in the above embodiments.
  • each of the processors of the communication device 1 and the like executes one or more programs containing a group of instructions for causing the computer to execute the algorithm described using the drawings.
  • Non-transitory computer readable media include various types of tangible computer readable storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (eg, floppy disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks).
  • Further examples of non-transitory computer readable media include CD-ROMs (Read Only Memory), CD-Rs, and CD-R/Ws. Further examples of non-transitory computer-readable media include semiconductor memory.
  • the semiconductor memory includes, for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, and RAM (Random Access Memory).
  • the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
  • the first communication device of a first communication device and a second communication device connected to each other via an interface and having distributed base station functions,
  • the second communication device has a beamforming weight calculator and a channel estimator,
  • the first communication device is transmitting information about a reference signal transmitted from a terminal device to the second communication device via the interface; a channel estimate value for a channel between the terminal device and the second communication device, calculated by the second communication device using the received reference signal corresponding to the information about the reference signal, via the interface; and receive A scheduler that determines resources to allocate to communication with the terminal device based on the channel estimation value, A first communication device.
  • the first communication device according to appendix 1, wherein the information about the reference signal includes at least one of a pattern of the reference signal and information necessary to calculate the pattern of the reference signal.
  • the information necessary for calculating the pattern is the symbol number of the time axis slot that is the start position of the time axis in the reference signal, the frequency start position of the reference signal, the bandwidth of the reference signal, the transmission comb number, hopping 3.
  • the first communication device of clause 2 comprising at least one of a coefficient, a cyclic shift number, a ZC code length, and a sequence coefficient.
  • the first communication device according to Supplementary Note 1, wherein the first communication device is a Radio Unit (RU) that configures the base station, and the second communication device is a Distributed Unit (DU) that configures the base station. Communication device.
  • the second communication device of a first communication device and a second communication device connected to each other via an interface and having distributed base station functions, receiving information about a reference signal transmitted from a terminal device from the first communication device via the interface, and using a received reference signal corresponding to the information about the reference signal, communicating between the terminal device and the second communication device a channel estimator that calculates a channel estimate for a channel to and from the communication device; a beamforming weight calculation unit that calculates beamforming weights used for communication with the terminal device based on the calculated channel estimation value; a second communication device; (Appendix 6) 6.
  • the second communication device further comprising a transmission unit that compresses the channel estimate and transmits it to the first communication device.
  • the first communication device of a first communication device and a second communication device connected to each other via an interface and having distributed base station functions, The second communication device has a beamforming weight calculator and a first channel estimator, The first communication device is a second channel estimator that calculates a second channel estimation value from the reference signal received from the second communication device; a scheduler that allocates radio resources to a terminal device that performs beamforming based on the second channel estimation value, and transmits information indicating the result of the allocation to the second communication device via the interface; and A first communication device.
  • Appendix 8 1.
  • a method for a first one of a first communication device and a second communication device interfaced together and having base station functionality distributed comprising:
  • the second communication device has a beamforming weight calculator and a channel estimator, transmitting information about a reference signal transmitted from a terminal device to the second communication device via the interface; a channel estimate value for a channel between the terminal device and the second communication device, calculated by the second communication device using the received reference signal corresponding to the information about the reference signal, via the interface; and receive A method for a first communication device, wherein resources to be allocated to communication with the terminal device are determined based on the channel estimate. (Appendix 9) 1.
  • a method for a second one of a first communication device and a second communication device interfaced together and having distributed base station functionality comprising: receiving information about a reference signal transmitted from a terminal device from the first communication device via the interface; calculating a channel estimate value for a channel between the terminal device and the second communication device using a received reference signal corresponding to the information about the reference signal; calculating beamforming weights used for communication with the terminal device based on the calculated channel estimation value;
  • a second communication device method (Appendix 10) 1.
  • a method for a first one of a first communication device and a second communication device interfaced together and having base station functionality distributed comprising:
  • the second communication device has a beamforming weight calculator and a first channel estimator, calculating a second channel estimate from the reference signal received from the second communication device; Allocating to radio resources of terminal devices that perform beamforming based on the second channel estimation value, transmitting information indicating a result of the allocation to the second communication device via the interface;
  • a first communication device method. Appendix 11
  • the second communication device has a beamforming weight calculator and a channel estimator, transmitting information about a reference signal transmitted from a terminal device to the second communication device via the interface; a channel estimate value for a channel between the terminal device and the second communication device, calculated by the second communication device using the received reference signal corresponding to the information about the reference signal, via the interface; and receive Determining resources to allocate to communication with the terminal device based on the channel estimation value;
  • a computer-readable recording medium storing a program for the first communication device. (Appendix 12) A computer-readable recording medium for storing a program of said second communication device among a first communication device and a second communication device connected to each other via an interface and having base station functions distributed.
  • a computer-readable recording medium storing a program for the second communication device. (Appendix 13) A computer-readable recording medium for storing a program of said first communication device among a first communication device and a second communication device connected to each other via an interface and having base station functions distributed.
  • the second communication device has a beamforming weight calculator and a first channel estimator, calculating a second channel estimate from the reference signal received from the second communication device; Allocating to radio resources of terminal devices that perform beamforming based on the second channel estimation value, transmitting information indicating a result of the allocation to the second communication device via the interface;
  • a computer-readable recording medium storing a program for the first communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[課題]非常に大きな帯域をもつインターフェースを第1の通信装置及び第2の通信装置との間に備える必要がある。 [解決手段]互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの第1の通信装置であって、第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、第1の通信装置は、端末装置から送信されるリファレンス信号に関する情報を、インターフェースを介して第2の通信装置へ送信し、リファレンス信号に関する情報に対応する受信リファレンス信号を用いて第2の通信装置によって算出された、端末装置と第2の通信装置との間のチャネルに関するチャネル推定値を、インターフェースを介して受信し、チャネル推定値に基づいて、端末装置との間の通信に割り当てるリソースを決定する、スケジューラを備える。

