KR20180109088A - 열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크 - Google Patents

열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크 Download PDF

Info

Publication number
KR20180109088A
KR20180109088A KR1020187027116A KR20187027116A KR20180109088A KR 20180109088 A KR20180109088 A KR 20180109088A KR 1020187027116 A KR1020187027116 A KR 1020187027116A KR 20187027116 A KR20187027116 A KR 20187027116A KR 20180109088 A KR20180109088 A KR 20180109088A
Authority
KR
South Korea
Prior art keywords
fluid
cooling
engine
loop
coolant
Prior art date
Application number
KR1020187027116A
Other languages
English (en)
Inventor
폴 마지엇
Original Assignee
두산 퓨얼 셀 아메리카, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산 퓨얼 셀 아메리카, 인크. filed Critical 두산 퓨얼 셀 아메리카, 인크.
Publication of KR20180109088A publication Critical patent/KR20180109088A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/40Combination of fuel cells with other energy production systems
    • H01M2250/402Combination of fuel cell with other electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/56

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)

Abstract

도시를 위한 예시적인 전력 발생 시스템은 전력을 발생시키도록 구성된 연료 전지 파워 플랜트를 포함한다. 연료 전지 파워 플랜트는 화학 반응에 기초하여 전력을 발생시키도록 구성된 복수의 연료 전지를 포함하는 전지 스택 조립체를 포함한다. 냉각제 네트워크는 유체를 냉각제 네트워크 내의 유체가 연료 전지 파워 플랜트로부터 열을 흡수함으로써 가열될 수 있는 전지 스택 조립체를 향해 운반하도록 구성된다. 냉각제 네트워크는 전력을 발생시키도록 구성된 열 유압 엔진을 포함한다. 냉각제 네트워크는 가열된 유체를 가열된 유체가 전력을 발생시키기 위해 사용될 수 있는 열 유압 엔진으로 운반하도록 구성된다. 냉각제 네트워크는 감소된 온도의 유체를 열 유압 엔진으로부터 다시 전지 스택 조립체를 향해 운반하도록 구성된다.

