KR20180132923A - 조명 빔 오정렬의 보정을 위한 시스템 및 방법 - Google Patents

조명 빔 오정렬의 보정을 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20180132923A
KR20180132923A KR1020187033743A KR20187033743A KR20180132923A KR 20180132923 A KR20180132923 A KR 20180132923A KR 1020187033743 A KR1020187033743 A KR 1020187033743A KR 20187033743 A KR20187033743 A KR 20187033743A KR 20180132923 A KR20180132923 A KR 20180132923A
Authority
KR
South Korea
Prior art keywords
corrected
offset
zero
component
parameters
Prior art date
Application number
KR1020187033743A
Other languages
English (en)
Other versions
KR102190345B1 (ko
Inventor
지웨이 스티브 쉬
유리 유딧스키
프랑크 리
티모시 스위셔
콴 오영
Original Assignee
케이엘에이-텐코 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이-텐코 코포레이션 filed Critical 케이엘에이-텐코 코포레이션
Publication of KR20180132923A publication Critical patent/KR20180132923A/ko
Application granted granted Critical
Publication of KR102190345B1 publication Critical patent/KR102190345B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/108Scanning systems having one or more prisms as scanning elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/24Optical enhancement of defects or not directly visible states, e.g. selective electrolytic deposition, bubbles in liquids, light emission, colour change

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Slot Machines And Peripheral Devices (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

시스템은 입사 빔을 조정하여 정정된 빔을 형성하도록 구성된 빔 조향 어셈블리, 정정된 빔의 하나 이상의 오프셋 파라미터를 포함하는 정정된 빔에 대한 모니터링 데이터를 생성하도록 구성된 빔 모니터링 어셈블리, 그리고 컨트롤러를 포함하며, 상기 컨트롤러는, 정정된 빔의 하나 이상의 제로 파라미터를 저장하고, 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이를 계산하고, 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이에 기초하여 입사 빔의 하나 이상의 빔 위치 조정을 결정하고, 하나 이상의 모터 드라이버를 통해 하나 이상의 모터를 구동함으로써 입사 빔을 조정하여 정정된 빔을 형성할 것을 빔 조향 어셈블리에게 지시하도록 구성된다.

Description

조명 빔 오정렬의 보정을 위한 시스템 및 방법
관련 출원에 대한 상호 참조
본 출원은 35 U.S.C. § 119(e)에 따라 미국 가특허 출원 번호 62/330,756(출원일: 2016년 5월 2일, 발명의 명칭: 웨이퍼 검사 시스템을 위한 조명 레이저 빔 지터의 능동 보정을 위한 방법 및 시스템(METHOD AND SYSTEM FOR ACTIVE COMPENSATION OF ILLUMINATION LASER BEAM JITTER FOR WAFER INSPECTION SYSTEM), 발명자: 프랑크 리(Frank Li), 스티브 쉬(Steve Xu), 팀 스위셔(Tim Swisher), 콴 오영(Kwan Auyeung), 및 유리 유딧스키(Yury Yuditsky))에 대한 우선권을 주장하며, 이 미국 가특허 출원은 그 전체가 본 명세서에 참조로서 통합된다.
본 발명은 일반적으로 웨이퍼 검사 및 검토에 관한 것이며, 특히 검사 시스템의 조명 빔을 조정하여 오정렬을 보정하는 것에 관한 것이다.
논리 및 메모리 디바이스와 같은 반도체 디바이스의 제조에는 많은 수의 반도체 제조 공정을 사용해 반도체 웨이퍼와 같은 기판을 처리하여 반도체 디바이스의 다양한 피처들과 복수의 레벨을 형성하는 과정이 일반적으로 포함된다. 복수의 반도체 디바이스들은 단일 반도체 웨이퍼 상에서 배열 형태를 갖고 제조되며, 그런 후 개별 반도체 디바이스들로 분리될 수 있다.
제조 공정 중에는 반도체 디바이스에 결함이 발생할 수 있다. 더욱 더 작은 디바이스 피처들을 갖는 집적 회로에 대한 수요가 지속적으로 증가함에 따라, 계속해서 축소되고 있는 이들 디바이스들의 개선된 검사 시스템에 대한 필요성이 지속적으로 증가하고 있다. 극미한 시스템 지터(jitter)라 할지라도 점점 작아지고 있는 디바이스의 포착률에 직접 영향을 미칠 수 있으므로, 이러한 개선된 검사 시스템에서의 조명 빔의 오정렬 보정은 점점 더 중요해지고 있다.
시스템 지터는 복수의 발생원으로부터 비롯될 수 있으며, 이로 인해 0.1Hz 내지 100Hz 범위의 지터 주파수 분포가 발생한다. 시스템 지터의 발생원 중 하나는 퍼지 에어(purge air)에 의해 조명 빔 경로를 따라 발생하여 압력 변화 구역을 형성하고 공기의 굴절률을 변화시키는 난기류, 즉 "공기 흔들림(air wiggle)"이며, 이는 5Hz 내지 100Hz의 주파수 범위에서 조명 빔의 위치의 포인팅 및 병진이동 성분들에 영향을 미친다. 시스템 지터의 또 다른 발생원은 조명 광원이며, 이는 0.5Hz 내지 10Hz의 주파수 범위의 내재적 불안정성을 가질 것이다. 시스템 지터의 세 번째 발생원은, 다양한 외력에 의해 잠재적으로 여기되어 발생할 수 있는, 광학 마운트 및 기계적 접촉부와 같은 검사 시스템 컴포넌트들의 기계적 진동이며, 이는 0.1Hz 내지 100Hz의 주파수 범위에서 조명 빔의 위치의 포인팅 및 병진이동 성분들에 영향을 미친다.
이러한 시스템 지터 발생원들은 검사 시스템으로부터 효과적으로 제거하기에 너무 어려운 경우가 많은데, 이는 개선된 검사 시스템 내에서 보정되지 않는 경우 조명 빔이 오정렬된 상태를 유지할 것이라는 것을 의미한다.
따라서, 상술한 바와 같은 이전의 접근법의 단점을 해소하기 위한 시스템 및 방법을 제공하는 것이 바람직할 것이다.
본 개시의 하나 이상의 실시예에 따른 시스템을 개시한다. 하나의 예시적 실시예에서, 시스템은 입사 빔을 조정하여 정정된 빔을 형성하도록 구성된 빔 조향 어셈블리를 포함한다. 또 다른 예시적 실시예에서, 시스템은 빔 조향 어셈블리에 광학적으로 커플링된 빔 모니터링 어셈블리를 포함한다. 또 다른 예시적 실시예에서, 빔 모니터링 어셈블리는 정정된 빔에 대한 모니터링 데이터를 생성하도록 구성된다. 또 다른 예시적 실시예에서, 모니터링 데이터는 정정된 빔의 하나 이상의 오프셋 파라미터를 포함한다. 또 다른 예시적 실시예에서, 시스템은 빔 모니터링 어셈블리 및 빔 조향 어셈블리에 통신가능하게 커플링된 컨트롤러를 포함한다. 또 다른 예시적 실시예에서, 컨트롤러는 메모리에 저장된 프로그램 명령어들의 세트를 실행하도록 구성된 하나 이상의 프로세서를 포함한다. 또 다른 예시적 실시예에서, 프로그램 명령어는 하나 이상의 프로세서로 하여금 정정된 빔의 하나 이상의 제로(zero) 파라미터를 저장하게 하도록 구성된다. 또 다른 예시적 실시예에서, 프로그램 명령어는 하나 이상의 프로세서로 하여금 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이를 계산하게 하도록 구성된다. 또 다른 예시적 실시예에서, 프로그램 명령어는 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이에 기초하여 하나 이상의 프로세서로 하여금 입사 빔의 하나 이상의 빔 위치 조정을 결정하게 하도록 구성된다. 또 다른 예시적 실시예에서, 프로그램 명령어는 하나 이상의 프로세서로 하여금, 하나 이상의 모터 드라이버를 통해 하나 이상의 모터를 구동시킴으로써 입사 빔을 조정하여 정정된 빔을 형성할 것을 빔 조향 어셈블리에게 지시하게 하도록 구성된다.
본 개시의 하나 이상의 실시예에 따른 방법을 개시한다. 일 실시예에서, 방법은 입사 빔을 수광하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 방법은 빔 조향 어셈블리를 통해 입사 빔을 조정하여 정정된 빔을 형성하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 방법은 정정된 빔에 대한 모니터링 데이터를 생성하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예시적 실시예에서, 모니터링 데이터는, 빔 모니터링 어셈블리를 통한, 정정된 빔의 하나 이상의 오프셋 파라미터를 포함한다. 또 다른 실시예에서, 방법은 정정된 빔의 하나 이상의 제로 파라미터를 저장하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 방법은 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이를 계산하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 방법은 정정된 빔의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이에 기초하여 입사 빔의 하나 이상의 빔 위치 조정을 결정하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 방법은 하나 이상의 모터 드라이버를 통해, 하나 이상의 빔 위치 조정에 기초하여 하나 이상의 모터를 구동시킴으로써 입사 빔을 조정하여 정정된 빔을 형성할 것을 빔 조향 어셈블리에게 지시하는 단계를 포함할 수 있으나, 이에 국한되는 것은 아니다.
상술한 일반적인 설명 및 후술할 상세한 설명은 오직 예시 및 설명을 위한 것이며 본 개시를 필연적으로 제한하는 것이 아님을 이해해야 한다. 본 명세서에 통합되어 특징의 일부를 구성하는 첨부된 도면은 본 개시의 주제를 나타낸다. 이러한 설명 및 도면은 함께 본 개시의 원리를 설명하는 역할을 한다.
당업자는 다음과 같은 첨부된 도면을 참조하여 본 개시의 여러 이점을 더욱 명확히 이해할 수 있다.
도 1a는 본 개시의 하나 이상의 실시예에 따른, 가우시안 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프를 도시한 도면.
도 1b는 본 개시의 하나 이상의 실시예에 따른, 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 플랫톱(flat-top) 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프를 도시한 도면.
도 1c는 본 개시의 하나 이상의 실시예에 따른, 오프셋된 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 모델링된 플랫톱 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프를 도시한 도면.
도 1d는 본 개시의 하나 이상의 실시예에 따른, 오프셋된 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 모델링된 플랫톱 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프를 도시한 도면.
도 1e는 본 개시의 하나 이상의 실시예에 따른, 복수의 중심 이탈 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 복수의 플랫톱 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프를 도시한 도면.
도 1f는 본 개시의 하나 이상의 실시예에 따른, 검사 시스템 내에서의 시간의 함수로서 측정된 지터의 그래프를 도시한 도면.
도 1g는 본 개시의 하나 이상의 실시예에 따른, 검사 시스템 내에서의 지터 주파수 대 상대적 지터 진폭의 그래프를 도시한 도면.
도 2는 본 개시의 하나 이상의 실시예에 따른, 조명 빔 오정렬을 보정하기 위한 시스템의 블록도를 도시한 도면.
도 3a는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 3b는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 3c는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 3d는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 3e는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도 를 도시한 도면.
도 4는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 5는 본 개시의 하나 이상의 실시예에 따른, 빔 조향 어셈블리의 블록도를 도시한 도면.
도 6a는 본 개시의 하나 이상의 실시예에 따른, 빔 모니터링 어셈블리의 블록도를 도시한 도면.
도 6b는 본 개시의 하나 이상의 실시예에 따른, 빔 모니터링 어셈블리의 블록도를 도시한 도면.
도 6c는 본 개시의 하나 이상의 실시예에 따른, 빔 모니터링 어셈블리의 블록도를 도시한 도면.
도 7은 본 개시의 하나 이상의 실시예에 따른, 조명 빔 오정렬을 보정하기 위한 방법을 나타낸 흐름도를 도시한 도면.
이제, 개시된 주제를 상세히 언급할 것이며, 이는 첨부된 도면에 도시되어 있다.
도 1a 내지 도 7을 참조하여, 본 개시의 하나 이상의 실시예에 따른, 조명 빔 오정렬을 보정하기 위한 시스템 및 방법을 개시한다.
일부 경우, 검사 시스템은 가우시안 빔 초점 평면에 포커싱된 조명 빔을 구현한다. 초점 평면에 포커싱함으로써, 이러한 검사 시스템은 검사 시스템 내 병진이동 지터로부터의 조명 빔 위치의 최소한의 영향만을 관측한다. 도 1a는 가우시안 조명 빔 프로파일에 대한 빔 위치(단위: ㎛) 대 상대적 세기의 그래프(100)를 데이터(102) 및 피팅(fit) 곡선(104)을 사용하여 도시한다.
개선된 검사 시스템은 이 대신에, 가우시안 조명 빔을 빔 모듈레이터에 통과시킴으로써 형성된 플랫톱 조명 빔을 구현한다. 도 1b는 플랫톱 조명 빔 프로파일에 대한 빔 위치(단위: ㎛) 대 상대적 세기의 그래프(110)를 데이터(112)를 사용하여 도시한다.
플랫톱 조명 빔 프로파일의 품질은 빔 모듈레이터 상에서의 가우시안 빔의 위치와 상관되어 있다. 가우시안 빔이 중심으로부터 오프셋되어 있는 경우, 플랫톱 프로파일은 원치 않는 기울기 특징을 플랫톱 프로파일의 가장자리 상에서 오프셋 방향으로 가질 것이다. 도 1c는 -0.1mm만큼 오프셋된 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 모델링된 플랫톱 조명 빔 프로파일에 대한 빔 위치(단위: mm) 대 상대적 세기의 그래프(120)를 데이터(122), 피팅 곡선(124), 및 비교 곡선(126)을 사용하여 도시한다. 도 1d는 +0.1mm만큼 오프셋된 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 모델링된 플랫톱 조명 빔 프로파일의 빔 위치(단위: mm) 대 상대적 세기의 그래프(130)를 데이터(132), 피팅 곡선(134), 및 비교 곡선(136)을 사용하여 도시한다.
입력된 가우시안 조명 빔 내의 임의의 포인팅 또는 병진이동 지터가 빔 모듈레이터 상에서 실시간으로 나타날 것이며, 이때 플랫톱 프로파일은 입력된 가우시안 조명 빔 내의 포인팅 또는 병진이동 지터의 주파수와 유사한 주파수로 가우시안 조명 빔의 가장자리에서 요동(rock)을 일으킨다. 도 1e는 복수의 오프셋된 가우시안 조명 빔으로부터 빔 모듈레이터에 의해 생성된 복수의 모델링된 플랫톱 조명 빔 프로파일에 대한 빔 위치 대 상대적 세기의 그래프(140)를 도시한다. 예컨대, 데이터(142a)와 피팅 곡선(142b)은 -150㎛의 빔 오프셋을 도시한다. 또 다른 예로서, 데이터(144a)와 피팅 곡선(144b)은 -300㎛의 빔 오프셋을 도시한다. 또 다른 예로서, 데이터(146a)와 피팅 곡선(146b)은 -50㎛의 빔 오프셋을 도시한다. 또 다른 예로서, 데이터(148a)와 피팅 곡선(148b)은 150㎛의 빔 오프셋을 도시한다. 또 다른 예로서, 데이터(150a)와 피팅 곡선(150b)은 300㎛의 빔 오프셋을 도시한다. 또 다른 예로서, 데이터(152a)와 피팅 곡선(152b)은 50㎛의 빔 오프셋을 도시한다.
개선된 검사 시스템 내의 지터 중 약 99%는 임계 광학 평면에서 100㎛를 초과하며, 이는 검사 시스템 신호 안정성 및 포착률에 영향을 미치는 크기 불안정성을 초래한다. 도 1f는 검사 시스템 내에서의 시간(단위: 초)의 함수로서 측정된 지터(단위: ㎛)의 그래프(160)를 데이터(162)를 사용하여 도시한다. 도 1g는 검사 시스템 내에서의 지터의 주파수(단위: Hz) 대 지터의 상대적 진폭의 그래프(170)를 데이터(172)를 사용하여 도시한다.