Description

通信装置、方法、記録媒体
 本発明は、一般に、モバイル通信ネットワークに関する。
 近年、New Radio(NR)を採用したモバイル通信ネットワークにおいて、基地局(Base Station(BS))はいくつかの装置に分割されている。例えば、NRを採用した基地局はCentralized Unit(CU)、Distributed Unit(DU)、Radio Unit(RU)に分割される。これらのUnitのうち、例えば、CUはPacket Data Convergence Protocol(PDCP)レイヤをホストする。加えて、例えば、DUはRadio Link Control(RLC)レイヤと、Media Access Control(MAC)レイヤと、Physical(PHY)レイヤのうち上位の一部(High PHYレイヤ)とをホストする。また、例えば、RUはPHYレイヤのうち下位の一部(Low PHYレイヤ)をホストする。さらに、DUとRUはフロントホール(Fronthaul)と呼ばれるインターフェースで接続されている。なお、DUはデジタル装置、RUは無線装置とも呼ばれる。加えて、基地局をCU、DU、RUなどの装置によって構成する際、異なるベンダによる装置を組み合わせて基地局を構成するOpen Radio Access Network(Open RAN)への取り組みが加速している。Open RANの採用により、従来は単一のベンダによって提供されていたCU、DU、RUなどをより柔軟に組み合わせることが可能になる。現在、業界団体である「O-RAN Alliance」が中心となり、Open RANの仕様の一つであるO-RANの仕様の策定を進めている。O-RANを採用したRANアーキテクチャの場合、O-RANを採用したDUをO-DUと呼び、O-RANを採用したRUをO-RUと呼ぶことがある。例えば、非特許文献1には、O-RANやO-DU、O-RUのアーキテクチャが記載されている。さらに、特許文献1には、DU及びRUへの各種機能部の配置手法が記載されている。
 また、通信端末(例えばUser Equipment(UE))が爆発的に増加する現在、基地局が備える大規模なアレイアンテナを使用したビームフォーミング技術を用いることが一般的になった。ビームフォーミング技術を効果的に使用することで、NRにおける高速・大容量の無線通信が可能になる。例えば、CU、DU、RUに分割された基地局がビームフォーミングを使用した通信を行うには、例えば、非特許文献2に記載されたビームフォーミング技術が用いられる。
国際公開第2018/173891号
O-RAN Fronthaul Control, User and Synchronization Plane Specification 7.0 - July 2021, <https://www.o-ran.org/specifications> 武田 和晃, 外5名 "5Gにおける物理レイヤ要素技術と高周波数帯利用に関する検討状況", NTT DOCOMOテクニカル・ジャーナル, Vol. 25, No.3, 2017年10月, <https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/rd/technical_journal/bn/vol25_3/vol25_3_005jp.pdf>
 発明者は、上記の先行技術文献を始めとした種々の技術内容、特に基地局機能を持つ第1の通信装置及び第2の通信装置への分離の手法について検討を行い、次の課題を見出した。すなわち、基地局におけるビームフォーミングに関わる複数の機能の第1の通信装置及び第2の通信装置に対する分配の仕方、及び、それに伴う第1の通信装置及び第2の通信装置との間で遣り取りされる情報によっては、第1の通信装置及び第2の通信装置との間で遣り取りされる制御信号の情報量が大きくなる。この結果、非常に大きな帯域をもつインターフェースを第1の通信装置及び第2の通信装置との間に備える必要がある。
 本開示の第1の態様に係る通信装置は、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置であって、前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、前記第1の通信装置は、端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、スケジューラを備える。
本開示の第1の態様に係る通信装置は、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置であって、前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出する、チャネル推定部と、前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出するビームフォーミング重み算出部と、を備える。
 本開示の第1の態様に係る方法は、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置の方法であって、前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する。
 本開示の第1の態様に係る方法は、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置の方法であって、前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する。
 本開示の第1の態様に係る記録媒体は、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する。
 本開示の第1の態様に係るプログラムは、互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置のプログラムであって、前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する。
 本開示によれば、装置間でやりとりされるビームフォーミングに関わる制御信号の情報量を低減できる通信装置、方法を提供することができる。なお、この効果は、本明細書に開示される複数の実施形態が達成しようとする複数の効果の1つに過ぎないことに留意されるべきである。その他の効果は、本明細書の記述又は添付図面から明らかにされる。
第1の実施形態における通信装置1の例を説明するための説明図である。 第1の実施形態における通信装置2の例を説明するための説明図である。 第1の実施形態における通信装置3の例を説明するための説明図である。 第1の実施形態における通信装置2の動作例を説明するためのシーケンス図である。 第1の実施形態における通信装置2の例を説明するための説明図である。 第2の実施形態における通信装置5の例を説明するための説明図である。 第2の実施形態における通信装置6の例を説明するための説明図である。 第2の実施形態における通信装置7の動作例を説明するためのシーケンス図である。 第3の実施形態における通信装置6の動作例を説明するためのシーケンス図である。 各実施形態における通信装置の構成例を説明するための説明図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明を簡略化するため、必要に応じて重複する説明は省略される。
 以下に示す実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有す。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 本明細書で使用される場合、文脈に応じて、「(もし)~なら(if)」は、「場合(when)」、「その時またはその前後(at or around the time)」、「後に(after)」、「に応じて(upon)」、「判定(決定)に応答して(in response to determining)」、「判定(決定)に従って(in accordance with a determination)」、又は「検出することに応答して(in response to detecting)」を意味するものとして解釈されてもよい。これらの表現は、文脈に応じて、同じ意味を持つと解釈されてもよい。
<第1の実施形態>
 図1に本実施形態における通信装置1の構成例を、図2に本実施形態における通信装置2の構成例を、図3に本実施形態における通信装置3の構成例をそれぞれ示す。例えば、通信装置1は、Long Term Evolution(LTE)やNew Radio(NR)といったThird Generation Partnership Project(3GPP)において規定された通信方式をサポートする基地局であってもよい。
 通信装置1は、通信装置2及び通信装置3を含む。通信装置2は、第1の通信装置を担い、通信装置3は、第2の通信装置を担う。上記の通り、例えば通信装置1は基地局なので、通信装置2及び通信装置3は基地局の機能の全部又は一部が分散配置されたものである。なお、通信装置1は、通信装置2及び通信装置3の他に他の通信装置を含んでいてもよい。言い換えれば、基地局の機能は、通信装置2及び通信装置3を含む複数の通信装置に分散配置されてもよい。基地局は、例えば、LTEやNRをサポートする端末装置及びコアネットワークに接続されている。基地局とコアネットワークとはS1インターフェースやNGインターフェースによって接続され、また基地局間同士はX2インターフェースやXnインターフェースによって接続されるが、これらに限られない。
 NRを採用した基地局は、例えば、Centralized Unit(CU)、Distributed Unit(DU)、Radio Unit(RU)に分割される。これらのUnitのうち、例えば、CUはPacket Data Convergence Protocol(PDCP)レイヤをホストする。加えて、例えば、DUはRadio Link Control(RLC)レイヤと、Media Access Control(MAC)レイヤと、Physical(PHY)レイヤのうち上位の一部(High PHYレイヤ)とをホストする。また、例えば、RUはPHYレイヤのうち下位の一部(Low PHYレイヤ)をホストする。さらに、DUとRUはフロントホール(Fronthaul)と呼ばれるインターフェースで接続されている。また、CUとDUもインターフェースで接続されている。
 例えば、通信装置2は、O-RAN Allianceによって規定されたO-DU(またはDU)であってもよく、通信装置3はO-RAN Allianceによって規定されたO-RU(またはRU)であってもよい。通信装置2と通信装置3はインターフェース4で接続される。インターフェース4はO-RAN Allianceによって規定されたOpen Fronthaulであってもよい。当然ながら、通信装置2、通信装置3、インターフェース4は、これらに限定されるものではない。例えば、通信装置2、通信装置3、インターフェース4は、3GPPによって規定された装置またはインターフェースであってもよい。例えば、通信装置2はDU、通信装置3はRU、インターフェース4はFronthaulであってもよい。通信装置2及び通信装置3の他に通信装置1に含まれる上記の他の通信装置は、CUであってもよい。また、CUと通信装置2を接続するインターフェースは、F1インターフェースであってもよい。
 図2において、通信装置2は、符号化部21と、変調部22と、復調部23と、復号部24と、スケジューラ部25を備える。なお、通信装置2は、インターフェース4及び上位装置からデータを受信する受信部と、インターフェース4及び上位装置へデータを送信する送信部を別途備えていてもよい。
 通信装置2の符号化部(COD)21は、スケジューラ部25によってスケジュールされた通信相手の端末装置(以下では、「対象端末装置」と呼ぶことがある)に向けた送信データを符号化し、符号化後の送信データを変調部22に出力する。1つのタイミングにおける対象端末装置の数は、特に限定されるものではなく、1つだけでもよいし、複数存在していてもよい。以下では、説明をシンプルにするために、1つのタイミングにおける対象端末装置が1つの場合を一例として説明する。
 送信データは、例えば、上位装置からのダウンリンクデータ(ユーザープレーン、User Plane、U-Plane)及び制御プレーン(Control Plane、C-Plane)信号であってもよい。当該上位装置は、インターフェースで接続されたCUであってもよい。当該インターフェースは、例えばF1-UインターフェースまたはF1-Cインターフェースである。
 通信装置2の変調部22は、符号化部21から受け取った送信データを変調し、得られた変調信号を出力する。この変調信号は、例えば、L(Lは、自然数)個のレイヤに対応するIQサンプル列であってもよい。各レイヤの変調信号は、送信系列を呼ぶこともできる。すなわち、L個の送信系列が変調部22から出力される。
 変調部22から出力された変調信号は、インターフェース4を介して通信装置3へ渡される。このとき、通信装置2と通信装置3との間で変調信号を受け渡す際に用いられるメッセージフォーマットが用いられてもよい。
 通信装置2の復調部(DEM)23は、後述する通信装置3からインターフェース4を介して、受信信号を受け取る。通信装置3から受け取る受信信号は、例えば、M(Mは、自然数)個のレイヤに対応するIQサンプル列であってもよい。各レイヤの受信信号は、受信系列と呼ぶこともできる。すなわち、復調部(DEM)23は、M個の受信系列を通信装置3から受け取る。復調部は、M個の受信系列を復調することによって受信データを取得し、この受信データを復号部24へ出力する。
 復号部24は、復調部23から受け取った受信データを復号し、復号処理後のデータを出力する。この復号処理後のデータは、インターフェースで接続された上位装置へ送信されてもよい。当該上位装置は、符号化部21が接続されている上位装置と同一であってもよい。
 スケジューラ部25は、通信装置1または通信装置3に接続される端末装置の状態に基づいて、第1の無線リソース割り当て情報を生成する。例えば、スケジューラ部25は、当該端末装置が通信装置1または通信装置3との通信を希望している状態かどうか、または当該端末装置が通信装置1または通信装置3からの通信を待機している状態かどうかを判断し、第1の無線リソース割り当て情報を生成してもよい。また、スケジューラ部25は、第1の無線リソース割り当て情報を、インターフェース4を通じて通信装置3のチャネル推定部36に送信する。
 ここで、第1の無線リソース割り当て情報について説明する。第1の無線リソース割り当て情報とは、通信装置3が端末装置から受信した受信信号に含まれるリファレンス信号を用いてチャネル推定を行うために必要な情報であり、例えば、リファレンス信号の無線リソースにおける端末装置の割り当て情報を含んでいる。より具体的には、端末装置の割り当て情報は、例えば、受信信号中のどの無線リソースに対象端末装置のリファレンス信号が含まれているかを示す情報である。なお、リファレンス信号は、基地局が端末装置との伝搬路のチャネル品質及び端末装置からの信号の受信タイミングなどを測定するための基準信号である。リファレンス信号は、端末装置から受信する受信信号に含まれる。例えば、上記リファレンス信号は、Sounding Reference Signal(SRS)である。あるいは、上記リファレンス信号は、Demodulation Reference Signal(DMRS, DM-RS)であってもよく、これらに限られない。
 例えば、第1の無線リソース割り当て情報は、リファレンス信号がマッピングされるリソース(例えば、時間周波数リソース)を算出するために用いられる「第1パラメータ群」と、リファレンス信号のパターンを算出するために用いられる「第2パラメータ群」とを含む。
 「第1パラメータ群」は、例えば、時間軸スロット中のシンボル番号l、周波数開始位置k0、帯域幅NBWを含む。また、「第2パラメータ群」は、例えば、トランスミッションコム番号KTC、サイクリックシフト番号nCS、ホッピング係数u、vを含む。なお、周波数開始位置k0はサブキャリア番号と呼ばれることがある。また、トランスミッションコム番号KTCは、例えば、2,4,8のうちいずれかの値をとる。加えて、サイクリックシフト番号nCSは、例えば、0,1,2,・・・NCS-1のうちいずれかの値をとる。なお、NCSは後述するサイクリックシフト最大値である。さらに、ホッピング係数uは、例えば、0,1,2・・・29のうちいずれかの値をとり、ホッピング係数vは、例えば、0または1の値をとる。なお、帯域幅NBWは、リソースブロック(RB)単位の値であってもよい。
 さらに、スケジューラ部25は、通信装置3から受け取るチャネル推定値を用いて、上記の対象端末装置を選択する。また、スケジューラ部25は、通信装置2から受け取るチャネル推定値を用いて、対象端末装置宛ての送信信号をマッピングする無線リソース(例えば、アンテナポート、時間、及び周波数の少なくともいずれか1つによって特定されるリソース)を、対象端末装置へ割り当てる。そして、スケジューラ部25は、この対象端末装置に割り当てたリソースに関する情報を含む「第2の無線リソース割り当て情報」を生成する。
 加えて、スケジューラ部25は、インターフェース4を通じて、第2の無線リソース割り当て情報を、後述する通信装置3に送信する。なお、第1の無線リソース割り当て情報及び第2の無線リソース割り当て情報は、通信装置2と通信装置3との間で用いられる管理メッセージに含められて、通信装置2から通信装置3へ送信されてもよい。また、インターフェース4がFronthaulまたはOpen Fronthaulである場合、第1の無線リソース割り当て情報及び第2の無線リソース割り当て情報は、FronthaulまたはOpen Fronthaulが備えるC-Planeを使用して通信装置2から通信装置3へ送信されてもよい。さらに、スケジューラ部25が送受信する各種情報はデータ圧縮されていてもよい。例えば、スケジューラ部25が送信する第1の無線リソース割り当て情報及び第2の無線リソース割り当て情報はデータ圧縮されていてもよい。これにより、インターフェース4中の伝送帯域を削減出来る。
 図3において、通信装置3は、ビームフォーミング重み乗算部31と、逆高速フーリエ変換部(Inverse Fast Fourier Transform, IFFT)32と、無線部(TRX)33と、高速フーリエ変換部(Fast Fourier Transform, FFT)34と、ビームフォーミング重み乗算部35と、チャネル推定部36と、ビームフォーミング重み生成部37と、N個のアンテナ38とを備える。
 ビームフォーミング重み乗算部31は、ビームフォーミング重み生成部37から、対象端末装置について用いる送信ビーム重みを受け取る。この送信ビーム重みは、例えば、N行L列の行列である。そして、ビームフォーミング重み乗算部31は、通信装置2から受け取るL個の送信系列に対して送信ビーム重みを乗算することによって、N個の送信信号系列を得る。このN個の送信信号系列のそれぞれは、周波数領域のOFDM信号のIQサンプル列である。Nは、通信装置2が備えるアンテナの個数であり、2以上の自然数である。ビームフォーミング重み乗算部31は、得られたN個の送信信号系列を逆高速フーリエ変換部32に出力する。
 逆高速フーリエ変換部32は、ビームフォーミング重み乗算部31から受け取った周波数領域のN個の送信信号系列に対して逆高速フーリエ変換を行うことによって、時間領域のN個の送信信号系列を得る。この時間領域のN個の送信信号系列のそれぞれは、時間領域のOFDM信号である。また、逆高速フーリエ変換部32は、時間領域のN個の送信信号系列を無線部33に出力する。
 無線部33は、逆高速フーリエ変換部32から時間領域のN個の送信信号系列を受け取り、当該時間領域のN個の送信信号系列をN系列の無線送信信号に変換する。N系列の無線送信信号は、N個のアンテナ38からそれぞれ送信される。
さらに、無線部33は、N個のアンテナで受信されたN系列の無線受信信号に対して受信無線処理(例えば、ダウンコンバート、アナログデジタル変換等)を施して、時間領域のN個の受信信号系列に変換する。時間領域のN個の受信信号系列は、ベースバンド信号である。さらに、無線部33は、得られた時間領域のN個の受信信号系列を、高速フーリエ変換部34へ出力する。この時間領域のN個の受信信号系列のそれぞれは、時間領域のOFDM信号である。
 高速フーリエ変換部34は、無線部33から受け取った時間領域のN個の受信信号系列に対して高速フーリエを施すことによって、周波数領域のN個の受信信号系列を得る。この周波数領域のN個の受信信号系列のそれぞれは、周波数領域のOFDM信号である。高速フーリエ変換部34は、得られた周波数領域のN個の受信信号系列をビームフォーミング重み乗算部35に出力する。
 ビームフォーミング重み乗算部35は、ビームフォーミング重み生成部37から、受信ビーム重みを受け取る。この受信ビーム重みは、例えば、M行N列の行列である。そして、ビームフォーミング重み乗算部35は、高速フーリエ変換部34から受け取った周波数領域のN個の受信信号系列に対して受信ビーム重みを乗算することによって、M(Mは、自然数)個(つまり、Mレイヤ)の受信系列を得る。M個の受信系列のそれぞれは、IQサンプル列であってもよい。
 さらに、ビームフォーミング重み乗算部35は、得られたM個の受信系列を出力する。ビームフォーミング重み乗算部35から出力されたM個の受信系列は、インターフェース4を通じて通信装置2へ渡される。
 チャネル推定部36は、上記の第1の無線リソース割り当て情報を受け取る。そして、チャネル推定部36は、第1の無線リソース割り当て情報に基づいて、高速フーリエ変換部34から出力される周波数領域のN個の受信信号系列から、リファレンス信号を抽出する。例えば、上記の「第1パラメータ群」に基づいてリファレンス信号がマッピングされているリソースが分かるので、チャネル推定部36は、周波数領域のN個の受信信号系列から、リファレンス信号を抽出することができる。
 そして、チャネル推定部36は、第1の無線リソース割り当て情報と、抽出したリファレンス信号とに基づいて、チャネル推定値を算出する。例えば、チャネル推定部36は、上記の「第2パラメータ群」に基づいて、リファレンス信号レプリカを形成する。そして、チャネル推定部36は、抽出したリファレンス信号と、形成したリファレンス信号レプリカとを比較することにより、通信装置3と対象端末装置間の空間におけるフェージングや干渉成分、雑音成分などを求め、当該空間におけるチャネル推定値(つまり、チャネル推定行列)を算出する。
 例えば、リファレンス信号レプリカは、「第2パラメータ群」に基づいて、次のように形成される。上記の通り、「第2パラメータ群」は、トランスミッションコム番号KTC、サイクリックシフト番号nCS、ホッピング係数:u、vを含む。
 すなわち、まず、チャネル推定部36は、「第2パラメータ群」からサイクリックシフト最大値NCS、ZC符号長NZC、シーケンス係数q、pを算出する。サイクリックシフト最大値NCSは、トランスミッションコム番号KTCがとるそれぞれの値に対して、例えば、8,12,16のうちいずれかの値をとる。また、ZC符号長NZCは、例えば、12NBW/KTCを超えない最大の素数である。加えて、シーケンス係数q、pは、例えば、以下の式(1)、式(2)で求められる値をとる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 さらに、チャネル推定部36は、こうして求めた値と第2パラメータ群とを次の式(3)に代入することによって、リファレンス信号レプリカのパターンx(n)を算出することができる。
Figure JPOXMLDOC01-appb-M000003

 なお、式(3)中のmは、例えば、次の式(4)で表せる。
Figure JPOXMLDOC01-appb-M000004
 さらに、チャネル推定部36は、算出したチャネル推定値を、ビームフォーミング重み生成部37に出力する。また、チャネル推定部36は、算出したチャネル推定値を、インターフェース4を介して通信装置2に送信する。なお、チャネル推定部36が送受信する各種情報はデータ圧縮されていてもよい。例えば、チャネル推定部36は、送信するチャネル推定値をデータ圧縮して通信装置2に送信する。これにより、インターフェース4中の伝送帯域を削減出来る。
 ビームフォーミング重み生成部37は、第2の無線リソース割り当て情報が示す端末装置向けに、チャネル推定部36から受け取るチャネル推定値に基づいて、対象端末装置について用いるビームフォーミング重み(上記の送信ビーム重み、上記の受信ビーム重み)を生成する。上記の通り、上記の送信ビーム重み及び受信ビーム重みのそれぞれは、例えば、ビームフォーミング重みを示す行列である。例えば、送信ビーム重み行列を生成する場合、アンテナ38の数がN個であり、ビームフォーミング重み乗算部31が受け取った送信信号のレイヤ数がLであるなら、送信ビーム重みは、N行L列の行列であってもよい。さらに、受信ビーム重みを生成する場合、アンテナ38の数がN個であり、ビームフォーミング重み乗算部35が生成する受信信号のレイヤ数がMであるなら、受信ビーム重み行列は、M行N列の行列であってもよい。
 さらに、ビームフォーミング重み生成部37は、生成した送信ビーム重みをビームフォーミング重み乗算部31に出力し、受信ビーム重みをビームフォーミング重み乗算部35に出力する。
 続いて、図4を用いて、第1の実施形態に係る通信装置2の動作例について説明する。図4は、第1の実施形態に係る通信装置2の動作例を示すシーケンス図である。
通信装置2のスケジューラ部25は、通信装置2または通信装置3に予め構成されている端末装置の無線リソースに関する各種情報から、第1の無線リソース割り当て情報を生成する(S101)。
 通信装置2のスケジューラ部25は、第1の無線リソース割り当て情報を通信装置3のチャネル推定部36に送信する(S102)。
 通信装置2のスケジューラ部25は、通信装置3から、第1の無線リソース割り当て情報及びリファレンス信号を用いて算出された、チャネル推定値を受信する(S103)。
 通信装置2のスケジューラ部25は、当該チャネル推定値から第2の無線リソース割り当て情報を算出する(S104)。
 通信装置2のスケジューラ部25は、第2の無線リソース割り当て情報を通信装置3に送信する(S105)。
 当然ながら、上述の動作は単独で実施されてもよいし、適宜組み合わせて実施されてもよい。これにより、通信装置2はインターフェース4の帯域の圧迫を避けながら、ビームフォーミングに必要な情報を通信装置3に送信することができる。
 <変形例>
 <1>以上の説明では、スケジューラ部25が「第1パラメータ群」及び「第2パラメータ群」を通信装置3に送信し、通信装置3のチャネル推定部36が「第2パラメータ群」を用いて、サイクリックシフト最大値NCS、ZC符号長NZC、シーケンス係数q、pを算出するものとして説明を行った。そして、チャネル推定部36が、サイクリックシフト最大値NCS、ZC符号長NZC、シーケンス係数q、pを用いて、リファレンス信号レプリカのパターンを算出したが、これに限定されない。
 例えば、スケジューラ部25が「第2パラメータ群」に加えて、サイクリックシフト最大値NCS、ZC符号長NZCを通信装置3に送信し、通信装置3のチャネル推定部36が「第2パラメータ群」を用いて、シーケンス係数q、pを算出してもよい。そして、チャネル推定部36が、サイクリックシフト最大値NCS、ZC符号長NZC、シーケンス係数q、pを用いて、リファレンス信号レプリカのパターンを算出してもよい。なお、当然のことながら、この場合も、スケジューラ部25が「第1パラメータ群」を通信装置3に送信する。
 <2>また、例えば、スケジューラ部25が「第2パラメータ群」に基づいて、シーケンス係数q、pを算出してもよい。そして、スケジューラ部25が、ホッピング係数u、vの代わりにシーケンス係数q、pを含めた第2パラメータ群を通信装置3に送信し、通信装置3のチャネル推定部36がこの第2パラメータ群を用いて、リファレンス信号レプリカのパターンを算出してもよい。これにより、通信装置3の処理負荷が抑えられ得る。なお、当然のことながら、この場合も、スケジューラ部25が「第1パラメータ群」を通信装置3に送信する。
 <3>また、例えば、第2パラメータ群を送信する代わりに、スケジューラ部25がリファレンス信号レプリカのパターンを形成し、形成したリファレンス信号レプリカのパターンを通信装置3に送信してもよい。そして、チャネル推定部36が、スケジューラ部25から受け取ったリファレンス信号レプリカのパターンを用いて、チャネル推定値を算出してもよい。これにより、通信装置3の処理負荷が抑えられ得る。なお、当然のことながら、この場合も、スケジューラ部25が「第1パラメータ群」を通信装置3に送信する。
 <4>また、例えば、通信装置2及び通信装置3が通信する対象端末装置が複数存在する場合、チャネル推定部36はそれぞれの端末装置から受信する信号を用いて、それぞれの端末装置とのチャネル推定値を複数算出してもよい。そして、通信装置2または通信装置3は、複数のチャネル推定値をそれぞれの対象端末装置と関連付け、通信装置2または通信装置3が備えるメモリに保存してもよい。さらに、スケジューラ部25は、複数の対象端末装置を無線リソースに割り当て、当該無線リソースへの対象端末装置の割り当て状況を第2の無線リソース割り当て情報として通信装置3へ送信してもよい。加えて、ビームフォーミング重み生成部37は、当該第2の無線リソース割り当て情報が示す複数の端末装置に対して、それぞれの対象端末装置に関連付けられたチャネル推定値を通信装置2または通信装置3が備えるメモリから呼び出し、当該チャネル推定値に基づいて、ビームフォーミング重みを生成してもよい。これにより、それぞれの端末装置により適した通信を行い得る。
 <5>また、例えば、通信装置2がチャネル推定部26を通信装置3が備えるチャネル推定部36とは別に備えていてもよい。つまり、通信装置2と通信装置3の両方にチャネル推定部を備えていてもよい。通信装置2がチャネル推定部26を備える構成例を図5に示す。その場合、チャネル推定部26は、上述のチャネル推定部36と同様に第1の無線リソース割り当て情報をスケジューラ部25から受け取る。また、チャネル推定部26は、インターフェース4を通じて高速フーリエ変換部34から出力される周波数領域のN個の受信信号を受信する。そして、例えば、上述のチャネル推定部36と同様にリファレンス信号を受信信号から抽出し、チャネル推定値を算出する。そして、チャネル推定部26は、当該チャネル推定値をスケジューラ部25に送信する。また、スケジューラ部25はチャネル推定部26が算出したチャネル推定値を用いて第2の無線リソース割り当て情報を生成してもよい。なお、チャネル推定部26は、チャネル推定部36とは異なるパラメータまたは方法を使用して、チャネル推定部36が算出する値とは異なるチャネル推定値を算出してもよい。つまり、例えば、チャネル推定部36がチャネル推定値を算出する際に使用したものとは異なる値を持つ各種パラメータを使用してもよい。これにより、スケジューラ部25が使用するチャネル推定値とビームフォーミング重み生成部37が使用するチャネル推定値を分けることができ、分解能や平滑化といった観点で、それぞれの通信装置に適したチャネル推定値を使用し得る。
 <第2の実施形態>
 図6に本実施形態における通信装置5の構成例を、図7に本実施形態における通信装置6の構成例を、図8に本実施形態における通信装置7の構成例をそれぞれ示す。通信装置5は、第1の実施形態における通信装置1に、通信装置6は、第1の実施形態における通信装置2に、通信装置7は、第1の実施形態における通信装置3に対応する。インターフェース8は、第1の実施形態におけるインターフェース4に対応する。
 図7において、通信装置6は、スケジューラ部61を備える。
 スケジューラ部61は、通信装置7へインターフェース8を介して、例えば、端末装置から送信されるリファレンス信号に関する情報を送信する。
 スケジューラ部61は、通信装置7からインターフェース8を介して、例えば、通信装置7によって、上述のリファレンス信号に関する情報に対応する受信リファレンス信号を用いて算出された、端末装置と通信装置7との間のチャネルに関するチャネル推定値を受信する。
 スケジューラ部61は、上述したチャネル推定値に基づいて、端末装置との間の通信に割り当てるリソースを決定する。
 図8において、通信装置7は、チャネル推定部71と、ビームフォーミング重み算出部72を備える。
 チャネル推定部71は、通信装置6から、端末装置から送信されるリファレンス信号に関する情報を、インターフェース8を介して受信する。
 チャネル推定部71は、上述のリファレンス信号に関する情報に対応する受信リファレンス信号を用いて、端末装置と通信装置7との間のチャネルに関するチャネル推定値を算出する。
 ビームフォーミング重み算出部72は、上述のチャネル推定値に基づいて、端末装置との通信に用いるビームフォーミング重みを算出する。
 続いて、図9を用いて、第2の実施形態に係る通信装置6の動作例について説明する。図8は、第2の実施形態に係る通信装置6の動作例を示すシーケンス図である。
 通信装置6のスケジューラ部61は、端末装置から送信されるリファレンス信号に関する情報を通信装置7へ送信する(S201)。
 通信装置6のスケジューラ部61は、通信装置7によって、上述のリファレンス信号に関する情報に対応する受信リファレンス信号を用いて算出された、端末装置と通信装置7との間のチャネルに関するチャネル推定値を受信する(S202)。
 通信装置6のスケジューラ部63は、上述したチャネル推定値に基づいて、端末装置との間の通信に割り当てるリソースを決定する(S203)。
 当然ながら、上述の動作は単独で実施されてもよいし、適宜組み合わせて実施されてもよい。これにより、通信装置6はインターフェース8の帯域の圧迫を避けながら、ビームフォーミングに必要な情報を通信装置7に送信することができる。
 <他の実施形態>
上述した実施形態に係る通信装置1、2、3、5、6、7(以下、通信装置1等と称する)は次のようなハードウェア構成を有していてもよい。図10は、各実施形態に係る通信装置を実現可能なコンピュータ(情報処理装置)のハードウェア構成を例示するブロック図である。
 図10を参照すると、通信装置1等は、ネットワーク・インターフェース1000、プロセッサ1001及びメモリ1002を含む。ネットワーク・インターフェース1000は、複数の通信端末を含む他の無線通信装置と通信するために使用される。ネットワーク・インターフェース1000は、例えば、IEEE 802.11 series、IEEE 802.3 series等に準拠したネットワークインターフェースカード(NIC)を含んでもよい。
 プロセッサ1001は、メモリ1002からソフトウェア(コンピュータプログラム)を読み出して実行することで、上述の実施形態においてフローチャート及びシーケンス図を用いて説明された通信装置1等の処理を行う。プロセッサ1001は、例えば、マイクロプロセッサ、MPU(Micro Processing Unit)、又はCPU(Central Processing Unit)であってもよい。プロセッサ1001は、複数のプロセッサを含んでもよい。
 メモリ1002は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。メモリ1002は、プロセッサ1001から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1001は、図示されていないI/Oインターフェースを介してメモリ1002にアクセスしてもよい。
 図10の例では、メモリ1002は、ソフトウェアモジュール群を格納するために使用される。プロセッサ1001は、これらのソフトウェアモジュール群をメモリ1002から読み出して実行することで、上述の実施形態において説明された通信装置1等の処理を行うことができる。
 図10を用いて説明したように、通信装置1等が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1または複数のプログラムを実行する。
 上述の例において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のあるコンピュータ読取可能な記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)を含む。さらに、非一時的なコンピュータ可読媒体の例は、CD-ROM(Read Only Memory)、CD-R、CD-R/Wを含む。さらに、非一時的なコンピュータ可読媒体の例は、半導体メモリを含む。半導体メモリは、例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。
 例えば、上記実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置であって、
 前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、
 前記第1の通信装置は、
 端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
 前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、スケジューラを備える、
 第1の通信装置。
(付記2)
 前記リファレンス信号に関する情報は、前記リファレンス信号のパターン、前記リファレンス信号の前記パターンを算出するために必要な情報のうち少なくとも1つを含む、付記1に記載の第1の通信装置。
(付記3)
 前記パターンを算出するために必要な情報は、前記リファレンス信号における時間軸の開始位置である時間軸スロットのシンボル番号、前記リファレンス信号の周波数開始位置、前記リファレンス信号の帯域幅、トランスミッションコム番号、ホッピング係数、サイクリックシフト番号、ZC符号長、シーケンス係数のうち少なくとも1つを含む、付記2に記載の第1の通信装置。
(付記4)
 前記第1の通信装置は前記基地局を構成するRadio Unit(RU)であり、前記第2の通信装置は前記基地局を構成するDistributed Unit(DU)である、付記1に記載の第1の通信装置。
(付記5)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置であって、
 前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出する、チャネル推定部と、
 前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出するビームフォーミング重み算出部と、を備える、
 第2の通信装置。
(付記6)
 前記チャネル推定値を圧縮して前記第1の通信装置へ送信する送信部をさらに備える、付記5に記載の第2の通信装置。
(付記7)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置であって、
 前記第2の通信装置は、ビームフォーミング重み算出部と第1のチャネル推定部を有し、
 前記第1の通信装置は、
 前記第2の通信装置から受信したリファレンス信号から、第2のチャネル推定値を算出する第2のチャネル推定部と、
 前記第2のチャネル推定値に基づいてビームフォーミングを行う端末装置の無線リソースへの割り当てを行い、前記割り当ての結果を示す情報を、前記インターフェースを介して前記第2の通信装置へ送信する、スケジューラとを有する、
 第1の通信装置。
(付記8)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置の方法であって、
 前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部を有し、
 端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
 前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、第1の通信装置の方法。
(付記9)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置の方法であって、
 前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、
 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、
 前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する、
 第2の通信装置の方法。
(付記10)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置の方法であって、
 前記第2の通信装置は、ビームフォーミング重み算出部と第1のチャネル推定部を有し、
 前記第2の通信装置から受信したリファレンス信号から、第2のチャネル推定値を算出し、
 前記第2のチャネル推定値に基づいてビームフォーミングを行う端末装置の無線リソースへの割り当てを行い、
 前記割り当ての結果を示す情報を、前記インターフェースを介して前記第2の通信装置へ送信する、
 第1の通信装置の方法。
(付記11)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、
 前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部を有し、
 端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
 前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、
 第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体。
(付記12)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、
 前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、
 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、
 前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する、
 第2の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体。
(付記13)
 互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、
 前記第2の通信装置は、ビームフォーミング重み算出部と第1のチャネル推定部を有し、
 前記第2の通信装置から受信したリファレンス信号から、第2のチャネル推定値を算出し、
 前記第2のチャネル推定値に基づいてビームフォーミングを行う端末装置の無線リソースへの割り当てを行い、
 前記割り当ての結果を示す情報を、前記インターフェースを介して前記第2の通信装置へ送信する、
 第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体。
 1、2、3、5、6、7 通信装置
 4 インターフェース
 8 インターフェース
 21 符号化部
 22 変調部
 23 復調部
 24 復号部
 25 スケジューラ部
 26 チャネル推定部
 31 ビームフォーミング重み乗算部
 32 逆高速フーリエ変換部
 33 無線部
 34 高速フーリエ変換部
 35 ビームフォーミング重み乗算部
 36 チャネル推定部
 37 ビームフォーミング重み生成部
 38 アンテナ
 61、63 スケジューラ部
 71 チャネル推定部
 72 ビームフォーミング重み算出部
 1000 ネットワーク・インターフェース
 1001 プロセッサ
 1002 メモリ

Claims (10)

  1.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置であって、
     前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、
     前記第1の通信装置は、
     端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
     前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
     前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、スケジューラを備える、
     第1の通信装置。
  2.  前記リファレンス信号に関する情報は、前記リファレンス信号のパターン、前記リファレンス信号の前記パターンを算出するために必要な情報のうち少なくとも1つを含む、請求項1に記載の第1の通信装置。
  3.  前記パターンを算出するために必要な情報は、前記リファレンス信号における時間軸の開始位置である時間軸スロットのシンボル番号、前記リファレンス信号の周波数開始位置、前記リファレンス信号の帯域幅、トランスミッションコム番号、ホッピング係数、サイクリックシフト番号、ZC符号長、シーケンス係数のうち少なくとも1つを含む、請求項2に記載の第1の通信装置。
  4.  前記第1の通信装置は前記基地局を構成するRadio Unit(RU)であり、前記第2の通信装置は前記基地局を構成するDistributed Unit(DU)である、請求項1に記載の第1の通信装置。
  5.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置であって、
     前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、 前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出する、チャネル推定部と、
     前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出するビームフォーミング重み算出部と、を備える、 第2の通信装置。
  6.  前記チャネル推定値を圧縮して前記第1の通信装置へ送信する送信部をさらに備える、請求項5に記載の第2の通信装置。
  7.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置の方法であって、
     前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部とを有し、
     端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
     前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
     前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、
     第1の通信装置の方法。
  8.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置の方法であって、
     前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、
     前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、
     前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する、
     第2の通信装置の方法。
  9.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、
     前記第2の通信装置は、ビームフォーミング重み算出部とチャネル推定部を有し、
     端末装置から送信されるリファレンス信号に関する情報を、前記インターフェースを介して前記第2の通信装置へ送信し、
     前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて前記第2の通信装置によって算出された、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を、前記インターフェースを介して受信し、
     前記チャネル推定値に基づいて、前記端末装置との間の通信に割り当てるリソースを決定する、
     第1の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体。
  10.  互いにインターフェースを介して接続され且つ基地局の機能が分散配置された、第1の通信装置及び第2の通信装置のうちの前記第2の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体であって、
     前記第1の通信装置から前記インターフェースを介して、端末装置から送信されるリファレンス信号に関する情報を受信し、
     前記リファレンス信号に関する情報に対応する受信リファレンス信号を用いて、前記端末装置と前記第2の通信装置との間のチャネルに関するチャネル推定値を算出し、
     前記算出されたチャネル推定値に基づいて、前記端末装置との通信に用いるビームフォーミング重みを算出する、
     第2の通信装置のプログラムを記憶する、コンピュータ読取可能な記録媒体。
PCT/JP2022/008235 2022-02-28 2022-02-28 通信装置、方法、記録媒体 WO2023162209A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008235 WO2023162209A1 (ja) 2022-02-28 2022-02-28 通信装置、方法、記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008235 WO2023162209A1 (ja) 2022-02-28 2022-02-28 通信装置、方法、記録媒体

Publications (1)

Publication Number Publication Date
WO2023162209A1 true WO2023162209A1 (ja) 2023-08-31

Family

ID=87765236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008235 WO2023162209A1 (ja) 2022-02-28 2022-02-28 通信装置、方法、記録媒体

Country Status (1)

Country Link
WO (1) WO2023162209A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524117A (ja) * 2008-05-21 2011-08-25 サンプリファイ システムズ インコーポレイテッド 基地送受信機システムにおける信号の圧縮
JP2014204218A (ja) * 2013-04-03 2014-10-27 日本電信電話株式会社 基地局システム、基地局通信方法及びベースバンドユニット
JP2019519956A (ja) * 2016-05-05 2019-07-11 株式会社Nttドコモ アップリンクパイロット及び分散されたユーザ近接検出に基づく基地局選択のメカニズム及び手順
JP2019535170A (ja) * 2016-09-15 2019-12-05 華為技術有限公司Huawei Technologies Co.,Ltd. モバイルフロントホールのための統合型モバイル及びtdm−ponアップリンクmacスケジューリング
US20200242352A1 (en) * 2017-07-14 2020-07-30 Adobe Inc. Syncing physical and electronic document
JP2020141204A (ja) * 2019-02-27 2020-09-03 富士通株式会社 基地局装置及びビーム選択方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524117A (ja) * 2008-05-21 2011-08-25 サンプリファイ システムズ インコーポレイテッド 基地送受信機システムにおける信号の圧縮
JP2014204218A (ja) * 2013-04-03 2014-10-27 日本電信電話株式会社 基地局システム、基地局通信方法及びベースバンドユニット
JP2019519956A (ja) * 2016-05-05 2019-07-11 株式会社Nttドコモ アップリンクパイロット及び分散されたユーザ近接検出に基づく基地局選択のメカニズム及び手順
JP2019535170A (ja) * 2016-09-15 2019-12-05 華為技術有限公司Huawei Technologies Co.,Ltd. モバイルフロントホールのための統合型モバイル及びtdm−ponアップリンクmacスケジューリング
US20200242352A1 (en) * 2017-07-14 2020-07-30 Adobe Inc. Syncing physical and electronic document
JP2020141204A (ja) * 2019-02-27 2020-09-03 富士通株式会社 基地局装置及びビーム選択方法

Similar Documents

Publication Publication Date Title
CN110999100B (zh) 用于毫米波wlan中的mimo传输的方法和系统
US10903970B1 (en) Pre-coding in OFDM
CN108632006B (zh) 一种参考信号传输方法、装置及系统
JP6469733B2 (ja) 直交周波数分割多元接続(ofdma)のリソース割り振りのためのシステムおよび方法
CN106797675B (zh) 无线通信系统和无线通信方法
TWI278205B (en) Method of performing channel estimation for a wireless communication system, base station, subscriber station, and wireless communication method and system
CA2772266C (en) Method and apparatus for multiple frame transmission for supporting mu-mimo
JP4855962B2 (ja) 無線通信システム、及び無線通信方法
WO2018126913A1 (zh) 上行参考信号信息的指示方法及装置和存储介质
KR102215932B1 (ko) 확장 범위 모드에서의 전송 방법 및 장치
JP2023501314A (ja) 無線通信システムにおけるフロントホール伝送のための装置及び方法
EP4046317A1 (en) Systems and methods for signaling starting symbols in multiple pdsch transmission occasions
TW201129195A (en) Enhanced multichannel access for very high throughput
WO2013161588A1 (ja) 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
KR101981693B1 (ko) 무선랜에서 트레이닝 필드를 전송하는 방법 및 장치
JP7500424B2 (ja) 低い相互相関シーケンスを使用した基準信号生成
EP3720174A1 (en) Device and method for transmitting control information for cooperative transmission in wireless communication system
JP2022553031A (ja) 無線通信システムにおける基地局のラジオユニットのリソースを管理するための装置及び方法
CN111727647A (zh) 用于在非正交多址接入(noma)网络中对用户进行分组的装置、方法和计算机程序
JPWO2017051583A1 (ja) 装置、方法及びプログラム
US20220052895A1 (en) Dynamic peak reduction tone allocation with low overhead
WO2019101206A1 (zh) 数据接收方法、数据发送方法、装置和系统
US9155096B2 (en) Communication apparatus and communication method
WO2023162209A1 (ja) 通信装置、方法、記録媒体
EP4239920A1 (en) Apparatus and method for transmitting control channel in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928735

Country of ref document: EP

Kind code of ref document: A1