Description

열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크
본 개시내용은 연료 전지 파워 플랜트에 관한 것이며, 더 구체적으로는, 열 유압 엔진(thermal hydraulic engine)과 통합된 연료 전지 파워 플랜트에 관한 것이지만, 이에 한정하는 것은 아니다.
전력을 발생시키기 위한 다양한 시스템이 공지되었다. 연료 전지 파워 플랜트로서 한 유형의 시스템이 공지된다. 복수의 개별 연료 전지를 포함하는 전지 스택 조립체가 수소 및 산소와 같은 반응물이 구비될 때 연료 전지가 촉진하는 전기화학 반응에 기초하여 전력을 발생시킨다. 다양한 연료 전지 파워 플랜트 구성이 공지되어 사용 중이다.
통상적인 전지 스택 조립체는 바람직한 작동 온도를 제어 및 유지하기 위해 냉각을 필요로 한다. 적절한 온도가 유지되지 않으면, 연료 전지의 일부 구성요소는 열화될 수 있다. 추가적으로, 전지 스택 조립체의 전력 발생 효율은 대개 적절한 온도 관리에 달려있다.
전지 스택 조립체는 대개 전지 스택 조립체 내의 온도가 너무 높아지는 것을 방지하기 위해 연관된 냉각기를 갖는다. 연료 전지 파워 플랜트는 대개 연료 전지 파워 플랜트 내에서 열 관리 기능을 수행하는 하나 이상의 열 방출 열 교환기를 포함하는 보조 냉각제 루프를 포함한다. 열 방출 열 교환기는 낮은 등급의 열 교환기의 상류에 있고, 통상적으로 냉각제는 열 방출 열 교환기를 향해 낮은 등급의 열 교환기로부터 다시 순환한다.
열 유압 엔진은 또한 전력을 발생시킬 수 있다. 열 유압 엔진은 통상적으로 유체 팽창을 야기하기 위해 열을 이용한다. 피스톤과 같은 기계적 구성요소가 유체 팽창의 결과로서 이동한다. 열 유압 엔진은 기계적 구성요소의 운동을 전력으로 변환하여, 발전기로서 작동되도록 구성될 수 있다.
도시를 위한 예시적인 전력 발생 시스템은 화학 반응에 기초하여 전력을 발생시키도록 구성된 복수의 연료 전지를 갖는 전지 스택 조립체를 포함하는 연료 전지 파워 플랜트를 포함한다. 냉각제 네트워크는, 냉각제 네트워크 내의 유체가 연료 전지 파워 플랜트로부터 열을 흡수함으로써 가열된 유체가 될 수 있는 전지 스택 조립체를 향해 유체를 운반하도록 구성된다. 냉각제 네트워크는 전력을 발생시키도록 구성된 열 유압 엔진, 자신에게 제공되는 유체의 온도를 감소시키도록 구성된 냉각 스테이션, 제1 부분으로서, 유체를 냉각 스테이션으로부터 제1 부분 내의 유체가 가열될 수 있는 연료 전지 파워 플랜트의 일 부분을 향해 운반하도록 구성되는, 제1 부분, 가열된 냉각제 유체를 연료 전지 파워 플랜트로부터 멀어지는 방향으로 운반하도록 구성되는 제2 부분으로서, 제2 부분은 열 유압 엔진의 가열된 유체 유입구를 포함하는, 제2 부분을 포함한다. 열 유압 엔진은 가열된 유체를 상기 유입구로부터 가열된 유체로부터의 열이 전력을 발생시키기 위해 사용될 수 있는 열 유압 엔진의 일 섹션으로 유도하도록 구성된다. 열 유압 엔진은 유체를 열이 전력을 발생시키기 위해 사용된 곳으로부터 냉각 스테이션을 향한 방향으로 열 유압 엔진으로부터 멀어지게 유도하도록 구성된 유체 유출구를 포함한다. 냉각 스테이션은 유체가 제1 부분에 제공되기 전에 열 유압 엔진으로부터 수용되는 유체의 온도를 감소시키도록 구성된다.
다른 도시를 위한 예시적인 실시예는 화학 반응에 기초하여 전력을 발생시키도록 구성된 복수의 연료 전지를 갖춘 전지 스택 조립체를 갖는 연료 전지 파워 플랜트를 포함하는 전력 발생 시스템이다. 단일 냉각 스테이션이 냉각 유체의 온도를 감소시키도록 구성된다. 냉각제 네트워크는 냉각 스테이션의 하류에 적어도 하나의 열 방출 열 교환기를 포함하는 제1 냉각 루프, 및 상기 적어도 하나의 열 방출 열 교환기의 하류에 낮은 등급의 열 교환기를 포함한다. 냉각 스테이션은 낮은 등급의 열 교환기의 하류에 있다. 낮은 등급의 열 교환기는, 열 방출 열 교환기로부터 가열된 유체를 수용하고, 수용된 유체를 냉각 스테이션을 향해 유도하도록 구성된 제1 부분을 갖는다. 냉각제 네트워크는 제2 유체가 낮은 등급의 열 교환기의 제1 부분 내의 가열된 유체로부터의 열에 의해 가열되는 낮은 등급의 열 교환기를 통해 제2 유체를 유도하는 제2 냉각 루프를 포함한다. 제2 냉각 루프는 제2 유체가 낮은 등급의 열 교환기를 향해 복귀되기 전에 가열된 제2 유체로부터의 열이 전력을 발생시키기 위해 사용될 수 있는 유압 엔진의 일 섹션으로 가열된 제2 유체를 유도하도록 구성된 일 부분을 포함한다. 냉각제 네트워크는 유체를 냉각 스테이션으로부터 유체가 냉각 스테이션으로 복귀되기 전에 상기 유압 엔진 중의 적어도 일부로부터 열을 흡수할 수 있는 열 유압 엔진을 향해 유도하도록 구성된 제3 냉각 루프를 포함한다.
개시된 예시적 실시예의 다양한 구성 및 이점이 다음의 상세한 설명으로부터 본 기술분야의 숙련자에게 명백해질 것이다. 상세한 설명에 첨부된 도면이 다음과 같이 간략하게 설명될 수 있다.
도 1은 본 발명의 실시예에 따라 설계된 전력 발생 시스템을 개략적으로 도시한다.
도 2는 전력 발생 시스템의 다른 예시적 실시예를 개략적으로 도시한다.
도 3은 또 다른 실시예를 도시한다.
도 1은 전력 발생 시스템(20)을 개략적으로 도시한다. 연료 전지 파워 플랜트(22)는 공지된 방식으로 화학 반응에 기초하여 전력을 발생시키는 복수의 연료 전지를 포함하는 전지 스택 조립체(CSA)를 포함한다. 도시된 예에서, 연료 전지 파워 플랜트(22)는 시스템(20)에 의해 제공되는 전력의 1차 소스로서 기능한다.
예를 들어, 냉각제 네트워크(30)는 바람직한 범위 내에서 CSA 내의 연료 전지의 작동 온도를 유지하도록 연료 전지 파워 플랜트(22)를 위한 냉각 기능을 제공한다. 본 예에서의 냉각제 네트워크(30)는 냉각제 루프(32)를 포함한다. 냉각제 루프(32)의 제1 부분(34)은 물, 글리콜 또는 그 둘의 혼합물과 같은 냉각제 유체를 연료 전지 파워 플랜트(22)를 향해 유도한다. 본 예에서, 제1 부분(32)은 물 회수 응축기 열 교환기(36) 및 적어도 하나의 열 방출 열 교환기(38)를 포함한다. 열 교환기(36 및 38)는 연료 전지 파워 플랜트 내의 열 관리 기능을 제공한다.
도시된 예에서, CSA는 공지된 방식으로 바람직한 범위 내에서 CSA 내의 온도를 유지하기 위해 이용되는 연관된 냉각기를 갖는다. 열 교환기(36 및 38)는 냉각제 루프(32)의 제1 부분(34)을 통해 유동하는 유체가 개략적으로 도시된 열원(40 및 41)으로부터 열을 흡수할 수 있도록 위치된다. 도시된 예에서, 열원(40)은 연료 전지 파워 플랜트(22) 내에서 CSA의 작동으로부터 초래된 배출 열을 포함하고, 열원(42)은 CSA의 온도를 제어하기 위해 사용되는 하나 이상의 냉각기를 포함한다.
냉각제 루프(32)의 제2 부분(42)은 가열된 유체를 열 방출 열 교환기(38)로부터 멀어지는 방향으로 운반한다. 냉각제 네트워크(30)는 열 유압 엔진(44)을 포함한다. 냉각제 루프(32)의 제2 부분(42)은 가열된 유체를 열 유압 엔진(44)의 가열된 유체 유입구로 운반한다. 가열된 유체는 열 유압 엔진(44)의 일 섹션에 제공되고, 여기서 가열된 유체로부터의 열은 전력을 발생시키기 위해 사용될 수 있다. 열 유압 엔진(44)은 전력을 발생시키기 위해 열을 이용하기 위한 공지된 기술에 기초하여 작동하도록 설계된다. 본 예에서, 냉각제 네트워크(30)의 일 부분인 열 유압 엔진(44)은 시스템(20)에 의해 제공되는 전력의 2차 소스로서 작동한다. 본 예에서 열 유압 엔진(44)의 전력 출력은, 열 유압 엔진(44)으로부터의 출력이 연료 전지 파워 플랜트(22)로부터의 전력 출력보다 작기 때문에 2차적인 것으로 고려된다.
본 예에서 열 유압 엔진(44)은 또한 냉각제 루프(32)의 낮은 등급의 열 교환기로서 작동한다. 열 유압 엔진에 제공되는 가열된 유체는, 열이 전력 발생을 위해 이용됨에 따라 적어도 부분적으로 냉각되고, 감소된 온도의 유체가 냉각제 루프(32)의 제3 부분(46)에 의해 엔진(44)으로부터 멀어지는 방향으로 운반된다.
냉각제 루프(32)는 유체가 제1 부분(34) 및 연료 전지 파워 플랜트(22)로 복귀되기 전에 그것에 제공된 유체의 온도를 추가로 감소시키는 냉각 부재 또는 냉각 스테이션(50)을 포함한다. 펌프(52)가 냉각제 루프(32)를 통해 유체를 순환시킨다.
일 예에서, 냉각 스테이션(50)으로부터의 유체는 84℉ 정도의 온도를 가지며, 제2 부분(42) 내의 가열된 유체의 온도는 180 내지 194℉ 정도의 온도를 가지며, 제3 부분(46) 내의 감소된 온도의 유체의 온도는 115 내지 140℉ 정도이다. 일부 실시예에서, 열 유압 엔진(44)은 제2 부분(42) 내의 가열된 유체에 대해 180℉의 이상적인 온도를 갖는다. 펌프(52), 냉각 스테이션(50) 또는 연료 전지 파워 플랜트(22)의 작동은 유압 엔진(44)에 대한 180℉ 설정 온도에 가능한 한 가깝게 제2 부분(42) 내의 유체 온도를 달성하도록 제어될 수 있다. 냉각제 루프(32) 내의 유체 유속은 연료 전지 파워 플랜트(22) 내의 바람직한 정도의 온도 관리, 열 유압 엔진(44)으로의 바람직한 양의 가열된 유체, 또는 둘 모두를 제공하도록 제어될 수 있다. 추가적인 바이패스 라인이 냉각제 네트워크(30) 내의 유체 유동 및 온도의 추가적인 관리를 위해 냉각제 루프(32)를 따라 상이한 위치에 포함될 수 있다.
도시된 예는 열 유압 엔진(44)의 적어도 일 부분의 온도를 제어하기 위해 냉각 유체를 열 유압 엔진(44)으로 운반하는 엔진 냉각 루프(54)를 포함한다. 본 예에서, 엔진 냉각 루프(54)는 냉각 스테이션(50)과 별개이며 분리되어 있는 냉각 스테이션(56)을 포함한다. 펌프(58)는 유체를 냉각 스테이션(56)으로부터 엔진 냉각 루프(54)의 제1 부분(60) 내로 유도한다. 제1 부분(60) 내의 유체는 열 유압 엔진(44)으로 유도되고, 여기서 유체가 열 유압 엔진(44)으로부터 열을 흡수할 수 있다. 그 후 가열된 유체는 제2 부분(62) 내에서 냉각 스테이션(56)으로 복귀되고, 여기서 유체가 냉각된 후 필요에 따라 열 유압 엔진(44)으로 복귀된다.
냉각 스테이션(50 및 56)은 유사하게 구성될 수 있거나, 또는 상이할 수 있다. 예를 들어, 냉각 스테이션(50, 56) 중 하나 또는 둘 모두는 습식 냉각 타워 또는 건식 냉각 타워일 수 있다. 본 설명의 이점을 갖는 본 기술분야의 숙련자는 그들의 특정 요구를 충족시키기 위해 적절한 냉각 요소 또는 냉각 스테이션 구성요소를 선택할 수 있을 것이다.
도 2는 전력 발생 시스템(20)의 다른 예시적 실시예를 개략적으로 도시한다. 본 예에서, 냉각제 네트워크(30')는 냉각제 루프(32) 및 엔진 냉각 루프(54) 내의 유체의 온도의 감소를 촉진하는 단일 냉각 스테이션(56)을 갖는다. 본 예에서, 냉각제 루프(32)의 제3 부분(46)은 도 1의 예에서의 경우와 같은 냉각 스테이션(50) 대신 냉각 스테이션(56)을 향하여 유체를 유도한다. 본 특정 예에서, 제3 부분(46)은 엔진 냉각 루프(54)의 제2 부분(62) 내로 유체를 유도하고, 그 후 유체는 냉각 스테이션(56) 내로 유동한다. 도 2의 예는 필요한 냉각 스테이션의 수를 감소시키고 외부 냉각 기능을 단일 스테이션(56)에 통합시킨다.
제어 밸브(도시되지 않음) 및 적절한 제어 알고리즘이이 얼마나 많은 냉각제 네트워크 내의 유체가 냉각제 루프(32) 및 엔진 냉각 루프(54) 내로 각각 유도되는지를 관리하기 위해 사용될 수 있다. 도 1의 예에서, 엔진 냉각 루프(54) 내의 유체는 냉각제 루프(32) 내의 유체로부터 분리되고 별개였다. 도 2의 예에서, 엔진 냉각 루프(54) 및 냉각제 루프(32) 내의 유체는 적어도 부분적으로 혼합된다.
도 3은 또 다른 예시적 실시예를 도시한다. 본 예에서의 냉각제 네트워크(70)는 냉각 유체를 연료 전지 파워 플랜트(22)를 향해 유도하는 제1 부분(74)을 갖는 제1 냉각제 루프(72)를 포함한다. 열 방출 열 교환기(76 및 78)는 각각 열원(40 및 41)과 연관되어, 제1 부분(74) 내의 유체는 예를 들어 CSA의 작동으로부터 초래된 열을 흡수할 수 있다. 가열된 유체는 냉각제 루프(72)의 제2 부분(82)에 의해 열 방출 열 교환기(78)로부터 멀어지는 방향으로 유도된다. 제2 부분(82)은 연료 전지 파워 플랜트(22)의 낮은 등급의 열 교환기(84)를 통과한다. 제2 냉각 루프(90)는 적어도 부분적으로 낮은 등급의 열 교환기(84)를 통과하는 제1 부분(92)을 포함하여 제1 부분(92) 내의 유체는 제1 냉각 루프(72)의 제2 부분(82) 내의 가열된 유체로부터 흡수한 열에 의해 가열된다. 제1 부분(92) 내의 가열된 유체는 제2 냉각 루프(90)의 제2 부분(94)에 의해 낮은 등급의 열 교환기(84)로부터 멀어지는 방향으로 운반된다. 제2 부분(94)은 가열된 유체를 열 유압 엔진(44)으로 유도하고, 여기서 가열된 유체로부터의 열이 전력을 발생시키기 위해 사용될 수 있다. 제2 냉각 루프(90)는 제2 루프(90) 내의 냉각 유체를 순환시키기 위한 펌프(96)를 포함한다.
제1 냉각 루프(72) 내의 유체는 낮은 등급의 열 교환기(84)로부터 적어도 하나의 도관(98)을 따라 엔진 냉각 루프(100)를 향해 유도된다. 그 유체는 냉각 스테이션(86)에 의해 냉각되고, 여기서 유체의 온도가 바람직한 레벨로 감소될 수 있다. 펌프(88)는 제1 냉각 루프(72) 내의 유체의 유동을 제어한다. 펌프(88)는 또한 유체는 열 유압 엔진(44)으로 유도되는 제1 부분(102)을 따라 냉각제 유체를 제공하기 위해 엔진 냉각 루프(100) 내의 유체 유동을 제어한다. 그 유체가 열 유압 엔진(44)의 적어도 일 부분을 냉각시키기 위한 목적으로 열을 흡수한 후에, 그 유체는 제2 부분(104)에서 냉각 스테이션(86)을 향해 복귀된다.
도 3의 예에서, 열 유압 엔진(44)은 제1 냉각 루프(72) 내의 유체 온도를 감소시키기 위해 낮은 등급의 열 교환기(84)와 조합하여 작동한다. 열 유압 엔진(44)은 또한 시스템(20)에 의해 제공되는 보충 전력의 소스로서 기능한다.
도 1 및 도 2에 도시된 실시예는 도 3의 실시예의 낮은 등급의 열 교환기(84)와 같이 파워 플랜트(22)의 일부로서 별도의 낮은 등급의 열 교환기를 필요로 하지 않는다. 도 1 및 도 2의 실시예에서, 열 유압 엔진(44)은 냉각제 네트워크의 낮은 등급의 열 교환기로서 작동한다. 이러한 실시예는 파워 플랜트(22)를 위한 보조 냉각 루프에서 별도의 낮은 등급의 열 교환기에 필요한 구성요소를 제거함으로써 비용 절감을 제공한다. 동시에 열 유압 엔진(44)으로부터 추가적 또는 보충적인 전력을 이용가능 하므로 시스템 경제성이 향상될 수 있다.
도시된 실시예는 열 유압 엔진(44)을 연료 전지 파워 플랜트(22)를 위한 냉각제 네트워크와 통합한다. 예시적 실시예에 도시된 바와 같이 구성요소들의 통합은 연료 전지 파워 플랜트 내의 온도 제어에 대한 요구를 처리하면서 향상된 전력 발생 능력을 제공한다.
개별적인 실시예와 관련하여 상이한 구성 및 구성요소가 도시되고 설명되지만, 임의의 이들 구성 또는 구성요소가 본 실시예의 또 다른 구성 또는 구성요소와 조합될 수 있다. 개시된 예시적인 실시예에 기초한 다른 조합 또는 실시예가 가능하다.
앞선 설명은 사실상 제한적인 것이 아니라 예시적인 것이다. 개시된 실시예에 대한 변형 및 수정은 이들 예에서 예시된 본 발명의 본질을 벗어나지 않고 본 기술분야의 숙련자에게 명백해질 수 있다. 본 발명에 제공되는 법적 보호의 범위는 오직 다음의 청구 범위를 연구함으로써 결정될 수 있다.

Claims (15)

  1. 전력 발생 시스템이며,
    화학 반응에 기초하여 전력을 발생시키도록 구성된 연료 전지 파워 플랜트; 및
    냉각제 네트워크로서, 냉각제 네트워크 내의 유체가 연료 전지 파워 플랜트로부터 열을 흡수함으로써 가열된 유체가 될 수 있는 연료 전지 파워 플랜트를 향해 유체를 운반하도록 구성된, 냉각제 네트워크를 포함하고, 상기 냉각제 네트워크는,
    전력을 발생시키도록 구성된 열 유압 엔진;
    냉각 스테이션에 제공된 유체의 온도를 감소시키도록 구성된 냉각 스테이션;
    제1 부분으로서, 유체를 냉각 스테이션으로부터 제1 부분 내의 유체가 가열될 수 있는 연료 전지 파워 플랜트의 일 부분을 향해 운반하도록 구성되는, 제1 부분;
    가열된 유체를 제1 부분으로부터 열 유압 엔진의 가열된 유체 유입구로 운반하도록 구성되는 제2 부분을 포함하고,
    열 유압 엔진은 가열된 유체를 유입구로부터 가열된 유체로부터의 열이 전력을 발생시키기 위해 사용될 수 있는 열 유압 엔진의 일 섹션으로 유도하도록 구성되고,
    열 유압 엔진은 열이 전력을 발생시키기 위해 사용된 곳으로부터 냉각 스테이션을 향한 방향으로 열 유압 엔진으로부터 멀어지게 유체를 유도하도록 구성된 유체 유출구를 포함하고,
    냉각 스테이션은 유체가 제1 부분에 제공되기 전에 열 유압 엔진으로부터 수용되는 유체의 온도를 감소시키도록 구성되는,
    전력 발생 시스템.
  2. 제1항에 있어서, 열 유압 엔진은 냉각제 네트워크 내의 낮은 등급의 열 교환기 기능을 제공하는, 전력 발생 시스템.
  3. 제1항에 있어서,
    제1 부분, 제2 부분, 열 유압 엔진 및 냉각 스테이션은 유체를 순환시키도록 구성된 냉각제 루프로서 연결되고, 냉각 스테이션은 제1 부분의 상류에, 제1 부분은 제2 부분의 상류에, 제2 부분은 열 유압 엔진의 상류에, 그리고 열 유압 엔진은 냉각 스테이션의 상류에 위치되는, 전력 발생 시스템.
  4. 제3항에 있어서, 냉각제 루프는 연료 전지 파워 플랜트의 보조 냉각 루프인, 전력 발생 시스템.
  5. 제1항에 있어서, 상기 열 유압 엔진 중의 적어도 일부의 온도를 감소시키도록 구성된 엔진 냉각 루프를 포함하고, 엔진 냉각 루프는 냉각제 네트워크와 별개인, 전력 발생 시스템.
  6. 제5항에 있어서,
    엔진 냉각 루프는 엔진 냉각 루프 내의 냉각 유체의 온도를 감소시키도록 구성된 적어도 하나의 냉각 요소를 포함하고,
    엔진 냉각 회로는 엔진 냉각 루프를 통해 냉각 유체를 이동시키기 위한 펌프를 포함하는, 전력 발생 시스템.
  7. 제1항에 있어서, 전지 스택 조립체와 연관된 적어도 하나의 전지 스택 냉각기를 포함하며, 제1 부분은 상기 적어도 하나의 전지 스택 냉각기와 연관된 적어도 하나의 열 교환기를 포함하고, 상기 적어도 하나의 열 교환기는 냉각제 루프의 제2 부분의 상류에 있는, 전력 발생 시스템.
  8. 제1항에 있어서, 냉각제 네트워크는 냉각제 네트워크를 통해 유체를 순환시키기 위한 펌프를 포함하는, 전력 발생 시스템.
  9. 제1항에 있어서, 열 유압 엔진 중의 적어도 일부의 온도를 감소시키도록 구성된 엔진 냉각 루프를 포함하며,
    냉각 스테이션은 냉각제 네트워크 및 엔진 냉각 루프 내의 유체의 온도를 감소시키도록 구성되고,
    엔진 냉각 루프는 유체를 냉각 스테이션으로부터 열 유압 엔진을 향해 그리고 다시 냉각 요소를 향해 유도하는, 전력 발생 시스템.
  10. 제9항에 있어서, 냉각제 네트워크 및 엔진 냉각 루프를 통해 유체를 순환시키는 펌프를 포함하는, 전력 발생 시스템.
  11. 전력 발생 시스템이며,
    화학 반응에 기초하여 전력을 발생시키도록 구성된 연료 전지 파워 플랜트;
    전력을 발생시키도록 구성된 열 유압 엔진;
    냉각 유체의 온도를 감소시키도록 구성된 단일 냉각 스테이션; 및
    냉각제 네트워크로서, 냉각 스테이션의 하류에 적어도 하나의 열 방출 열 교환기 및 상기 적어도 하나의 열 방출 열 교환기의 하류에 낮은 등급의 열 교환기를 포함하는 제1 냉각 루프를 포함하고, 냉각 스테이션은 낮은 등급의 열 교환기의 하류에 있고, 상기 적어도 하나의 열 방출 열 교환기는 상기 적어도 하나의 열 방출 열 교환기 내의 유체가 연료 전지 파워 플랜트의 작동과 연관된 열을 흡수하도록 위치되고, 낮은 등급의 열교환기는 상기 적어도 하나의 열 방출 열 교환기로부터 가열된 유체를 수용하고 수용된 유체를 냉각 스테이션을 향해 유도하도록 구성된 제1 부분을 갖는, 냉각제 네트워크를 포함하고,
    상기 냉각제 네트워크는 제2 부분을 포함하는 제2 냉각 루프를 포함하고, 상기 제2 부분도 제2 부분 내의 제2 유체가 낮은 등급의 열 교환기의 제1 부분 내의 가열된 유체로부터의 열에 의해 가열되는 낮은 등급의 열 교환기를 통해 제2 유체를 유도하고, 제2 냉각 루프는 제2 유체가 제2 부분으로 복귀되기 전에 가열된 제2 유체로부터의 열이 전력을 발생시키기 위해 사용될 수 있는 상기 유압 엔진의 일 섹션으로 가열된 제2 유체를 유도하도록 구성된 제3 부분을 포함하고,
    상기 냉각제 네트워크는, 유체를 냉각 스테이션으로부터 유체가 냉각 스테이션으로 복귀되기 전에 유압 엔진 중의 적어도 일부로부터 열을 흡수할 수 있는 열 유압 엔진을 향해 유도하도록 구성된 제3 냉각 루프를 포함하는, 전력 발생 시스템.
  12. 제11항에 있어서, 제1 냉각 루프는 연료 전지 파워 플랜트의 보조 냉각 루프인, 전력 발생 시스템.
  13. 제11항에 있어서, 전지 스택 조립체와 연관된 적어도 하나의 전지 스택 냉각기를 포함하며, 상기 적어도 하나의 전지 스택 냉각기는, 상기 적어도 하나의 열 방출 열 교환기의 제1 부분 내의 유체가 상기 적어도 하나의 전지 스택 냉각기 내의 냉각 유체로부터 열을 흡수하도록 상기 적어도 하나의 열 방출 열 교환기와 연관되고, 상기 적어도 하나의 전지 스택 냉각기 내의 유체는 연료 전지 스택 조립체로부터의 열에 의해 가열되는, 전력 발생 시스템.
  14. 제11항에 있어서,
    냉각제 네트워크는 제1 냉각 루프를 통해 냉각 유체를 순환시키는 제1 펌프를 포함하고,
    제2 냉각 루프는 제2 냉각 루프를 통해 제2 냉각 유체를 순환시키기 위한 제2 펌프를 포함하는, 전력 발생 시스템.
  15. 제11항에 있어서, 제1 펌프는 제3 냉각 루프를 통해 냉각 유체를 순환시키는, 전력 발생 시스템.
KR1020187027116A 2016-02-24 2017-02-21 열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크 KR20180109088A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/052,089 2016-02-24
US15/052,089 US9742196B1 (en) 2016-02-24 2016-02-24 Fuel cell power plant cooling network integrated with a thermal hydraulic engine
PCT/US2017/018616 WO2017147032A1 (en) 2016-02-24 2017-02-21 Fuel cell power plant cooling network integrated with a thermal hydraulic engine

Publications (1)

Publication Number Publication Date
KR20180109088A true KR20180109088A (ko) 2018-10-05

Family

ID=59581563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187027116A KR20180109088A (ko) 2016-02-24 2017-02-21 열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크

Country Status (9)

Country Link
US (1) US9742196B1 (ko)
EP (1) EP3420608A4 (ko)
JP (1) JP6997714B2 (ko)
KR (1) KR20180109088A (ko)
CN (1) CN108886154B (ko)
AU (1) AU2017222353B2 (ko)
CA (1) CA3015617C (ko)
WO (1) WO2017147032A1 (ko)
ZA (1) ZA201806248B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056993A1 (en) * 2011-09-07 2013-03-07 Eric William Newcomb Use of thermal hydraulic DC generators meets the requirements to qualify as a "Green Energy" source
JP6994187B2 (ja) * 2017-10-05 2022-01-14 東京ブレイズ株式会社 ろう付装置及びろう付方法
EP3677770B1 (en) * 2019-01-02 2022-05-25 Carrier Corporation A trucking vehicle having a transport refrigeration unit

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975913A (en) * 1973-12-20 1976-08-24 Erickson Donald C Gas generator and enhanced energy conversion systems
US6446597B1 (en) * 2000-11-20 2002-09-10 Mcalister Roy E. Fuel delivery and ignition system for operation of energy conversion systems
US5000003A (en) * 1989-08-28 1991-03-19 Wicks Frank E Combined cycle engine
US5440882A (en) * 1993-11-03 1995-08-15 Exergy, Inc. Method and apparatus for converting heat from geothermal liquid and geothermal steam to electric power
US5899067A (en) 1996-08-21 1999-05-04 Hageman; Brian C. Hydraulic engine powered by introduction and removal of heat from a working fluid
DE19636738A1 (de) * 1996-09-10 1998-03-12 Siemens Ag Kombinationsanlage aus Hochtemperatur-Brennstoffzelle und Wärmekraftmaschine
US5916140A (en) 1997-08-21 1999-06-29 Hydrotherm Power Corporation Hydraulic engine powered by introduction and removal of heat from a working fluid
US7147071B2 (en) * 2004-02-04 2006-12-12 Battelle Energy Alliance, Llc Thermal management systems and methods
EP1516424A2 (en) * 2002-06-18 2005-03-23 Ingersoll-Rand Energy Systems Corporation Microturbine engine system
AT414156B (de) 2002-10-11 2006-09-15 Dirk Peter Dipl Ing Claassen Verfahren und einrichtung zur rückgewinnung von energie
DE10252156A1 (de) * 2002-11-09 2004-05-19 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennstoffzelle
US20060055175A1 (en) * 2004-09-14 2006-03-16 Grinblat Zinovy D Hybrid thermodynamic cycle and hybrid energy system
US7743614B2 (en) 2005-04-08 2010-06-29 Bsst Llc Thermoelectric-based heating and cooling system
US8099198B2 (en) * 2005-07-25 2012-01-17 Echogen Power Systems, Inc. Hybrid power generation and energy storage system
WO2007114802A1 (en) 2006-03-30 2007-10-11 Utc Power Corporation Method and apparatus for operating a fuel cell in combination with an absorption chiller
WO2008106774A1 (en) * 2007-03-02 2008-09-12 Victor Juchymenko Controlled organic rankine cycle system for recovery and conversion of thermal energy
JP2009203903A (ja) 2008-02-28 2009-09-10 Denso Corp 外燃機関
US8991182B2 (en) * 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
WO2010151560A1 (en) * 2009-06-22 2010-12-29 Echogen Power Systems Inc. System and method for managing thermal issues in one or more industrial processes
US20120240882A1 (en) 2009-08-28 2012-09-27 The Boeing Company Dual Use Cooling Systems
US8613195B2 (en) * 2009-09-17 2013-12-24 Echogen Power Systems, Llc Heat engine and heat to electricity systems and methods with working fluid mass management control
US8813497B2 (en) * 2009-09-17 2014-08-26 Echogen Power Systems, Llc Automated mass management control
US8096128B2 (en) * 2009-09-17 2012-01-17 Echogen Power Systems Heat engine and heat to electricity systems and methods
WO2011091022A1 (en) * 2010-01-19 2011-07-28 Altor Limited Lc System and method for electrically-coupled heat engine and thermal cycle
US9685665B2 (en) 2010-08-16 2017-06-20 Doosan Fuel Cell America, Inc. System and method for thermal priority operation of a fuel cell power plant
US8616001B2 (en) * 2010-11-29 2013-12-31 Echogen Power Systems, Llc Driven starter pump and start sequence
US20130056993A1 (en) 2011-09-07 2013-03-07 Eric William Newcomb Use of thermal hydraulic DC generators meets the requirements to qualify as a "Green Energy" source
US9920648B2 (en) 2011-09-07 2018-03-20 Eric William Newcomb Concentric three chamber heat exchanger
US20140005844A1 (en) 2011-09-07 2014-01-02 Eric William Newcomb System, method and apparatus providing power generation and demand management using a thermal hydraulic generator
US9341084B2 (en) * 2012-10-12 2016-05-17 Echogen Power Systems, Llc Supercritical carbon dioxide power cycle for waste heat recovery
DE102013103949A1 (de) * 2013-04-04 2014-10-09 Linde Material Handling Gmbh Flurförderzeug mit Brennstoffzelle
DE102014202663B4 (de) * 2014-02-13 2022-08-11 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellen-Anlage mit thermischer Rekuperation im kryogenen Wasserstoffsystem
NO3136728T3 (ko) * 2014-06-30 2018-07-28

Also Published As

Publication number Publication date
EP3420608A1 (en) 2019-01-02
WO2017147032A1 (en) 2017-08-31
EP3420608A4 (en) 2019-10-30
US9742196B1 (en) 2017-08-22
CN108886154B (zh) 2022-07-12
ZA201806248B (en) 2019-07-31
CA3015617A1 (en) 2017-08-31
JP6997714B2 (ja) 2022-01-18
US20170244253A1 (en) 2017-08-24
JP2019507941A (ja) 2019-03-22
CN108886154A (zh) 2018-11-23
AU2017222353B2 (en) 2022-09-08
AU2017222353A1 (en) 2018-09-06
CA3015617C (en) 2023-11-07

Similar Documents

Publication Publication Date Title
JP6208520B2 (ja) コジェネレーションシステム
KR101452412B1 (ko) 단일 고온 용융염 열저장탱크를 이용한 태양열 발전 시스템
KR101908788B1 (ko) 일체형 히트 펌프 및 연료 전지 파워 플랜트
US11749417B2 (en) Power conversion system for nuclear power generators
CN105514463A (zh) 高温燃料电池的可选路径冷却
KR20180109088A (ko) 열 유압 엔진과 통합된 연료 전지 파워 플랜트 냉각 네트워크
JP2007064049A (ja) ガスタービンコージェネレーション設備の廃熱回収システム
US20200251644A1 (en) Thermoelectric generator comprising liquid metal heat exchange unit
CN114206639B (zh) 车辆的集成热管理回路
JP4961380B2 (ja) 高速増殖炉型原子力発電システム
JP2020090944A (ja) 太陽熱発電システム
CN105164411A (zh) 冷却otec工作流体泵马达的系统和方法
US10273832B2 (en) Supercritical carbon dioxide power generation system utilizing plural heat sources
EP2940256A1 (en) Hybrid plant with a combined solar-gas cycle, and operating method
JP2006105452A (ja) コージェネレーションシステムおよびその制御方法
JP2019040757A (ja) 燃料電池システム
JP2019168184A (ja) 地中熱利用熱回収ヒートポンプシステムおよび地中熱利用熱回収ヒートポンプシステムの運転方法
JP2016110723A (ja) 燃料電池コージェネレーションシステム
JP2010021061A (ja) 燃料電池発電システム
JP6495396B2 (ja) コジェネレーションシステム
KR101689379B1 (ko) 열전발전 및 배기열회수 통합 모듈 및 시스템
CN114963153A (zh) 热电联产机组及其调控方法
KR20140052193A (ko) 선박의 배기열 회수 시스템
JP2014202370A (ja) 加熱装置
JPH04108162U (ja) 熱電併給発電装置の熱回収装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal