KR20180109741A - 수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법 - Google Patents

수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법 Download PDF

Info

Publication number
KR20180109741A
KR20180109741A KR1020180035038A KR20180035038A KR20180109741A KR 20180109741 A KR20180109741 A KR 20180109741A KR 1020180035038 A KR1020180035038 A KR 1020180035038A KR 20180035038 A KR20180035038 A KR 20180035038A KR 20180109741 A KR20180109741 A KR 20180109741A
Authority
KR
South Korea
Prior art keywords
ala
leu
methane monooxygenase
water
gly
Prior art date
Application number
KR1020180035038A
Other languages
English (en)
Inventor
한성옥
주영철
황동혁
강대희
신상규
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of KR20180109741A publication Critical patent/KR20180109741A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12R1/01

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 이종발현을 통한 수용성 메탄 모노옥시게나제의 제조방법에 관한 것으로, 보다 구체적으로는 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)를 철 이온이 함유된 배지에서 생산한 다음, 메탄 모노옥시게나제 서브유닛 비(B)와 조합하는 단계를 포함하는 수용성 메탄 모노옥시게나제의 제조방법에 관한 것이다. 본 발명에 따른 수용성 메탄 모노옥시게나제의 제조방법은 동종발현 외에 생산이 불가능하다고 알려진 메탄 모노옥시게나제를 세계 최초로 이종발현을 통해 제조 가능하게 하여, 수용성 메탄 모노옥시게나제의 대량생산에 유용하다.

Description

수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법{A Method for preparing soluble methane monooxygenase by using heterologous expression vector}
본 발명은 이종발현을 통한 수용성 메탄 모노옥시게나제의 제조방법에 관한 것으로, 보다 구체적으로는 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)를 철 이온이 함유된 배지에서 생산한 다음, 메탄 모노옥시게나제 서브유닛 비(B)와 조합하는 단계를 포함하는 수용성 메탄 모노옥시게나제의 제조방법에 관한 것이다.
전 지구적 기후변화를 야기하는 대표적인 온실가스로 이산화탄소(CO2), 메탄(CH4), 아산화질소(N2O), F-가스(HFCs, PFCs, SF6) 등이 있다. 산업혁명 이후 인간 활동으로 인해 전 지구적 온실가스 배출량이 급속도로 증가되어 왔다. 이산화탄소에 이에 2번째로 기여도가 높은 온실가스인 메탄은 무색, 무취 온실가스로, 공기 중에 5~15% 함유되어 있으면 폭발성이 있으며, 0.5% 메탄에 장기 노출 시 호흡곤란을 야기하는 유해가스이다. 특히 메탄의 체류시간은 12±3년으로 타 온실가스에 비해 비교적 짧기 때문에, 20년 기준 GWP는 이산화탄소보다 70배 이상이다. 메탄은 농업 및 화석연료 사용 분야뿐 만 아니라, 다른 온실가스와는 다른 폐기물 처리분야가 주요 발생원인 특징이 있다. 매립지와 폐기물로부터 발생되는 메탄양은 연간 약 35∼73 Tg으로 추정된다. 메탄은 유기물의 혐기적 분해 과정에서 메탄생성세균에 의해 생성되며, 이러한 생물학적 작용에 의한 메탄 발생량은 총 발생량의 약 70~80% 정도 차지하는 것으로 추정되고 있다. 메탄 제거는 주로 대류권에서의 OH 라디칼과의 반응(CH4 + OH·→ CH3·+ H2O)과 성층권에서 염소와 반응(CH4 + Cl·→ CH3·+ HCl)에 의해 소멸된다. 또한, 호기적인 환경에서 메탄은 유일 탄소원과 에너지원으로 이용하는 메탄영양세균에 의해 이산화탄소로 최종 산화되는데, 이 메커니즘이 메탄의 주요 소멸 메커니즘이다.
메탄산화세균(Methanotrophic bacteria)은 메탄을 탄소원 및 에너지원으로 사용하여 성장하는 세균집단을 통칭하는 것으로, 메틸로모나스(Methylomonas), 메타노모나스(Methanomonas), 메틸로코쿠스(Methylococcus), 메틸로시누스(Methylosinus), 메틸로박터(Methylobacter), 메틸로미크로비움(Methylomicrobium) 및 메틸로시스티스(Methyl ocystis) 등이 있다(Mohamed Banni et al., PNAS, vol. 105, no. 29, pages 10203 - 10208, 2008).
상기 메탄산화세균은 메탄을 메탄올로 산화시키는 메탄 모노옥시게나제(methane monooxygenase, 이하 'MMO'라 칭함) 및 메탄올을 포름알데히드로 산화시키는 메탄올 탈수소효소(methanol dehydrogenase, 이하 'MDH'라 칭함)등을 포함하고 있어 메탄가스를 산화시켜 이산화탄소로 전환시키는 역할을 한다. 구체적으로, 메탄산화세균은 메탄을 메탄올로, 메탄올을 다시 포름알데히드로 산화시킨다. 그리고 포름알데히드를 포름산으로 산화시켜 최종적으로 유해성이 적은 이산화탄소로 전환시킨다. 또한 상기 메탄산화세균은 다탄소 결합을 갖는 유기화합물을 성장물질로는 이용하지 못하지만 MMO 효소작용으로 많은 알칸족과 방향족 화합물도 산화시킬 수 있다. 한편, 현재 쓰레기 처리장 등에서 발생되는 메탄을 재활용하기 위한 많은 연구가 진행되고 있으며, 그 중 메탄산화세균을 이용하여 메탄을 메탄올로 전환시키는 연구가 진행되고 있다. 하지만 해당 효소는 메탄 산화세균 외에서는 생산이 불가능하여, 대량 생산을 통한 효과적인 메탄 제거 또는 메탄올 생산에 걸림돌이 되고 있는 실정이다(대한민국 특허 제10-2014-0113949, 제10-2014-0113950).
이에 본 발명자들은 메탄 모노옥시게나제의 이종발현을 통한 대량생산을 위해 예의 노력한 결과, RhyB sRNA 보유능 및 메탄 모노옥시게나제 서브유닛 발현능을 가지는 그람 음성 미생물을 철 이온의 존재하에 배양하여 메탄 모노옥시게나제 서브유닛을 발현할 경우, 수용성 메탄 모노옥시게나제 서브유닛의 대량생산이 가능하다는 것을 확인하고, 이를 세포 외 환경에서 조합할 경우, 활성이 뛰어난 수용성 메탄 모노옥시게나제를 수득할 수 있음을 확인함으로서, 본 발명을 완성하게 되었다.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.
본 발명의 목적은 수용성 메탄 모노옥시게나제의 제조방법을 제공하는 것이다.
본 발명의 다른 목석은 상기 제조방법으로 제조한 수용성 메탄 모노옥시게나제의 용도를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 (a) RhyB sRNA 보유능 및 메탄 모노옥시게나제 서브유닛 발현능을 가지는 그람 음성 미생물을 철(Fe) 이온을 함유하는 배지에서 배양하여, 수용성 메탄모노옥시게나제 서브유닛을 생성시키는 단계; 및 (b) 상기 생성된 수용성 메탄 모노옥시게나제 서브유닛을 회수하는 단계를 포함하는 알파(α), 베타β), 감마(γ) 및 씨(C)로 구성된 군에서 선택되는 수용성 메탄 모노옥시게나제 서브유닛의 제조방법을 제공한다.
본 발명은 또한, (a) 세포 외(in vitro) 환경에서 철 이온 함유 배지에서 제조한 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)와 수용성 메탄 모노옥시게나제 서브유닛 비(B)를 조합하는 단계; 및 (b) 조합된 수용성 메탄 모노옥시게나제를 수득하는 단계를 포함하는 수용성 메탄 모노옥시게나제의 제조방법을 제공한다.
본 발명은 또한, 상기 제조방법으로 제조한 수용성 메탄 모노옥시게나제를 이용하여 메탄으로부터 메탄올을 생산하는 방법을 제공한다.
본 발명에 따른 수용성 메탄 모노옥시게나제의 제조방법은 동종발현 외에 생산이 불가능하다고 알려진 메탄 모노옥시게나제를 세계 최초로 이종발현을 통해 제조 가능하게 하여, 수용성 메탄 모노옥시게나제의 대량생산에 유용하다.
도 1은 그람 음성 세균에 존재하는 sRNA인 RhyB가 수용성 메탄 모노옥시게나제의 mRNA를 분해하는 과정을 나타내는 모식도이다.
도 2는 수용성 메탄 모노옥시게나제 서브유닛 중, RhyB가 결합할 수 있는 모티프를 포함하는 서브유닛을 코딩하는 염기서열을 함휴한 벡터의 구조도이다.
도 3의 (A)는 수용성 모노옥시게나제 서브유닛 α(sMMOα)를 코딩하는 유전자 mmoX의 PCR 결과이고, (B)는 수용성 모노옥시게나제 서브유닛 β(sMMOβ)를 코딩하는 유전자 mmoY의 PCR 결과이며, (C)는 수용성 모노옥시게나제 서브유닛 γ(sMMOγ)를 코딩하는 유전자 mmoZ의 PCR 결과이고, (D)는 수용성 모노옥시게나제 서브유닛 C(sMMOC)를 코딩하는 유전자 mmoC의 PCR 결과이며, (E)는 수용성 모노옥시게나제 서브유닛 B(sMMOB)를 코딩하는 유전자 mmoB의 PCR 결과이다.
도 4는 일반적인 조건에서 생산한 수용성 모노옥시게나제 서브유닛 α(A), β(B), γ(C), C(D) 및 B(E)의 SDS-PAGE 결과이다.
도 5의 (A)는 각 발현 벡터를 삽입한 균주에서 대조군인 16s rRNA의 전사 수준을 측정한 결과이며, (B)는 각 타겟 유전자의 전사 수준을 측정한 결과이다.
도 6은 시간에 따른 수용성 메탄 모노옥시게나제 서브유닛 α(sMMOα)의 mRNA 발현양상을 측정한 결과이다.
도 7은 RhyB sRNA가 결합하는 타겟 모티프와, mmoX, Y, Z, C 및 B 유전자의 서열 분석 및 유사성을 확인한 결과이다.
도 8은 철 이온의 종류와 농도에 따른 수용성 메탄 모노옥시게나제 서브유닛 α(sMMOα)의 mRNA 발현 정도를 비교한 결과이다.
도 9는 철 이온을 포함한 조건에서 생산한 수용성 모노옥시게나제 서브유닛 α(A), β(B), γ(C), C(D) 및 B(E)의 웨스턴 블롯 분석 결과이다.
도 10은 본 발명에서 생산한 수용성 모노옥시게나제의 활성을 측정한 결과이다.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 수용성 메탄 모노옥시게나제를 이종발현을 통해 대량생산할 수 있는지 확인하고자 하였다.
본 발명에서는 수용성 메탄 모노옥시게나제의 서브유닛 중 일부의 mRNA가 그람 음성 세균에 존재하는 RhyB sRNA의 타겟이 되는 것을 확인하고, 철 이온을 배지에 첨가하여 RhyB의 활성을 억제하여, 그람 음성 세균에서 메탄 모노옥시게나제를 대량생산 할 수 있다는 것을 확인하였다.
즉, 본 발명의 일 실시예에서는, 메틸로셀라 실베스트리스(Methylocella silvestris) 유래 수용성 메탄 모노옥시게나제 서브유닛 α, β, γ 및 C를 코딩하는 유전자 mmoX, Y, Z 및 C를 발현 벡터에 클로닝하여, 그람 음성 세균의 일종인 대장균에 형질전환 하였다.
일반적인 조건에서는 상기 서브유닛들의 발현이 RhyB sRNA에 의해 억제된다는 것을 확인한 다음, 철 이온을 첨가할 경우, 상기 서브유닛들의 발현이 획기적으로 증가하는 것을 확인할 수 있었다(도 9).
따라서, 본 발명은 일 관점에서, (a) RhyB sRNA 보유능 및 메탄 모노옥시게나제 서브유닛 발현능을 가지는 그람 음성 미생물을 철(Fe) 이온을 함유하는 배지에서 배양하여, 수용성 메탄모노옥시게나제 서브유닛을 생성시키는 단계; 및 (b) 상기 생성된 수용성 메탄 모노옥시게나제 서브유닛을 회수하는 단계를 포함하는 알파(α), 베타β), 감마(γ) 및 씨(C)로 구성된 군에서 선택되는 수용성 메탄 모노옥시게나제 서브유닛의 제조방법에 관한 것이다.
본 발명에 있어서, 상기 수용성 메탄 모노옥시게나제 서브유닛은 배지에 포함된 철 이온에 의해 RhyB sRNA의 활성이 억제되어 발현이 증가하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 철 이온의 농도는 10μM 내지 100μM인 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 수용성 메탄 모노옥시게나제 서브유닛은 세포막 또는 세포벽에 함입되어 있지 않고, 자유롭게 작동하는 메탄 모노옥시게나제 서브유닛이면 모두 이용가능하나, 바람직하게는 메틸로셀라 실베스트리스(Methylocella silvestris)로부터 유래한 것을 특징으로 할 수 있으며, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 그람 음성 미생물은 그람 염색에서 크리스털 바이올렛 염색을 유지하지 않는 세균이면 모두 이용가능하고, 바람직하게는 녹만균, 이숭구균, 남세균, 열탈유간균, 호열균, 프로테오박테리아, 나선상균, 피브로박테르균, 의간균, 클라미디아균, 우미균, 아키도박테리움균, 탈철간균, 크리시오게네스균, 푸소박테리움균, 겜마티모나스균, 니트로스피라균, 시네르기스테스균, 딕티오글로무스균, 렌티스파이라균 또는 대장균일 수 있으며, 가장 바람직하게는 대장균인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 상기 RhyB sRNA 발현능은 그람 음성 미생물이면 모두 가지는 것은 당업자에게 자명하다.
본 발명에 있어서, 상기 메탄 모노옥시게나제 서브유닛 발현능은 그람 음성 미생물에 메탄 모노옥시게나제 서브유닛을 코딩하는 유전자를 포함하는 벡터를 형질전환하여 가지는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 메탄 모노옥시게나제 서브유닛을 암호화하는 유전자는 mmoX, mmoY, mmoZ 또는 mmoC 일 수 있으며, 바람직하게는 서열번호 6 내지 9로 구성된 군에서 선택되는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 벡터는 그람 음성 미생물에서 이종 단백질 발현을 시킬 수 있는 벡터이면 모두 이용가능하나, 바람직하게는 서열번호 1 내지 4로 구성된 군에서 선택되는 아미노산 서열 중 하나를 암호화하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 메탄 모노옥시게나제 서브유닛 알파(α)는 서열번호 1의 아미노산 서열로 표시되고, 서브유닛 베타β)는 서열번호 2의 아미노산 서열로 표시되며, 서브유닛 감마(γ)는 서열번호 3의 아미노산 서열로 표시되고, 서브유닛 씨(C)는 서열번호 4의 아미노산 서열로 표시되는 것을 특징으로 할 수 있다.
한편, 본 발명에서는 제작한 수용성 메탄 모노옥시게나제를 in vitro에서 조합하여 수용성 메탄 모노옥시게나제 복합체를 제조할 경우, 메탄올 생산능 등의 활성이 나타나는 것을 확인하고자 하였다.
본 발명의 다른 실시예에서는 통상의 조건으로 제조한 수용성 메탄 모노옥시게나제 서브유닛 비(B)와 상기 방법으로 제조한 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)를 세포 외(in vitro) 환경에서 조합하여 수득한 다음, 활성을 확인하였다.
따라서, 본 발명은 다른 관점에서, (a) 세포 외(in vitro) 환경에서 철 이온 함유 배지에서 제조된 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)와 수용성 메탄 모노옥시게나제 서브유닛 비(B)를 조합하는 단계; 및 (b) 조합된 수용성 메탄 모노옥시게나제를 수득하는 단계를 포함하는 수용성 메탄 모노옥시게나제의 제조방법에 관한 것이다.
본 발명에 있어서, 상기 수용성 메탄 모노옥시게나제 서브유닛 B는 서열번호 5의 아미노산 서열로 표시되는 것을 특징으로 할 수 있으며, 이를 암호화하는 유전자는 서열번호 10의 염기서열로 표시되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 통상의 조건은 대장균에 재조합 벡터를 형질전환하여 수용성 단백질을 수득하는 조건이면 모두 이용가능하며, 바람직하게는 형질전환한 대장균을 배지에서 특정 O.D값까지 배양하는 단계; IPTG 등의 발현 유도 물질을 주입하여 특정 온도(예를 들어 16℃)에서 단백질 발현을 유도하는 단계; 원심분리한 세포를 파쇄하는 단계 및 목적 단백질을 ion exchange chromatography 등을 이용하여 정제하는 단계를 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 용어 "형질전환"이란, 표적 단백질을 암호화하는 폴리뉴클레오타이드를 포함하는 벡터를 숙주 세포 내에 도입하거나 표적 단백질을 암호화하는 폴리뉴클레오타이드를 숙주 세포의 염색체에 통합 완성시켜 숙주 세포 내에서 상기 폴리뉴클레오타이드가 암호화하는 단백질이 발현할 수 있도록 하는 것을 의미한다. 형질전환된 폴리뉴클레오타이드는 숙주 세포 내에 발현될 수 있기만 한다면, 숙주세포의 염색체 내에 삽입되어 위치하거나 염색체 외에 위치하든지 상관없이 이들 모두를 포함한다. 또한, 상기 폴리뉴클레오티드는 표적 단백질을 암호화하는 DNA 및 RNA를 포함한다. 상기 폴리뉴클레오티드는 숙주 세포 내로 도입되어 발현될 수 있는 것이면, 어떠한 형태로 도입되는 것이든 상관없다. 예를 들면, 상기 폴리뉴클레오타이드는, 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 숙주세포에 도입될 수 있다. 상기 발현 카세트는 통상 상기 폴리뉴클레오티드에 작동 가능하게 연결되어 있는 프로모터(promoter), 전사 종결 신호, 리보좀 결합부위 및 번역 종결신호를 포함한다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 폴리뉴클레오티드는 그 자체의 형태로 숙주세포에 도입되어, 숙주세포에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있다.
본 발명에 있어서, 상기 그람 음성 미생물을 배양하는 단계는 특별히 이에 제한되지 않으나, 공지된 회분식 배양방법, 연속식 배양방법, 유가식 배양방법 등에 의해 수행됨이 바람직하고, 배양조건은 특별히 이에 제한되지 않으나, 염기성 화합물(예: 수산화나트륨, 수산화칼륨 또는 암모니아) 또는 산성 화합물(예: 인산 또는 황산)을 사용하여 적정 pH(pH 5 내지 9, 바람직하게는 pH 6 내지 8, 가장 바람직하게는 pH 6.8)를 조절할 수 있고, 산소 또는 산소-함유 가스 혼합물을 배양물에 도입시켜 호기성 조건을 유지할 수 있으며, 배양온도는 20 내지 45℃, 바람직하게는25 내지 40℃를 유지할 수 있고, 약 10 내지 160 시간동안 배양함이 바람직하다. 상기 배양에 의하여 생산된 상기 폴리펩타이드는 배지중으로 분비되거나 세포 내에 잔류할 수 있다.
아울러, 사용되는 배양용 배지는 탄소 공급원으로는 당 및 탄수화물(예: 글루코오스, 슈크로오스, 락토오스, 프럭토오스, 말토오스, 몰라세, 전분 및 셀룰로오스), 유지 및 지방(예: 대두유, 해바라기씨유, 땅콩유 및 코코넛유), 지방산(예:팔미트산, 스테아르산 및 리놀레산), 알콜(예: 글리세롤 및 에탄올) 및 유기산(예:아세트산) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 질소 공급원으로는 질소-함유 유기 화합물(예: 펩톤, 효모 추출액, 육즙, 맥아 추출액, 옥수수 침지액, 대두 박분 및 우레아), 또는 무기 화합물(예: 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄) 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있으며; 인 공급원으로서 인산 이수소칼륨, 인산수소이칼륨, 이에 상응하는 나트륨 함유 염 등을 개별적으로 사용하거나 또는 혼합하여 사용할 수 있고; 기타 금속염(예: 황산마그네슘 또는 황산철), 아미노산 및 비타민과 같은 필수성장-촉진 물질을 포함할 수 있다.
본 발명의 다른 실시예에서는 상기 제작방법으로 생산한 수용성 메탄 모노옥시게나제 서브유닛(α, β, γ 및 C)과 통상적인 조건에서 생산한 수용성 메탄 모노옥시게나제 서브유닛(B)을 세포 외(in vitro)에서 조합하여 활성을 가지는 수용성 메탄 모노옥시게나제를 제조하였다.
또한, 상기 효소의 활성을 실험한 결과, 상기 방법으로 제조한 수용성 메탄 모노옥시게나제가 메탄 가스를 메탄올로 효과적으로 전환시키는 것을 확인하였다.
따라서, 본 발명은 또 다른 관점에서 상기 방법으로 제조한 수용성 메탄 모노옥시게나제를 이용하여 메탄으로부터 메탄올을 제조하는 방법에 관한 것이다.
본 발명에 있어서, 상기 수용성 메탄 모노옥시게나제의 용도는 메탄 가스를 산화시키는 용도이면 제한 없이 사용할 수 있으나, 바람직하게는 메탄올의 생산인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1. Soluble methane monooxygenase 유전자 증폭
각 단위체를 클로닝 하기 위하여 메틸로셀라 실베스트리스로부터 각 단위체의 유전자의 염기서열을 참고로 하여 Soluble methane monooxygenase 알파(α), 씨(C) 및 비(B)의 경우 정방향 프라이머(Forwadrd primer)의 5‘에는 제한효소 EcoRI 인식서열이, 역방향 프라이머(Reverse primer)의 5’에는 SacI 인식서열이 삽입되도록 프라이머를 디자인하였고, Soluble methane monooxygenase 와이(Y)와 제트(Z)의 경우 정방향 5‘ 프라이머에는 제한효소 SacI 인식서열이 역방향 프라이머의 5’에는 XhoI 인식서열이 삽입되도록 프라이머를 디자인하여 PCR을 수행 하였다. 구체적인 프라이머의 염기서열은 하기 표 1과 같다.
클로닝 프라이머 염기 서열
단위체 유전자 서열번호 서열
알파(α) mmoX-F 11 GAATTCATGGCATTAAGCACCGCG
mmoX-R 12 GAGCTCTTAGAAGCCTGCGAGCG
씨(C) mmoC-F 13 GAATTCATGTTCAAGGTGCGCG
mmoC-R 14 GAGCTCCTACTCTGCGGCCTGA
감마(γ) mmoZ-F 15 GAGCTCATGCCCAACTACAAAATTCATGA
mmoZ-R 16 CTCGAGTCAAACCACGTTGCCGAG
베타(β) mmoY-F 17 GAGCTCATGGCTATCGCCTCGAC
mmoY-R 18 CTCGAGTCACTTGACGTCACGAGT
비(B mmoB-F 19 GAATTCATGACAGCAAAGAACGCATATAA
mmoB-R 20 GAGCTCAACGTCGGTGAGCTTG
그 결과 알파는 1581bp, 씨의 경우 1053bp, 와이의 경우 1176bp, 제트의 경우 513bp의 PCR 밴드를 확인할 수 있었다(도 3).
실시예 2. Soluble methane monooxygenase 유전자를 pET22b 벡터에 구축
실시예 1에서 수득한 알파, 와이, 제트, 씨 및 비 유전자와 pET22b벡터를 각각에 맞게 제한효소를 넣어 37도에서 2시간 처리를 한 후에 전기영동으로 제한효소 처리된 DNA 절편을 수득한 다음, 빈 1.5ml e-tube로 영점을 잡아주고 맞는 크기의 밴드를 각각 1.5ml e-tube에 넣어은 후, GB buffer를 겔이 들어간 튜브에서 빈 튜브의 그램수 만큼 차감한 3배 볼륨으로 넣어준 후, 50도에서 15분 동안 대기한 후에 gel extraction용 컬럼에 옮겨 담아 13,000rpm에서 1분 동안 원심분리를 한 후에 NW buffer 700μl를 넣은 후 13,000rpm에서 1분 동안 원심분리 하였다.
그리고 걸러진 액체를 버린 후에 다시 1분 동안 원심분리를 하고 컬럼 위의 튜브만 뽑아서 1.5ml e-tube에 넣어주고 증류수를 30~40μl를 넣어주고 나노드랍을 이용하여 농도를 측정하였다. 이후에 나온 농도 값을 보고 벡터와 유전자의 비율을 1:3 정도로 해서 T4 ligase를 넣어 16도에서 2시간 라이게이션을 진행한 다음, DH5α 컴페턴트 셀에 형질전환을 진행하였다.
앞의 DH5α의 형질 전환이 된 것이 확인이 되면 단백질 발현용 컴페턴트 셀인 BL21로 위의 과정과 똑같이 형질전환을 진행하였다.
그 결과, 구축한 pET22b 발현 벡터를 도 2에 개시하였다.
실시예 3. 형질 전환체의 단백질 발현 및 SDS-PAGE 확인
BL21에 형질전환한 각각의 엑스, 와이, 제트, 씨 서브유닛을 250ml LA broth에 균주:배지 = 1:1000의 비율로 접종을 한 다음, 쉐이킹 인큐베이터를 통해 37도에서 O.D값 0.5~0.8 까지 배양한 후, 500mM IPTG를 넣어주고 16도에서 단백질 발현을 유도하였다.
단백질이 발현된 샘플들을 각각 250ml plastic bottle에 넣어 4000rpm에서 30분 동안 원심분리 해준 후 상층액을 버린 후에 세포를 초음파 파쇄기로 파쇄한 다음, 샘플을 각각 1.5ml e-tube에 옮겨 담은 후 13,000rpm에서 20분 동안 원심분리를 한 후 상층액만 50ml tube에 옮긴 샘플들을 각각 Ni-NTA resin 컬럼을 이용하여 정제를 진행한 후에 SDS-PAGE를 통해서 단백질 발현을 확인하였다.
그 결과, 도 4에 개시된 바와 같이 일반적인 조건으로 단백질 발현을 유도한 수용성 메탄 모노옥시게나제 서브유닛은 서브유닛 비를 제외하고는 발현이 제대로 되지 않는 것을 확인할 수 있었다.
실시예 4. 전사 수준에서의 문제 인지 확인하기 위해 mRNA 발현 확인
실시예 3과 같이 단백질 발현이 되지 않는 원인을 밝히기 위해 RNA 실험을 진행 하였다. 그 중 가장 중요하고 발현이 잘되지 않는 알파 단위체를 통해 확인을 진행 하였다. 컨트롤로는 pET22b벡터만 들어가 있는 것과 pET22b+알파 단위체, pET22b+비 단위체가 들어가 있는 세 가지의 샘플로 실험을 진행 하였다.
우선 Total RNA를 뽑고(Trizol reagent, Invitrogen) RT-PCR을 진행 하였는데, 타겟으로 하는 부분의 프라이머를 표 2에 개시한 서열로 제작하여 진행 한 다음, 전기영동으로 확인 하였다.
RT-PCR 프라이머 염기 서열
단위체 서열번호 서열 비고
알파-F 21 CCACAATGACGCGCGC RT-PCR 및 mRNA 발현 확인용
알파-R 22 TCTTCATCCGGCAGCGA
DH5α-F 23 CGTGGCTTCCGGAGCT 16s rRNA 발현 확인용으로 RNA가 잘 뽑혔는지 유무 확인
DH5α-R 24 TTAAGCTACCTACTTCTTTTGCAACCC
그 결과, 도 5에 개시된 바와 같이 16s rRNA 추출은 잘 이루어 졌으나, 단위체의 발현이 잘 이루어지지 않아, RT-PCR 밴드가 나타나지 않는 것을 확인할 수 있었다.
실시예 5. 시간에 따른 mRNA 발현 확인
실시예 4에서 16s rRNA확인을 통해 RNA는 잘 뽑힌 것으로 확인이 되었지만 mRNA발현의 경우, 단위체 B 에서만 확인이 되어 좀 더 명확한 확인을 위해 시간별로 샘플을 따로 뽑아서 mRNA 발현을 확인 하였다. 시간의 경우 5분, 10분, 15분, 30분, 45분, 60분으로 결정하고, 실시예4와 같은 방법으로 수행하였다.
그 결과, 도 6에 개시된 바와 같이 단위체 알파의 경우, 단백질 발현 유도 초기에는 정상적으로 발현이 유도되었으나, 시간이 지날수록 mRNA가 파괴되어 밴드가 나타나지 않는 것을 확인하였다.
실시예 6. 대장균의 small RNA인 RyhB 모티프 분석
실시예 5의 원인을 찾던 중, 대장균 내에 존재하는 small RNA인 RyhB가 mRNA를 타겟으로 분해하거나 전사와 번역을 저해한다는 논문들을 발견 하게 되었고 그에 해당하는 RyhB의 모티프 서열을 찾아 각각 단위체의 서열과 비교하여 분석을 실시하였다.
그 결과, mmoX 및 mmoY 유전자의 mRNA는 RhyB sRNA의 타겟 모티프와 66.7%의 유사성을 가지고, mmoZ 유전자의 mRNA는 55.6%의 유사성을 가지며, mmoC 유전자의 mRNA는 61.1%의 유사성을 가진다는 것을 확인할 수 있었다.
즉, 시간에 따른 수용성 메탄 모노옥시게나제 서브 유닛 mRNA의 분해는 RhyB tagret 모티프와의 서열 유사성 때문에 RhyB에 의해 분해되는 것임을 알 수 있었다.
실시예 7. 철의 종류 및 농도별 첨가에 따른 발현된 대장균의 total RNA 추출 및 reverse transcriptase PCR, PCR 확인
실시예 6에서 RhyB 타겟 모티프의 유무를 확인 하였고, 이를 조절할 수 있는 Ferric uptake regulator가 sMMO operone에 존재하는 것을 확인 하였다. 이를 조절하는 요인이 철이라는 것은 이미 공지되어 있었다.
이에, FeSO4와 FeCl2를 이용하여 어떤 종류가 더 효율이 좋을지 그리고 어떤 농도에서 발현이 잘되는지를 파악하기 위해 논문 (Rene Uebe et al. ,2010)을 통해 최대 농도를 확인하고, 상기 두 종류의 철 혼합물을 배지에 첨가하여 균주 컬쳐를 진행하였고, 45분 후에 RNA를 추출하여 발현 정도를 확인하였다.
그 결과, 도 8에 개시된 바와 같이 FeSO4의 농도가 40μM일 때, sMMO의 mRNA가 가장 적게 분해되는 것을 확인할 수 있었다.
실시예 8. 철의 농도 최적화와 그에 따른 수용성 메탄 모노옥시게나제 단백질 발현
FeSO4를 최종 농도를 40um에 맞춘 다음, 실시예 3의 방법으로 서브유닛의 발현을 유도한 다음, 동일한 방법을 단백질을 추출한 후, SDS-PAGE로 확인 하였다. 단백질 발현을 위해 상용화 되있는 벡터인 pGRO7 vector도 같이 cloning하여 사용 하였다.
그 결과, 도 9에 개시된 바와 같이 생산되지 않던 수용성 메탄 모노옥시게나제 서브유닛을 성공적 제조할 수 있음을 확인하였다.
실시예 9. Soluble methane monooxygenase의 나프탈렌을 기질로 한 활성 확인
실시예 8에서 생산한 Soluble methena monooxygenase의 활성을 확인하기 위하여, 논문을 참고하여 진행하였다(Yan Jiang et al, Biochimica et Biophysica Acta, Vol. 1163, pp. 105-112, 1993).
구체적으로는 실시예 8에서 발현 및 정제한 sMMO와 나프탈렌(Naphthalene)을 반응시켜 나프탈렌이 나프톨(Naphthol)로 전환된 후, 전환된 나프톨이 패스트 블루 비(fast blue B) 염색약과 반응하여 색을 나타낼 경우, 이를 525nm에서의 흡광도를 측정하는 것으로 활성을 확인하였다. 또한 상기 논문에서는 과산화수소를 mmoB 대신 하여 첨가하여 실험을 진행 하였는데 이를 참고 하여 실험을 설계하여 진행하였다. 각 반응물 별 양은 하기 표 3과 같다.
반응물 양
효소반응을 위한 시약 Tris Naphthalene sMMO H2O2 Naphthol Fast Blue B
반응양 (㎕) 10 50 50 1.02 50 48
표 3에 개시된 반응물을 1.5ml e-tube에 넣어서 30분간 효소반응을 진행 후 마지막에 Fast blue B 시약을 넣고 525nm에서 optical density (OD값)를 측정하였다.
그 결과, 표 4 및 도 10에 개시된 바와 같이, 실시예 8에서 발현/정제한 sMMO의 활성이 뛰어난 것을 확인하였다.
효소반응 확인 결과
E1 E2 E3 E4 E5 E6 E7
각 15분 Tris Tris+H2O2 Tris+sMMO Tris+sMMO+Naphthalene Tris+sMMO
+Naphthalene
+H2O2
Tris+sMMO+Naphthol Tris+sMMO
+Naphthol
+H2O2
측정 OD
(525nm)
0.288 0.241 1.11 1.146 2.282 - -

실제 OD
(측정값 - E1 OD)

0

-0.047

0.822

0.858

1.994

-

-
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
SEQUENCE LISTING <110> Korea University Research and Business Foundation <120> A Method for preparing soluble methane monooxygenase by using heterologous expression vector <130> P17-B017 <160> 24 <170> PatentIn version 3.5 <210> 1 <211> 526 <212> PRT <213> mmoX_prot <400> 1 Met Ala Leu Ser Thr Ala Thr Lys Ala Ala Ser Asp Ala Leu Gly Ala 1 5 10 15 Asn Arg Ala Pro Thr Ser Val Ser Pro Gln Glu Val His Arg Trp Leu 20 25 30 Gln Ser Phe Asn Trp Asp Phe Ala Gln Asn Arg Thr Lys Tyr Pro Thr 35 40 45 Lys Tyr His Met Ala Asn Asp Thr Lys Glu Gln Phe Lys Leu Ile Ala 50 55 60 Lys Glu Tyr Ala Arg Met Glu Ser Val Lys Asp Glu Arg Gln Phe Gly 65 70 75 80 Thr Leu Leu Asp Gly Leu Thr Arg Leu Glu Ala Gly Asn Arg Val His 85 90 95 Pro Arg Trp Gly Glu Thr Met Lys Val Ala Ser Asn Phe Leu Glu Val 100 105 110 Gly Glu Tyr Asn Ala Ile Ala Ala Ser Ala Met Leu Trp Asp Ser Ala 115 120 125 Ser Ala Ala Glu Gln Lys Asn Gly Tyr Leu Ala Gln Val Leu Asp Glu 130 135 140 Ile Arg His Thr His Gln Cys Gly Phe Val Asn Tyr Tyr Phe Ser Lys 145 150 155 160 His Tyr His Asp Pro Ala Gly His Asn Asp Ala Arg Arg Thr Arg Ala 165 170 175 Ile Gly Pro Leu Trp Lys Gly Met Lys Arg Val Phe Ala Asp Gly Phe 180 185 190 Ile Ser Gly Asp Ala Val Glu Cys Ser Val Asn Leu Gln Leu Val Gly 195 200 205 Glu Ala Cys Phe Thr Asn Pro Leu Ile Val Ala Val Thr Glu Trp Ala 210 215 220 Ser Ala Asn Gly Asp Glu Ile Thr Pro Thr Val Phe Leu Ser Ile Glu 225 230 235 240 Thr Asp Glu Leu Arg His Met Ala Asn Gly Tyr Gln Thr Val Val Ser 245 250 255 Ile Ala Asn Asp Pro Ala Ala Gln Lys Tyr Leu Asn Thr Asp Leu Asn 260 265 270 Asn Ala Phe Trp Thr Gln Gln Lys Tyr Phe Thr Pro Val Leu Gly Met 275 280 285 Leu Phe Glu Tyr Gly Ser Lys Phe Lys Val Glu Pro Trp Val Lys Thr 290 295 300 Trp Asn Arg Trp Val Tyr Glu Asp Trp Gly Gly Ile Trp Ile Gly Arg 305 310 315 320 Leu Ala Lys Tyr Gly Val Asn Ser Pro Pro Ser Leu Arg Asp Ala Lys 325 330 335 Lys Asp Ala Tyr Trp Ala His His Asp Leu Phe Leu Leu Ala Tyr Ala 340 345 350 Leu Trp Pro Thr Gly Phe Phe Arg Leu Ser Leu Pro Asp Glu Glu Asp 355 360 365 Met Glu Trp Phe Glu Ala Asn Tyr Pro Gly Trp Asp Ala His Tyr Gly 370 375 380 Lys Ile Leu Arg Glu Trp Lys Ala Leu Gly Cys Glu Asp Pro Lys Ser 385 390 395 400 Gly Phe Leu Pro Ile Gln Trp Leu Val Gln Asn Gly His Gln Val Tyr 405 410 415 Val Asp Arg Val Ser Gln Val Pro Phe Cys Pro Thr Leu Ala Lys Cys 420 425 430 Ser Gly Ser Leu Arg Val His Glu Phe Asn Gly Gln Lys His Ser Phe 435 440 445 Ser Asp Asp Trp Gly Glu Arg Met Trp Leu Ser Glu Pro Glu Arg Tyr 450 455 460 Glu Cys Gln Ser Val Phe Glu Gln Tyr Ser Gly Arg Glu Leu Ser Asp 465 470 475 480 Val Ile Val Glu Gly His Gly Val Arg Ala Asp Gly Lys Thr Leu Ile 485 490 495 Gly Gln Pro His Val Ala Gly Ser Asn Leu Trp Thr Val Glu Asp Leu 500 505 510 Lys Arg Ala Asn Cys Val Phe Ala Asp Pro Leu Ala Gly Phe 515 520 525 <210> 2 <211> 391 <212> PRT <213> mmoy_prot <400> 2 Met Ala Ile Ala Ser Thr Thr Lys Arg Gly Leu Thr Asp Pro Asp Lys 1 5 10 15 Ala Ala Gln Ile Leu Ala Ala Val Pro Asp His Glu Leu Asp Thr Gln 20 25 30 Arg Arg Met Asn Tyr Phe Val Thr Pro Arg Trp Lys Arg Leu Ser Glu 35 40 45 Tyr Glu Ile Leu Thr Leu Tyr Thr Gln Pro Asn Pro Asp Trp Ile Ala 50 55 60 Gly Gly Leu Asp Trp Gly Asp Trp Thr Gln Lys Phe His Gly Gly Arg 65 70 75 80 Pro Ser Trp Gly Asn Glu Ser Thr Glu Leu Arg Thr Thr Asp Trp Tyr 85 90 95 Arg His Arg Asp Pro Ala Arg Arg Trp His Ala Pro Tyr Val Lys Asp 100 105 110 Lys Ala Glu Glu Trp Arg Tyr Thr Thr Arg Phe Leu Glu Gly Tyr Ser 115 120 125 Ala Glu Gly Ala Val Arg Ser Ile Asp Pro Thr Trp Arg Asp Glu Ile 130 135 140 Leu Asp Lys Tyr Trp Gly Ala Leu Leu Phe Ser Glu Tyr Gly Leu Phe 145 150 155 160 Asn Ala His Ser Ser Val Ser Arg Asp Ala Leu Ser Asp Thr Ile Arg 165 170 175 Ser Thr Ala Thr Phe Ala Ala Leu Asp Lys Val Asp Asn Ala Gln Met 180 185 190 Ile Gln Leu Glu Arg Asn Phe Leu Ser Lys Ile Val Pro Gly Phe Pro 195 200 205 Glu Ser Thr Asp Gly Pro Lys Lys Val Trp Leu Thr Asp Pro Ile Tyr 210 215 220 Arg Gly Ala Arg Glu Thr Val Glu Glu Ala Trp Gln Gly Ile Gln Asp 225 230 235 240 Phe Asn Glu Ile Leu Trp Ala Val His Gly Val Tyr Asp Pro Leu Phe 245 250 255 Gly Gln Phe Ala Arg Arg Glu Phe Phe Gly Arg Leu Ala Ala His Tyr 260 265 270 Gly Asp Gly Leu Thr Pro Phe Phe Leu Asn Gln Thr Gln Thr Tyr Phe 275 280 285 Gln Thr Thr Lys Ala Ala Met Ser Asp Leu Phe Phe Tyr Ser Leu Gly 290 295 300 Asp Asp Pro Glu Phe Gly Asp His Asn Arg Thr Trp Leu Arg Ala Trp 305 310 315 320 Thr Asn Lys Trp Leu Gln Lys Thr Ala Glu Ala Leu His Asp Phe Leu 325 330 335 Gly Ile Tyr Ala Lys Val Asp Lys Val Ala Gly Val Ser Asp Pro Ala 340 345 350 Ala Ile Lys Ala Ala Val Gly Arg Val Val Asn Asp Trp Val Glu Asp 355 360 365 Tyr Ala Lys Lys Ile Asp Phe Lys Val Asp Ala Gly Gln Leu Ile Ala 370 375 380 Ser Ile Thr Arg Asp Val Lys 385 390 <210> 3 <211> 170 <212> PRT <213> mmoZ_prot <400> 3 Met Pro Asn Tyr Lys Ile His Glu Asn Pro Val Arg Ser Asp Trp Leu 1 5 10 15 Glu Lys Ile Ala Glu Leu Lys Ser Val Lys Asp Ala Thr Ala Phe Ile 20 25 30 Gln Asp Phe Arg Lys Lys Asn Thr Ser Pro Phe Arg Thr Ser Tyr Ala 35 40 45 Leu Asp Val Asp Tyr Leu Phe Ile Glu Ala Lys Ile Glu Glu Arg Leu 50 55 60 Ala Val Leu Lys Ser Ser Thr Phe Ser Ala Ala Asp Leu Phe Thr Lys 65 70 75 80 Ala Thr Thr Gly Glu Thr Ala Gln Ala Val Ser Glu Asp Trp Ile Ala 85 90 95 Lys Ile Asp Ala Glu Lys Asp Lys Phe Ala Ala Glu Lys Ile Leu Ile 100 105 110 Thr Phe Arg Gln Leu Tyr Lys Pro Pro Val Leu Pro Val Asn Leu Phe 115 120 125 Phe Lys Val Asp Thr Tyr Leu Gly Ser Arg Leu Met Glu Leu Arg Asn 130 135 140 Thr Asp Tyr Tyr Ala Asp Ser Leu Asp Asp Leu Arg Lys Lys Arg Gly 145 150 155 160 Val Lys Val Leu Arg Leu Gly Asn Val Val 165 170 <210> 4 <211> 350 <212> PRT <213> mmoC_prot <400> 4 Met Phe Lys Val Arg Ala Ile Thr Glu Asp Gln His Asp Leu Thr Phe 1 5 10 15 Glu Cys Ser Pro Ser Glu Asp Val Ile Ser Ala Gly Leu Lys Arg Asp 20 25 30 Val Ile Leu Leu Ala Ser Cys Arg Glu Gly Gly Cys Ala Thr Cys Lys 35 40 45 Ala Glu Ile Val Asp Gly Asp Tyr Glu Leu Gly Gly Cys Ser Val Gln 50 55 60 Ala Leu Pro Pro Asp Glu Glu Glu Ala Gly Val Val Leu Leu Cys Arg 65 70 75 80 Thr Phe Pro Arg Ser Asp Leu Val Leu Gln Leu Pro Tyr Thr Phe Asp 85 90 95 Arg Ile Ser Phe His Lys Val Asn Thr Asp Trp Gln Gly Glu Ile Val 100 105 110 Ala Val Glu Arg Ile Ser Ser Asn Val Ala Arg Leu Gln Ile Glu Pro 115 120 125 Lys Asp Pro Glu Thr Gly Ala Ala Ile Ser Ile Pro Phe Val Pro Gly 130 135 140 Gln Tyr Val Asp Ile Glu Ile Pro Gly Ser Ser Val Ser Arg Ser Tyr 145 150 155 160 Ser Met Ala Thr Thr Ser Thr Gln Ser Arg Leu Asp Phe Leu Ile Arg 165 170 175 Leu Leu Pro Asp Gly Gln Phe Ser Asn Phe Leu Thr Met Ala Ala Lys 180 185 190 Pro Gly Leu Thr Val Lys Leu Arg Gly Pro Phe Gly Ala Phe Asn Leu 195 200 205 Arg Glu Asn Gly Phe Arg Pro Arg Tyr Phe Val Ala Gly Gly Thr Gly 210 215 220 Leu Ser Pro Val Leu Ser Met Ile Arg Tyr Met Gln Gln Glu Gln His 225 230 235 240 Pro Gln Glu Ala Lys Leu Phe Phe Gly Val Thr His Gln His Glu Leu 245 250 255 Phe Tyr Leu Glu Glu Leu Lys Lys Leu Glu Glu Ser Met Pro Asn Phe 260 265 270 Ser Ala His Val Ala Val Met Gln Pro Asp Gly Asn Trp Gln Gly Ser 275 280 285 Arg Gly Thr Val Val Asp Asp Leu Leu Lys His Leu Glu Gly Thr Lys 290 295 300 Ala Ala Pro Asp Ile Tyr Met Cys Gly Pro Pro Gly Met Ile Asp Ala 305 310 315 320 Thr Phe Ala Ala Ala Ala Asn Tyr Gly Val Pro Lys Asp His Val Tyr 325 330 335 Val Glu Lys Phe Leu Ala Thr Gly Gln Asn Gln Ala Ala Glu 340 345 350 <210> 5 <211> 137 <212> PRT <213> mmoB_prot <400> 5 Met Thr Ala Lys Asn Ala Tyr Asn Ala Gly Ile Met Lys Lys Ser Gly 1 5 10 15 Glu Ala Phe Ala Ala Glu Phe Phe Ala Glu Glu Asn Gln Val Val His 20 25 30 Glu Ser Asn Thr Val Val Leu Val Leu Met Lys Ser Asp Glu Ile Asp 35 40 45 Ala Ile Val Glu Asp Ile Ile Met Arg Glu Glu Thr Lys Arg Asn Pro 50 55 60 Thr Leu Val Val Glu Asp Arg Gly Gly Phe Trp Trp Ile Lys Ala Asp 65 70 75 80 Gly Lys Ile Gln Ile Asp Thr Glu Lys Ala Ser Asp Leu Leu Gly Lys 85 90 95 Thr Tyr Ser Ile Tyr Asp Phe Leu Val Asn Val Ser Ser Thr Ile Gly 100 105 110 Arg Ala Tyr Thr Leu Gly Asn Thr Phe Thr Ile Thr Ser Glu Leu Met 115 120 125 Gly Leu Asp Arg Lys Leu Thr Asp Val 130 135 <210> 6 <211> 1581 <212> DNA <213> mmoX_DNA <400> 6 atggcattaa gcaccgcgac gaaagctgcg tcggacgcac tcggagccaa ccgcgcgccg 60 acaagtgtaa gccctcagga agtgcatagg tggttgcaaa gcttcaactg ggacttcgcg 120 cagaaccgga cgaaataccc caccaagtac cacatggcga acgacaccaa ggagcagttc 180 aagctcatcg ccaaggaata cgcgcggatg gaatcggtca aggatgagcg ccagttcggc 240 accctgcttg acggattgac ccgccttgaa gctggaaacc gcgtacatcc gcgctggggc 300 gagacgatga aggtcgcctc caacttcctc gaagtcggtg aatacaacgc catcgcggcg 360 tccgcgatgt tgtgggattc agcgagcgcc gccgagcaga agaacggcta tctcgcgcag 420 gtcctcgacg aaattcgcca cacccatcaa tgcggcttcg tgaattacta tttctcgaag 480 cactaccatg atccggccgg ccacaatgac gcgcgccgca cgcgcgccat cggaccgctt 540 tggaagggca tgaagcgcgt cttcgccgac ggcttcattt ccggcgacgc ggtcgaatgc 600 tcggtcaatc tccagctcgt cggcgaagct tgcttcacca acccgctgat cgtggccgtg 660 accgaatggg cttcggcgaa cggcgacgaa atcacgccga cggtgtttct ctcgatcgag 720 accgacgagc tgcgccatat ggcgaacggc taccagacgg tcgtgtcgat cgccaatgat 780 ccggcggcgc agaaatatct caatacagat ctcaacaatg cgttctggac gcagcagaaa 840 tatttcaccc ctgtgctcgg aatgctgttc gaatatggct cgaaattcaa ggtcgagccg 900 tgggtcaaga cctggaatcg ttgggtctat gaagattggg gcggcatctg gattggtcgt 960 ctcgcaaaat atggcgtcaa ttccccgccg agcctgcgcg acgccaaaaa ggacgcctat 1020 tgggcgcacc acgacctctt cctgttggcc tacgcattgt ggccgaccgg cttcttccgg 1080 ctgtcgctgc cggatgaaga agacatggaa tggttcgagg cgaactatcc gggatgggac 1140 gcgcattacg gcaagatcct gcgcgaatgg aaggctctgg gctgcgagga tccgaagagc 1200 ggattcctgc cgatccagtg gctcgtccag aacggccatc aggtctatgt cgaccgcgtg 1260 tctcaggtgc cgttctgccc gacgctcgca aagtgctcgg gttcgctgag ggtgcatgag 1320 ttcaacggcc agaagcactc cttcagcgat gattggggcg agcgcatgtg gttgtctgag 1380 cccgagcgct acgagtgcca gagcgtcttc gagcaataca gcggccgcga gttgtcggat 1440 gtgatcgtcg aaggacatgg cgttcgcgcc gatggcaaga ccctgatcgg tcagccccat 1500 gtcgcaggca gcaatttgtg gaccgtcgaa gatctgaagc gggcaaattg tgtgttcgcc 1560 gatccgctcg caggcttcta a 1581 <210> 7 <211> 1176 <212> DNA <213> mmoY_DNA <400> 7 atggctatcg cctcgacgac caagcgcggg ctaaccgatc ctgacaaagc agcgcaaatt 60 ctcgccgccg ttcccgatca tgaactcgac acgcaacgcc ggatgaatta tttcgtgacg 120 ccgcgctgga agcggctcag cgaatatgaa atcctgacgc tctacacgca acccaatccc 180 gactggatcg ccggcggcct cgattggggc gactggaccc agaagtttca tggcggccgg 240 ccgtcctggg gcaacgaaag caccgagctt cgcacgaccg attggtatcg ccaccgcgat 300 cccgcgcgcc gctggcatgc gccctatgtc aaggacaaag cggaagagtg gcgctacacg 360 acgcgtttcc tggaaggcta ttcggccgaa ggagctgtgc gctcgatcga tccgacatgg 420 cgcgacgaga ttctcgataa atattggggc gccttgctgt tcagcgaata cgggctgttc 480 aacgcgcatt cgtcggtctc gcgcgacgcg ctgtccgaca cgatccgttc gaccgcgacc 540 tttgcggcgc tcgacaaggt cgacaatgcc cagatgattc aacttgaacg caattttctg 600 tcgaagatcg ttccgggctt tccggagtcg accgacggcc cgaaaaaagt gtggctgacc 660 gacccgatct accgcggcgc gcgcgagacc gtggaagaag cctggcaggg aattcaggac 720 ttcaatgaaa tcctctgggc cgtgcatggc gtctatgatc cgctgttcgg tcaatttgcc 780 cggcgcgaat ttttcggccg cctcgcggcg cactatggcg acggcctgac gccgttcttc 840 ctcaatcaaa cgcagaccta cttccagacc acaaaggctg cgatgagcga tctgttcttc 900 tattcgctcg gagacgatcc ggaattcgga gaccacaacc ggacctggct tcgcgcctgg 960 accaacaaat ggctgcagaa gaccgccgag gccctccatg acttccttgg catatacgcg 1020 aaggtggaca aagttgcggg cgttagcgac cccgccgcca tcaaggcggc cgtcggccgg 1080 gtcgtgaacg attgggtcga ggattacgcg aagaaaatcg acttcaaggt cgacgccggt 1140 cagctcatcg ccagcattac tcgtgacgtc aagtga 1176 <210> 8 <211> 513 <212> DNA <213> mmoZ_DNA <400> 8 atgcccaact acaaaattca tgaaaatccc gtgcggtcgg actggctcga aaaaatcgcc 60 gagctgaagt cggtgaagga cgccacagcc ttcattcagg atttccgcaa aaagaatacc 120 tcgccgttcc gcacgagcta tgcgcttgac gtcgattatc tttttatcga agcgaagatc 180 gaggagcggc tcgccgtcct gaaatcgtcg accttctccg ccgccgatct cttcacgaag 240 gcgaccacgg gggagaccgc tcaggctgtc tccgaagact ggatcgccaa gattgacgcg 300 gaaaaggaca agttcgccgc cgagaaaatc ctgatcacct tccggcagct ctacaagccg 360 ccggtgctcc cggtgaattt gttcttcaaa gtggatacgt atcttggcag ccgcctgatg 420 gagctgcgca ataccgacta ctatgcggat tcgcttgacg acttgcgcaa gaagcgcggc 480 gtcaaggtgt tgaggctcgg caacgtggtt tga 513 <210> 9 <211> 1053 <212> DNA <213> mmoC_DNA <400> 9 atgttcaagg tgcgcgcgat aactgaagat cagcacgatc tgaccttcga atgttcgccg 60 agcgaggacg tcatctctgc gggtctgaag agggacgtaa ttttgctcgc ctcctgccgc 120 gaaggcggct gcgcgacgtg taaggcggag attgtcgacg gcgattacga acttggcggc 180 tgcagcgtgc aggccctccc gccggatgaa gaagaggcgg gcgtggttct gctctgccga 240 acctttccaa gaagcgatct cgttcttcag ctgccctaca ctttcgatcg catttccttt 300 cataaggtca atacggactg gcagggcgag attgtcgccg tggagcgcat ctcctccaat 360 gtggcgcggc tgcaaatcga gccgaaagat cccgagacgg gagccgcgat cagcattcct 420 ttcgtccccg gccaatatgt cgatatcgag attccgggct cttccgtcag cagatcctat 480 tccatggcga cgacgagcac gcagtcccgg cttgatttcc tgatccgtct tttgcccgac 540 gggcagtttt caaatttcct gacgatggcg gcgaagccag gactgaccgt caaactgcgc 600 ggtccattcg gggcgttcaa cctgcgcgag aatggctttc ggcctcgcta tttcgtcgct 660 ggcggaacgg gcctgtctcc ggtcctgtcc atgatccgct acatgcagca ggagcagcac 720 ccgcaggaag cgaagctttt cttcggcgtc acccaccagc atgagttgtt ttatctggaa 780 gagttgaaga agctggagga atcgatgccg aacttcagcg cccatgtcgc ggtgatgcag 840 ccggacggca attggcaggg cagccggggt actgtcgtcg atgatcttct caaacatctt 900 gaagggacga aagcggcgcc ggatatttac atgtgcgggc cgccgggaat gatcgacgcc 960 accttcgcgg ctgcagcaaa ttatggcgtg ccgaaagatc acgtctatgt agaaaagttc 1020 cttgcaacag ggcagaatca ggccgcagag tag 1053 <210> 10 <211> 414 <212> DNA <213> mmoB_DNA <400> 10 atgacagcaa agaacgcata taacgctggc atcatgaaga aatccggcga ggctttcgcg 60 gcggagtttt tcgccgagga aaaccaggtc gttcatgagt cgaatacggt ggtcctcgtg 120 ctcatgaaaa gcgacgaaat cgacgcgatt gtcgaagaca tcatcatgcg cgaggaaacg 180 aagcgcaatc cgaccctcgt tgtcgaggat cgcggcggct tctggtggat caaggccgat 240 ggcaagatcc agatcgatac ggaaaaggcg agcgacttgc tcgggaagac ctacagcatt 300 tatgattttc ttgtgaatgt gtcgtcgacc atcggtcgcg cctacacgct cggaaacacc 360 tttacgatta catccgagct gatgggcctc gatcgcaagc tcaccgacgt ttga 414 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Artificial sequence <400> 11 gaattcatgg cattaagcac cgcg 24 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 12 gagctcttag aagcctgcga gcg 23 <210> 13 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 13 gaattcatgt tcaaggtgcg cg 22 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 14 gagctcctac tctgcggcct ga 22 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 15 gagctcatgc ccaactacaa aattcatga 29 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 16 ctcgagtcaa accacgttgc cgag 24 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 17 gagctcatgg ctatcgcctc gac 23 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 18 ctcgagtcac ttgacgtcac gagt 24 <210> 19 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 19 gaattcatga cagcaaagaa cgcatataa 29 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 20 gagctcaacg tcggtgagct tg 22 <210> 21 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 21 ccacaatgac gcgcgc 16 <210> 22 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 22 tcttcatccg gcagcga 17 <210> 23 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 23 cgtggcttcc ggagct 16 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Artificial Sequence <400> 24 ttaagctacc tacttctttt gcaaccc 27

Claims (8)

  1. 다음 단계를 포함하는 알파(α), 베타β), 감마(γ) 및 씨(C)로 구성된 군에서 선택되는 수용성 메탄 모노옥시게나제 서브유닛의 제조방법:
    (a) RhyB sRNA 보유능 및 상기 메탄 모노옥시게나제 서브유닛 발현능을 가지는 그람 음성 미생물을 철(Fe) 이온을 함유하는 배지에서 배양하여, 수용성 메탄모노옥시게나제 서브유닛을 생성시키는 단계; 및
    (b) 상기 생성된 수용성 메탄 모노옥시게나제 서브유닛을 회수하는 단계.
  2. 제1항에 있어서, 상기 수용성 모노옥시게나제 서브유닛은 철 이온에 의해 RhyB sRNA가 억제되어 생성이 증가하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 철 이온의 농도는 10μM 내지 100μM인 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 수용성 메탄 모노옥시게나제 서브유닛은 메틸로셀라 실베스트리스(Methylocella silvestris)로부터 유래한 것을 특징으로 하는 방법.
  5. 제1항에 있어서, 상기 메탄 모노옥시게나제 서브유닛 알파(α)는 서열번호 1의 아미노산 서열로 표시되고, 서브유닛 베타β)는 서열번호 2의 아미노산 서열로 표시되며, 서브유닛 감마(γ)는 서열번호 3의 아미노산 서열로 표시되고, 서브유닛 씨(C)는 서열번호 4의 아미노산 서열로 표시되는 것을 특징으로 하는 방법.
  6. 다음 단계를 포함하는 수용성 메탄 모노옥시게나제의 제조방법:
    (a) 세포 외(in vitro) 환경에서 제1항 내지 제5항 중 어느 한 항의 방법으로 제조된 수용성 메탄 모노옥시게나제 서브유닛 알파(α), 베타β), 감마(γ) 및 씨(C)와 수용성 메탄 모노옥시게나제 서브유닛 비(B)를 조합하는 단계; 및
    (b) 조합된 수용성 메탄 모노옥시게나제를 수득하는 단계.
  7. 제6항에 있어서, 상기 메탄 모노옥시게나제 서브유닛 비(B)는 서열번호 5의 아미노산 서열로 표시되는 것을 특징으로 하는 방법.
  8. 제6항의 방법으로 제조한 수용성 메탄 모노옥시게나제를 이용하여 메탄으로부터 메탄올을 생산하는 방법.
KR1020180035038A 2017-03-27 2018-03-27 수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법 KR20180109741A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170038436 2017-03-27
KR20170038436 2017-03-27

Publications (1)

Publication Number Publication Date
KR20180109741A true KR20180109741A (ko) 2018-10-08

Family

ID=63864521

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180035038A KR20180109741A (ko) 2017-03-27 2018-03-27 수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법

Country Status (1)

Country Link
KR (1) KR20180109741A (ko)

Similar Documents

Publication Publication Date Title
US7049115B2 (en) Genes encoding denitrification enzymes
ES2320820T3 (es) Bioconversion de una fuente de carbono fermentable en 1,3-propanodiol mediante un solo cicroorganismo.
RU2504584C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ПИРРОЛОХИНОЛИНОХИНОНА (PQQ) С ИСПОЛЬЗОВАНИЕМ БАКТЕРИИ РОДА Methylobacterium ИЛИ Hyphomicrobium
WO2020243792A1 (en) Recombinant yeast
CN111527211A (zh) 生产霉孢菌素样氨基酸的微生物及利用其生产霉孢菌素样氨基酸的方法
JPWO2021100643A5 (ko)
CN102174557A (zh) 一种表面展示家蚕乙醇脱氢酶重组芽孢及其制备方法
CN106220719B (zh) 一种青蒿bHLH类转录因子编码序列及克隆方法与应用
CN106047895B (zh) 一种青蒿bZIP类转录因子编码序列及克隆方法与应用
CN110283797B (zh) 一种酪氨酸酶及其基因、工程菌和制备方法
KR101401603B1 (ko) 수소생산능이 증가된 써모코코스 온누리우스 엔에이원 돌연변이 균주 및 이를 이용한 수소생산방법
CN105349557B (zh) 一种苹果酸酶基因rkme2及其重组表达载体
KR20180109741A (ko) 수용성 메탄 모노옥시게나제의 이종발현을 통한 제조방법
KR20080106166A (ko) 세포 발현 시스템에 의한 수소 생산
CN106047897B (zh) 一种青蒿bHLH类转录因子编码序列及克隆方法与应用
KR102211740B1 (ko) 파에오닥틸룸 트리코르누툼(Phaeodactylum tricornutum)의 신규 프로모터 HASP1와 이의 신호 펩타이드 및 이의 용도
CN103282490B (zh) 在酵母中产生肠激酶的组合物和方法
CN106086038B (zh) 一种青蒿wrky类转录因子编码序列及克隆方法与应用
RU2573936C1 (ru) Штамм бактерий escherichia coli - продуцент фумаровой кислоты и способ получения фумаровой кислоты с использованием этого штамма
CN114181920B (zh) 荚膜红细菌5-氨基乙酰丙酸合成酶突变体及应用
JP6778870B2 (ja) 藍藻変異株及びそれを用いたコハク酸及びd−乳酸産生方法
CN103898071A (zh) P450sca-2酶突变体、其制备方法和应用
CN114606212B (zh) 一种圆锥铁线莲来源的香豆素合酶、基因、载体及其应用
CN114164223B (zh) 一种南极土壤来源的酯酶及其编码基因与应用
CN111826359B (zh) 一种适冷耐盐硝基还原酶及其编码基因与应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application