이와 같이, 조명 빔의 오정렬을 보정하여 시스템 지터를 줄일 수 있는 능력을 갖춘 개선된 검사 시스템을 제공하는 것이 바람직할 것이다. 예컨대, 개선된 검사 시스템은 시스템 지터를 약 10배 줄일 수 있는 것이 바람직할 것이다.
본 개시의 실시예는 조명 빔 오정렬을 보정하기 위한 시스템 및 방법에 관한 것이다. 또한, 본 개시의 실시예는 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 조명 빔 크기, 및/또는 조명 빔 브리딩(breathing) 데이터 중 하나 이상을 측정하는 것에 관한 것이다. 또한, 본 개시의 실시예는 측정된 데이터에 기초한 하나 이상의 조명 빔 조정의 결정에 관한 것이다. 또한, 본 개시의 실시예는 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 조명 빔의 크기의 드리프트(drift), 및/또는 조명 빔 브리딩 데이터의 변동 중 하나 이상을 조정함으로써 정정된 조명 빔을 형성하는 것에 관한 것이다. 또한, 본 개시의 실시예는 조명 빔의 측정, 조명 빔에 대한 조정의 결정, 그리고 x 방향 및/또는 y 방향 중 하나 이상의 방향으로 정정된 빔을 형성하기 위한 조명 빔의 조정에 관한 것이다.
도 2는 본 개시의 하나 이상의 실시예에 따른, 조명 빔 오정렬을 보정하기 위한 시스템(200)의 블록도를 도시한다. 일 실시예에서, 시스템(200)은 조명원(202)을 포함한다. 또 다른 실시예에서, 시스템(200)은 빔 조향 어셈블리(204)를 포함한다. 또 다른 실시예에서, 시스템(200)은 빔 모니터링 어셈블리(206)를 포함한다. 또 다른 실시예에서, 시스템(200)은 컨트롤러(210)를 포함한다. 또 다른 실시예에서, 시스템(200)은 하나 이상의 모터 드라이버(220)를 포함한다. 또 다른 실시예에서, 시스템(200)은 빔 모듈레이터(230)를 포함한다.
조명원(202)은 광대역 광원 또는 협대역 광원을 비롯하여 당업계에 공지된 임의의 조명원을 포함할 수 있으나, 이에 국한되는 것은 아니다. 일 실시예에서, 조명원(202)은 하나 이상의 레이저를 포함한다. 예컨대, 조명원(202)은 전자기 스펙트럼의 적외선, 가시광선, 및/또는 자외선 부분의 복사선을 방출할 수 있는, 당업계에 공지된 임의의 레이저 또는 레이저 시스템을 포함할 수 있다. 예를 들면, 조명원(202)은 하나 이상의 다이오드 레이저, 하나 이상의 연속파(CW) 레이저, 하나 이상의 이온 레이저 등을 포함할 수 있으나, 이에 국한되는 것은 아니다.
일 실시예에서, 조명원(202)은 입사 빔(203)을 생성한다. 또 다른 실시예에서, 빔 조향 어셈블리(204)는 조명원(202)에 광학적으로 커플링된다. 이와 관련하여, 조명원(202)은 입사 빔(203)을 생성하고 입사 빔(203)을 빔 조향 어셈블리(204)에 지향시킨다. 예컨대, 조명원(202)은 입사 빔(203)을 광학 요소 어셈블리(240)를 거쳐 빔 조향 어셈블리(204)에 지향시킬 수 있다. 예를 들면, 광학 요소 어셈블리(240)는 조향 광학계, 거울, 빔 스플리터, 렌즈, 집광 개구면, 필터 등과 같은 광학 기술 분야에 공지된 하나 이상의 광학 요소를 포함할 수 있으나, 이에 국한되는 것은 아니다.
또 다른 실시예에서, 빔 조향 어셈블리(204)는 정정된 빔(205)을 형성하도록 입사 빔(203)을 조정한다. 또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 빔 조향 어셈블리(204)에 광학적으로 커플링된다. 또 다른 실시예에서, 빔 조향 어셈블리(204)는 정정된 빔(205)을 빔 모니터링 어셈블리(206)에 지향시킨다. 예컨대, 빔 조향 어셈블리(204)는 정정된 빔(205)을 광학 요소 어셈블리(250)를 거쳐 빔 모니터링 어셈블리(206)에 지향시킬 수 있다. 예를 들면, 광학 요소 어셈블리(250)는 조향 광학계, 거울, 빔 스플리터, 렌즈, 집광 개구면, 필터 등과 같은 광학 기술 분야에 공지된 하나 이상의 광학 요소를 포함할 수 있으나, 이에 국한되는 것은 아니다.
또 다른 실시예에서, 빔 조향 어셈블리(204)는 하나 이상의 모터 드라이버(220)와 컨트롤러(210) 중 하나 이상에 통신가능하게 커플링된다.
또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 정정된 빔(205)의 적어도 일부분을 빔 모듈레이터(230)에 지향시킨다. 예컨대, 빔 모듈레이터(230)는 빔 성형 광학 요소를 포함할 수 있으나, 이에 국한되는 것은 아니다. 예를 들면, 빔 성형 광학 요소는 다중 곡면 렌즈 또는 굴절 광학 요소를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 빔 모니터링 어셈블리(206)는 정정된 빔(205)을 광학 요소 어셈블리(260)를 거쳐 빔 모듈레이터(230)에 지향시킬 수 있다. 예를 들면, 광학 요소 어셈블리(260)는 조향 광학계, 거울, 빔 스플리터, 렌즈, 집광 개구면, 필터 등과 같은 광학 기술 분야에 공지된 하나 이상의 광학 요소를 포함할 수 있으나, 이에 국한되는 것은 아니다.
또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 컨트롤러(210)에 통신가능하게 커플링된다. 또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 정정된 빔(205)에 대한 하나 이상의 세트의 모니터링 데이터를 생성한다. 예컨대, 하나 이상의 세트의 모니터링 데이터는 하나 이상의 빔 모니터링 센서를 통해 생성된다. 예를 들면, 하나 이상의 빔 모니터링 센서는 본 명세서에서 추가적으로 상세히 설명하는 바와 같이 하나 이상의 카메라 또는 하나 이상의 바이셀(bi-cell) 검출기를 포함할 수 있으나, 이에 국한되는 것은 아니다.
또 다른 실시예에서, 하나 이상의 세트의 모니터링 데이터는 정정된 빔(205)의 하나 이상의 오프셋 파라미터를 포함한다. 예컨대, 하나 이상의 오프셋 파라미터는 정정된 빔(205)의 오프셋 위치의 오프셋 포인팅 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 정정된 빔(205)의 오프셋 위치의 오프셋 병진이동 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 오프셋 빔 크기를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 오프셋 빔 브리딩 데이터를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 정정된 빔(205)의 하나 이상의 오프셋 파라미터는 x 방향 성분 및/또는 y 방향 성분 중 하나 이상을 포함할 수 있다. 또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 정정된 빔(205)에 대한 하나 이상의 세트의 모니터링 데이터를 컨트롤러(210)로 송신한다.
일 실시예에서, 하나 이상의 모터 드라이버(220)는 빔 조향 어셈블리(204)와 컨트롤러(210) 중 하나 이상에 통신가능하게 커플링된다. 또 다른 실시예에서, 하나 이상의 모터 드라이버(220)는 본 명세서에서 추가적으로 상세히 설명하는 바와 같이, 컨트롤러(210)로부터 수신된 하나 이상의 빔 위치 조정에 기초하여 빔 조향 어셈블리(204) 내의 하나 이상의 모터를 구동시킨다.
또 다른 실시예에서, 빔 조향 어셈블리(204)는 하나 이상의 인코더를 포함한다. 또 다른 실시예에서, 인코더는 하나 이상의 모터의 구동을 수반시키는 데이터를 생성한다. 또 다른 실시예에서, 빔 조향 어셈블리(204)는 생성된 인코더 데이터를 컨트롤러(210)에 송신하기 전에 집성화시키며, 컨트롤러(210)는 집성화된 인코더 데이터를, 수신 시, 집성화해제시킨다. 또 다른 실시예에서, 시스템(200)은 생성된 인코더 데이터를 비 집성화 형태로 수신한다.
일 실시예에서, 컨트롤러(210)는 하나 이상의 프로세서(212) 및 메모리 매체(214)를 포함한다. 또 다른 실시예에서, 하나 이상의 세트의 프로그램 명령어(216)가 메모리 매체(214)에 저장된다. 또 다른 실시예에서, 하나 이상의 프로세서(212)는 프로그램 명령어의 세트(216)를 실행하여 본 개시 전반에 걸쳐 설명되는 다양한 단계 중 하나 이상을 수행하도록 구성된다.
또 다른 실시예에서, 컨트롤러(210)는 하나 이상의 모터 드라이버(220), 빔 조향 어셈블리(204), 및 빔 모니터링 어셈블리(206) 중 하나 이상에 통신가능하게 커플링된다. 또 다른 실시예에서, 컨트롤러(210)는 유선 및/또는 무선 부분을 포함할 수 있는 송신 매체에 의해 다른 시스템 또는 어셈블리로부터 데이터 또는 정보(예컨대, 빔 모니터링 어셈블리(206)로부터의 하나 이상의 세트의 모니터링 데이터, 빔 조향 어셈블리(204)로부터의 하나 이상의 세트의 인코더 데이터, 또는 사용자 인터페이스를 통해 수신된 하나 이상의 사용자 입력)를 수신 및/또는 획득하도록 구성된다. 또 다른 실시예에서, 시스템(200)의 컨트롤러(210)는 유선 및/또는 무선 부분을 포함할 수 있는 송신 매체에 의해 하나 이상의 시스템 또는 어셈블리에게 데이터 또는 정보(예컨대, 본 명세서에서 개시된 하나 이상의 프로시저의 출력)(예컨대, 하나 이상의 모터 드라이버(220), 빔 조향 어셈블리(204), 빔 모니터링 어셈블리(206), 또는 사용자 인터페이스로의 하나 이상의 커맨드)를 송신하도록 구성된다. 이에 관하여, 송신 매체는 시스템(200)의 컨트롤러(210)와 다른 어셈블리들 간의 데이터 링크로서 역할을 할 수 있다. 또 다른 실시예에서, 컨트롤러(210)는 송신 매체(예: 네트워크 연결)를 통해 외부 시스템에게 데이터를 전송하도록 구성된다.
일 실시예에서, 프로그램 명령어의 세트(216)는 하나 이상의 프로세서(212)로 하여금 정정된 빔(205)에 대한 하나 이상의 제로 파라미터를 저장하게 하도록 프로그래밍된다. 예컨대, 하나 이상의 제로 파라미터는 정정된 빔(205)의 제로 위치의 제로 포인팅 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 제로 파라미터는 정정된 빔(205)의 제로 위치의 제로 병진이동 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 제로 파라미터는 제로 빔 크기를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 제로 파라미터는 제로 빔 브리딩 데이터를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 정정된 빔(205)의 하나 이상의 제로 파라미터는 x 방향 성분 및/또는 y 방향 성분 중 하나 이상을 포함한다.
또 다른 실시예에서, 프로그램 명령어의 세트(216)는 하나 이상의 프로세서(212)로 하여금 빔 모니터링 어셈블리(206)로부터 하나 이상의 세트의 모니터링 데이터를 수신하게 하도록 프로그래밍된다. 또 다른 실시예에서, 컨트롤러(210)는 정정된 빔(205)의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 하나 이상의 차이를 계산한다. 예컨대, 하나 이상의 차이를 계산하는 것은 정정된 빔(205)의 제로 위치의 제로 포인팅 성분과 정정된 빔(205)의 오프셋 위치의 오프셋 포인팅 성분 사이의 포인팅 차이의 계산을 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 것은 정정된 빔(205)의 제로 위치의 제로 병진이동 성분과 정정된 빔(205)의 오프셋 위치의 오프셋 병진이동 성분 사이의 병진이동 차이의 계산을 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 것은 제로 빔 크기와 오프셋 빔 크기 사이의 빔 크기 차이의 계산을 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 것은 제로 빔 브리딩 데이터와 오프셋 빔 브리딩 데이터 사이의 빔 브리딩 데이터 차이의 계산을 포함할 수 있다.
또 다른 실시예에서, 프로그램 명령어의 세트(216)는 정정된 빔(205)의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 계산된 하나 이상의 차이에 기초하여 하나 이상의 프로세서(212)로 하여금 입사 빔(203)의 하나 이상의 빔 위치 조정을 결정하게 하도록 프로그래밍된다. 또 다른 실시예에서, 컨트롤러(210)는 하나 이상의 빔 위치 조정을 하나 이상의 모터 드라이버(220)로 송신한다.
또 다른 실시예에서, 프로그램 명령어의 세트(216)는 하나 이상의 프로세서(212)로 하여금, 하나 이상의 모터 드라이버(220)를 통해, 하나 이상의 모터를 구동시킴으로써 입사 빔(203)을 조정하여 정정된 빔(205)을 형성할 것을, 빔 조향 어셈블리(204)에게 지시하게 하도록 프로그래밍된다. 예컨대, 하나 이상의 모터 드라이버(220)는 하나 이상의 빔 위치 조정에 기초하여 입사 빔(203)을 조정할 수 있다. 예를 들면, 하나 이상의 빔 위치 조정은 빔 조향 어셈블리(204)의 하나 이상의 광학 컴포넌트에 커플링된 하나 이상의 모터를 구동하기 위한 하나 이상의 커맨드를 포함할 수 있으며, 하나 이상의 광학 컴포넌트에 대해서는 본 명세서에서 추가적으로 상세히 설명한다.
또 다른 실시예에서, 프로그램 명령어의 세트(216)는 하나 이상의 프로세서(212)로 하여금 빔 조향 어셈블리(204)로부터 수신된 생성된 인코더 데이터에 기초하여 하나 이상의 모터의 구동을 확인하게 하도록 프로그래밍된다.
일 실시예에서, 컨트롤러(210)의 하나 이상의 프로세서(212)는 당업계에 공지된 하나 이상의 처리 요소를 포함한다. 이러한 의미에서, 하나 이상의 프로세서(212)는 알고리즘 및/또는 명령어를 실행하도록 구성된 임의의 마이크로프로세서 디바이스를 포함할 수 있다. 예컨대, 하나 이상의 프로세서(212)는 본 개시 전반에 걸쳐 설명되는 바와 같이 시스템(200)을 작동하도록 구성된 프로그램을 실행하도록 구성된 데스크톱 컴퓨터, 메인프레임 컴퓨터 시스템, 워크스테이션, 이미지 컴퓨터, 병렬 프로세서, 차량 내장 컴퓨터, 휴대용 컴퓨터(예: 태블릿, 스마트폰, 또는 패블릿) 또는 기타 컴퓨터 시스템(예: 네트워크로 연결된 컴퓨터)으로 구성될 수 있다. 본 개시 전반에 걸쳐 설명되는 단계들은 단일 컴퓨터 시스템 또는, 대안적으로, 복수의 컴퓨터 시스템에 의해 수행될 수 있다는 것을 인지해야 한다. "프로세서" 용어는 비일시적 메모리 매체{예: 메모리(214)}로부터 프로그램 명령어(216)를 실행하는 하나 이상의 처리 요소를 갖는 임의의 디바이스를 망라하도록 광범위하게 정의될 수 있다. 또한, 시스템(200)의 다양한 어셈블리{예: 빔 조향 어셈블리(204), 빔 모니터링 어셈블리(206), 하나 이상의 모터 드라이버(220), 또는 사용자 인터페이스}는 본 개시 전반에 걸쳐 설명되는 단계들 중 적어도 일부를 수행하기에 적합한 프로세서 또는 논리 요소를 포함할 수 있다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
일 실시예에서, 컨트롤러(210)의 메모리 매체(214)는 연관된 하나 이상의 프로세서(212)에 의해 실행될 수 있는 프로그램 명령어(216)를 저장하는 데 적합한, 당업계에 공지된 임의의 메모리 매체를 포함한다. 예컨대, 메모리 매체(214)는 비일시적 메모리 매체를 포함할 수 있다. 예를 들어, 메모리 매체(214)는 읽기 전용 메모리, 랜덤 액세스 메모리, 자기 또는 광학 메모리 디바이스(예: 디스크), 자기 테이프, SSD(solid state drive) 등을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 메모리(214)는 디스플레이 디바이스에 디스플레이 정보를 제공하고/제공하거나 또는 본 명세서에 설명된 다양한 단계의 출력을 제공하도록 구성됨을 알 수 있다. 또한, 메모리(214)는 하나 이상의 프로세서(212)와 함께 공통 컨트롤러 하우징에 하우징됨을 알 수 있다. 한 대안적 실시예에서, 메모리(214)는 프로세서(212) 및 컨트롤러(210)의 물리적 위치에 대해 원격적으로 위치할 수 있다. 예를 들면, 컨트롤러(210)의 하나 이상의 프로세서(212)는 네트워크(예: 인터넷, 인트라넷 등)를 통해 액세스할 수 있는 원격 메모리(예: 서버)에 액세스할 수 있다. 또 다른 실시예에서, 메모리 매체(214)는 하나 이상의 프로세서(212)로 하여금 본 개시 전반에 걸쳐 설명되는 다양한 단계를 수행하도록 하는 프로그램 명령어(216)를 저장한다.
추가적인 실시예에서, 시스템(200)은 사용자 인터페이스를 포함한다. 또 다른 실시예에서, 사용자 인터페이스는 컨트롤러(210)의 하나 이상의 프로세서(212)에 통신가능하게 커플링된다. 또 다른 실시예에서, 사용자 인터페이스는 디스플레이 디바이스{예: 액정 디스플레이(LCD), 유기 발광 다이오드(OLED) 디스플레이, 음극관(CRT) 디스플레이 등}를 포함한다. 또 다른 실시예에서, 사용자 인터페이스는 사용자 입력 디바이스(예: 키보드, 마우스, 터치 스크린 등)를 포함한다.
추가적인 실시예에서, 시스템(200)은 샘플을 고정하도록 구성된 스테이지를 포함할 수 있다. 또 다른 실시예에서, 빔 모듈레이터(230)에 의해 생성된 조명 빔은 스테이지 상에 고정된 샘플을 조명한다. 또 다른 실시예에서, 샘플은 웨이퍼를 포함한다. 예컨대, 샘플은 반도체 웨이퍼를 포함할 수 있으나, 이에 국한되는 것은 아니다. 본 개시 전반에 걸쳐 사용되는 "웨이퍼(wafer)" 용어는 반도체 및/또는 비반도체 재료로 형성된 기판을 지칭한다. 예를 들면, 반도체 또는 반도체 재료는 단결정 실리콘, 비화 갈륨(gallium arsenide), 및 인화 인듐(indium phosphide)을 포함할 수 있으나, 이에 국한되는 것은 아니다.
또 다른 실시예에서, 샘플 스테이지는 당업계에 공지된 임의의 적절한 기계식 및/또는 로봇식 어셈블리를 포함할 수 있다. 또 다른 실시예에서, 컨트롤러(210){또는 시스템(200) 내의 또 다른 컨트롤러}는 샘플 스테이지를 구동할 수 있다. 예컨대, 컨트롤러(210){또는 시스템(200) 내의 또 다른 컨트롤러}에 의해 샘플 스테이지는 선택된 위치 또는 배향으로 샘플을 구동하도록 구성될 수 있다. 예를 들면, 샘플 스테이지는 모터 또는 서보를 포함한 하나 이상의 액추에이터를 포함하거나 이러한 액추에이터에 기계적으로 커플링될 수 있으나 이에 국한되는 것은 아니며, 여기서 하나 이상의 액추에이터는 선택된 검사 또는 계측 알고리즘에 따라서 위치 지정, 포커싱, 및/또는 스캐닝을 위해 샘플을 병진이동 또는 회전하도록 구성되고, 당업계에는 이러한 알고리즘이 다수 공지되어 있다.
추가적인 실시예에서, 시스템(200)은 샘플의 표면으로부터 반사 및/또는 산란되는 조명을 하나 이상의 검출기에 지향시키도록 구성된 하나 이상의 광학 컴포넌트를 포함할 수 있다. 예컨대, 검출기는 당업계에 공지된 임의의 적절한 검출기를 포함할 수 있다. 예를 들면, 검출기는 하나 이상의 광전 증폭관(PMT), 전하 결합 소자(CCD), 시간 지연 적분(TDI) 카메라 등을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또한, 검출기의 출력은 통신가능하게 컨트롤러(210)에 커플링될 수 있다.
한 예에서, 검출기는 컨트롤러(210)가 검출기에 의해 생성된 출력을 수신할 수 있도록 임의의 적절한 방식으로(예: 도 2에서 점선으로 표시된 하나 이상의 송신 매체에 의해) 컨트롤러(210)에 커플링될 수 있다. 또 다른 예로서, 복수의 검출기가 존재하는 경우, 컨트롤러(210)는 상술한 바와 같이 복수의 검출기에 커플링될 수 있다. 컨트롤러(210)는 검출기에 의해 수집 및 전송된 검출 데이터를 사용하고 당업계에 공지된 임의의 방법 및/또는 알고리즘을 활용하여 샘플의 하나 이상의 결함을 검출함으로써 웨이퍼 상의 결함을 검출하도록 구성될 수 있음을 알 수 있다. 예컨대, 검출기는 시스템(200)의 또 다른 어셈블리로부터의 명령어를 받아들이도록 구성될 수 있으며, 이러한 또 다른 어셈블리는 컨트롤러(210)를 포함하나 이에 국한되는 것은 아니다.
검출기는 하나 이상의 결함의 위치를 확인하기 위하여 샘플의 표면으로부터 반사, 산란, 회절, 및/또는 방사된 조명을 집광 및 분석하도록 구성된 임의의 검출기를 포함할 수 있음을 알 수 있다. 본 개시의 목적을 위하여, 결함은 기공(void), 단락(short), 미립자(particle), 잔여물(residue), 찌꺼기(scum), 또는 당업계에 공지된 임의의 기타 결함으로 분류될 수 있다.
빔 모니터링 어셈블리(206)를 통한 모니터링 데이터의 생성 및 하나 이상의 모터 드라이버(220)를 통해 정정된 빔(205)을 형성하기 위한 입사 빔(203)의 조정을 포함하는 시스템(200)의 일부분은 본 개시의 목적을 위하여 폐쇄 보정 루프(closed compensation loop)임을 알 수 있으며, 이때 입사 빔(203)의 조정은 모니터링 데이터로부터 컨트롤러(210)에 의해 결정되는 하나 이상의 빔 조정에 기초한다. 그러나 시스템(200)의 상술한 부분이 폐 보정 루프가 아니라 개방 보정 루프(open compensation loop)가 되도록 하나 이상의 외부 소스가 시스템(200)에 작용할 수 있다는 것이 구상가능하다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
도 2에 도시된 시스템(200)의 실시예는 본 명세서에 설명된 것과 같이 추가적으로 구성될 수 있다. 또한, 시스템(200)은 본 명세서에 설명된 모든 시스템 및 방법 실시예(들)의 임의의 다른 단계(들)을 수행하도록 구성될 수 있다.
도 3a 내지 도 5는 본 개시의 하나 이상의 실시예에 따른 빔 조향 어셈블리(204a, 204b, 및 204c)를 도시한다. 달리 언급이 없는 한, 본 개시 전반에 걸쳐 설명되는 실시예 및 예는 도 3a 내지 도 5에서의 빔 조향 어셈블리(204a, 204b, 및 204c)로 확장되는 것으로 해석해야 함을 알 수 있다.
도 3a 내지 도 3e는 본 개시의 하나 이상의 실시예에 따른 빔 조향 어셈블리(204a)를 도시한다. 일 실시예에서, 빔 조향 어셈블리(204a)는 하나 이상의 모터(304)에 커플링된 제1 프리즘(302)을 포함한다. 또 다른 실시예에서, 하나 이상의 모터(304)는 하나 이상의 모터 드라이버(220)에 커플링된다. 또 다른 실시예에서, 빔 조향 어셈블리(204a)는 하나 이상의 모터(308)에 커플링된 제2 프리즘(306)을 포함한다. 또 다른 실시예에서, 하나 이상의 모터(308)는 하나 이상의 모터 드라이버(220)에 커플링된다.
도 3b 내지 도 3e는 프리즘(302) 또는 프리즘(306) 중 하나 이상의 병진이동 및/또는 기울임을 통해 입사 빔(203)을 조정하여 정정된 빔(205)을 형성하는 방식을 도시한다. 일 실시예에서, 프리즘(302)과 프리즘(306) 사이의 거리를 변경하면 입사 빔(203)의 위치의 병진이동 성분이 조정되어 정정된 빔(205)이 형성된다. 또 다른 실시예에서, 프리즘(302)과 프리즘(306) 중 하나 이상을 기울이면 입사 빔(203)의 위치의 포인팅 성분이 조정되어 정정된 빔(205)이 형성된다. 예컨대, 도 3e는 프리즘 위치 (a), (b), 및 (c)를 통해 프리즘(302)과 프리즘(306) 둘 다를 기울이는 것을 도시한다. 또 다른 실시예에서, 프리즘(302)과 프리즘(306) 사이의 거리의 변경과, 프리즘(302)과 프리즘(306) 중 하나 이상을 기울이는 것의 조합은 입사 빔(203)의 크기를 조정하여 정정된 빔(205)을 형성한다.
또 다른 실시예에서, 프리즘(302) 및/또는 프리즘(306)의 선형 이동은 하나 이상의 직접 구동식 모터(304 및/또는 308)를 통해 각각 구동된다. 또 다른 실시예에서, 프리즘(302) 및/또는 프리즘(306)의 회전 이동은 브러시리스 모드에서 작동하는 하나 이상의 스테퍼 모터(304 및/또는 308)를 통해 각각 구동된다. 선형 이동을 위한 하나 이상의 직접 구동식 모터와 회전 이동을 위해 브러시리스 모드에서 작동하는 하나 이상의 스테퍼 모터의 조합은 입사 빔(203)을 능동적으로 조정하여 프리즘들(302 및 306) 중 하나 이상의 프리즘의 병진이동 또는 회전 중 하나 이상을 통해 정정된 빔(205)을 형성할 수 있을 정도로 충분히 빠른 것으로 고려된다.
본 개시의 실시예는 2개의 프리즘(302 및 306)을 갖는 빔 조향 어셈블리(204a)에 관한 것일지라도, 빔 조향 어셈블리(204a)는 2개의 프리즘(302 및 306)으로 제한되지 않음을 알 수 있다. 예컨대, 빔 조향 어셈블리(204a)는 최대 N개의 프리즘을 포함할 수 있다. 예를 들면, 빔 조향 어셈블리(204a)는 빔 조정 방향당 하나 이상의 프리즘 쌍{즉, x 방향과 y 방향 모두에서 입사 빔(203)을 조정하여 정정된 빔(205)을 형성하기 위한 적어도 4개의 프리즘, 또는 x 방향 또는 y 방향 중 어느 한 방향으로 입사 빔(203)을 조정하여 정정된 빔(205)을 형성하기 위한 적어도 2개의 프리즘}을 포함할 수 있다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
도 3a 내지 도 3e에서 단일 모터 드라이버(220)가 하나 이상의 모터(304) 및 하나 이상의 모터(308)를 제어하는 것으로서 도시되어 있을지라도, 하나 이상의 모터(304) 및 하나 이상의 모터(308) 중 적어도 일부는 모터 특유적 모터 드라이버(220)에 의해 제어될 수 있음을 알 수 있다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
도 4는 본 개시의 하나 이상의 실시예에 따른 빔 조향 어셈블리(204b)를 도시한다. 일 실시예에서, 빔 조향 어셈블리(204b)는 하나 이상의 모터(404)에 커플링된 반사경(402)을 포함한다. 예컨대, 하나 이상의 모터(404)는 압전 모터일 수 있다. 또 다른 실시예에서, 하나 이상의 모터(404)는 모터 드라이버(220)에 커플링된다. 복수의 모터(404)가 존재하는 경우, 복수의 모터(404) 중 적어도 일부는 모터 특유적 모터 드라이버(220)에 의해 제어될 수 있음을 알 수 있다.
또 다른 실시예에서, 위치 (a)의 반사경(402)은 입사 빔(203)을 조정하지 않은 상태로 입사 빔(203)을 빔 모니터링 어셈블리(206)로 반사시킬 것이다. 또 다른 실시예에서, 반사경(402)을 위치 (a)에서 위치 (b)로 옮기면 입사 빔(203)의 위치의 포인팅 성분이 조정되어 x 방향 및/또는 y 방향 중 하나 이상의 방향으로 정정된 빔(205)이 형성된다. 그러나 반사경(402)을 위치 (a)에서 위치 (b)로 옮기면 입사 빔(203)의 위치의 병진이동 성분이 조정되지 않은 상태로 정정된 빔(205)이 형성됨을 알 수 있다.
도 5는 본 개시의 하나 이상의 실시예에 따른 빔 조향 어셈블리(204c)를 도시한다. 일 실시예에서, 빔 조향 어셈블리(204c)는 하나 이상의 모터(504)에 커플링된 직각 프리즘(502)을 포함한다. 예컨대, 하나 이상의 모터(504)는 서보 모터일 수 있다. 또 다른 실시예에서, 하나 이상의 모터(504)는 모터 드라이버(220)에 커플링된다. 복수의 모터(504)가 존재하는 경우, 복수의 모터(504) 중 적어도 일부는 모터 특유적 모터 드라이버(220)에 의해 제어될 수 있음을 알 수 있다.
또 다른 실시예에서, 위치 (a)의 프리즘(502)은 입사 빔(203)을 조정하지 않은 상태로 입사 빔(203)을 빔 모니터링 어셈블리(206)에 지향시킬 것이다. 또 다른 실시예에서, 프리즘(502)을 위치 (a)에서 위치 (b)로 회전시키면 입사 빔(203)의 위치의 병진이동 성분이 조정되어 x 방향 및/또는 y 방향 중 하나 이상의 방향으로 정정된 빔(205)이 형성된다. 그러나 프리즘(502)을 위치 (a)에서 위치 (b)로 회전시키면 입사 빔(203)의 위치의 포인팅 성분이 조정되지 않은 상태로 정정된 빔(205)이 형성됨을 알 수 있다.
빔 조향 어셈블리(204a, 204b, 및 204c)는 이전에 개시된 유형의 모터(304, 308, 404, 또는 504)로 제한되지 않음을 알 수 있다. 예컨대, 모터(304, 308, 404 또는, 504)는 직접 구동식 모터, 스테퍼 모터, 브러시리스 모드에서 작동하는 스테퍼 모터, 압전 모터, 서보 모터, 또는 당업계에 공지된 임의의 기타 모터일 수 있다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
도 6a 내지 도 6c는 본 개시의 하나 이상의 실시예에 따른 빔 모니터링 어셈블리(206a, 206b, 및 206c)를 도시한다. 달리 언급이 없는 경우, 본 개시 전반에 걸쳐 설명되는 실시예 및 예는 도 6a 내지 도 6c에서의 빔 모니터링 어셈블리(206a, 206b, 및 206c)로 확장되는 것으로 해석해야 함을 알 수 있다.
일 실시예에서, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 정정된 빔(205)을 수광한다. 또 다른 실시예에서, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 누설(leak) 거울(602)을 포함한다. 또 다른 실시예에서, 누설 거울(602)은 정정된 빔(205)의 적어도 일부를 빔 모듈레이터(230)에 반사시킨다. 또 다른 실시예에서, 누설 거울(602)은 정정된 빔(205)의 적어도 일부를 빔 스플리터(604)에 지향시킨다.
빔 모듈레이터(230)에 반사되는 정정된 빔(205) 대 빔 스플리터(604)에 지향되는 정정된 빔(205)의 부분의 비율은 >99% : <1%일 수 있음을 알 수 있다. 그러나 누설 거울(602)은 정정된 빔(205)을 어떠한 비율로도 반사/지향시킬 수 있는 것으로 고려된다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
또 다른 실시예에서, 빔 스플리터(604)는 누설 거울(602)에 의해 보내어진 정정된 빔(205)의 적어도 일부를 적어도 하나의 광학 요소(606)를 거쳐 제1 이미징 디바이스(610)에 지향시킨다. 예컨대, 적어도 하나의 광학 요소(606)는 망원경 빔 확대기를 포함할 수 있으나, 이에 국한되는 것은 아니다. 예를 들면, 망원경 빔 확대기(606)는 빔 시준을 유지하면서도 정정된 빔(205) 중 스플리터를 통해 보내어진 부분의 크기를 증가시킬 수 있다. 또 다른 예로서, 적어도 하나의 광학 요소(606)는 당업계에 공지된 광학 요소일 수 있다.
또 다른 실시예에서, 빔 스플리터(604)는 누설 거울(602)에 의해 보내어진 정정된 빔(205)의 적어도 일부를 적어도 하나의 광학 요소(608)를 거쳐 제2 이미징 디바이스(612)에 지향시킨다. 예컨대, 적어도 하나의 광학 요소(608)는 포커싱 렌즈를 포함할 수 있으나, 이에 국한되는 것은 아니다. 예를 들면, 이미징 디바이스(612)는 포커싱 렌즈의 초점 평면 상에 있을 것이다. 또 다른 예로서, 적어도 하나의 광학 요소(608)는 당업계에 공지된 임의의 광학 요소일 수 있다.
제1 이미징 디바이스(610)에 지향된 정정된 빔(205) 대 제2 이미징 디바이스(612)로 반사된 정정된 빔(205)의 부분의 비율은 50 대 50일 수 있음을 알 수 있다. 그러나 빔 스플리터(604)는 정정된 빔(205)을 임의의 비율로 반사/지향시킬 수 있는 것으로 고려된다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
일 실시예에서, 도 6a에 도시된 바와 같이, 이미징 디바이스(610 및 612)는 x 방향과 y 방향 모든 방향에서 조명 빔 병진이동 지터, 조명 빔 포인팅 지터, 조명 빔 크기, 및 조명 빔 브리딩 데이터 중 하나 이상을 측정할 수 있는 카메라(즉, 2차원 카메라)이다. 또 다른 실시예에서, 카메라(610 및 612)는 정정된 빔(205)의 병진이동 지터 및 포인팅 지터 중 하나 이상을 시간의 함수로서 모니터링한다. 예컨대, 카메라(610)는 병진이동 지터, 포인팅 지터, 및 빔 크기를 x 방향과 y 방향 모든 방향으로 측정할 수 있다. 또 다른 예로서, 카메라(612)는 포인팅 지터를 x 방향과 y 방향 모든 방향으로 측정할 수 있다. 또 다른 실시예에서, 카메라(610 및 612)를 통해 얻은 측정값은 디지털 신호 프로세서(DSP) 코드를 통해 처리될 수 있다. 예컨대, 카메라(610 및 612)에 의해 측정된 조명 빔의 중심 위치 피팅이 DSP 코드를 통해 결정될 수 있다. 또 다른 실시예에서, 카메라(610 및 612)를 통해 얻은 측정값 내의 병진이동 지터 및 포인팅 지터의 분리가 DSP 코드를 통해 실시간으로 이루어질 수 있다.
일 실시예에서, 도 6b에 도시된 바와 같이, 이미징 디바이스(620 및 622)는 x 방향 또는 y 방향 중 한 방향으로 조명 빔 병진이동 지터, 조명 빔 포인팅 지터, 조명 빔 크기, 및 조명 빔 브리딩 데이터 중 하나 이상을 측정할 수 있는 카메라(즉, 1차원 카메라)이다. 또 다른 실시예에서, 카메라(620 및 622)는 정정된 빔(205)의 병진이동 지터 및 포인팅 지터 중 하나 이상을 시간의 함수로서 모니터링한다. 예컨대, 카메라(620)는 x 방향 또는 y 방향 중 한 방향으로 병진이동 지터, 포인팅 지터, 및 빔 크기를 측정할 수 있다. 또 다른 예로서, 카메라(622)는 x 방향 또는 y 방향 중 한 방향으로 포인팅 지터를 측정할 수 있다. 또 다른 실시예에서, 카메라(620 및 622)를 통해 얻은 측정값은 DSP 코드를 통해 처리될 수 있다. 예컨대, 카메라(620 및 622)에 의해 측정된 조명 빔의 중심 위치 피팅이 DSP 코드를 통해 결정될 수 있다. 또 다른 예로서, 카메라(620 및 622)를 통해 얻은 조명 빔 측정값 내의 병진이동 지터 또는 포인팅 지터의 분리가 DSP 코드를 통해 실시간으로 이루어질 수 있다.
2차원 카메라(610 및 612) 대신 1차원 카메라(620 및 622)를 활용하면 더 낮은 데이터 레이트로 더 빠른 측정 성능을 얻을 수 있음을 알 수 있다. 또한, 오직 포인팅 지터만 필요한 경우, 도 6a 및 도 6b에서 각각 카메라(612 또는 622)에 이르는 광학 분기는 제거될 수 있음을 알 수 있다.
일 실시예에서, 도 6c에 도시된 바와 같이, 이미징 디바이스(630 및 632)는 조명 빔, 그리고 조명 빔 병진이동 지터 및 조명 빔 포인팅 지터 중 하나 이상을 x 방향 또는 y 방향 중 한 방향으로 측정할 수 있는 바이셀 검출기이다. 또 다른 실시예에서, 바이셀 검출기(630 및 632)는 정정된 빔(205)의 병진이동 지터 또는 포인팅 지터를 시간의 함수로서 모니터링한다. 또 다른 실시예에서, 바이셀 검출기(630)는 바이셀의 상반부에 대한 바이셀 신호 A를 측정하고 바이셀 검출기(632)는 바이셀의 하반부에 대한 바이셀 신호 B를 측정한다. 또 다른 실시예에서, 바이셀 검출기(630 및 632)에 의해 측정된 조명 빔의 위치는 수학식 1을 통해 결정된다.
Figure pct00001
또 다른 실시예에서, 카메라(630 및 632)의 측정값은 DSP 코드를 통해 처리될 수 있다. 예컨대, 바이셀 검출기(630 및 632) 측정에 의해 측정된 조명 빔 내의 병진이동 지터 또는 포인팅 지터의 분리는 DSP 코드를 통해 실시간으로 이루어질 수 있다.
본 개시의 실시예는 2개의 카메라 또는 2개의 바이셀 검출기를 갖는 빔 모니터링 어셈블리(206a, 206b, 및 206c)에 관한 것일지라도, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 2개의 카메라 또는 2개의 바이셀 검출기로 제한되지 않음을 알 수 있다. 예컨대, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 단 하나의 카메라 또는 바이셀 검출기를 포함할 수 있다. 또 다른 예로서, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 최대 N개의 카메라 또는 바이셀 검출기를 포함할 수 있다. 또 다른 예로서, 빔 모니터링 어셈블리(206a, 206b, 및 206c)는 혼합된 수의 카메라와 바이셀 검출기를 포함할 수 있다. 따라서, 상술한 내용은 본 개시를 제한하는 것으로 해석해서는 안 되며, 단지 실례로서만 해석해야 한다.
본 개시의 실시예의 이점은 x 방향 및/또는 y 방향 중 하나 이상의 방향으로 조명 빔 오정렬을 보정하는 것을 포함한다. 본 개시의 실시예의 이점은, 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 조명 빔 크기, 및 조명 빔 브리딩 데이터 중 하나 이상을 측정하는 것을 또한 포함한다. 본 개시의 실시예의 이점은 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 및 조명 빔의 크기 드리프트 중 하나 이상을 조정하여 조명 빔으로부터 정정된 빔을 형성하는 것을 또한 포함한다.
시스템(200)은 x 방향 및 y 방향 모든 방향으로 작동하는 제1 능력 세트를 위해 구성될 수 있음을 알 수 있다. 일 실시예에서, 제1 능력 세트는 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 조명 빔 크기, 및 조명 빔 브리딩 데이터 중 하나 이상을 측정하는 것을 포함한다. 또 다른 실시예에서, 제1 능력 세트는 조명 빔의 위치의 병진이동 성분, 조명 빔의 위치의 포인팅 성분, 및 조명 빔의 크기 드리프트 중 하나 이상을 조정하여 조명 빔으로부터 정정된 빔을 형성하는 것을 포함한다.
또한, 시스템(200)은 x 방향 또는 y 방향 중 한 방향으로 작동하는 제2 능력 세트를 갖도록 구성될 수 있음을 알 수 있다. 일 실시예에서, 제2 능력 세트는 조명 빔의 위치의 병진이동 성분 및/또는 조명 빔의 위치의 포인팅 성분 중 하나 이상을 측정하는 것을 포함한다. 또 다른 실시예에서, 제2 능력 세트는 조명 빔의 위치의 병진이동 및/또는 조명 빔의 위치의 포인팅 성분 중 하나 이상을 조정하여 조명 빔으로부터 정정된 빔을 형성하는 것을 포함한다.
또한, 시스템(200)은 x 방향 및/또는 y 방향 중 하나 이상의 방향으로 작동하는 적어도 하나의 제3 능력 세트를 갖도록 구성될 수 있음을 알 수 있다. 일 실시예에서, 적어도 제3 능력 세트는 제1 능력 세트 및/또는 제2 능력 세트 중 하나 이상을 포함한다.
도 7은 조명 빔 오정렬을 보정하기 위한 방법(700)을 나타내는 공정 흐름도를 도시한다. 방법은 본 명세서에 설명된 출력 획득 하위 시스템 및/또는 컴퓨터 하위 시스템(들)이나 시스템(들)에 의해 수행될 수 있는 임의의 다른 단계(들) 또한 포함할 수 있다. 이러한 단계는 본 명세서에 설명된 임의의 실시예에 따라서 구성될 수 있는 하나 이상의 컴퓨터 시스템에 의해 수행될 수 있다. 방법(700)의 단계는 시스템(200)에 의해 모두 또는 부분적으로 구현될 수 있음을 알 수 있다. 그러나 추가적인 또는 대안적인 시스템 수준의 실시예가 방법(700)의 단계 중 모두 또는 일부를 실행할 수 있다는 점에서 방법(700)은 시스템(200)으로 제한되지 않음을 인지할 수 있다.
단계(702)에서, 입사 빔(203)이 조정되어 정정된 빔(205)을 형성한다. 일 실시예에서, 입사 빔(203)이 빔 조향 어셈블리(204)에 의해 조명원(202)으로부터 수광된다. 또 다른 실시예에서, 빔 조향 어셈블리(204)는 입사 빔(203)을 조정하여 정정된 빔(205)을 형성한다. 예컨대, 시스템(200)은 빔 조향 어셈블리(204a, 204b, 또는 204c) 중 임의의 것을 구현하여 입사 빔(203)을 조정함으로써 정정된 빔(205)을 형성할 수 있다. 또 다른 실시예에서, 정정된 빔(205)은 빔 조향 어셈블리(204)에 의해 빔 모니터링 어셈블리(206)에 지향된다.
단계(704)에서, 모니터링 데이터가 생성된다. 일 실시예에서, 모니터링 데이터는 빔 모니터링 어셈블리(206)에 의해 생성된다. 예컨대, 시스템(200)은 빔 모니터링 어셈블리(206a, 206b, 또는 206c) 중 임의의 것을 구현하여 모니터링 데이터를 생성할 수 있다. 또 다른 실시예에서, 모니터링 데이터는 정정된 빔(205)의 하나 이상의 오프셋 파라미터를 포함한다. 또 다른 실시예에서, 하나 이상의 세트의 모니터링 데이터는 정정된 빔(205)의 하나 이상의 오프셋 파라미터를 포함한다. 예컨대, 하나 이상의 오프셋 파라미터는 정정된 빔(205)의 오프셋 위치의 오프셋 포인팅 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 정정된 빔(205)의 오프셋 위치의 오프셋 병진이동 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 오프셋 빔 크기를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 오프셋 파라미터는 오프셋 빔 브리딩 데이터를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 정정된 빔(205)의 하나 이상의 오프셋 파라미터는 x 방향 성분 및/또는 y 방향 성분 중 하나 이상을 포함한다. 또 다른 실시예에서, 빔 모니터링 어셈블리(206)는 정정된 빔(205)에 대한 하나 이상의 세트의 모니터링 데이터를 컨트롤러(210)로 송신한다.
단계(706)에서, 정정된 빔(205)의 하나 이상의 제로 파라미터가 저장된다. 일 실시예에서, 하나 이상의 제로 파라미터는 컨트롤러(210)에 의해 저장된다. 예컨대, 하나 이상의 제로 파라미터는 정정된 빔(205)의 제로 위치의 제로 포인팅 성분을 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 제로 파라미터는 정정된 빔(205)의 제로 위치의 제로 병진이동 성분을 포함할 수 있다. 또 다른 예로서, 하나 이상의 제로 파라미터는 제로 빔 크기를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 예로서, 하나 이상의 제로 파라미터는 제로 빔 브리딩 데이터를 포함할 수 있으나, 이에 국한되는 것은 아니다. 또 다른 실시예에서, 정정된 빔(205)의 하나 이상의 제로 파라미터는 x 방향 성분 및/또는 y 방향 성분 중 하나 이상을 포함한다.
단계(708)에서, 정정된 빔(205)의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 하나 이상의 차이가 계산된다. 일 실시예에서, 하나 이상의 오프셋 파라미터는 컨트롤러(210)에 의해 빔 모니터링 어셈블리(206)로부터 수신된다. 또 다른 실시예에서, 컨트롤러(210)는 정정된 빔(205)의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 하나 이상의 차이를 계산한다. 예컨대, 하나 이상의 차이를 계산하는 단계는 정정된 빔(205)의 제로 위치의 제로 포인팅 성분과 정정된 빔(205)의 오프셋 위치의 오프셋 포인팅 성분 사이의 포인팅 차이를 계산하는 단계를 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 단계는 정정된 빔(205)의 제로 위치의 제로 병진이동 성분과 정정된 빔(205)의 오프셋 위치의 오프셋 병진이동 성분 사이의 병진이동 차이를 계산하는 단계를 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 단계는 제로 빔 크기와 오프셋 빔 크기 사이의 빔 크기 차이를 계산하는 단계를 포함할 수 있다. 또 다른 예로서, 하나 이상의 차이를 계산하는 단계는 제로 빔 브리딩 데이터와 오프셋 빔 브리딩 데이터 사이의 빔 브리딩 데이터 차이를 계산하는 단계를 포함할 수 있다.
단계(710)에서, 입사 빔(203)의 하나 이상의 빔 위치 조정이 결정된다. 일 실시예에서, 입사 빔(203)의 하나 이상의 빔 위치 조정은 컨트롤러(210)에 의해 결정된다. 또 다른 실시예에서, 하나 이상의 빔 조정은 정정된 빔(205)의 하나 이상의 제로 파라미터와 하나 이상의 오프셋 파라미터 사이의 계산된 하나 이상의 차이에 기초한다. 또 다른 실시예에서, 하나 이상의 빔 위치 조정은 컨트롤러(210)에 의해 하나 이상의 모터 드라이버(220)로 송신된다.
단계(712)에서, 빔 조향 어셈블리는 입사 빔(203)을 조정하여 정정된 빔(205)을 형성할 것을 지시받는다. 일 실시예에서, 빔 조향 어셈블리(204)는 하나 이상의 광학 구성요소에 커플링된 하나 이상의 모터를 포함한다. 예컨대, 하나 이상의 모터는 하나 이상의 모터 드라이버(220)에 의해 구동된다. 또 다른 실시예에서, 하나 이상의 빔 위치 조정은 하나 이상의 모터 드라이버(220)에 의해 수신된다. 예컨대, 하나 이상의 빔 조정은 빔 조향 어셈블리(204)의 하나 이상의 모터를 구동하기 위한 하나 이상의 커맨드를 포함할 수 있다. 예를 들면, 하나 이상의 모터를 구동하는 단계는 하나 이상의 광학 컴포넌트를 움직이게 하며, 이를 통해 입사 빔(203)을 조정하여 정정된 빔(205)을 형성한다.
추가적인 단계에서, 하나 이상의 모터의 구동을 수반시키는, 하나 이상의 모터에 대한 인코더 데이터가 생성된다. 일 실시예에서, 빔 조향 어셈블리(204)는 하나 이상의 인코더를 포함한다. 또 다른 실시예에서, 하나 이상의 빔 위치 조정에 기초하고 하나 이상의 모터 드라이버(220)를 통한 하나 이상의 모터의 구동은 하나 이상의 인코더에 의해 인코더 데이터로서 기록된다. 또 다른 실시예에서, 인코더 데이터는 컨트롤러(210)로 송신된다.
추가적인 단계에서, 하나 이상의 모터의 구동은 인코더 데이터에 기초하여 확인된다. 일 실시예에서, 컨트롤러(210)는 인코더 데이터를 수신한다. 또 다른 실시예에서, 컨트롤러(210)는 인코더 데이터에 기록된 하나 이상의 모터의 구동을 하나 이상의 모터 드라이버(220)에 송신된 하나 이상의 빔 위치 조정과 비교한다.
본 명세서에 설명된 모든 방법은 방법 실시예의 하나 이상의 단계의 결과를 메모리 매체에 저장하는 단계를 포함할 수 있다. 결과는 본 명세서에 설명된 어떠한 결과라도 포함할 수 있으며 당업계에 공지된 어떠한 방식으로도 저장될 수 있다. 메모리 매체는 본 명세서에 설명된 임의의 메모리 매체 또는 당업계에 공지된 기타 임의의 적절한 메모리 매체를 포함할 수 있다. 결과가 저장된 후, 결과는 메모리 매체 내에서 액세스될 수 있으며 본 명세서에 설명된 임의의 방법 또는 시스템 실시예에 의해 사용되고, 사용자에게 표시하기 위해 포매팅되고, 또 다른 소프트웨어 모듈, 방법, 또는 시스템 등에 의해 사용될 수 있다. 또한, 결과는 "영구적으로", "반영구적으로", 일시적으로, 또는 어느 정도의 기간 동안 저장될 수 있다. 예컨대, 메모리 매체는 랜덤 액세스 메모리(RAM)일 수 있으며, 결과는 반드시 메모리 매체 내에 무한정 지속될 필요가 없을 수도 있다.
당업자는 본 명세서에 명시된 방식으로 디바이스 및/또는 공정을 설명한 후 상술된 디바이스 및/또는 공정을 공학적 관례를 통해 데이터 처리 시스템에 통합하는 것이 당업계에서 일반적이라는 것을 인지할 수 있다. 즉, 본 명세서에 설명된 디바이스 및/또는 공정의 적어도 일부는 합리적인 양의 실험을 통해 데이터 처리 시스템에 통합될 수 있다. 당업자는 통상적인 데이터 처리 시스템은 일반적으로 시스템 유닛 하우징, 디스플레이 디바이스, 메모리(예: 휘발성 및 비휘발성 메모리), 프로세서(예: 마이크로프로세서 및 디지털 신호 프로세서), 연산 개체(예: 운영 체제, 드라이버, 그래픽 사용자 인터페이스, 및 응용 프로그램), 하나 이상의 상호작용 디바이스(예: 터치 패드 또는 스크린), 및/또는 제어 시스템으로서 피드백 루프 및 제어 모터(예: 위치 및/또는 속도의 감지에 대한 피드백, 구성요소 및/또는 수량의 이동 및/또는 조정을 위한 제어 모터)를 포함하는 제어 시스템 중 하나 이상을 포함한다는 것을 인지할 수 있다. 통상적인 데이터 처리 시스템은 데이터 컴퓨팅/통신 및/또는 네트워크 컴퓨팅/통신 시스템에 통상적으로 포함되어 있는 것과 같은 적절한 상용 구성요소를 활용하여 구현될 수 있다.
당업자는 본 명세서에 설명된 구성요소(예: 동작), 디바이스, 객체, 및 이에 따른 논의는 개념적 명확성을 위한 예로서 사용될 수 있으며 다양한 구성의 수정이 고려된다는 것을 인지할 수 있다. 따라서, 본 명세서에 사용된 바와 같이, 명시된 구체적 전형 및 그에 따른 논의는 이들의 더욱 일반적인 분류를 대표하도록 의도된 것이다. 일반적으로, 구체적 전형의 사용은 그 분류를 대표하도록 의도되었으며, 구체적인 구성요소(예: 동작), 디바이스, 및 객체가 포함되지 않았다고 해서 이를 제한으로 받아들여서는 안 된다.
본 명세서의 실질적으로 모든 복수 및/또는 단수 용어의 사용에 관하여, 당업자는 맥락 및/또는 응용에 따라 적절하게 복수를 단수로 해석 및/또는 단수를 복수로 해석할 수 있다. 본 명세서에서는 명확성을 위해 다양한 단수/복수 치환이 명시적으로 언급되지 않았다.
본 명세서에 설명된 주제는 때때로 다양한 기타 구성요소에 포함 또는 연결된 다양한 구성요소를 설명한다. 이와 같이 묘사된 아키텍처는 단지 예시일 뿐이라는 점과 실제로는 동일한 기능을 달성하는 다수의 기타 아키텍처를 구현할 수 있다는 점을 이해해야 한다. 개념적 의미에서, 동일한 기능을 달성하기 위한 여하한 구성요소의 배열은 원하는 기능이 달성되도록 실질적으로 "연관"된다. 따라서, 본 명세서에서 특정한 기능을 달성하기 위해 조합된 어느 두 개의 구성요소는, 아키텍처 또는 중간 구성요소에 상관없이, 원하는 기능을 달성하도록 서로 "연관"된 것으로 볼 수 있다. 마찬가지로, 이렇게 연관된 어느 두 개의 구성요소는 원하는 기능을 달성하기 위해 서로 "작동하도록 연결" 또는 "작동하도록 커플링"된 것으로도 볼 수 있으며, 이렇게 연관될 수 있는 어느 두 개의 구성요소는 원하는 기능을 달성하기 위해 서로 "작동하도록 커플링 가능"한 것으로도 볼 수 있다. 작동하도록 커플링 가능한 구체적 예는 물리적으로 결합 가능한 구성요소 및/또는 물리적으로 상호작용하는 구성요소, 및/또는 무선으로 상호작용 가능한 구성요소 및/또는 무선으로 상호작용하는 구성요소, 및/또는 논리적으로 상호작용하는 구성요소 및/또는 논리적으로 상호작용 가능한 구성요소를 포함하나, 이에 국한되는 것은 아니다.
일부 경우, 본 명세서에서 하나 이상의 구성요소는 "~하도록 구성되는", "~하도록 구성 가능한", "~하도록 작동 가능한/작동하는", "적응되는/적응 가능한", "~ 가능한", "~하도록 부합 가능한/부합되는" 등으로 언급된다. 당업자는 이러한 용어(예: "~ 하도록 구성되는")는, 맥락에 따라 달리 필요한 경우가 아니면, 일반적으로 활성 상태의 구성요소 및/또는 비활성 상태의 구성요소 및/또는 대기 상태의 구성요소를 망라할 수 있다는 것을 인지할 수 있다.
본 명세서에 설명된 본 주제의 특정한 양상이 도시 및 설명되었으나, 본 명세서에 설명된 주제 및 더 광범위한 양상을 벗어나지 않으면서도 본 명세서의 교시에 기초하여 변경 및 수정이 이루어질 수 있으며, 따라서 첨부된 청구항은 본 명세서에 설명된 주제의 진정한 사상 및 범위 내에서 이러한 모든 변경 및 수정을 청구범위 내에 망라하기 위한 것임이 당업자에게 분명할 것이다. 일반적으로 본 명세서에 사용된 용어, 특히 첨부된 청구항에 사용된 용어(예: 첨부된 청구항의 본문)는 "개방적" 용어라는 것을 당업자는 이해할 수 있다{예: "~을(를) 포함하는"이라는 용어는 "~을(를) 포함하나 이에 국한되지는 않는"으로 해석하고, "~을(를) 갖는"이라는 용어는 "적어도 ~을(를) 갖는"으로 해석하고, "~을(를) 포함한다"라는 용어는 "~을(를) 포함하나 이에 국한되는 것은 아니다" 등으로 해석해야 한다}. 또한, 도입되는 청구항의 내용 중 구체적인 수가 의도된 경우, 그러한 의도는 해당 청구항 내에 명시적으로 언급될 것이며 그러한 언급이 없는 경우에는 그러한 의도가 없다는 것을 당업자는 이해할 수 있다. 예컨대, 이해를 돕기 위하여, 후술할 첨부된 청구항은 청구항의 내용을 도입하기 위해 "적어도 하나의" 및 "하나 이상의"라는 도입구의 사용을 포함할 수 있다. 그러나 그러한 어구의 사용은 단수 표현에 해당하는 표현(예: "하나의" 등)에 의한 청구항 내용의 도입으로 인해 해당 도입 청구항 내용을 포함하는 특정 청구항이 단 하나의 해당 내용을 포함하는 청구항으로 제한됨을 의미하는 것으로 해석해서는 안 되고, 이는 해당 동일 청구항에 "하나 이상의"나 "적어도 하나의" 및 "하나의"라는 표현이 포함되는 경우(예: "하나의"는 통상적으로 "적어도 하나의" 또는 "하나 이상의"를 의미하는 것으로 해석해야 함)에도 마찬가지이며, 이는 청구항 내용의 도입을 위해 사용되는 영어의 정관사에 해당하는 표현(예: "상기" 등)에도 동일하게 적용된다. 또한, 도입 청구항 내용 중 구체적인 수가 명시적으로 언급될지라도, 해당 내용은 적어도 언급된 수만큼을 의미하는 것으로 통상적으로 해석해야 한다는 것을 당업자는 인지할 수 있다(예: 다른 수식어 없이 "2개의 내용물"을 언급하는 것은 통상적으로 적어도 2개의 내용물 또는 2개 이상의 내용물을 의미함). 또한, "A, B, 및 C 중 적어도 하나"와 유사한 관례가 사용되는 경우, 일반적으로 이러한 구성은 당업자가 해당 관례를 이해할 수 있으리라는 의미에서 의도된 것이다(예: "A, B, 및 C 중 적어도 하나를 갖는 시스템"은 A만 갖는 시스템, B만 갖는 시스템, C만 갖는 시스템, A와 B를 함께 갖는 시스템, A와 C를 함께 갖는 시스템, B와 C를 함께 갖는 시스템, 및/또는 A, B, 및 C를 함께 갖는 시스템 등을 포함할 수 있으나, 이에 국한되는 것은 아님). "A, B, 또는 C 등 중 적어도 하나"와 유사한 관례가 사용되는 경우, 일반적으로 이러한 구성은 당업자가 해당 관례를 이해할 수 있으리라는 의미에서 의도된 것이다(예: "A, B, 또는 C 중 적어도 하나를 갖는 시스템"은 A만 갖는 시스템, B만 갖는 시스템, C만 갖는 시스템, A와 B를 함께 갖는 시스템, A와 C를 함께 갖는 시스템, B와 C를 함께 갖는 시스템, 및/또는 A, B 및, C를 함께 갖는 시스템 등을 포함할 수 있으나, 이에 국한되는 것은 아님). 또한, 설명, 청구항, 또는 도면에서, 통상적으로 2개 이상의 선택 가능한 용어를 제시하는 이접적 단어 및/또는 어구는, 맥락에 따라 다르게 요구되지 않는 한, 이들 용어 중 하나, 이들 용어 중 어느 하나, 또는 이들 용어 모두를 포함할 가능성을 고려하는 것으로 이해해야 한다는 것을 당업자는 이해할 수 있다. 예컨대, "A 또는 B"라는 어구는 "A" 또는 "B" 또는 "A 및 B"의 가능성을 포함하는 것으로 통상적으로 이해할 수 있다.
첨부된 청구항에 관하여, 당업자는 청구항에 언급된 동작은 일반적으로 어떠한 순서로도 수행될 수 있다는 것을 이해할 수 있다. 또한, 다양한 동작의 흐름이 한 순서에 따라 제시되더라도, 이러한 다양한 동작은 설명된 것과 다른 순서로 수행될 수 있거나 동시에 수행될 수 있다는 것을 이해해야 한다. 맥락에 따라 다르게 요구되지 않는 한, 이러한 대안적 순서 배열의 예는 겹쳐지거나, 끼워 넣어지거나, 중단되거나, 순서가 바뀌거나, 증분적이거나, 예비적이거나, 보충적이거나, 동시적이거나, 역순인 순서 배열, 또는 기타 변형된 순서 배열을 포함할 수 있다. 또한, 맥락에 따라 다르게 요구되지 않는 한, "~에 반응하는", "에 관련된" 등의 용어 또는 기타 과거 시제의 형용사는 일반적으로 그 변형을 제외하도록 의도된 것이 아니다.
본 개시 및 그에 따른 다수의 이점은 상술한 설명을 통해 이해할 수 있으리라 사료되며, 개시된 주제로부터 벗어나지 않거나 중요한 이점을 모두 희생하지 않으면서도 구성요소의 형태, 구성, 및 배열에 다양한 변경이 이루어질 수 있다는 점이 분명할 것이다. 설명된 형태는 단지 예시적인 것이며, 후술할 청구항의 의도는 그러한 변경을 망라 및 포함하는 것이다. 따라서, 본 발명의 범위는 본 명세서에 첨부된 청구항에 의해서만 제한되어야 한다.

Claims (44)

  1. 시스템으로서,
    입사 빔을 조정하여 정정된 빔을 형성하도록 구성된 빔 조향 어셈블리;
    상기 빔 조향 어셈블리에 광학적으로 커플링된 빔 모니터링 어셈블리 - 상기 빔 모니터링 어셈블리는 상기 정정된 빔에 대한 모니터링 데이터를 생성하도록 구성되고, 상기 모니터링 데이터는 상기 정정된 빔의 하나 이상의 오프셋 파라미터를 포함함 -;
    상기 빔 모니터링 어셈블리 및 상기 빔 조향 어셈블리에 통신가능하게 커플링된 컨트롤러 - 상기 컨트롤러는 메모리에 저장된 프로그램 명령어들의 세트를 실행하도록 구성된 하나 이상의 프로세서를 포함함 -
    을 포함하고, 상기 프로그램 명령어들은, 상기 하나 이상의 프로세서로 하여금
    상기 정정됨 빔의 하나 이상의 제로 파라미터를 저장하게 하고,
    상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이를 계산하게 하고,
    상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 상기 적어도 하나의 차이에 기초하여 상기 입사 빔의 하나 이상의 빔 위치 조정을 결정하게 하고,
    하나 이상의 모터 드라이버를 통해, 하나 이상의 모터를 구동시킴으로써 상기 입사 빔을 조정하여 상기 정정된 빔을 형성할 것을 상기 빔 조향 어셈블리에게 지시하게 하도록
    구성된 것인, 시스템.
  2. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 오프셋 파라미터는,
    상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분, 상기 정정된 빔의 상기 오프셋 위치의 오프셋 병진이동 성분, 오프셋 빔 크기, 또는 오프셋 빔 브리딩(breathing) 데이터
    중 적어도 하나를 포함한 것인, 시스템
  3. 제2항에 있어서, 상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분, 상기 정정된 빔의 오프셋 위치의 오프셋 병진이동 성분, 상기 오프셋 빔 크기, 또는 상기 오프셋 빔 브리딩 데이터 중 적어도 하나는 x 방향 성분 또는 y 방향 성분 중 적어도 하나를 포함한 것인, 시스템.
  4. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터는,
    상기 정정된 빔의 제로 위치의 제로 포인팅 성분, 상기 정정된 빔의 제로 위치의 제로 병진이동 성분, 제로 빔 크기, 또는 제로 빔 브리딩 데이터
    중 적어도 하나를 포함한 것인, 시스템.
  5. 제4항에 있어서, 상기 정정된 빔의 제로 위치의 제로 포인팅 성분, 상기 정정된 빔의 제로 위치의 제로 병진이동 성분, 상기 제로 빔 크기, 또는 상기 제로 빔 브리딩 데이터 중 적어도 하나는 x 방향 성분 또는 y 방향 성분 중 적어도 하나를 포함한 것인, 시스템.
  6. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 것은 상기 정정된 빔의 제로 위치의 제로 포인팅 성분과 상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분 사이의 포인팅 차이를 계산하는 것을 포함한 것인, 시스템.
  7. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 것은 상기 정정된 빔의 제로 위치의 제로 병진이동 성분과 상기 정정된 빔의 오프셋 위치의 오프셋 병진이동 성분 사이의 병진이동 차이를 계산하는 것을 포함한 것인, 시스템.
  8. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 것은 제로 빔 크기와 오프셋 빔 크기 사이의 빔 크기 차이를 계산하는 것을 포함한 것인, 시스템.
  9. 제1항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 것은 제로 빔 브리딩 데이터와 오프셋 빔 브리딩 데이터 사이의 빔 브리딩 데이터 차이를 계산하는 것을 포함한 것인, 시스템.
  10. 제1항에 있어서, 상기 빔 조향 어셈블리는 또한,
    상기 하나 이상의 모터의 구동을 수반시키는, 상기 하나 이상의 모터에 대한 인코더 데이터를 생성하도록 구성된 것인, 시스템
  11. 제10항에 있어서, 상기 프로그램 명령어들은 또한,
    상기 인코더 데이터를 통한 상기 하나 이상의 빔 위치 조정에 응답하여 상기 하나 이상의 모터의 구동을 확인하도록 구성된 것인, 시스템.
  12. 제1항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 적어도 2개의 프리즘
    을 포함하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 사이의 거리를 변화시키는 것은 상기 입사 빔의 위치의 병진이동 성분을 조정하여 상기 정정된 빔을 형성하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 중 적어도 하나를 기울이는 것은 상기 입사 빔의 위치의 포인팅 성분을 조정하여 상기 정정된 빔을 형성하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 사이의 거리를 변화시는 동시에 상기 2개의 프리즘 중 적어도 하나를 기울이는 것은 상기 입사 빔의 빔 크기를 조정하여 상기 정정된 빔을 형성하는 것인, 시스템.
  13. 제1항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 반사경
    을 포함하고,
    상기 하나 이상의 모터를 통해 상기 반사경을 변위시키는 것은 상기 입사 빔의 위치의 포인팅 성분을 조정하여 상기 정정된 빔을 형성하는 것인, 시스템.
  14. 제1항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 적어도 하나의 프리즘
    을 포함하고,
    상기 하나 이상의 모터를 통해 상기 프리즘을 회전시키는 것은 상기 입사 빔의 위치의 병진이동 성분을 조정하여 상기 정정된 빔을 형성하는 것인, 시스템.
  15. 제1항에 있어서, 상기 빔 모니터링 어셈블리는,
    누설(leak) 거울과,
    빔 스플리터
    를 포함하고,
    상기 누설 거울은,
    상기 정정된 빔의 적어도 일부를 반사시키고,
    상기 정정된 빔의 적어도 일부를 투과시키도록 구성되며,
    상기 빔 스플리터는,
    적어도 제1 광학 요소를 통해 상기 정정된 빔의 적어도 일부를 제1 이미징 디바이스에 투과시키고
    적어도 제2 광학 요소를 통해 상기 정정된 빔의 적어도 일부를 제2 이미징 디바이스로 반사시키도록 구성된 것인, 시스템.
  16. 제15항에 있어서, 상기 제1 이미징 디바이스 및 상기 제2 이미징 디바이스는 카메라이고, 각각의 카메라는 x 방향 또는 y 방향 중 적어도 한 방향으로 상기 정정된 빔을 측정할 수 있는 것인, 시스템.
  17. 제16항에 있어서, 상기 제1 카메라는 적어도 상기 정정된 빔의 위치의 병진이동 성분 및 상기 정정된 빔의 위치의 포인팅 성분을 측정하고, 상기 제2 카메라는 상기 정정된 빔의 위치의 포인팅 성분을 측정하는 것인, 시스템.
  18. 제15항에 있어서, 상기 제1 이미징 디바이스와 상기 제2 이미징 디바이스 중 적어도 하나는 바이셀(bi-cell) 검출기이고, 각각의 바이셀 검출기는 x 방향 또는 y 방향 중 한 방향으로 상기 정정된 빔을 측정할 수 있는 것인, 시스템.
  19. 제18항에 있어서, 상기 제1 바이셀 검출기는 적어도 상기 정정된 빔의 위치의 병진이동 성분과 상기 정정된 빔의 위치의 포인팅 성분을 측정하고, 상기 제2 바이셀 검출기는 상기 정정된 빔의 위치의 포인팅 성분을 측정하는 것인, 시스템.
  20. 제15항에 있어서,
    빔 모듈레이터
    를 더 포함하고, 상기 빔 모듈레이터는 상기 누설 거울에 의해 반사된 상기 정정된 빔의 일부분을 수광하는 것인, 시스템.
  21. 제1항에 있어서, 상기 하나 이상의 모터는,
    직접 구동 모터, 스테퍼 모터, 브러시리스 모터, 압전 모터, 또는 서보 모터
    중 적어도 하나를 포함한 것인, 시스템.
  22. 제1항에 있어서,
    상기 입사 빔을 생성하도록 구성된 적어도 하나의 조명원
    을 더 포함하는, 시스템.
  23. 방법으로서,
    입사 빔을 수광하는 단계;
    빔 조향 어셈블리를 통해 상기 입사 빔을 조정하여 정정된 빔을 형성하는 단계;
    빔 모니터링 어셈블리를 통해, 상기 정정된 빔에 대한 모니터링 데이터를 생성하는 단계 - 상기 모니터링 데이터는 상기 정정된 빔의 하나 이상의 오프셋 파라미터를 포함함 -;
    상기 정정된 빔의 하나 이상의 제로 파라미터를 저장하는 단계;
    상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이를 계산하는 단계;
    상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 적어도 하나의 차이에 기초하여 상기 입사 빔의 하나 이상의 빔 위치 조정을 결정하는 단계; 및
    하나 이상의 모터 드라이버를 통해, 상기 하나 이상의 빔 위치 조정에 기초하여 하나 이상의 모터를 구동시킴으로써 상기 입사 빔을 조정하여 상기 정정된 빔을 형성할 것을, 상기 빔 조향 어셈블리에게 지시하는 단계
    를 포함하는, 방법.
  24. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 오프셋 파라미터는,
    상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분, 상기 정정된 빔의 오프셋 위치의 오프셋 병진이동 성분, 오프셋 빔 크기, 또는 오프셋 빔 브리딩 데이터
    중 적어도 하나를 포함한 것인, 방법.
  25. 제24항에 있어서, 상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분, 상기 정정된 빔의 오프셋 위치의 오프셋 병진이동 성분, 상기 오프셋 빔 크기, 또는 상기 오프셋 빔 브리딩 데이터 중 적어도 하나는 x 방향 성분 또는 y 방향 성분 중 적어도 하나를 포함한 것인, 방법.
  26. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터는,
    상기 정정된 빔의 제로 위치의 제로 포인팅 성분, 상기 정정된 빔의 제로 위치의 제로 병진이동 성분, 제로 빔 크기, 또는 제로 빔 브리딩 데이터
    중 적어도 하나를 포함한 것인, 방법.
  27. 제26항에 있어서, 상기 정정된 빔의 제로 위치의 제로 포인팅 성분, 상기 정정된 빔의 제로 위치의 제로 병진이동 성분, 상기 제로 빔 크기, 또는 상기 제로 빔 브리딩 데이터 중 적어도 하나는 x 방향 성분 또는 y 방향 성분 중 적어도 하나를 포함한 것인, 방법.
  28. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 단계는 상기 정정된 빔의 제로 위치의 제로 포인팅 성분과 상기 정정된 빔의 오프셋 위치의 오프셋 포인팅 성분 사이의 포인팅 차이를 계산하는 단계를 포함한 것인, 방법.
  29. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 단계는 상기 정정된 빔의 제로 위치의 제로 병진이동 성분과 상기 정정된 빔의 오프셋 위치의 오프셋 병진이동 성분 사이의 병진이동 차이를 계산하는 단계를 포함한 것인, 방법.
  30. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 단계는 제로 빔 크기와 오프셋 빔 크기 사이의 빔 크기 차이를 계산하는 단계를 포함한 것인, 방법.
  31. 제23항에 있어서, 상기 정정된 빔의 상기 하나 이상의 제로 파라미터와 상기 하나 이상의 오프셋 파라미터 사이의 차이를 계산하는 단계는 제로 빔 브리딩 데이터와 오프셋 빔 브리딩 데이터 사이의 빔 브리딩 데이터 차이를 계산하는 단계를 포함한 것인, 방법.
  32. 제23항에 있어서,
    상기 하나 이상의 모터의 구동을 수반시키는, 상기 하나 이상의 모터에 대한 인코더 데이터를 생성하는 단계
    를 더 포함하는, 방법.
  33. 제32항에 있어서,
    상기 인코더 데이터에 기초하여 상기 하나 이상의 모터의 구동을 확인하는 단계
    를 더 포함하는, 방법.
  34. 제23항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 적어도 2개의 프리즘
    을 포함하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 사이의 거리를 변화시키는 것은 상기 입사 빔의 위치의 병진이동 성분을 조정하여 상기 정정된 빔을 형성하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 중 적어도 하나를 기울이는 것은 상기 입사 빔의 위치의 포인팅 성분을 조정하여 상기 정정된 빔을 형성하고,
    상기 하나 이상의 모터를 구동하여 상기 하나 이상의 모터를 통해 상기 2개의 프리즘 사이의 거리를 변화시는 동시에 상기 2개의 프리즘 중 적어도 하나를 기울이는 것은 상기 입사 빔의 빔 크기를 조정하여 상기 정정된 빔을 형성하는 것인, 방법.
  35. 제23항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 반사경
    을 포함하고,
    상기 하나 이상의 모터를 통해 상기 반사경을 변위시키는 것은 상기 입사 빔의 위치의 포인팅 성분을 조정하여 상기 정정된 빔을 형성하는 것인, 방법.
  36. 제23항에 있어서, 상기 빔 조향 어셈블리는,
    상기 하나 이상의 모터에 커플링된 적어도 하나의 프리즘
    을 포함하고,
    상기 하나 이상의 모터를 통해 상기 프리즘을 회전시키는 것은 상기 입사 빔의 위치의 병진이동 성분을 조정하여 상기 정정된 빔을 형성하는 것인, 방법.
  37. 제23항에 있어서, 상기 빔 모니터링 어셈블리는,
    누설 거울, 및
    빔 스플리터
    를 포함하고,
    상기 누설 거울은,
    상기 정정된 빔의 적어도 일부를 반사시키고,
    상기 정정된 빔의 적어도 일부를 투과시키며,
    상기 빔 스플리터는,
    적어도 제1 광학 요소를 통해 상기 정정된 빔의 적어도 일부를 제1 이미징 디바이스에 투과시키고,
    적어도 제2 광학 요소를 통해 상기 정정된 빔의 적어도 일부를 제2 이미징 디바이스로 반사시키도록 구성된 것인, 방법.
  38. 제37항에 있어서, 상기 제1 이미징 디바이스 및 상기 제2 이미징 디바이스는 카메라이고, 각각의 카메라는 x 방향 또는 y 방향 중 적어도 한 방향으로 상기 정정된 빔을 측정할 수 있는 것인, 방법.
  39. 제38항에 있어서, 상기 제1 카메라는 적어도 상기 정정된 빔의 위치의 병진이동 성분 및 상기 정정된 빔의 위치의 포인팅 성분을 측정하고, 상기 제2 카메라는 상기 정정된 빔의 위치의 상기 포인팅 성분을 측정하는 것인, 방법.
  40. 제37항에 있어서, 상기 제1 이미징 디바이스와 상기 제2 이미징 디바이스 중 적어도 하나는 바이셀 검출기이고, 각각의 바이셀 검출기는 x 방향 또는 y 방향 중 한 방향으로 상기 정정된 빔을 측정할 수 있는 것인, 방법.
  41. 제40항에 있어서, 상기 제1 바이셀 검출기는 적어도 상기 정정된 빔의 위치의 병진이동 성분 및 상기 정정된 빔의 위치의 포인팅 성분을 측정하고, 상기 제2 바이셀 검출기는 상기 정정된 빔의 위치의 상기 포인팅 성분을 측정하는 것인, 방법.
  42. 제37항에 있어서,
    상기 누설 거울로부터의 상기 정정된 빔의 적어도 일부분을 빔 모듈레이터로 반사시키는 단계
    를 더 포함하는, 방법.
  43. 제23항에 있어서, 상기 하나 이상의 모터는,
    직접 구동 모터, 스테퍼 모터, 브러시리스 모터, 압전 모터, 또는 서보 모터
    중 적어도 하나를 포함하는 것인, 방법.
  44. 제23항에 있어서, 상기 입사 빔을 생성하도록 구성된 조명원으로부터 상기 입사 빔이 수광되는 것인, 방법.
KR1020187033743A 2016-05-02 2017-04-28 조명 빔 오정렬의 보정을 위한 시스템 및 방법 KR102190345B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662330756P 2016-05-02 2016-05-02
US62/330,756 2016-05-02
US15/477,885 US10495579B2 (en) 2016-05-02 2017-04-03 System and method for compensation of illumination beam misalignment
US15/477,885 2017-04-03
PCT/US2017/030258 WO2017192403A1 (en) 2016-05-02 2017-04-28 System and method for compensation of illumination beam misalignment

Publications (2)

Publication Number Publication Date
KR20180132923A true KR20180132923A (ko) 2018-12-12
KR102190345B1 KR102190345B1 (ko) 2020-12-11

Family

ID=60203214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187033743A KR102190345B1 (ko) 2016-05-02 2017-04-28 조명 빔 오정렬의 보정을 위한 시스템 및 방법

Country Status (9)

Country Link
US (1) US10495579B2 (ko)
JP (1) JP6741787B2 (ko)
KR (1) KR102190345B1 (ko)
CN (1) CN109075099B (ko)
DE (1) DE112017002293T5 (ko)
IL (1) IL262231B (ko)
SG (1) SG11201806925PA (ko)
TW (1) TWI728104B (ko)
WO (1) WO2017192403A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10365211B2 (en) * 2017-09-26 2019-07-30 Kla-Tencor Corporation Systems and methods for metrology beam stabilization
DE102020209268B3 (de) * 2020-07-22 2021-10-14 Hochschule Emden/Leer Optisches System

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334376A (ja) * 2000-05-26 2001-12-04 Nec Toyama Ltd レーザ加工装置及びレーザ光スポット位置補正方法
US20040109487A1 (en) * 2002-12-06 2004-06-10 Zhang Guangzhi G. External cavity laser with dispersion compensation for mode-hop-free tuning
US20060202115A1 (en) * 2005-03-10 2006-09-14 Hitachi Via Mechanics, Ltd. Apparatus and method for beam drift compensation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221720A (ja) * 1984-04-18 1985-11-06 Fuji Photo Film Co Ltd 光ビ−ム走査装置
US4696047A (en) 1985-02-28 1987-09-22 Texas Instruments Incorporated Apparatus for automatically inspecting electrical connecting pins
US6618421B2 (en) 1998-07-18 2003-09-09 Cymer, Inc. High repetition rate gas discharge laser with precise pulse timing control
JP2003179142A (ja) 2001-12-10 2003-06-27 Nec Microsystems Ltd ジッタ検査回路を搭載した半導体装置およびそのジッタ検査方法
US6831736B2 (en) 2002-10-07 2004-12-14 Applied Materials Israel, Ltd. Method of and apparatus for line alignment to compensate for static and dynamic inaccuracies in scanning
US7307711B2 (en) * 2004-10-29 2007-12-11 Hitachi Via Mechanics (Usa), Inc. Fluorescence based laser alignment and testing of complex beam delivery systems and lenses
JP4908925B2 (ja) * 2006-02-08 2012-04-04 株式会社日立ハイテクノロジーズ ウェハ表面欠陥検査装置およびその方法
KR20080014385A (ko) 2006-08-11 2008-02-14 동부일렉트로닉스 주식회사 레이저 빔 위치 자동 조정 장치 및 이를 이용한 레이저 빔위치 자동 조정 방법
US8379204B1 (en) 2007-08-17 2013-02-19 Gsi Group Corporation System and method for automatic laser beam alignment
EP2257854B1 (en) 2008-02-26 2018-10-31 3M Innovative Properties Company Multi-photon exposure system
US9068952B2 (en) * 2009-09-02 2015-06-30 Kla-Tencor Corporation Method and apparatus for producing and measuring dynamically focussed, steered, and shaped oblique laser illumination for spinning wafer inspection system
JP5134603B2 (ja) * 2009-09-09 2013-01-30 株式会社日立ハイテクノロジーズ 光ビーム調整方法及び光ビーム調整装置
KR20110050821A (ko) 2009-11-09 2011-05-17 삼성전자주식회사 지터를 감소시킬 수 있는 dll회로 및 이를 포함하는 반도체 장치
WO2012023211A1 (ja) 2010-08-20 2012-02-23 富士通株式会社 半導体装置
US8995746B2 (en) 2013-03-15 2015-03-31 KLA—Tencor Corporation Image synchronization of scanning wafer inspection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001334376A (ja) * 2000-05-26 2001-12-04 Nec Toyama Ltd レーザ加工装置及びレーザ光スポット位置補正方法
US20040109487A1 (en) * 2002-12-06 2004-06-10 Zhang Guangzhi G. External cavity laser with dispersion compensation for mode-hop-free tuning
US20060202115A1 (en) * 2005-03-10 2006-09-14 Hitachi Via Mechanics, Ltd. Apparatus and method for beam drift compensation

Also Published As

Publication number Publication date
TWI728104B (zh) 2021-05-21
US20170336329A1 (en) 2017-11-23
US10495579B2 (en) 2019-12-03
CN109075099A (zh) 2018-12-21
JP6741787B2 (ja) 2020-08-19
IL262231A (en) 2018-11-29
IL262231B (en) 2021-06-30
SG11201806925PA (en) 2018-11-29
WO2017192403A1 (en) 2017-11-09
KR102190345B1 (ko) 2020-12-11
JP2019523981A (ja) 2019-08-29
TW201743048A (zh) 2017-12-16
CN109075099B (zh) 2023-07-14
DE112017002293T5 (de) 2019-02-14

Similar Documents

Publication Publication Date Title
US10816648B2 (en) Methods and systems for LIDAR optics alignment
JP6821606B2 (ja) ビーム位置センサを有する走査ヘッドおよび調整装置
KR102317067B1 (ko) 스폿 주사 웨이퍼 검사 시스템의 런타임 정렬 시스템 및 방법
US20130186871A1 (en) Laser processing machine
US8995746B2 (en) Image synchronization of scanning wafer inspection system
CN116724225A (zh) 用于计量的光瞳平面光束扫描
KR102190345B1 (ko) 조명 빔 오정렬의 보정을 위한 시스템 및 방법
US11170971B2 (en) Multiple working distance height sensor using multiple wavelengths
US20230324809A1 (en) Extra tall target metrology
KR101640348B1 (ko) 초정밀 광 스캐닝 장치
JP2014095612A (ja) 検査装置
KR101032794B1 (ko) 헤이즈 가속 검출장치 및 그 검출방법
US11906435B2 (en) System including auto-alignment
JP4877588B2 (ja) 合焦補正方法
CN117110311A (zh) 一种光学检测系统及图像动态对准方法
JP2007192741A (ja) 元素分析方法及び元素分析装置
KR20150077596A (ko) 기판검사장치
JP2023551163A (ja) 複数の測定列を用いた大規模オーバレイ計測サンプリング

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant