KR20180135417A - 하프 스러스트 베어링 - Google Patents

하프 스러스트 베어링 Download PDF

Info

Publication number
KR20180135417A
KR20180135417A KR1020180066743A KR20180066743A KR20180135417A KR 20180135417 A KR20180135417 A KR 20180135417A KR 1020180066743 A KR1020180066743 A KR 1020180066743A KR 20180066743 A KR20180066743 A KR 20180066743A KR 20180135417 A KR20180135417 A KR 20180135417A
Authority
KR
South Korea
Prior art keywords
circumferential
thrust bearing
thrust
sliding surface
bearing
Prior art date
Application number
KR1020180066743A
Other languages
English (en)
Other versions
KR102048494B1 (ko
Inventor
신이치 사쿠라이
Original Assignee
다이도 메탈 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다이도 메탈 고교 가부시키가이샤 filed Critical 다이도 메탈 고교 가부시키가이샤
Publication of KR20180135417A publication Critical patent/KR20180135417A/ko
Application granted granted Critical
Publication of KR102048494B1 publication Critical patent/KR102048494B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0043Arrangements of mechanical drive elements
    • F02F7/0053Crankshaft bearings fitted in the crankcase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/047Sliding-contact bearings for exclusively rotary movement for axial load only with fixed wedges to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/046Brasses; Bushes; Linings divided or split, e.g. half-bearings or rolled sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • F16C9/03Arrangements for adjusting play

Abstract

운전 시에 손상이 발생하기 어렵고, 마찰 손실이 작은 내연 기관의 크랭크축용의 하프 스러스트 베어링을 제공하는 것이다.
본 발명에 의하면, 슬라이딩면과 배면을 가지는 반원환 형상의 하프 스러스트 베어링이 제공된다. 슬라이딩면은, 둘레 방향 중앙 부근에 위치하는 평면부와, 그 둘레 방향측의 2개의 경사 평면부를 가지고, 배면으로부터 슬라이딩면까지의 축선 방향 거리는, 하프 스러스트 베어링 중 어느 직경 방향 위치에 있어서도 평면부에서 최대이며, 경사 평면부에서 둘레 방향 양 단부를 향해 감소하고 있다. 또한 각 경사 평면부는, 원주 각도 35°~55°의 범위로 축선 방향 거리가 일정한 단 1개의 등두께부를 가진다. 경사 평면부에 있어서의 축선 방향 거리는, 어느 둘레 방향 위치에서도, 등두께부보다 둘레 방향 단부측의 영역에서는 직경 방향 내측 단부에서 최대이며, 직경 방향 외측 단부를 향해 감소하고, 또한 등두께부보다 둘레 방향 중앙부측의 영역에서는 직경 방향 내측 단부에서 최소이며, 직경 방향 외측 단부를 향해 증가하고 있다.

Description

하프 스러스트 베어링{HALF THRUST BEARING}
본 발명은, 내연 기관의 크랭크축의 축선 방향력을 받는 스러스트 베어링에 관한 것이다.
내연 기관의 크랭크축은, 그 저널부에 있어서, 한 쌍의 하프 베어링을 원통 형상으로 조합하여 구성되는 주(主)베어링을 개재하여, 내연 기관의 실린더 블록 하부에 회전 가능하게 지지된다.
한 쌍의 하프 베어링 중 일방 또는 양방이, 크랭크축의 축선 방향력을 받는 하프 스러스트 베어링과 조합하여 이용된다. 하프 스러스트 베어링은, 하프 베어링의 축선 방향 단면(端面)의 일방 또는 양방에 배치하여 마련된다.
하프 스러스트 베어링은, 크랭크축에 발생하는 축선 방향력을 받는다. 즉, 클러치에 의해 크랭크축과 변속기가 접속될 때 등에, 크랭크축에 대하여 입력되는 축선 방향력을 지지하는 것을 목적으로 하여 배치된다.
하프 스러스트 베어링의 둘레 방향 양단 근방의 슬라이딩면측에는, 둘레 방향 단면을 향해 베어링 부재의 두께가 얇아지도록 스러스트 릴리프가 형성된다. 일반적으로 스러스트 릴리프는, 하프 스러스트 베어링의 둘레 방향 단면으로부터 슬라이딩면까지의 길이나 둘레 방향 단면에서의 깊이가, 직경 방향의 위치에 관계없이 일정해지도록 형성된다. 스러스트 릴리프는, 하프 스러스트 베어링을 분할형 베어링 하우징 내에 조립할 때의 한 쌍의 하프 스러스트 베어링의 단면끼리의 위치 어긋남을 흡수하기 위해 형성된다(특허 문헌 1의 도 10 참조).
또한 종래, 내연 기관의 운전 시의 크랭크축의 휨 변형을 고려하여, 하프 스러스트 베어링의 슬라이딩면 중 적어도 외경측에 곡면 형상의 크라우닝(crowning)면을 마련하고, 이에 따라 하프 스러스트 베어링의 슬라이딩면의 크랭크축과의 국소적인 접촉 응력을 저감하는 것도 제안되고 있다(특허 문헌 2).
또한, 하프 스러스트 베어링의 슬라이딩면에, 하프 스러스트 베어링의 둘레 방향 단부로부터, 정부(頂部)(하프 스러스트 베어링의 둘레 방향 중앙에 있어서의 외경단(端))의 높이의 대략 절반까지 연장되는 경사면(스러스트 릴리프)을 형성하고, 이에 따라 슬라이딩면에 대한 경사면의 경사 각도를 작게 하는 것도 제안되고 있다(특허 문헌 3 참조).
일본 공개특허 특개평11-201145호 공보 일본 공개특허 특개2013-19517호 공보 일본 공개특허 특개2013-238277호 공보
최근, 내연 기관의 경량화를 위해 크랭크축의 축 직경이 소직경화되어, 종래의 크랭크축보다 저강성으로 되어 있으며, 내연 기관의 운전 시에 크랭크축에 휨이 발생하기 쉬워, 크랭크축의 진동이 커지는 경향이 있다. 이 때문에 크랭크축의 스러스트 칼라(thrust collar)면은 하프 스러스트 베어링의 슬라이딩면에 대하여 경사지면서 미끄럼 접촉하고, 또한 그 경사 방향은 크랭크축의 회전에 따라 변화된다. 따라서 하프 스러스트 베어링의 둘레 방향 양 단부 부근의 슬라이딩면과 크랭크축의 스러스트 칼라면이 직접 접촉하여, 손상(피로)이 일어나기 쉽게 되어 있다.
또한, 한 쌍의 하프 베어링으로 이루어지는 주베어링의 축선 방향의 각 단부에 한 쌍의 하프 스러스트 베어링이 조립되는 경우, 분할형 베어링 하우징 내에 조립하였을 때의 한 쌍의 하프 스러스트 베어링의 단면끼리의 위치가 어긋나 있으면, 일방의 하프 스러스트 베어링의 슬라이딩면과 크랭크축의 스러스트 칼라면과의 사이의 간극이, 타방의 하프 스러스트 베어링과 크랭크축의 스러스트 칼라면과의 사이의 간극보다 커진다. 혹은, 주베어링의 축선 방향의 각 단부에 1개의 하프 스러스트 베어링만이 조립되는 경우, 이 하프 스러스트 베어링이 배치되지 않는 분할형 베어링 하우징의 측면과 크랭크축의 스러스트 칼라면과의 사이에 큰 간극이 형성된다. 이러한 간극이 형성된 상태에서 내연 기관의 운전이 이루어져 크랭크축의 휨이 발생하면, 크랭크축의 스러스트 칼라면은 형성된 간극측으로 더 경사진다.
이러한 간극측으로 크게 경사진 상태에서 크랭크축이 회전하면, 하프 스러스트 베어링의 둘레 방향 양 단면을 포함하는 면내에서의 하프 스러스트 베어링의 슬라이딩면에 대한 스러스트 칼라면의 경사가 보다 커진다. 또한, 이 스러스트 칼라면의 경사는, 하프 스러스트 베어링의 둘레 방향 양 단면을 포함하는 면내에 있어서, (a) 하프 스러스트 베어링의 크랭크축의 회전 방향 후방측의 둘레 방향 단부 부근의 슬라이딩면과 스러스트 칼라면이 접촉하고, 크랭크축의 회전 방향 전방측의 둘레 방향 단부 부근의 슬라이딩면과 스러스트 칼라면이 이간된 경사 상태와, (b) 하프 스러스트 베어링의 크랭크축의 회전 방향 전방측의 둘레 방향 단부 부근의 슬라이딩면과 스러스트 칼라면이 접촉하고, 크랭크축의 회전 방향 후방측의 둘레 방향 단부 부근의 슬라이딩면과 스러스트 칼라면이 이간된 경사 상태를, 크랭크축의 회전에 따라 반복한다. 하프 스러스트 베어링은, 그 둘레 방향 양 단부 부근의 슬라이딩면만이 상시 크랭크축의 스러스트 칼라면과 직접 접촉하므로, 손상(피로)이 일어나기 쉽다.
또한, 크랭크축이 고속으로 회전하면 크랭크축의 축선 방향의 진동이 커져, 스러스트 칼라면의 경사가 상기 (a)의 경사 상태로부터 상기 (b)의 경사 상태로 천이하는 과정에서 하프 스러스트 베어링의 슬라이딩면의 둘레 방향 중앙부가 스러스트 칼라면과 접촉하여, 마찰 손실이 커진다.
상기 서술의 크랭크축의 휨에 의한 스러스트 칼라면의 간극측으로의 경사가 크고, 따라서 하프 스러스트 베어링의 둘레 방향 양 단면을 포함하는 면내에서의 스러스트 칼라면의 경사가 큰 경우, 특허 문헌 2나 특허 문헌 3에 기재되는 기술을 채용해도, 하프 스러스트 베어링의 둘레 방향 양 단부 부근의 슬라이딩면만이 상시 크랭크축의 스러스트 칼라면과 접촉하는 것을 방지하는 것은 곤란했다.
따라서 본 발명의 목적은, 내연 기관의 운전 시에, 손상(피로)이 발생하기 어렵고, 마찰 손실이 작은 하프 스러스트 베어링을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명의 하나의 관점에 의하면, 내연 기관의 크랭크축의 축선 방향력을 받기 위한 반원환 형상의 하프 스러스트 베어링으로서, 축선 방향력을 받기 위한 슬라이딩면과, 슬라이딩면의 반대측의 배면을 가지고, 또한 축선 방향에 수직인 기준면을 배면측에 구획 결정하고 있는 하프 스러스트 베어링에 있어서,
슬라이딩면은, 하프 스러스트 베어링의 직경 방향 내측 단부로부터 직경 방향 외측 단부까지 기준면과 평행하게 연장되는 평면부와, 평면부의 둘레 방향 양측에 형성되는 2개의 경사 평면부로 이루어지고,
기준면으로부터 슬라이딩면까지의 축선 방향 거리는 평면부에서 최대이며,
각 경사 평면부에 있어서의 축선 방향 거리는, 어느 직경 방향 위치에 있어서도 하프 스러스트 베어링의 둘레 방향 중앙부측의 경사 평면부의 둘레 방향 단부에서 최대이고, 하프 스러스트 베어링의 둘레 방향 양 단부를 향해 작아지고 있으며,
각 경사 평면부는, 하프 스러스트 베어링의 각 둘레 방향 단부로부터 둘레 방향 중앙부를 향해 원주 각도 35°~55°의 범위로, 하프 스러스트 베어링의 직경 방향 내측 단부로부터 직경 방향 외측 단부까지 직선 형상으로 연장되는 단 1개 등(等)두께부를 가지도록 배치되고, 축선 방향 거리는 등두께부에 걸쳐 일정하며,
각 경사 평면부에 있어서의 축선 방향 거리는, 등두께부보다 둘레 방향 단부측의 영역에서는, 어느 둘레 방향 위치에 있어서도 직경 방향 내측 단부에서 최대이며, 직경 방향 외측 단부를 향해 작아지고 있고, 또한 등두께부보다 둘레 방향 중앙부측의 영역에서는, 어느 둘레 방향 위치에 있어서도 직경 방향 내측 단부에서 최소이며, 직경 방향 외측 단부를 향해 커지고 있으며, 또한
평면부는, 하프 스러스트 베어링 중 어느 직경 방향 위치에 있어서도, 5° 이상 35° 이하의 원주 각도에 걸쳐 연장되는 둘레 방향 길이를 가지고 있는 것을 특징으로 하는 하프 스러스트 베어링이 제공된다.
여기서, 경사 평면부에 있어서의 축선 방향 거리는, 하프 스러스트 베어링의 둘레 방향 양 단면을 포함하는 면과 평행한 어느 단면 내에 있어서도, 하프 스러스트 베어링의 외주측 단부에서 최소이며, 둘레 방향 중앙부측을 향해 커지고 있다.
하프 스러스트 베어링의 배면은, 평탄하고, 또한 기준면 내에 위치하고 있어도 된다.
또한 평면부는, 하프 스러스트 베어링의 둘레 방향 중앙부를 포함하고 있어도 된다.
또한 평면부의 둘레 방향 길이는, 하프 스러스트 베어링의 직경 방향 내측 단부에 있어서 최소이며, 직경 방향 외측 단부를 향해 점차 커지고 있어도 되고, 혹은 하프 스러스트 베어링의 직경 방향 외측 단부에 있어서 최소이며, 직경 방향 내측 단부를 향해 점차 커지고 있어도 된다.
또한 하프 스러스트 베어링의 둘레 방향 양 단면에 수직인 방향에서 하프 스러스트 베어링을 보았을 때, 슬라이딩면의 경사 평면부의 윤곽이 곡선으로 구성되어 있어도 된다.
또한 평면부에 있어서의 축선 방향 거리와, 하프 스러스트 베어링의 둘레 방향 양 단부의 직경 방향 외측 단부에 있어서의 축선 방향 거리의 차가 50~800㎛여도 된다.
슬라이딩면을 구성하는 2개의 경사 평면부는, 둘레 방향 중앙부를 지나 연장되는 하프 스러스트 베어링의 중심선에 관하여 선대칭이어도 된다.
등두께부는, 각 둘레 방향 단면으로부터 둘레 방향 중앙부를 향해 원주 각도 45°의 위치에 형성되어 있어도 된다.
여기서, 크랭크축은, 저널부와 크랭크 핀부와 크랭크 아암부를 가지는 부재이다. 또한 하프 스러스트 베어링은, 원환을 대략 절반으로 분할한 형상의 부재이지만, 엄밀히 절반인 것을 의도하는 것은 아니다.
상기 구성을 가지는 본 발명의 하프 스러스트 베어링에 의하면, 내연 기관의 운전 시의 크랭크축의 휨에 기인하여 하프 스러스트 베어링의 슬라이딩면에 대한 크랭크축의 스러스트 칼라면의 경사 각도가 커진 경우에도, 슬라이딩면과 스러스트 칼라면과의 접촉 위치가 크랭크축의 회전에 따라 둘레 방향으로 순차 이동하므로, 하프 스러스트 베어링의 둘레 방향 양 단부 부근의 슬라이딩면만이 상시 크랭크축의 스러스트 칼라면과 접촉하는 것이 방지되어, 하프 스러스트 베어링의 슬라이딩면의 손상이 일어나기 어렵다.
또한, 본 발명의 스러스트 베어링에서는, 내연 기관의 운전 시, 등두께부(M)보다 둘레 방향 중앙부측의 영역에 있어서 경사 평면부와 스러스트 칼라면과의 사이의 간극을 흐르는 기름이, 하프 스러스트 베어링의 직경 방향 외측으로 유출되기 어려워져, 슬라이딩면의 둘레 방향 중앙부 부근의 평면부에 유효한 쐐기 유막이 형성되기 쉽게 되어 있다. 이 때문에, 스러스트 칼라면이 하프 스러스트 베어링의 슬라이딩면의 둘레 방향 중앙부와 접촉하는 것이 방지되어, 마찰 손실이 작아진다.
도 1은 베어링 장치의 분해 사시도이다.
도 2는 실시예 1의 하프 스러스트 베어링의 정면도이다.
도 3은 도 2의 하프 스러스트 베어링의 Y1 화살표에서 본 측면도이다.
도 4는 도 2의 하프 스러스트 베어링의 Y2 화살표에서 본 측면도이다.
도 5는 도 2의 하프 스러스트 베어링의 A1-A1 단면도이다.
도 6은 도 2의 하프 스러스트 베어링의 A2-A2 단면도이다.
도 7은 도 2의 하프 스러스트 베어링의 A3-A3 단면도이다.
도 8은 하프 베어링 및 스러스트 베어링의 정면도이다.
도 9는 베어링 장치의 단면도이다.
도 10은 도 8의 상측의 하프 베어링의 정면도이다.
도 11은 도 10의 하프 베어링을 직경 방향의 내측에서 본 저면도이다.
도 12는 운전 중의 스러스트 칼라면과 한 쌍의 하프 스러스트 베어링의 접촉 상태를 나타내는 단면도이다.
도 13a는 둘레 방향 양 단면측에서 본 운전 중의 스러스트 칼라면의 슬라이딩면에 대한 경사의 변화를 나타내는 도면이다.
도 13b는 둘레 방향 양 단면측에서 본 운전 중의 스러스트 칼라면의 슬라이딩면에 대한 경사를 나타내는 도면이다.
도 13c는 둘레 방향 양 단면측에서 본 운전 중의 스러스트 칼라면의 슬라이딩면에 대한 경사를 나타내는 도면이다.
도 13d는 둘레 방향 양 단면측에서 본 운전 중의 스러스트 칼라면의 슬라이딩면에 대한 경사를 나타내는 도면이다.
도 13e는 둘레 방향 양 단면측에서 본 운전 중의 스러스트 칼라면의 슬라이딩면에 대한 경사를 나타내는 도면이다.
도 14a는 도 13a에 대응하는, 슬라이딩면을 정면측에서 본 슬라이딩면과 스러스트 칼라면의 접촉 위치를 나타내는 도면이다.
도 14b는 도 13b에 대응하는, 슬라이딩면을 정면측에서 본 슬라이딩면과 스러스트 칼라면의 접촉 위치를 나타내는 도면이다.
도 14c는 도 13c에 대응하는, 슬라이딩면을 정면측에서 본 슬라이딩면과 스러스트 칼라면의 접촉 위치를 나타내는 도면이다.
도 14d는 도 13d에 대응하는, 슬라이딩면을 정면측에서 본 슬라이딩면과 스러스트 칼라면의 접촉 위치를 나타내는 도면이다.
도 14e는 도 13e에 대응하는, 슬라이딩면을 정면측에서 본 슬라이딩면과 스러스트 칼라면의 접촉 위치를 나타내는 도면이다.
도 15a는 스러스트 칼라면과 슬라이딩면의 둘레 방향 중앙부 부근과의 접촉 상태를 나타내는 단면도이다.
도 15b는 스러스트 칼라면과 슬라이딩면의 둘레 방향 중앙부 부근과의 접촉 상태를 나타내는 단면도이다.
도 15c는 스러스트 칼라면과 슬라이딩면의 둘레 방향 중앙부 부근과의 접촉 상태를 나타내는 단면도이다.
도 15d는 스러스트 칼라면과 슬라이딩면의 둘레 방향 중앙부 부근과의 접촉 상태를 나타내는 단면도이다.
도 16은 본 발명의 다른 형태의 하프 스러스트 베어링의 정면도이다.
도 17은 도 16의 하프 스러스트 베어링의 둘레 방향 단부 부근의 측면도이다.
이하, 본 발명의 실시 형태에 대해 도면을 참조하여 설명한다.
[실시예 1]
(베어링 장치의 전체 구성)
우선, 도 1, 8 및 9를 이용하여 베어링 장치(1)의 전체 구성을 설명한다. 도 1, 8 및 9에 나타내는 바와 같이, 실린더 블록(2)의 하부에 베어링 캡(3)을 장착하여 구성된 베어링 하우징(4)에는, 양 측면 사이를 관통하는 원형 구멍인 베어링 구멍(보지(保持) 구멍)(5)이 형성되어 있으며, 측면에 있어서의 베어링 구멍(5)의 주연에는 원환(圓環) 형상 오목부인 받이 시트(6, 6)가 형성되어 있다. 베어링 구멍(5)에는, 크랭크축의 저널부(11)를 회전 가능하게 지지하는 하프 베어링(7, 7)이 원통 형상으로 조합되어 끼워 맞춰진다. 받이 시트(6, 6)에는, 크랭크축의 스러스트 칼라면(12)을 개재하여 축선 방향력(f)(도 9 참조)을 받는 하프 스러스트 베어링(8, 8)이 원환 형상으로 조합되어 끼워 맞춰진다. 또한, 도 8에는, 본 발명의 구성을 가지지 않는 하프 스러스트 베어링(8)이 나타나 있다.
도 8에 나타내는 바와 같이, 주베어링을 구성하는 하프 베어링(7) 중, 실린더 블록(2)측(상측)의 하프 베어링(7)의 내주면에는 윤활유 홈(71)이 형성되고, 또한 윤활유 홈(71) 내에는 외주면으로 관통하는 관통 구멍(72)이 형성되어 있다(도 10 및 11도 참조). 윤활유 홈(71)은, 상하 양방의 하프 베어링에 형성할 수도 있다. 하프 베어링(7)은 또한, 둘레 방향 양 단면(74)에 인접하는 슬라이딩면(75) 상에 크래시 릴리프(73)를 가진다.
(하프 스러스트 베어링의 구성)
이어서, 도 2~7을 이용하여 실시예 1의 하프 스러스트 베어링(8)의 구성에 대해 설명한다. 본 실시예의 하프 스러스트 베어링(8)은, 강제(鋼製)의 백메탈층에 얇은 베어링 합금층을 접착한 바이메탈에 의해, 반원환 형상의 평판으로 형성된다. 하프 스러스트 베어링(8)은 축선 방향을 향한 슬라이딩면(81)(베어링면)을 구비하고, 슬라이딩면(81)은 베어링 합금층으로 구성된다.
하프 스러스트 베어링(8)은 축선 방향에 수직인 기준면(84)을 구획 결정하고 있으며, 이 기준면(84) 내에, 실린더 블록(2)의 받이 시트(6)에 배치되는데 적합한 실질적으로 평탄한 배면(84a)을 가진다(도 3 참조). 또한, 하프 스러스트 베어링(8)은, 기준면(84)(배면(84a))으로부터 축선 방향으로 멀어진 슬라이딩면(81)을 가지고, 슬라이딩면(81)은, 크랭크축의 스러스트 칼라면(12)을 개재하여 축선 방향력(f)(도 9 참조)을 받는데 적합하게 되어 있다. 보다 상세하게는, 슬라이딩면(81)은, 하프 스러스트 베어링(8)의 둘레 방향 중앙부(85)를 포함하는 평면부(81a)로서, 기준면(84)에 평행한 1개의 평면부(81a)와, 그 둘레 방향 양측에 배치된 2개의 경사 평면부(81b)를 가진다. 기준면(84)으로부터 슬라이딩면(81)까지의 축선 방향 거리는, 하프 스러스트 베어링(8) 중 어느 직경 방향 위치에 있어서도 평면부(81a)에서 최대이며, 경사 평면부(81b)에 있어서 평면부(81a)의 측으로부터 하프 스러스트 베어링의 둘레 방향 양 단부를 향해 작아지고 있다. 따라서, 예를 들면 하프 스러스트 베어링(8)의 직경 방향 중앙 위치(도 2의 일점 쇄선 위치)에 있어서도, 기준면(84)으로부터 슬라이딩면(81)까지의 축선 방향 거리는 평면부(81a)에서 최대(TC)이며, 둘레 방향 양 단부(86)에서 최소(TE)인 것이 이해된다. 또한, 경사 평면부(81b)는, 윤활유의 보유성(保油性)을 높이기 위해, 직경 방향으로 연장되는 오일 홈(81c)을 가지고 있어도 된다.
또한 평면부(81a)는, 도 2에 나타나 있는 바와 같이, 하프 스러스트 베어링(8)의 직경 방향 내측 단부의 원호로 규정되는 내주부와, 직경 방향 외측 단부의 원호로 규정되는 외주부와, 둘레 방향 양측에 위치하는 2개의 직선에 의해 둘러싸이는 정면 형상을 가지고, 내주부 및 외주부는 원주 각도(θ)에 걸쳐 연장되는 둘레 방향 길이를 가진다. 내주부 및 외주부의 둘레 방향 길이는, 적합하게는, 원주각도가 5°~35°이도록 형성된다.
본 실시예에 있어서, 기준면(84)(배면(84a))으로부터 슬라이딩면(81)까지의 축선 방향 거리는, 하프 스러스트 베어링(8)의 베어링 벽 두께(T)와 일치한다. 또한 본 실시예에 있어서, 각 둘레 방향 단부(86)와, 경사 평면부(81b)의 둘레 방향 중앙부(85)측의 단부의 사이에는, 직경 방향 외측 단부와 직경 방향 내측 단부의 사이에서 베어링 벽 두께가 일정한 등두께부(M)(도 2 및 5 참조)가 단 1개 형성되어 있다. 등두께부(M)는, 경사 평면부(81b)의 영역에 있어서 직경 방향 외측 단부로부터 직경 방향 내측 단부까지 일정한 베어링 벽 두께(T)로 연장되는 단 1개의 단면부(도 5 참조)이며, 하프 스러스트 베어링(8)의 경사 평면부(81) 상에서는, 직경 방향 외측 단부와 직경 방향 내측 단부와의 사이에 연장되는 직선으로서 나타난다(도 2 참조). 보다 구체적으로는, 등두께부(M)는, 하프 스러스트 베어링(8)의 각 둘레 방향 단부(86)로부터 둘레 방향 중앙부(85)를 향해 원주 각도 45°의 위치에 배치되고, 이 등두께부(M)보다 둘레 방향 단부(86)측의 영역(XE)에서는, 어느 둘레 방향 위치에 있어서도 베어링 벽 두께가 직경 방향 내측 단부(두께(TI))에서 최대이며, 직경 방향 외측 단부(두께(TO))를 향해 작아지고 있고(도 6 참조), 한편, 등두께부(M)보다 둘레 방향 중앙부(85)측의 영역(XC)에서는, 베어링 벽 두께가 직경 방향 내측 단부(두께(TI))에서 최소이며, 직경 방향 외측 단부(두께(TO))를 향해 커지고 있다(도 7 참조).
상기 구성에 의한 경사 평면부(81b)는, 바꿔 말하면, 하프 스러스트 베어링(8)의 둘레 방향 중앙부(85)측의 둘레 방향 단부의 직경 방향 외측 단부로부터 둘레 방향 양 단부의 직경 방향 외측 단부를 향해 베어링 벽 두께가 감소하도록 배면(83)에 대하여 경사진 평면으로 이루어진다. 따라서 베어링 벽 두께는, 등두께부(M)보다 둘레 방향 중앙부(85)측의 영역(XC), 및 등두께부(M)보다 둘레 방향 양 단부(86)측의 영역(XE) 중 어느 것이라도, 둘레 방향 양 단면(83)을 포함하는 면과 평행한 임의의 단면 내이며, 하프 스러스트 베어링(8)의 외주측 단부에서 최소이며, 둘레 방향 중앙부(85)측을 향해 커지고 있는 것이, 도 4로부터도 이해된다.
또한, 경사 평면부(81b)의 오일 홈(81c)이 형성된 부분에서는, 배면(84a)으로부터, 오일 홈(81c)을 형성하지 않은 경우의 가상 슬라이딩면(경사 평면부(81b)의 연장면)까지의 축방향 거리가 상기 관계를 충족시키도록 하프 스러스트 베어링(8)이 형성된다.
또한, 등두께부(M)는, 하프 스러스트 베어링(8)의 각 둘레 방향 단부(86)로부터 둘레 방향 중앙부(85)를 향해 원주 각도 45°의 위치에 한정되지 않고 배치될 수 있으며, 각 둘레 방향 단부(86)로부터 둘레 방향 중앙부(85)를 향해 원주 각도 35°~55°의 범위에 1개의 등두께부(M)가 배치될 수 있다.
상기 서술한 바와 같이 하프 스러스트 베어링(8)의 둘레 방향 양 단부에 있어서의 베어링 벽 두께(TE)는, 평면부(81a)에 있어서의 베어링 벽 두께(TC)에 비해 작게 형성된다(도 3 참조). 따라서 하프 스러스트 베어링(8)의 둘레 방향 양 단면을 포함하는 면에 수직인 방향에서 볼 때, 하프 스러스트 베어링(8)의 슬라이딩면(81)은, 평면부(81a)가 가장 돌출된 볼록 형상의 윤곽을 가지고 있다(도 3 참조). 보다 구체적으로는, 승용차용 등의 소형 내연 기관의 크랭크축(직경이 30~100㎜ 정도의 저널부를 가짐)에 사용하는 경우, 하프 스러스트 베어링(8)의 평면부(81a)에 있어서의 베어링 벽 두께와, 둘레 방향 양 단부에 있어서의 베어링 벽 두께의 차는, 예를 들면 50~800㎛이며, 보다 적합하게는 200~400㎛이다. 그러나, 이들의 치수는 일례에 지나지 않고, 베어링 벽 두께의 차는 이 치수 범위에 한정되지 않는다.
(작용)
이어서, 도 8, 9 및 12를 이용하여, 종래의 하프 스러스트 베어링(8)의 작용을 설명한다.
일반적으로, 하프 베어링(7)은 하프 스러스트 베어링(8)과 동심에, 또한 주베어링을 구성하는 하프 베어링(7)의 둘레 방향 양 단면(74)을 포함하는 평면이, 하프 스러스트 베어링(8)의 둘레 방향 양 단면(83)을 포함하는 평면과 실질적으로 일치하도록 배치된다.
내연 기관의 운전 시, 특히 내연 기관의 경량화를 위해 축 직경이 소경화되어, 종래의 크랭크축보다 저강성으로 되어 있는 크랭크축에서는, 크랭크축의 휨(축선 방향의 휨)이 발생하여 크랭크축의 진동이 커진다. 이 큰 진동에 의해, 크랭크축에는 하프 스러스트 베어링(8)의 슬라이딩면(81)을 향하는 축선 방향력(f)이 주기적으로 발생한다. 하프 스러스트 베어링(8)의 슬라이딩면(81)은, 이 축선 방향력(f)을 받는다.
한 쌍의 하프 베어링(7, 7)으로 이루어지는 주베어링의 축선 방향의 각 단부에 한 쌍의 하프 스러스트 베어링(8, 8)이 조립되는 경우, 분할형 베어링 하우징(4)에 조립하였을 때에 한 쌍의 하프 스러스트 베어링(8, 8)의 단면(83, 83)끼리의 위치가 축선 방향으로 어긋나 있으면, 일방의 하프 스러스트 베어링(8)의 슬라이딩면(81)과 크랭크축의 스러스트 칼라면(12)과의 사이의 간극이, 타방의 하프 스러스트 베어링(8)의 슬라이딩면(81)과 스러스트 칼라면(12)과의 사이의 간극보다 커진다(도 12 참조). 혹은, 주베어링의 축선 방향의 각 단부에 1개의 하프 스러스트 베어링(8)만이 조립되는 경우, 하프 스러스트 베어링(8)이 배치되지 않는 쪽의 분할형 베어링 하우징(4)의 측면과 크랭크축의 스러스트 칼라면(12)과의 사이에 큰 간극이 형성된다. 이러한 간극이 형성된 상태에서 내연 기관이 운전되어 크랭크축의 휨이 발생하면, 크랭크축의 스러스트 칼라면(12)은 큰 간극측으로 더 경사진다. 이러한 간극측으로 크게 경사진 상태에서 크랭크축이 회전되면, 종래는, 하프 스러스트 베어링(8)의 둘레 방향 양 단면(83)을 포함하는 면내에서의 하프 스러스트 베어링(8)에 대한 스러스트 칼라면(12)의 경사가 보다 커지고, 또한 하프 스러스트 베어링(8)의 둘레 방향 양 단부 부근의 슬라이딩면(81)만이 상시 크랭크축의 스러스트 칼라면(12)과 직접 접촉하므로, 전술한 바와 같이 손상(피로)이 일어나기 쉬워진다.
보다 상세하게는, 둘레 방향 양 단면(83)을 포함하는 면에 수직인 방향에서 하프 스러스트 베어링(8)을 보았을 때, 크랭크축의 스러스트 칼라면(12)은, (1) 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 후방측의 둘레 방향 단부측으로 경사지고 있는 상태에서, 하프 스러스트 베어링(8)의 슬라이딩면(81)과 평행해질 때까지의 동안은, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향의 후측의 둘레 방향 단부 부근의 슬라이딩면(81)과만 접촉하고, 또한 (2) 슬라이딩면(81)과 평행해진 직후부터, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 전방측의 둘레 방향 단면측으로 경사지고 있는 동안에는, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 전방측의 둘레 방향 단부 부근의 슬라이딩면(81)과만 접한다.
여기서, 특허 문헌 2에 기재되는 바와 같이 하프 스러스트 베어링의 슬라이딩면의 외경측에 곡면으로 구성되는 크라우닝면을 마련했다고 해도, 기준면(84)으로부터 슬라이딩면(81)까지의 축선 방향 거리가 어느 직경 방향 위치에 있어서도 둘레 방향 중앙부 부근에서 최대가 되도록 하프 스러스트 베어링(8)이 형성되어 있지 않은 경우, 바꿔 말하면, 둘레 방향 양 단면(83)을 포함하는 면에 수직인 방향에서 하프 스러스트 베어링(8)을 보았을 때에 하프 스러스트 베어링(8)의 슬라이딩면(81)의 윤곽이 본원 발명과 같이 평면부(81a)에서 가장 돌출된 볼록 형상이 아닌 경우, 상기 이유로부터, 특히 하프 스러스트 베어링(8)의 둘레 방향 단부 부근의 슬라이딩면(81)과 크랭크축의 스러스트 칼라면(12)이 직접 접촉하여, 손상이 일어나기 쉽다.
혹은, 특허 문헌 3에 기재되는 바와 같이 하프 스러스트 베어링의 슬라이딩면에, 하프 스러스트 베어링의 둘레 방향 단부로부터, 정부까지 높이의 대략 절반까지 연장되는 경사면(스러스트 릴리프)을 형성하고, 이에 따라 슬라이딩면에 대한 경사면의 경사 각도를 작게 했다고 해도, 하프 스러스트 베어링(8)의 둘레 방향 양 단면(83)을 포함하는 면에 수직인 방향에서 보았을 때에 본원 발명과 같이 하프 스러스트 베어링(8)의 슬라이딩면(81)의 윤곽이 평면부(81a)에서 가장 돌출된 볼록 형상이 아닌 경우, 역시 상기 이유로부터, 특히 하프 스러스트 베어링의 둘레 방향 단부 부근의 슬라이딩면(81)(경사면)과 크랭크축의 스러스트 칼라면(12)이 직접 접촉하여, 손상이 일어나기 쉽다.
또한, 특허 문헌 3에 기재되는 하프 스러스트 베어링에서는, 경사면의 베어링 벽 두께가, 하프 스러스트 베어링의 둘레 방향 단부를 제외하고, 스러스트 베어링의 직경 방향 내측 단부보다 직경 방향 외측 단부의 쪽이 커지기 때문에, 하프 스러스트 베어링의 둘레 방향 단부 부근의 특히 외경측의 슬라이딩면(경사면)과 크랭크축의 스러스트 칼라면(12)이 직접 접촉하여, 보다 손상이 일어나기 쉽다.
또한 상기 서술한 바와 같이 둘레 방향 양 단면(83)을 포함하는 면에 수직인 방향에서 하프 스러스트 베어링(8)을 보았을 때, 만약 하프 스러스트 베어링(8)의 슬라이딩면(81)의 윤곽이 둘레 방향 중앙부(85)에서만 가장 돌출된 형상이면, 크랭크축의 스러스트 칼라면(12)이, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 후방측의 둘레 방향 단부측으로 경사지고 있는 상태로부터, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 전방측의 둘레 방향 단면측으로 경사지고 있는 상태로 이행 중, 하프 스러스트 베어링(8)의 슬라이딩면(81)과 평행해지는 순간, 크랭크축의 축방향 진동에 기인하여 하프 스러스트 베어링(8)의 슬라이딩면(81)의 둘레 방향 중앙부(85)와 스러스트 칼라면(12)이 접촉하여, 마찰 손실이 커진다.
(효과)
이어서, 도 13a~14e를 이용하여 본 실시예의 하프 스러스트 베어링(8)의 효과를 설명한다.
도 13a~e는, 하프 스러스트 베어링(8)의 둘레 방향 양 단면(83)을 포함하는 면에 수직인 방향에서 하프 스러스트 베어링(8)을 보았을 때의(즉 둘레 방향 양 단면(83)을 포함하는 면내에 있어서의) 슬라이딩면(81)에 대한 스러스트 칼라면(12)의 운전 중의 경사의 변화를 차례로 나타내고, 도 14a~e는, 하프 스러스트 베어링(8)의 슬라이딩면(81)을 정면측에서 보았을 때의, 도 13a~e에 대응하는 슬라이딩면(81)과 스러스트 칼라면(12)의 접촉 위치의 변화를 나타낸다. 도 14a~e의 파선원은, 하프 스러스트 베어링(8)의 슬라이딩면(81)과 스러스트 칼라면(12)의 접촉부(접촉에 의해 부하를 가장 많이 받는 슬라이딩면의 위치)를 나타낸다. 예를 들면 도 13b 및 이에 대응하는 도 14b로부터, 슬라이딩면(81)과 스러스트 칼라면(12)의 접촉부가 도 14a에 나타나는 둘레 방향 단부 부근으로부터 멀어진 후에도, 도 14c에 나타나는 둘레 방향 중앙부로 도달할 때까지는, 스러스트 칼라면(12)은, 둘레 방향 양 단면(83)을 포함하는 면내에서 슬라이딩면(81)에 대하여 경사지고 있는 것이 이해된다.
본 실시예의 하프 스러스트 베어링(8)에서는, 슬라이딩면(81)이, 둘레 방향 중앙부 부근에, 기준면(84)에 평행한 평면부(81a)를 가지고, 또한 배면(84a)(기준면(84))으로부터 슬라이딩면(81)까지의 축선 방향 거리(T)가, 하프 스러스트 베어링(8) 중 어느 직경 방향 위치에 있어서도 평면부(81a)에서 최대이며, 경사 평면부(81b)에서는 평면부(81a)의 측에서 둘레 방향 양 단부를 향해 작아지고 있다. 또한, 각 둘레 방향 단면(83)과 둘레 방향 중앙부(85)의 사이에는, 직경 방향 외측 단부와 직경 방향 내측 단부와의 사이에서 축선 방향 거리가 일정한 등두께부(M)가 단 1개 형성되고, 이 등두께부(M)는, 하프 스러스트 베어링(8)의 각 둘레 방향 단부로부터 둘레 방향 중앙부를 향해 원주 각도 45°의 위치에 배치된다. 경사 평면부(81c)의 축선 방향 거리(즉 두께)는, 어느 둘레 방향 위치에서도, 등두께부(M)보다 둘레 방향 단부측의 영역(XE)에서는 직경 방향 내측 단부(두께(TI))에서 최대이며, 직경 방향 외측 단부(두께(TO))를 향해 작아지고 있으며, 또한 등두께부(M)보다 둘레 방향 중앙부측의 영역(XC)에서는 직경 방향 내측 단부(두께(TI))에서 최소이며, 직경 방향 외측 단부(두께(TO))를 향해 커지고 있다.
이 구성에 의해, 경사 평면부(81c)의 축선 방향 거리는, 둘레 방향 양 단면(83)을 포함하는 면과 평행한 임의의 단면 내이며, 하프 스러스트 베어링(8)의 외주측 단부에서 최소이며, 둘레 방향 중앙부(85)측을 향해 커지고 있는 것이 이해된다.
이에 따라, 도 13a~e에 나타내는 바와 같이 하프 스러스트 베어링(8)의 배면(84a)에 대한 스러스트 칼라면(12)의 경사 변화가 발생해도, 도 14a~14e에 나타내는 바와 같이 슬라이딩면(81)과 스러스트 칼라면(12)과의 접촉 위치가, 하프 스러스트 베어링(8)의 크랭크축의 회전 방향 후방측의 둘레 방향 단부(도 13a 및 14a)로부터 크랭크축의 회전 방향 전방측의 둘레 방향 단부(도 13e 및 14e)로, 크랭크축의 회전에 따라 둘레 방향으로 순차 이동한다. 이 때문에 본 실시예의 하프 스러스트 베어링(8)에서는, 둘레 방향 양 단부 부근의 슬라이딩면(81)만이 상시 크랭크축의 스러스트 칼라면(12)과 직접 접촉하여, 손상(피로)되는 것이 방지된다.
또한, 본 실시예의 하프 스러스트 베어링(8)은, 상기한 바와 같이 등두께부(M)보다 둘레 방향 단부(86)측의 영역(XE)에 있어서, 어느 둘레 방향 위치에서도 경사 평면부(81c)의 축선 방향 거리(T)가 하프 스러스트 베어링(8)의 직경 방향 내측 단부에서 최대이며, 직경 방향 외측 단부를 향해 작아지도록 형성되고(도 6 참조), 따라서 하프 스러스트 베어링의 둘레 방향 양 단면을 포함하는 면내에 있어서 내연 기관의 운전 시에 발생하는 크랭크축의 휨에 의해 크랭크축의 스러스트 칼라면(12)이 하프 스러스트 베어링(8)의 슬라이딩면(81)에 대하여 경사진 경우에도, 하프 스러스트 베어링(8)의 둘레 방향 양 단부(86) 부근의 슬라이딩면(81)의 외경측의 영역이 스러스트 칼라면(12)과 강하게 접촉하는 것이 방지된다.
또한, 본 실시예의 하프 스러스트 베어링(8)은, 직경 방향에 걸쳐 축선 방향 거리가 일정한 등두께부(M)의 위치보다 둘레 방향 중앙부측의 영역(XC)에 있어서, 어느 둘레 방향 위치에서도 경사 평면부(81c)의 축선 방향 거리가 직경 방향 내측 단부에서 최소이며, 직경 방향 외측 단부를 향해 커지도록 형성된다(도 7 참조). 따라서, 내연 기관의 운전 시, 등두께부(M)의 위치보다 둘레 방향 중앙부측의 영역(XC)에 있어서 경사 평면부(81c)과 스러스트 칼라면(12)과의 사이의 간극을 흐르는 기름이, 하프 스러스트 베어링(8)의 직경 방향 외측으로 유출되기 어려워져, 슬라이딩면(81)의 둘레 방향 중앙부(85) 부근의 평면부(81a)에 유효한 쐐기 유막이 형성되기 쉽다. 이 때문에, 스러스트 칼라면(12)과 슬라이딩면(81)의 둘레 방향 중앙부(85) 부근이 강하게 접촉하여 큰 마찰 손실을 초래하는 것이 방지된다.
도 15a~15d는, 스러스트 칼라면(12)이 다양한 형상의 슬라이딩면(81)의 둘레 방향 중앙부 부근과 접촉하는 순간의 쐐기 유막(K)의 형성 상태를 나타내는 단면도이며, 도면 중의 화살표는, 크랭크축의 회전 방향 및 유체(윤활유)의 흐름 방향을 나타낸다. 유체의 흐름 방향에 대하여 적절히 끝이 좁아지고 있는 두 면 사이에 유체가 인입되면 압력이 발생하여 쐐기 유막(K)이 형성되지만, 끝이 넓어지는 두 면은 유막이 소실되는 기구이며, 따라서 스러스트 칼라면(21)과 슬라이딩면(81)의 배치에 따라 유막의 형성 상태는 변화된다. 도 15a에 나타내는 바와 같이 슬라이딩면(81)이 평면부를 가지지 않는 경사 평면부(81b)만으로 구성되어 있는 경우, 및 도 15b에 나타내는 바와 같이 슬라이딩면(81)의 평면부(81a)의 둘레 방향 길이가 적절한 범위 미만인 경우, 슬라이딩면(81)의 둘레 방향 중앙부 부근에 유효한 쐐기 유막은 형성되지 않고, 스러스트 칼라면(12)과 슬라이딩면(81)의 둘레 방향 중앙부 부근은 강하게 접촉하여, 마찰 손실이 커진다. 한편, 도 15c에 나타내는 바와 같이 평면부(81a)가 적절한 범위의 둘레 방향 길이를 가지고 있으면, 크랭크축의 회전 방향 후방측의 경사 평면부(81b)로부터 평면부(81a) 전체에 걸쳐 쐐기 유막(K)이 형성되고, 스러스트 칼라면(12)과 슬라이딩면(81)의 둘레 방향 중앙부 부근이 강하게 접촉하여 큰 마찰 손실을 초래하는 것이 방지된다. 그러나, 도 15d에 나타내는 바와 같이 평면부(81a)의 둘레 방향 길이가 적절한 범위를 초과하면, 평면부(81a)의 회전 방향 전방측에서 쐐기 유막(K)이 소실되어, 스러스트 칼라면(12)과 평면부(81a)가 강하게 접촉해버려, 마찰 손실이 커진다. 따라서 스러스트 칼라면(12)과 슬라이딩면(81)이 강하게 접촉하여 마찰 손실이 커지는 것을 방지하기 위해서는, 평면부(81a)의 둘레 방향 길이는 적절한 원주 각도(θ)의 범위 내일 필요가 있고, 적합하게는, 원주 각도(θ)는 5°~35°이다.
이상, 도면을 참조하여, 본 발명의 실시예를 상세하게 설명했지만, 구체적인 구성은 이들 실시예에 한정되지 않고, 본 발명의 요지를 일탈하지 않는 정도의 설계적 변경이 본 발명에 포함되는 것을 이해해야 한다.
예를 들면 실시예에서는, 하프 베어링과 하프 스러스트 베어링이 분리되어 있는 타입의 베어링 장치(1)에 대해 설명했지만, 본 발명은 이에 한정되는 것은 아니고, 하프 베어링과 하프 스러스트 베어링이 일체화된 타입의 베어링 장치(1)에도 적용할 수 있다.
또한 도 16에 나타내는 바와 같이, 위치 결정 및 회전 정지를 위해, 직경 방향 외측으로 돌출되는 돌출부(88)를 구비한 하프 스러스트 베어링(108)에 본 발명을 적용할 수도 있다. 또한, 돌출부(88)는, 상기 서술한 축선 방향 거리(T)의 구성을 만족시키고 있지 않아도 된다. 또한 도 16 및 17에 나타내는 바와 같이 하프 스러스트 베어링의 슬라이딩면(81)의 둘레 방향 양 단부 부근에 스러스트 릴리프(82)를 형성해도 된다. 또한, 도 17에 나타내는 바와 같이 하프 스러스트 베어링(108)의 슬라이딩면(81)과 반대측의 배면(84a)의 둘레 방향 양 단부에 테이퍼를 마련하여, 배면 릴리프(87)를 형성할 수도 있다. 또한, 스러스트 릴리프(82)나 배면 릴리프(87)를 마련한 경우, 상기 서술한 하프 스러스트 베어링의 둘레 방향 양 단부에 있어서의 직경 방향 외측 단부의 베어링 벽 두께(TE)는, 스러스트 릴리프(82)나 배면 릴리프(87)을 마련하지 않은 경우의 가상의 슬라이딩면(81)(슬라이딩면(81)을 둘레 방향 양 단부까지 연장한 면)과 가상의 배면(84a)(배면(84a)을 둘레 방향 양 단부까지 연장한 면) 사이의 축선 방향 거리로 정의된다.
또한 도 16 및 17에 나타내는 바와 같이, 하프 스러스트 베어링(108)의 둘레 방향 길이는, 실시예 1에 나타내는 하프 스러스트 베어링(8)의 둘레 방향 단면의 위치(HR)로부터 소정의 길이(S1)만큼 짧게 형성되어도 된다. 또한, 하프 스러스트 베어링(108)은, 둘레 방향 양 단부 근방에 있어서 내주면을 반경(R)의 원호 형상으로 컷 아웃되어도 된다. 그 경우, 하프 스러스트 베어링의 둘레 방향 단부에 있어서의 베어링 벽 두께(T)는, 길이(S1)나 컷 아웃을 형성하지 않은 경우의 하프 스러스트 베어링의 둘레 방향 단부에서의 베어링 벽 두께에 의해 나타낼 수 있다. 이 하프 스러스트 베어링(108)의 평면부(181a)도 또한, 도 16에 나타나 있는 바와 같이, 하프 스러스트 베어링(108)의 직경 방향 내측 단부의 원호로 규정되는 내주부와, 직경 방향 외측 단부의 원호로 규정되는 외주부와, 둘레 방향 양측에 위치하는 2개의 직선에 의해 둘러싸이는 정면 형상을 가지는 것이라고 정의되고, 평면부(181a)의 둘레 방향 길이는, 하프 스러스트 베어링(108)의 외주부(돌출부(88)를 형성하지 않은 경우의 하프 스러스트 베어링(108)의 외주부)에 있어서 최소이며, 내주부를 향해 점차 커지고 있는, 평면부(181a)의 내주부 및 외주부의 둘레 방향 길이는, 적합하게는, 원주 각도(θ)가 5°~35°이도록 형성된다.
또한, 하프 스러스트 베어링의 슬라이딩면의 직경 방향 외측의 가장자리부 및/또는 직경 방향 내측의 가장자리부에, 둘레 방향을 따라 챔퍼링을 형성할 수도 있다. 그 경우, 하프 스러스트 베어링의 직경 방향 내측 단부에서의 베어링 벽 두께(TI) 및 직경 방향 외측 단부에서의 베어링 벽 두께(TO)는, 챔퍼링을 형성하지 않은 경우의 하프 스러스트 베어링의 직경 방향 내측 단부 및 외경측 단부에서의 베어링 벽 두께에 의해 나타낼 수 있다.
상기 실시예는 모두, 각 경사 평면부(81b, 181b)가 1개의 오일 홈(81c, 181c)을 가지는 하프 스러스트 베어링에 관한 것이지만, 본 발명은 이에 한정되지 않고, 어느 1개의 경사 평면부만이 오일 홈을 가지고 있어도 되거나, 또는 각 경사 평면부가 2개 이상의 오일 홈을 가지고 있어도 된다. 혹은 오일 홈(181c)은, 도 16에 나타내는 바와 같이 원주 각도 45°의 위치에 등두께부(M)와 대응하도록 형성해도 된다.
또한 상기 실시예는, 베어링 장치에 하프 스러스트 베어링을 4개 사용하는 경우에 대해 설명하고 있지만, 본 발명은 이에 한정되는 것은 아니고, 적어도 1개의 본 발명에 의한 하프 스러스트 베어링을 사용함으로써 원하는 효과를 얻을 수 있다. 또한 베어링 장치에 있어서, 본 발명의 하프 스러스트 베어링은, 크랭크축을 회전 가능하게 지지하는 하프 베어링의 축선 방향의 일방 또는 양방의 단면에 일체로 형성되어도 된다.
1 베어링 장치
11 저널부
12 스러스트 칼라면
2 실린더 블록
3 베어링 캡
4 베어링 하우징
5 베어링 구멍(보지 구멍)
6 받이 시트
7 하프 베어링
71 윤활 오일 홈
72 관통 구멍
73 크래시 릴리프
74 둘레 방향 양 단면
75 슬라이딩면
8 하프 스러스트 베어링
81 슬라이딩면
81a 평면부
81b 경사 평면부
81c 오일 홈
82 스러스트 릴리프
83 둘레 방향 양 단면
84 기준면
84a 배면
85 둘레 방향 중앙부
86 둘레 방향 양 단부
87 배면 릴리프
88 돌출부
108 하프 스러스트 베어링
181a 평면부
181b 경사 평면부
f 축선 방향력
T 베어링 벽 두께
M 등두께부
XC 중앙부측 영역
XE 단부측 영역

Claims (6)

  1. 내연 기관의 크랭크축의 축선 방향력을 받기 위한 반원환 형상의 하프 스러스트 베어링으로서, 상기 축선 방향력을 받기 위한 슬라이딩면과, 상기 슬라이딩면의 반대측의 배면을 가지고, 또한 축선 방향에 수직인 기준면을 상기 배면측에 구획 결정하고 있는 하프 스러스트 베어링에 있어서,
    상기 슬라이딩면은, 상기 하프 스러스트 베어링의 직경 방향 내측 단부로부터 직경 방향 외측 단부까지 상기 기준면과 평행하게 연장되는 평면부와, 상기 평면부의 둘레 방향 양측에 형성되는 2개의 경사 평면부로 이루어지고,
    상기 기준면으로부터 상기 슬라이딩면까지의 축선 방향 거리는 상기 평면부에서 최대이며,
    상기 각 경사 평면부에 있어서의 상기 축선 방향 거리는, 어느 직경 방향 위치에 있어서도 상기 하프 스러스트 베어링의 둘레 방향 중앙부측의 상기 경사 평면부의 둘레 방향 단부에서 최대이고, 상기 하프 스러스트 베어링의 둘레 방향 양 단부를 향해 작아지고 있으며,
    상기 각 경사 평면부는, 상기 하프 스러스트 베어링의 상기 둘레 방향 단부로부터 상기 둘레 방향 중앙부를 향해 원주 각도 35°~55°의 범위로, 상기 하프 스러스트 베어링의 상기 직경 방향 내측 단부로부터 상기 직경 방향 외측 단부까지 직선 형상으로 연장되는 단 1개의 등두께부를 가지도록 배치되고, 상기 축선 방향 거리는 상기 등두께부에 걸쳐 일정하며,
    상기 각 경사 평면부에 있어서의 상기 축선 방향 거리는, 상기 등두께부보다 상기 둘레 방향 단부측의 영역에서는, 어느 둘레 방향 위치에 있어서도 상기 직경 방향 내측 단부에서 최대이며, 상기 직경 방향 외측 단부를 향해 작아지고 있고, 또한 상기 등두께부보다 상기 둘레 방향 중앙부측의 영역에서는, 어느 둘레 방향 위치에 있어서도 상기 직경 방향 내측 단부에서 최소이며, 상기 직경 방향 외측 단부를 향해 커지고 있으며, 또한
    상기 평면부는, 상기 하프 스러스트 베어링 중 어느 직경 방향 위치에 있어서도, 5° 이상 35° 이하의 원주 각도에 걸쳐 연장되는 둘레 방향 길이를 가지고 있는 것을 특징으로 하는 하프 스러스트 베어링.
  2. 제 1 항에 있어서,
    상기 배면이 평탄하고, 또한 상기 기준면 내에 위치하고 있는 하프 스러스트 베어링.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 평면부가 상기 하프 스러스트 베어링의 둘레 방향 중앙부를 포함하는 하프 스러스트 베어링.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 평면부의 상기 둘레 방향 길이는, 상기 하프 스러스트 베어링의 상기 직경 방향 내측 단부에 있어서 최소이며, 상기 직경 방향 외측 단부를 향해 점차 커지고 있거나, 또는 상기 하프 스러스트 베어링의 상기 직경 방향 외측 단부에 있어서 최소이며, 상기 직경 방향 내측 단부를 향해 점차 커지고 있는 하프 스러스트 베어링.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 하프 스러스트 베어링의 둘레 방향 양 단면에 수직인 방향에서 상기 하프 스러스트 베어링을 보았을 때, 상기 슬라이딩면의 상기 경사 평면부의 윤곽이 곡선으로 구성되어 있는 하프 스러스트 베어링.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 평면부에 있어서의 상기 축선 방향 거리와, 상기 하프 스러스트 베어링의 상기 둘레 방향 양 단부의 상기 직경 방향 외측 단부에 있어서의 상기 축선 방향 거리의 차가 50~800㎛인 하프 스러스트 베어링.
KR1020180066743A 2017-06-12 2018-06-11 하프 스러스트 베어링 KR102048494B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115160A JP6571130B2 (ja) 2017-06-12 2017-06-12 半割スラスト軸受
JPJP-P-2017-115160 2017-06-12

Publications (2)

Publication Number Publication Date
KR20180135417A true KR20180135417A (ko) 2018-12-20
KR102048494B1 KR102048494B1 (ko) 2019-11-25

Family

ID=62386028

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180066743A KR102048494B1 (ko) 2017-06-12 2018-06-11 하프 스러스트 베어링

Country Status (5)

Country Link
US (1) US10408256B2 (ko)
EP (1) EP3415776B1 (ko)
JP (1) JP6571130B2 (ko)
KR (1) KR102048494B1 (ko)
CN (1) CN109026978B (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869547A (zh) * 2018-07-05 2018-11-23 宁波镇明转轴有限公司 一种汽车传动轴衬套
JP6804578B2 (ja) * 2019-02-08 2020-12-23 大同メタル工業株式会社 内燃機関のクランク軸用の半割スラスト軸受
USD1006829S1 (en) * 2019-08-07 2023-12-05 Transportation Ip Holdings, Llc Bearing apparatus
JP7201719B2 (ja) * 2021-02-12 2023-01-10 大同メタル工業株式会社 半割軸受およびすべり軸受

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201145A (ja) 1998-01-12 1999-07-27 Daido Metal Co Ltd 半割スラスト軸受
JP2013019517A (ja) 2011-07-13 2013-01-31 Fuji Heavy Ind Ltd 滑り軸受
JP2013238277A (ja) 2012-05-15 2013-11-28 Taiho Kogyo Co Ltd スラスト軸受

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201145A (ja) 1988-02-05 1989-08-14 Kawasaki Steel Corp 放射線フィルム整理記号自動作成装置
US5192136A (en) * 1991-12-19 1993-03-09 Federal-Mogul Corporation Crankshaft bearing having hydrodynamic thrust flanges
BR9301036A (pt) * 1993-04-30 1994-11-22 Brasil Compressores Sa Mancal axial para compressores herméticos alternativos
US6511226B2 (en) * 2000-09-05 2003-01-28 Federal-Mogul World Wide, Inc. Aluminum thrust washer
US6481895B2 (en) * 2001-01-16 2002-11-19 Federal-Mogul World Wide, Inc. Flange bearing
US20030128902A1 (en) * 2002-01-10 2003-07-10 Detroit Diesel Corporation Snap together thrust and journal bearing assembly
US7134793B2 (en) * 2004-08-11 2006-11-14 Federal-Mogul Worldwide, Inc. Thrust bearing assembly
US7354199B2 (en) * 2005-06-01 2008-04-08 Federal Mogul Worldwide, Inc. Thrust bearing
GB2496192A (en) * 2011-11-07 2013-05-08 Mahle Int Gmbh A flanged half-bearing
GB2508914A (en) * 2012-12-14 2014-06-18 Mahle Int Gmbh A thrust washer for a sliding bearing
GB2508915A (en) * 2012-12-14 2014-06-18 Mahle Int Gmbh A thrust washer for a sliding bearing
JP2014163402A (ja) * 2013-02-21 2014-09-08 Daido Metal Co Ltd 半割スラスト軸受および軸受装置
JP6100215B2 (ja) 2014-08-04 2017-03-22 大同メタル工業株式会社 半割スラスト軸受、及びそれを用いた軸受装置
JP6092837B2 (ja) * 2014-12-15 2017-03-08 大同メタル工業株式会社 内燃機関のクランク軸用軸受装置
JP6095233B2 (ja) 2014-12-15 2017-03-15 大同メタル工業株式会社 内燃機関のクランク軸用スラスト軸受及び軸受装置
JP6228558B2 (ja) * 2015-03-10 2017-11-08 大豊工業株式会社 スラストすべり軸受
BR102015005671B1 (pt) * 2015-03-13 2022-05-17 Mahle Metal Leve S/A Arruela de encosto
JP2017160980A (ja) * 2016-03-09 2017-09-14 大豊工業株式会社 ワッシャの製造方法
JP6644603B2 (ja) * 2016-03-29 2020-02-12 大豊工業株式会社 ワッシャ
JP2017180589A (ja) * 2016-03-29 2017-10-05 大豊工業株式会社 ワッシャ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11201145A (ja) 1998-01-12 1999-07-27 Daido Metal Co Ltd 半割スラスト軸受
JP2013019517A (ja) 2011-07-13 2013-01-31 Fuji Heavy Ind Ltd 滑り軸受
JP2013238277A (ja) 2012-05-15 2013-11-28 Taiho Kogyo Co Ltd スラスト軸受

Also Published As

Publication number Publication date
EP3415776A1 (en) 2018-12-19
CN109026978B (zh) 2020-12-22
JP2019002418A (ja) 2019-01-10
CN109026978A (zh) 2018-12-18
US10408256B2 (en) 2019-09-10
EP3415776B1 (en) 2021-01-20
KR102048494B1 (ko) 2019-11-25
JP6571130B2 (ja) 2019-09-04
US20180355907A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
KR101866406B1 (ko) 내연 기관의 크랭크축용 베어링 장치
US9188159B2 (en) Half thrust bearing and bearing device
KR20180135417A (ko) 하프 스러스트 베어링
JP6095233B2 (ja) 内燃機関のクランク軸用スラスト軸受及び軸受装置
JP6153587B2 (ja) 内燃機関のクランク軸用の半割スラスト軸受および軸受装置
KR20180135416A (ko) 하프 스러스트 베어링
JP6193316B2 (ja) 内燃機関のクランク軸用スラスト軸受及び軸受装置
JP2016035304A (ja) 半割スラスト軸受、及びそれを用いた軸受装置
EP3502496B1 (en) Half thrust bearing
JP6942471B2 (ja) 半割スラスト軸受
JP6757673B2 (ja) 半割スラスト軸受
JP6692670B2 (ja) ワッシャ
JP2024047719A (ja) 半割スラスト軸受
JP2024047720A (ja) 半割スラスト軸受
JP2016035303A (ja) 内燃機関のクランク軸用軸受装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant