KR20180081458A - 이온주입방법 및 이온주입장치 - Google Patents

이온주입방법 및 이온주입장치 Download PDF

Info

Publication number
KR20180081458A
KR20180081458A KR1020180000676A KR20180000676A KR20180081458A KR 20180081458 A KR20180081458 A KR 20180081458A KR 1020180000676 A KR1020180000676 A KR 1020180000676A KR 20180000676 A KR20180000676 A KR 20180000676A KR 20180081458 A KR20180081458 A KR 20180081458A
Authority
KR
South Korea
Prior art keywords
electrode body
amount
trajectory
unit
stages
Prior art date
Application number
KR1020180000676A
Other languages
English (en)
Other versions
KR102436193B1 (ko
Inventor
하루카 사사키
Original Assignee
스미도모쥬기가이 이온 테크놀로지 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤 filed Critical 스미도모쥬기가이 이온 테크놀로지 가부시키가이샤
Publication of KR20180081458A publication Critical patent/KR20180081458A/ko
Application granted granted Critical
Publication of KR102436193B1 publication Critical patent/KR102436193B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/001Arrangements for beam delivery or irradiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H9/00Linear accelerators
    • H05H9/04Standing-wave linear accelerators
    • H05H9/041Hadron LINACS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • H01J2237/04924Lens systems electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24514Beam diagnostics including control of the parameter or property diagnosed
    • H01J2237/24535Beam current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/12Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Particle Accelerators (AREA)

Abstract

선형가속기의 렌즈파라미터를 고정밀도로 신속하게 조정한다.
이온주입장치는, 복수단의 고주파공진기와, 복수단의 수렴렌즈를 포함하는 다단선형가속유닛(110)과, 다단선형가속유닛(110)의 도중에 마련되어, 빔궤도(Z)의 중심부근의 빔부분을 통과시키는 한편, 빔궤도(Z)의 중심부근의 외측에서 전극체(164)에 차폐되는 다른 빔부분의 전류량을 계측하도록 구성되는 제1 빔계측부(160)와, 다단선형가속유닛(110)의 하류에 마련되어, 다단선형가속유닛(110)으로부터 출사되는 이온빔의 전류량을 계측하도록 구성되는 제2 빔계측부(170)와, 제1 빔계측부(160) 및 제2 빔계측부(170)의 계측결과에 근거하여 복수단의 수렴렌즈의 제어파라미터를 조정하도록 구성되는 제어장치를 구비한다.

Description

이온주입방법 및 이온주입장치{ION IMPLANTATION METHOD AND ION IMPLANTATION APPARATUS}
본 발명은, 이온주입방법 및 이온주입장치에 관한 것이다.
고에너지(예를 들면, 1MeV 이상)의 이온빔을 출력 가능한 이온주입장치에서는, 다단식의 고주파 선형가속기(LINAC)를 이용하여 이온빔이 가속된다. 고주파 선형가속기에서는, 원하는 에너지가 얻어지도록 각 단(段)의 전압진폭, 주파수 및 위상 등의 고주파 파라미터가 최적화 계산된다. 각 단의 고주파공진기의 사이에는, 수송되는 빔의 프로파일을 조정하기 위한 수렴발산렌즈가 배치되어 있으며, 수렴발산렌즈의 파라미터에 대해서도 최적화 계산된다(예를 들면, 특허문헌 1 참조).
일본 특허공보 제3448731호
수렴발산렌즈는, 빔의 수송효율, 에너지정밀도, 주입각도정밀도, 빔궤도로부터 어긋난 빔에 기인하는 오염이나 파티클의 발생 등에 영향을 미치므로, 정밀도 높은 조정이 요구된다. 최근, 출력빔의 고에너지화가 요구되고 있어, 고주파 선형가속기의 단수를 많게 할 필요가 있다. 이 경우, 각 단의 고주파공진기의 사이에 배치되는 수렴발산렌즈의 단수도 증가하기 때문에, 렌즈파라미터를 고정밀도로 조정하려고 하면, 최적화 계산에 상당한 시간을 요하게 된다.
본 발명의 일 양태의 예시적인 목적 중 하나는, 선형가속기의 렌즈파라미터를 고정밀도로 신속하게 조정하기 위한 기술을 제공하는 것에 있다.
상기 과제를 해결하기 위하여, 본 발명의 일 양태의 이온주입장치는, 설계상의 빔궤도를 따라 배치되어, 빔궤도를 따라 수송되는 이온빔을 가속시키도록 구성되는 복수단의 고주파공진기와, 각 단의 고주파공진기의 사이에 배치되어, 빔궤도와 직교하는 x방향 및 y방향 중 적어도 일방에 이온빔을 수렴시키고, 수송되는 이온빔의 빔궤도와 직교하는 평면으로부터 볼 때의 빔프로파일을 조정하도록 구성되는 복수단의 수렴렌즈를 포함하는, 다단선형가속유닛과, 다단선형가속유닛의 도중에 마련되어, 빔궤도와 직교하는 평면으로부터 볼 때 적어도 빔궤도의 중심부근을 피하여 배치되는 전극체를 포함하며, 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 빔궤도의 중심부근의 외측에서 전극체에 차폐되는 다른 빔부분의 전류량을 계측하도록 구성되는 제1 빔계측부와, 다단선형가속유닛의 하류에 마련되어, 다단선형가속유닛으로부터 출사되는 이온빔의 전류량을 계측하도록 구성되는 제2 빔계측부와, 제1 빔계측부 및 제2 빔계측부의 계측결과에 근거하여, 다단선형가속유닛으로부터 출사되는 빔전류량이 목표치가 되도록 복수단의 수렴렌즈의 제어파라미터를 조정하도록 구성되는 제어장치를 구비한다.
본 발명의 다른 양태는, 이온주입방법이다. 이 방법은, 이온주입장치를 이용한 이온주입방법이며, 이온주입장치는, 설계상의 빔궤도를 따라 배치되어, 빔궤도를 따라 수송되는 이온빔을 가속시키도록 구성되는 복수단의 고주파공진기와, 각 단의 고주파공진기의 사이에 배치되어, 빔궤도와 직교하는 x방향 및 y방향 중 적어도 일방에 이온빔을 수렴시키고, 수송되는 이온빔의 빔궤도와 직교하는 평면으로부터 볼 때의 빔프로파일을 조정하도록 구성되는 복수단의 수렴렌즈를 포함하는, 다단선형가속유닛과, 다단선형가속유닛의 도중에 마련되어, 빔궤도와 직교하는 평면으로부터 볼 때 적어도 빔궤도의 중심부근을 피하여 배치되는 전극체를 포함하며, 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 빔궤도의 중심부근의 외측에서 전극체에 차폐되는 다른 빔부분의 전류량을 계측하도록 구성되는 제1 빔계측부와, 다단선형가속유닛의 하류에 마련되어, 다단선형가속유닛으로부터 출사되는 이온빔의 전류량을 계측하도록 구성되는 제2 빔계측부와, 제1 빔계측부 및 제2 빔계측부의 계측결과에 근거하여, 다단선형가속유닛으로부터 출사되는 빔전류량이 목표치가 되도록 복수단의 수렴렌즈의 제어파라미터를 조정하도록 구성되는 제어장치를 구비한다. 이온주입방법은, 제1 빔계측부가 계측하는 전류량이 저감되고, 제2 빔계측부가 계측하는 전류량이 증가하도록 복수단의 수렴렌즈의 제어파라미터를 조정하는 공정과, 조정된 제어파라미터에 근거하여 동작하는 다단선형가속유닛으로부터 출사되는 이온빔을 이용하여 웨이퍼에 이온을 주입하는 공정을 포함한다.
또한, 이상의 구성요소의 임의의 조합이나 본 발명의 구성요소나 표현을, 방법, 장치, 시스템 등의 사이에서 서로 치환한 것도 또한, 본 발명의 양태로서 유효하다.
본 발명에 의하면, 선형가속기의 렌즈파라미터를 고정밀도로 신속하게 조정할 수 있다.
도 1은 실시형태에 관한 이온주입장치를 개략적으로 나타내는 상면도이다.
도 2는 도 1에 나타내는 고에너지 다단선형가속유닛의 개략 구성을 포함하는 전체 레이아웃을 나타내는 평면도이다.
도 3은 도 1에 나타내는 고에너지 다단선형가속유닛의 제어부의 기능 및 구성을 설명하기 위한 블록도이다.
도 4는 실시형태에 관한 다단선형가속유닛의 개략구성을 나타내는 단면도이다.
도 5에 있어서 도 5의 (a)~도 5의 (f)는, 전극체의 구조를 개략적으로 나타내는 평면도이다.
도 6은 실시형태에 관한 이온주입방법을 예시하는 플로차트이다.
도 7은 초기 파라미터에 근거하는 이온빔의 계측예를 모식적으로 나타내는 도면이다.
도 8은 조정 도중의 이온빔의 계측예를 모식적으로 나타내는 도면이다.
도 9는 조정 후의 이온빔의 계측예를 모식적으로 나타내는 도면이다.
도 10은 조정 도중의 이온빔의 다른 계측예를 모식적으로 나타내는 도면이다.
도 11은 렌즈파라미터의 조정 시에 계측되는 전류량을 개략적으로 나타내는 도면이다.
도 12에 있어서 도 12의 (a) 및 도 12의 (b)는, 변형예에 관한 전극체의 구조를 개략적으로 나타내는 평면도이다.
도 13은 변형예에 관한 전극체의 구조를 개략적으로 나타내는 평면도이다.
도 14는 변형예에 관한 전극 구조를 개략적으로 나타내는 사시도이다.
도 15는 변형예에 관한 전극 구조를 개략적으로 나타내는 사시도이다.
도 16은 변형예에 관한 다단선형가속유닛의 개략구성을 나타내는 단면도이다.
이하, 도면을 참조하면서, 본 발명을 실시하기 위한 형태에 대하여 상세하게 설명한다. 다만, 도면의 설명에 있어서 동일한 요소에는 동일한 부호를 붙이고, 중복되는 설명을 적절히 생략한다. 또, 이하에 설명한 구성은 예시이며, 본 발명의 범위를 한정하는 것은 아니다.
도 1은, 본 발명의 일 실시형태에 관한 이온주입장치(100)를 개략적으로 나타내는 상면도이다. 이온주입장치(100)는, 이른바 고에너지 이온주입장치에 적합하다. 고에너지 이온주입장치는, 고주파 선형가속방식의 이온가속기와 고에너지 이온수송용빔라인을 갖는 이온주입장치이며, 이온소스(10)에서 발생한 이온을 가속하고, 그렇게 하여 얻어진 이온빔(B)을 빔라인을 따라 피처리물(예를 들면 기판 또는 웨이퍼(40))까지 수송하여, 피처리물에 이온을 주입한다.
도 1에는, 이온주입장치(100)의 빔라인부의 구성요소의 레이아웃이 나타나 있다. 이온주입장치(100)의 빔라인부는, 이온소스(10)와, 피처리물에 이온주입처리를 행하기 위한 처리실(21)을 구비하고 있으며, 이온소스(10)로부터 피처리물을 향하여 이온빔(B)을 수송하도록 구성되어 있다.
도 1에 나타내는 바와 같이, 고에너지 이온주입장치(100)는, 이온을 생성하여 질량분리하는 이온빔생성유닛(12)과, 이온빔을 가속하여 고에너지 이온빔으로 하는 고에너지 다단선형가속유닛(14)과, 고에너지 이온빔의 에너지 분석, 기준궤도보정, 에너지분산의 제어를 행하는 빔편향유닛(16)과, 분석된 고에너지 이온빔을 웨이퍼(40)까지 수송하는 빔수송라인유닛(18)과, 수송된 고에너지 이온빔을 균일하게 반도체웨이퍼에 주입하는 기판처리공급유닛(20)을 구비한다.
이온빔생성유닛(12)은, 이온소스(10)와, 인출전극(11)과, 질량분석장치(22)를 갖는다. 이온빔생성유닛(12)에서는, 이온소스(10)로부터 인출전극(11)을 통하여 빔이 인출됨과 동시에 가속되고, 인출가속된 빔은 질량분석장치(22)에 의하여 질량분석된다. 질량분석장치(22)는, 질량분석자석(22a), 질량분석슬릿(22b)을 갖고 있다. 질량분석슬릿(22b)은, 질량분석자석(22a)의 바로 뒤에 배치하는 경우도 있지만, 실시예에서는, 그 다음의 구성인 고에너지 다단선형가속유닛(14)의 입구부 내에 배치하고 있다. 질량분석장치(22)에 의한 질량분석의 결과, 주입에 필요한 이온종만이 선별되며, 선별된 이온종의 이온빔은, 다음의 고에너지 다단선형가속유닛(14)에 유도된다.
도 2는, 고에너지 다단선형가속유닛(14)의 개략구성을 포함하는 전체 레이아웃을 나타내는 평면도이다. 고에너지 다단선형가속유닛(14)은, 이온빔의 가속을 행하는 복수의 선형가속장치, 즉, 하나 이상의 고주파공진기를 사이에 두는 가속갭을 구비하고 있다. 고에너지 다단선형가속유닛(14)은, 고주파(RF)전장의 작용에 의하여, 이온을 가속할 수 있다.
고에너지 다단선형가속유닛(14)은, 고에너지 이온주입용의 복수단의 고주파공진기(14a)를 구비하는 제1 선형가속기(15a)를 구비한다. 고에너지 다단선형가속유닛(14)은, 초고에너지 이온주입용의 추가의 복수단의 고주파공진기(14a)를 구비하는 제2 선형가속기(15b)를 구비해도 된다. 고에너지 다단선형가속유닛(14)에 의하여, 더 가속된 이온빔은, 빔편향유닛(16)에 의하여 방향이 변화된다.
고주파(RF) 가속을 이용한 이온주입장치에 있어서는, 고주파의 파라미터로서 전압의 진폭 V[kV], 주파수 f[Hz]를 고려해야 한다. 또한, 복수단의 고주파가속을 행하는 경우에는, 서로의 고주파의 위상 Φ[deg]가 파라미터로서 가해진다. 이에 더하여, 가속 도중이나 가속 후에 이온빔의 상하좌우로의 확산을 수렴·발산 효과에 의하여 제어하기 위한 자장렌즈(예를 들면, 사극전자석)나 전장렌즈(예를 들면, 전장사극전극)가 필요하며, 그것들의 운전파라미터는, 그곳을 통과하는 시점에서의 이온의 에너지에 의하여 최적값이 바뀌는 것에 더하여, 가속전계의 강도가 수렴·발산에 영향을 미치기 때문에, 고주파의 파라미터를 결정한 후에 그것들의 값을 결정하게 된다.
도 3은, 복수의 고주파공진기 선단의 가속전장(갭)을 직선형상으로 나열한 고에너지 다단선형가속유닛(14) 및 수렴발산렌즈의 제어부(50)의 구성을 나타내는 블록도이다.
고에너지 다단선형가속유닛(14)에는 하나 이상의 고주파공진기(14a)가 포함되어 있다. 고에너지 다단선형가속유닛(14)의 제어에 필요한 구성요소로서는, 오퍼레이터가 필요한 조건을 입력하기 위한 입력장치(52), 입력된 조건으로부터 각종 파라미터를 수치계산하고, 또한 각 구성요소를 제어하기 위한 제어연산장치(54), 고주파의 전압진폭을 조정하기 위한 진폭제어장치(56), 고주파의 위상을 조정하기 위한 위상제어장치(58), 고주파의 주파수를 제어하기 위한 주파수제어장치(60), 고주파전원(62), 수렴발산렌즈(64)를 위한 수렴발산렌즈전원(66), 운전파라미터를 표시하기 위한 표시장치(68), 결정된 파라미터를 기억해 두기 위한 기억장치(70)가 필요하다. 또, 제어연산장치(54)에는, 미리 각종 파라미터를 수치계산하기 위한 수치계산코드(프로그램)가 내장되어 있다.
고주파 선형가속기의 제어연산장치(54)에서는, 내장되어 있는 수치계산코드에 의하여, 입력된 조건을 근거로 이온빔의 가속과 수렴·발산을 시뮬레이션하여, 최적의 수송효율이 얻어지도록 고주파 파라미터(전압진폭, 주파수, 위상)를 산출한다. 또 동시에, 효율적으로 이온빔을 수송하기 위한 수렴발산렌즈(64)의 파라미터(Q코일전류, 또는 Q전극전압)도 산출한다. 계산된 각종 파라미터는, 표시장치(68)에 표시된다. 고에너지 다단선형가속유닛(14)의 능력을 초과한 가속조건에 대해서는, 답이 없는 것을 의미하는 표시가 표시장치(68)에 표시된다.
전압진폭파라미터는, 제어연산장치(54)로부터 진폭제어장치(56)에 보내지고, 진폭제어장치(56)가 고주파전원(62)의 진폭을 조정한다. 위상 파라미터는, 위상제어장치(58)에 보내지고, 위상제어장치(58)가 고주파전원(62)의 위상을 조정한다. 주파수파라미터는, 주파수제어장치(60)에 보내진다. 주파수제어장치(60)는, 고주파전원(62)의 출력주파수를 제어함과 함께, 고에너지 다단선형가속유닛(14)의 고주파공진기(14a)의 공진주파수를 제어한다. 제어연산장치(54)는 또, 산출된 수렴발산렌즈파라미터에 의하여, 수렴발산렌즈전원(66)을 제어한다.
이온빔을 효율적으로 수송하기 위한 수렴발산렌즈(64)는, 고주파 선형가속기의 내부 혹은 그 전후에 필요한 수가 배치된다. 즉, 복수단의 고주파공진기(14a)의 선단의 가속갭의 전후에는 교대로 발산렌즈 또는 수렴렌즈가 구비되어 있다. 또, 제2 선형가속기(15b)의 종단의 가로수렴렌즈의 후방에는 세로수렴렌즈가 추가로 배치되고, 고에너지 다단선형가속유닛(14)을 통과하는 고에너지 가속이온빔의 수렴과 발산을 조정하여, 후단(後段)의 빔편향유닛(16)에 최적의 이차원 빔프로파일의 이온빔을 입사시키도록 하고 있다.
도 1에 나타나는 바와 같이, 빔편향유닛(16)은, 에너지 분석전자석(24)과, 에너지분산을 억제하는 가로수렴 사중극렌즈(26)와, 에너지 분석슬릿(28)과, 스티어링(궤도보정)을 제공하는 편향전자석(30)을 갖는다. 또한, 에너지 분석전자석(24)은, 에너지필터전자석(EFM)이라고 불리는 경우도 있다. 고에너지 이온빔은, 빔편향유닛(16)에 의하여 방향전환되어, 웨이퍼(40) 방향을 향한다.
빔수송라인유닛(18)은, 빔편향유닛(16)으로부터 나온 이온빔(B)을 수송하는 것이며, 수렴/발산렌즈군으로 구성되는 빔정형기(32)와, 빔주사기(34)와, 빔평행화기(36)와, 최종 에너지필터(38)(최종 에너지 분리슬릿을 포함함)를 갖는다. 빔수송라인유닛(18)의 길이는, 이온빔생성유닛(12)과 고에너지 다단선형가속유닛(14)의 길이에 맞추어 설계되어 있으며, 빔편향유닛(16)으로 연결되어, 전체적으로 U자형상의 레이아웃을 형성한다.
빔수송라인유닛(18)의 하류측의 종단에는, 기판처리공급유닛(20)이 마련되어 있으며, 처리실(21) 내에, 이온빔(B)의 빔전류, 위치, 주입각도, 수렴발산각, 상하좌우방향의 이온분포 등을 계측하는 빔모니터, 이온빔(B)에 의한 웨이퍼(40)의 대전을 방지하는 대전방지장치, 웨이퍼(40)를 반입반출하여 적정한 위치·각도로 설치하는 웨이퍼반송기구, 이온주입 중 웨이퍼(40)를 지지하는 ESC(Electro Static Chuck), 주입 중 빔전류의 변동에 따른 속도로 웨이퍼(40)를 빔스캔방향과 직각방향으로 동작시키는 웨이퍼스캔기구가 수납되어 있다.
이와 같이 하여, 이온주입장치(100)의 빔라인부는, 대향하는 2개의 장직선부를 갖는 수평의 U자형상의 굴곡형 빔라인으로 구성되어 있다. 상류의 장직선부는, 이온소스(10)에서 생성한 이온빔(B)을 가속하는 복수의 유닛으로 이루어진다. 하류의 장직선부는, 상류의 장직선부에 대하여 방향전환된 이온빔(B)을 조정하여 웨이퍼(40)에 주입하는 복수의 유닛으로 이루어진다. 2개의 장직선부는 대략 동일한 길이로 구성되어 있다. 2개의 장직선부의 사이에, 메인터넌스 작업을 위하여 충분한 넓이의 작업스페이스(R1)가 마련되어 있다.
이와 같이 각 유닛을 U자형상으로 배치한 고에너지 이온주입장치(100)는, 설치면적을 억제하면서 양호한 작업성이 확보되고 있다. 또, 고에너지 이온주입장치 (100)에 있어서는, 각 유닛이나 각 장치를 모듈구성으로 함으로써, 빔라인 기준위치에 맞추어 착탈, 조립이 가능하게 되어 있다.
또, 고에너지 다단선형가속유닛(14)과, 빔수송라인유닛(18)이 굴곡되어 배치되기 때문에, 고에너지 이온주입장치(100)의 전체 길이를 억제할 수 있다. 종래 장치에서는 이들이 대략 직선형상으로 배치되어 있다. 또, 빔편향유닛(16)을 구성하는 복수의 편향전자석의 곡률반경은, 장치폭을 최소로 하도록 최적화되어 있다. 이들에 의하여, 장치의 설치면적을 최소화함과 함께, 고에너지 다단선형가속유닛(14)과 빔수송라인유닛(18)의 사이에 놓이는 작업스페이스(R1)에 있어서, 고에너지 다단선형가속유닛(14)이나 빔수송라인유닛(18)의 각 장치에 대한 작업이 가능해진다. 또, 메인터넌스 간격이 비교적 짧은 이온소스(10)와, 기판의 공급/취출이 필요한 기판처리공급유닛(20)이 인접하여 배치되기 때문에, 작업자의 이동이 적어도 문제가 없다.
도 4는, 실시형태에 관한 다단선형가속유닛(110)의 개략구성을 나타내는 단면도이다. 다단선형가속유닛(110)은, 상술의 고에너지 다단선형가속유닛(14)에 대응한다. 다단선형가속유닛(110)은, 제1 선형가속기(111)와, 제2 선형가속기(112)를 구비한다. 다단선형가속유닛(110)에는, 제1 빔계측부(160)와, 제2 빔계측부(170)가 마련된다.
제1 선형가속기(111)는, 상류측에 배치되는 가속유닛이며, 상술의 제1 선형가속기(15a)에 대응한다. 제1 선형가속기(111)는, 빔궤도(Z)를 따라 배치되는 복수단의 고주파전극(121~123)과, 복수단의 렌즈전극(131~134)을 갖는다. 복수단의 고주파전극(121~123)은, 원통형상의 전극체이며, 각각에 고주파공진기(14a)가 접속된다. 복수단의 렌즈전극(131~134)은, 전장식의 사중극전극이며, 빔궤도(z방향)를 둘러싸도록 하여 x방향 및 y방향으로 대향하여 배치된다. 복수단의 렌즈전극(131~134)의 각각은, x방향으로 빔을 수렴시키는 가로수렴(세로발산)렌즈 또는 y방향으로 빔을 수렴시키는 세로수렴(가로발산) 렌즈로서 기능한다.
제1 선형가속기(111)에 있어서, 복수단의 고주파전극(121~123) 및 복수단의 렌즈전극(131~134)은, 빔궤도(Z)를 따라 교대로 배치되어 있다. 가속대상이 되는 이온빔(B)이 입사하는 제1 선형가속기(111)의 입구에 렌즈전극(131)이 배치되고, 제1 선형가속기(111)의 출구에도 렌즈전극(134)이 배치된다. 인접하는 렌즈전극의 사이에는 각 단의 고주파전극(121, 122, 123)이 배치된다. 도시하는 예에서는, 3단의 고주파전극(121~123)이 마련되고, 4단의 렌즈전극(131~134)이 마련되어 있다. 또한, 고주파전극 및 렌즈전극의 단수는 한정되지 않고, 변형예에 있어서는 도시하는 예와는 다른 단수로 구성되어도 된다.
제2 선형가속기(112)는, 제1 선형가속기(111)의 하류측에 배치되어, 빔궤도(Z)를 따라 배치되는 복수단의 고주파전극(141~146)과, 복수단의 렌즈전극(151~157)을 갖는다. 제2 선형가속기(112)는, 제1 선형가속기(111)와 동일하게 구성되지만, 하류측에서 상대적으로 고에너지의 빔을 효율적으로 가속할 수 있도록, 고주파전극의 빔궤도(Z)를 따른 길이가 제1 선형가속기(111)에 비하여 길게되어 있다. 또, 제2 선형가속기(112)는, 제1 선형가속기(111)보다 많은 단수의 고주파전극을 갖고 있으며, 도시하는 예에서는 6단의 고주파전극(141~146)이 마련되고, 7단의 렌즈전극(151~157)이 마련되어 있다. 다만, 고주파전극 및 렌즈전극의 단수는 한정되지 않고, 변형예에 있어서는 도시하는 예와는 다른 단수로 구성되어도 된다.
제1 빔계측부(160)는, 제1 선형가속기(111)와 제2 선형가속기(112)의 사이에 마련되어, 제1 선형가속기(111)로부터 출사되는 빔을 계측한다. 제1 빔계측부(160)는, 빔을 검출하는 전극체(164)와, 전극체(164)를 이동시키는 제1 구동기구(162)를 갖는다. 전극체(164)의 중심부근에는 개구(166)가 마련되어 있어, 중심부근이 결손되어 있다. 전극체(164)는, 빔궤도(Z)와 직교하는 평면으로부터 볼 때(즉 xy평면으로부터 볼 때)에 있어서 빔궤도(Z)의 중심부근의 빔부분을 통과시키는 한편, 빔궤도의 중심부근의 외측에서 다른 빔부분을 차폐하도록 구성된다.
제1 구동기구(162)는, 빔궤도(Z) 상의 삽입위치에 전극체(164)가 배치되는 상태와, 빔궤도(Z)로부터 떨어진 퇴피위치에 전극체(164)가 배치되는 상태의 사이에서 전극체(164)가 이동하도록 구성된다. 제1 구동기구(162)는, 전극체(164)를 삽입위치에 배치하는 경우, 전극체(164)의 개구(166)의 중심과 빔궤도(Z)의 중심이 일치하도록 전극체(164)를 배치한다. 따라서 삽입위치에서는, 빔궤도의 중심부근의 빔부분이 개구(166)를 통과하고, 빔궤도의 중심부근으로부터 외측의 다른 빔부분이 전극체(164)에 의하여 차폐된다. 도 4에서는, 삽입위치에 배치되는 전극체(164)를 나타내고 있다. 제1 구동기구(162)는, 전극체(164)를 퇴피위치에 배치하는 경우, 수송되는 이온빔의 전체가 전극체(164)에 차폐되지 않는 위치까지 전극체(164)를 퇴피시킨다. 예를 들면, 빔궤도(Z)로부터 떨어지는 방향(x방향 또는 y방향)으로 고주파전극이나 렌즈전극의 위치까지 전극체(164)를 퇴피시킨다.
제2 빔계측부(170)는, 다단선형가속유닛(110)의 하류에 마련되어, 제2 선형가속기(112)로부터 출사되는 빔을 계측한다. 제2 빔계측부(170)는, 패러데이컵(174)과, 패러데이컵(174)을 이동시키는 제2 구동기구(172)를 갖는다. 패러데이컵(174)은, 제2 선형가속기(112)로부터 출사되는 이온빔의 전체를 검출하도록 구성된다. 이는, 중심에 개구(166)가 마련된 전극체(164)와는 대조적이다. 패러데이컵(174)은, 상류측의 전극체(164)가 삽입위치에 있는 경우, 전극체(164)의 개구(166)를 통과한 빔부분을 검출한다.
제2 구동기구(172)는, 빔궤도(Z) 상에 패러데이컵(174)이 배치된 삽입상태와, 빔궤도(Z)로부터 떨어진 위치에 패러데이컵(174)이 배치된 퇴피상태의 사이에서 패러데이컵(174)을 이동시킨다. 제2 구동기구(172)는, 다단선형가속유닛(110)의 파라미터 조정 시에 패러데이컵(174)을 삽입시켜, 다단선형가속유닛(110)으로부터 출사되는 이온빔의 전류량을 계측할 수 있도록 한다. 제2 구동기구(172)는, 이온주입처리의 실행 시에 패러데이컵(174)을 퇴피시켜, 다단선형가속유닛(110)으로부터 하류에 이온빔이 수송되도록 한다.
도 5의 (a)~도 5의 (f)는, 전극체(164)의 구조를 개략적으로 나타내는 평면도이며, 빔궤도(Z)에 직교하는 xy평면으로부터 볼 때 전극체(164)를 나타낸다. 전극체(164)는, 도시되는 바와 같은 원 형상을 갖고 있으며, 중심부근에 개구(166)가 마련된다. 전극체(164)는, 예를 들면 도 5의 (a)에 나타내는 바와 같이, x방향과 y방향의 치수가 동일한 원형의 개구(166)를 갖는다. 전극체(164)는, 도 5의 (b) 또는 도 5의 (c)에 나타내는 바와 같이, x방향의 치수와 y방향의 치수가 다른 타원형의 개구(166)를 가져도 된다. 전극체(164)는, 도 5의 (d)~(f)에 나타내는 바와 같이, 직사각형 또는 네 모서리가 둥그스름한 대략 직사각형의 개구(166)를 가져도 된다.
전극체(164)의 개구(166)의 형상은, 전극체(164)의 위치에 있어서의 이온빔의 설계상의 이상(理想) 빔프로파일에 따라 결정할 수 있다. 여기에서, "이상 빔프로파일"이란, 수송효율이 최대화되도록 이온빔이 수송되는 경우에 얻어지는 이상적인 빔프로파일이다. 이상 빔프로파일의 형상은, 예를 들면, 다단선형가속유닛(110)에서의 수송상태를 전자기학적으로 시뮬레이션함으로써 구할 수 있다. 예를 들면, 전극체(164)의 위치에 있어서의 이상 빔프로파일이 상대적으로 가로수렴(세로발산)하고 있는 경우, x방향의 치수보다 y방향의 치수가 커지도록 개구(166)의 형상이 결정된다. 한편, 전극체(164)의 위치에 있어서의 이상 빔프로파일이 상대적으로 세로수렴(가로발산)하고 있는 경우, x방향의 치수보다 y방향의 치수가 작아지도록 개구(166)의 형상이 결정된다. 다만, 전극체(164)의 위치에 있어서의 이상 빔프로파일이 원형에 가까우면, x방향과 y방향의 치수가 동일하게 되도록 개구(166)의 형상이 결정된다.
전극체(164)의 개구(166)는, 전극체(164)의 위치에 있어서의 이상 빔프로파일의 치수와 동일하거나, 이상 빔프로파일의 치수보다 약간 작아지도록 결정된다. 예를 들면, 전극체(164)의 개구(166)는, 이상 빔프로파일의 치수의 80%, 85%, 90% 또는 95%가 되도록 결정된다. 전극체(164)의 개구(166)는, 이상 빔프로파일의 치수보다 약간 커도 되고, 예를 들면, 이상 빔프로파일의 105%, 110%, 115% 또는 120%의 크기여도 된다. 개구(166)를 이와 같은 치수로 함으로써, 이상 빔프로파일에 가까운 빔의 대부분을 개구(166)를 통하여 통과시켜, 하류측의 패러데이컵(174)으로 계측할 수 있다. 또, 이상 빔프로파일로부터 벗어난 빔부분을 전극체(164)에 의하여 차폐하고, 차폐한 부분을 빔전류량으로서 정량적으로 계측할 수 있다. 이것에 의하여, 다단선형가속유닛(110)의 도중에 빔의 수송상태를 정량적으로 평가 가능해진다.
도 4에서는, 다단선형가속유닛(110)의 내부에서 수송되는 이온빔(B)의 엔벨로프(B1, B2, B3)를 예시하고 있다. 수송되는 이온빔은, 빔궤도(Z)와 직교하는 평면(xy평면) 내에서 확산을 갖고 있으며, x방향 및 y방향에 어느 정도의 폭(빔직경)을 갖고 있다. xy평면으로부터 볼 때의 빔프로파일은 일정하지 않고, 빔궤도(Z)를 따른 z방향의 위치에 따라 변화한다. 빔엔벨로프는, z방향의 위치에 따라 변화하는 빔의 외형위치를 연속적으로 연결한 것이며, z방향의 위치에 따라 x방향 및 y방향의 폭이 변화하는 튜브형상을 갖는다. 도 4에서는, 그러한 빔엔벨로프의 xz단면의 형상을 나타내고 있다.
다단선형가속유닛(110)의 복수단의 렌즈전극은, 수송되는 빔이 이상 빔프로파일을 갖도록 제어파라미터가 조정된다. 도 4에 있어서 실선으로 나타나는 엔벨로프(B3)는, 수송효율이 최대화되는 이상적인 엔벨로프이며, 전극체(164)의 위치에 있어서 이상 빔프로파일이 실현되는 엔벨로프이다. 이상적인 엔벨로프가 실현되는 경우, 다단선형가속유닛(110)에 입사하는 이온빔(B)이 고주파전극이나 렌즈전극에 충돌하지 않고 수송된다. 한편, 점선으로 나타내는 엔벨로프(B1)나 파선(破線)으로 나타내는 엔벨로프(B2)의 경우, 입사하는 이온빔(B)의 일부가 고주파전극이나 렌즈전극에 충돌하여 손실되기 때문에, 수송효율이 저하된다. 또, 이온빔이 이들 전극에 충돌함으로써 전극을 스퍼터링시키거나, 전극에 오염을 부착시켜, 부착된 오염을 입자로서 비산시키거나 함으로써, 빔라인을 오염시키는 원인이 된다. 따라서, 고품질의 이온주입처리를 실현하기 위해서는, 다단선형가속유닛(110)에 있어서의 빔엔벨로프를 적절히 제어하는 것이 불가결하다.
다단선형가속유닛(110)의 조정에서는, 먼저, 원하는 빔에너지가 얻어지도록 각 단의 고주파공진기(고주파전극)의 제어파라미터(고주파 파라미터)가 조정된다. 고주파 파라미터의 조정에서는, 각 단의 고주파공진기의 전압진폭, 주파수 및 위상이 조정된다. 계속해서, 이상적인 빔엔벨로프가 얻어지도록 각 단의 수렴렌즈(렌즈전극)의 제어파라미터(렌즈파라미터)가 조정된다. 본 실시형태에서는, 렌즈파라미터를 조정할 때, 제1 빔계측부(160)의 계측결과인 제1 전류량과, 제2 빔계측부(170)의 계측결과인 제2 전류량을 조합하여 이용한다. 본 실시형태에서는, 다단선형가속유닛(110)의 도중에 마련되는 제1 빔계측부(160)의 계측결과를 이용함으로써, 다단선형가속유닛(110)의 단수가 많은 경우여도 신속하게 고정밀도의 파라미터 조정이 실현되도록 한다.
도 6은, 실시형태에 관한 이온주입방법을 예시하는 플로차트이며, 렌즈파라미터의 조정방법을 예시하고 있다. 먼저, 제1 선형가속기(111) 및 제2 선형가속기(112)에 포함되는 수렴렌즈의 렌즈파라미터로서 초기 파라미터가 설정된다(S10). 이 초기 파라미터는, 제어부(50)에 포함되는 기억장치(70)에 기억되는 파라미터여도 되고, 제어연산장치(54)에 의한 최적화 계산에 의하여 산출되는 파라미터여도 된다. 계속해서, 다단선형가속유닛(110)의 도중에 배치되는 중심에 개구(166)가 마련되는 전극체(164)를 이용하여 제1 빔전류(제1 전류량)가 계측된다(S12). 또, 다단선형가속유닛(110)의 하류에 배치되는 패러데이컵(174)을 이용하여 제2 빔전류(제2 전류량)가 계측된다(S14). 제1 빔전류 및 제2 빔전류의 계측은 동시에 실행되며, 전극체(164)의 개구(166)를 통과한 빔의 전체 또는 일부가 하류의 패러데이컵(174)에 의하여 계측된다.
계속해서, 빔전류의 계측결과에 근거하여 렌즈파라미터를 조정한다. 제어부(50)는, 먼저, 전극체(164)에 의하여 계측되는 제1 전류량이 최소화되고, 또한, 패러데이컵(174)에 의하여 계측되는 제2 전류량이 최대화되도록 상류측의 제1 선형가속기(111)의 렌즈파라미터를 조정한다(S16). 바꾸어 말하면, 제1 선형가속기(111)로부터 출사되는 빔의 대부분이 전극체(164)의 개구(166)를 통과하도록 제1 선형가속기(111)의 렌즈파라미터를 조정한다. 제어부(50)는, 다음으로, 패러데이컵(174)에 의하여 계측되는 제2 전류량이 최대화되도록 하류측의 제2 선형가속기(112)의 렌즈파라미터를 조정한다(S18). 렌즈파라미터의 조정 후, 조정된 제어파라미터에 따라 이온빔을 출사하고, 이온주입처리를 실행한다(S20).
도 7~도 9는, 제1 빔계측부(160) 및 제2 빔계측부(170)에 의한 이온빔의 계측예를 모식적으로 나타내고, S16의 상류측의 조정공정을 모식적으로 나타낸다. 도 7은, 초기 파라미터에 근거하는 이온빔(B)의 계측예를 모식적으로 나타내고, 최적화되어 있지 않은 빔엔벨로프(B1)를 나타내고 있다. 도 7에 나타내는 예에서는, 전극체(164)의 위치에서의 빔직경이 개구(166)의 치수보다 크기 때문에, 이온빔(B)의 대부분이 전극체(164)에 의하여 차폐된다. 그 결과, 제1 빔계측부(160)에서 계측되는 제1 전류량은 비교적 큰값이 된다. 한편, 전극체(164)의 개구(166)를 통과하는 빔부분은 작기 때문에, 제2 빔계측부(170)에서 계측되는 제2 전류량은 비교적 작은값이 된다.
도 8은, 조정 도중의 이온빔(B)의 계측예를 모식적으로 나타내고, 최적화 도중의 빔엔벨로프(B2)를 나타내고 있다. 도 8에 나타내는 예에서는, 도 7의 경우보다 전극체(164)의 위치에서의 빔직경이 작아지기 때문에, 전극체(164)에 의하여 차폐되는 빔부분의 비율이 조정 전보다 작아진다. 한편, 전극체(164)의 개구(166)를 통과하는 빔부분의 비율이 조정 전보다 커지기 때문에, 제2 빔계측부(170)에서 계측되는 제2 전류량은 조정 전보다 증가한다.
도 9는, 조정 후의 이온빔(B)의 계측예를 모식적으로 나타내고, 상류측에서 최적화된 빔엔벨로프(B3)를 나타내고 있다. 렌즈파라미터가 최적화되어, 이상적인 빔엔벨로프가 실현된 경우, 이온빔(B)의 전부 또는 대부분이 전극체(164)의 개구(166)를 통과하기 때문에, 제1 빔계측부(160)에서 계측되는 제1 전류량은 매우 작아진다. 한편, 제2 빔계측부(170)에서 계측되는 제2 전류량은 최대화된다. 따라서, 제1 전류량이 최소화되고, 제2 전류량이 최대화되도록 렌즈파라미터를 조정함으로써, 도 9에 나타내는 바와 같은 이상적인 빔엔벨로프를 상류측에서 얻을 수 있어, 상류측에서의 빔수송효율을 최대화할 수 있다.
도 10은, 조정 도중의 이온빔(B)의 다른 계측예를 나타내고, 상류측에서 적절히 조정되어 있지 않은 빔엔벨로프(B4)를 나타내고 있다. 도 10에 나타내는 예에서는, 도 7의 초기상태보다 빔직경이 크게 확대되어 있으며, 빔의 대부분이 전극체(164)에 도달하지 않고 소실되고 있는 상태를 나타내고 있다. 이 경우, 전극체(164)에 의하여 차폐되는 빔량이 감소하기 때문에, 제1 빔계측부(160)에서 계측되는 제1 전류량은 감소한다. 또, 전극체(164)의 개구(166)를 통과하는 빔량도 작기 때문에, 제2 빔계측부(170)에서 계측되는 제2 전류량도 작은 값이 된다. 따라서, 제1 전류량이 감소하였다고 해도, 제2 전류량이 증가하지 않고 감소해 버리는 경우에는, 적절한 조정이 이루어지고 있지 않는다는 것이 된다. 이와 같은 상태의 경우, 먼저, 제1 전류량과 제2 전류량의 쌍방이 증가하도록 렌즈파라미터를 조정하여 도 7에 나타내는 바와 같은 상태로 되돌리는 것이 필요하다. 그 후, 제1 전류량이 감소하고, 또한, 제2 전류량이 증가하도록 렌즈파라미터를 조정함으로써, 도 8이나 도 9에 나타내는 상태로 조정할 수 있다.
도 11은, 렌즈파라미터의 조정 시에 계측되는 전류량을 개략적으로 나타내는 도면이다. 도 7의 조정 전의 상태에서는, 제1 전류량 I1이 크고, 제2 전류량 I2가 작다. 그 결과, 제2 전류량 I2와 제1 전류량 I1의 전류비 I2/I1는 커진다. 도 8의 조정중의 상태에서는, 제1 전류량 I1 및 제2 전류량 I2가 모두 중간정도가 되기 때문에, 전류비 I2/I1도 중간정도가 된다. 도 9의 조정 후 상태에서는, 제1 전류량 I1이 작고, 제2 전류량 I2가 크기 때문에, 전류비 I2/I1도 커진다. 한편, 도 10의 조정이 부적절한 상태에서는, 제1 전류량 I1 및 제2 전류량 I2가 모두 작기 때문에, 전류비 I2/I1는 중간정도가 된다. 따라서, 제2 전류량 I2 및 전류비 I2/I1가 모두 증가하도록 렌즈파라미터를 조정하는 것에 의해서도 빔엔벨로프를 최적화할 수 있다. 한편, 제2 전류량 I2가 감소하는 반면에, 전류비 I2/I1가 증가하도록 렌즈파라미터가 조정되는 경우, 부적절한 방향으로 파라미터 조정되고 있는 것을 알 수 있다. 이와 같이, 제1 전류량 I1, 제2 전류량 I2뿐만 아니라, 이들의 전류비 I2/I1를 지표로 하여 렌즈파라미터의 조정을 하여도 된다.
도 6의 S20의 이온주입공정에서는, 제2 빔계측부(170)의 패러데이컵(174)이 퇴피상태가 된다. 한편, 제1 빔계측부(160)의 전극체(164)는 삽입위치 그대로 유지된다. 따라서, 이온 주입에 이용되는 빔은, 전극체(164)의 개구(166)를 통과하여 출사된다. 전극체(164)를 삽입한 그대로 함으로써, 제1 빔계측부(160)를 이용하여 다단선형가속유닛(110)의 동작상태를 모니터할 수 있다. 다단선형가속유닛(110)의 동작이 정상이면, 최적화된 빔엔벨로프가 유지되기 때문에, 제1 빔계측부(160)에서 검출되는 제1 전류량은 작다. 그러나, 어떠한 요인에 의하여 최적 조건으로부터 벗어나 빔엔벨로프가 변화한 경우, 그 변화에 따라 제1 빔계측부(160)에서 검출되는 제1 전류량이 변화하는 것이 생각된다. 예를 들면, 전극체(164)의 위치에 있어서의 빔직경이 넓어져 제1 전류량이 증가하는 것과 같은 경우이다. 그 결과, 제1 전류량의 변화량이 소정의 허용 범위 내로부터 일탈하는 경우에는, 이상(異常)이 발생했다고 간주하여 이온주입처리를 중지해도 된다.
본 실시형태에 의하면, 다단선형가속유닛(110)의 도중에 마련되는 전극체(164)를 이용함으로써, 단수가 많은 가속기여도 렌즈파라미터의 조정을 고정밀도 또한 신속하게 행할 수 있다. 비교예에 관한 조정방법에서는, 다단선형가속유닛의 하류에 마련되는 패러데이컵만을 이용하기 때문에, 고에너지화를 위하여 가속기의 단수를 많게 하면, 조정대상이 되는 수렴렌즈의 단수가 증가하여, 최적화 계산에 상당한 시간을 요하게 된다. 또, 가속유닛의 상류측에 위치하는 수렴렌즈의 파라미터설정이 부적절한 경우, 가속유닛의 하류까지 충분한 전류량의 빔이 도달하지 않는 경우도 있어, 적절히 빔전류량을 평가할 수 없는 경우도 있다. 한편, 본 실시형태에서는, 단수가 많은 가속기의 도중에 전극체(164)를 배치함으로써, 전극체(164)보다 상류에서의 빔수송상태를 고정밀도로 검출하여, 상류측의 렌즈파라미터를 적합하게 조정할 수 있다. 상류측을 조정한 후에 하류측의 나머지의 렌즈파라미터만을 조정함으로써, 전체를 일괄하여 최적화하는 경우보다 조정에 필요로 하는 시간을 단축화할 수 있다.
본 실시형태에 의하면, 상류측의 전극체(164)의 중심에 개구(166)가 마련되기 때문에, 가속기의 도중과 가속기의 출구의 양방에서 동시에 빔전류를 계측할 수 있다. 동시계측을 가능하게 함으로써, 하류측에서의 빔계측을 위하여 상류측의 전극체(164)를 퇴피시킬 필요가 없어져, 계측 및 조정에 걸리는 시간을 단축화할 수 있다. 또, 이온주입처리 동안 전극체(164)를 삽입한 그대로 함으로써, 다단선형가속유닛(110) 내의 빔을 모니터링하면서 이온주입처리를 실행할 수 있다.
이상, 본 발명을 실시형태에 근거하여 설명하였다. 본 발명은 상기 실시형태에 한정되지 않고, 다양한 설계변경이 가능하며, 다양한 변형예가 가능한 것, 또 그러한 변형예도 본 발명의 범위에 있는 것은, 당업자에게 이해되는 바이다.
(변형예 1)
도 12의 (a) 및 도 12의 (b)는, 변형예에 관한 전극체(164)의 구조를 개략적으로 나타내는 평면도이다. 도 12의 (a)에서는, 중심의 개구(166)에 대응하는 중심영역(A)의 내측뿐만 아니라, 개구영역(A)의 외측의 일부에 있어서 전극체(164)가 결여되어 있다. 도 12의 (b)에서는, 복수의 전극편(164a, 164b, 164c, 164d)에 의하여 전극체(164)가 구성되어 있고, 중심영역(A)을 둘러싸도록 복수의 전극편(164a~164d)이 배치된다. 도시하는 예와 같이, 빔궤도(Z)의 중심부근(중심영역(A))에 있어서 빔을 통과시킬 수 있으며, 또한, 중심영역(A)의 외측의 적어도 일부에 있어서 빔을 차폐하여 전류량을 검출할 수 있는 구성이라면, 전극체(164)는 임의의 형상을 갖고 있어도 된다.
(변형예 2)
도 13은, 다른 변형예에 관한 전극체(164)의 구조를 개략적으로 나타내는 평면도이다. 도 13에서는, 단일의 전극체(164)에 복수의 개구(166a, 166b, 166c)가 마련되어 있다. 각각의 개구(166a~166c)는, 개구의 치수가 다르도록 형성되어 있다. 전극체(164)는, 전극체(164)의 위치를 어긋나게 함으로써 빔궤도(Z)의 중심에 위치하는 개구를 변경할 수 있도록 구성된다. 본 변형예에 의하면, 렌즈파라미터의 조정과정에 있어서, 조정에 적합한 사이즈의 개구를 선택할 수 있다. 예를 들면, 출사되는 이온빔의 에너지와 같은 다른 파라미터에 따라 최적이 되는 빔엔벨로프가 상이한 경우에 조정에 적합한 사이즈의 개구를 이용할 수 있다. 이로써, 렌즈파라미터의 조정의 정밀도를 보다 높일 수 있다.
도 13에 나타내는 변형예에서는, 개구의 형상이 모두 원형이지만, 또 다른 변형예에서는, 단일의 전극체에 마련되는 복수의 개구의 형상을 변화시켜도 된다. 예를 들면, 가로방향(x방향)으로 긴 개구와 세로방향(y방향)으로 긴 개구를 단일의 전극체에 마련해도 된다. 따라서, 단일의 전극체에 마련되는 복수의 개구는, 치수 및 형상 중 적어도 일방이 서로 달라도 된다.
(변형예 3)
도 14는, 변형예에 관한 전극구조(264)를 개략적으로 나타내는 평면도이다. 전극구조(264)는, 상술의 실시형태에 관한 전극체(164) 대신에 마련된다. 전극구조(264)는, 복수의 전극체(264a, 264b, 264c)를 갖는다. 각 전극체(264a~264c)의 중심부근에는 개구(266a, 266b, 266c)가 마련된다. 각 전극체(264a~264c)의 개구(266a~266c)는, 서로 치수가 다르다. 도시하는 예에서는, 상류측의 전극체(264a)의 개구(266a)가 크고, 중간에 위치하는 전극체(264b)의 개구(266b)가 다음으로 크고, 하류측의 전극체(264c)의 개구(266c)가 작다. 각 전극체(264a~264c)의 개구(266a~266c)는, 서로 형상이 달라도 된다. 각 전극체(264a~264c)는, 빔궤도(Z)를 따라 늘어서 배치되어 있으며, 각각이 독립적으로 삽입위치와 퇴피위치 사이에서 이동 가능하게 구성된다. 본 변형예에 의하면, 빔궤도(Z) 상에 삽입시키는 전극체를 변경함으로써, 렌즈파라미터의 조정에 적합한 형상 및 치수의 개구를 이용할 수 있다.
(변형예 4)
도 15는, 다른 변형예에 관한 전극구조(264)를 개략적으로 나타내는 사시도이다. 도 15에서는, 빔궤도(Z)를 따라 복수의 전극체(264d, 264e)가 배치된다. 제1 전극체(264d)는, 세로방향(y방향)으로 가늘고 긴 슬릿을 형성하고 있으며, 슬릿을 사이에 두고 대향하는 전극쌍이 가로방향(x방향)으로 변위함으로써 x방향의 슬릿폭이 가변이 되도록 구성되어 있다. 제2 전극체(264e)는, x방향으로 가늘고 긴 슬릿을 형성하고 있으며, 슬릿을 사이에 두고 대향하는 전극쌍이 y방향으로 변위함으로써 y방향의 슬릿폭이 가변이 되도록 구성되어 있다. 전극구조(264)는, 빔궤도(Z)의 중심부근을 통과하는 빔부분의 x방향의 치수 및 y방향의 치수 중 적어도 일방이 가변이 되도록 구성된다. 본 변형예에 의하면, 제1 전극체(264d) 및 제2 전극체(264e)의 슬릿폭을 각각 변화시킴으로써, 렌즈파라미터의 조정에 최적이 되도록 전극구조(264)의 개구치수를 변경할 수 있다. 또 다른 변형예에서는, 도 15에 나타내는 전극체 중 어느 하나만을 이용하여도 되고, 도 15에 나타내는 전극체와, 실시형태 또는 다른 변형예에 관한 전극체를 조합하여 이용하여도 된다.
(변형예 5)
상술의 실시형태에서는, 제1 선형가속기(111)와 제2 선형가속기(112)의 사이에 제1 빔계측부(160)를 배치하는 예를 나타냈다. 변형예에 있어서는, 일련의 다단선형가속유닛의 도중에 제1 빔계측부(160)를 배치해도 된다. 이 경우, 다단선형가속유닛의 단수의 1/3의 위치에 제1 빔계측부(160)를 배치하는 것이 바람직하다. 예를 들면, 전체가 18단인 가속유닛이라면, 상류측으로부터 세어 6단째 부근에 제1 빔계측부(160)를 배치하는 것이 바람직하다. 약 1/3의 단수의 위치에 배치함으로써, 제1 빔계측부(160)보다 상류측 및 하류측의 각각의 조정을 효율적으로 실시할 수 있다.
(변형예 6)
도 16은, 변형예에 관한 다단선형가속유닛(310)의 개략구성을 나타내는 단면도이다. 본 변형예에서는, 하나의 다단선형가속유닛(310)의 단수가 다른 복수의 위치에 대응하여 복수의 제1 빔계측부(360a, 360b, 360c)가 배치된다. 다단선형가속유닛(310)의 하류에는 제2 빔계측부(370)가 배치된다. 도시하는 예에서는, 전체적으로 17단의 고주파공진기가 마련되어, 4단째, 8단째, 12단째의 3개소에 제1 빔계측부(360a, 360b, 360c)가 배치된다.
도시하는 예에서는, 다단선형가속유닛(310)이 4개의 유닛으로 분할되어 있다. 제1 유닛(311)에는 4단의 고주파공진기와 5단의 렌즈전극이 포함된다. 제2 유닛(312)에는 4단의 고주파공진기와 5단의 렌즈전극이 포함된다. 제3 유닛(313)에는 4단의 고주파공진기와 5단의 렌즈전극이 포함된다. 제4 유닛(314)에는 5단의 고주파공진기와 6단의 렌즈전극이 포함된다. 각 유닛의 사이의 위치에는, 제1 빔계측부(360a, 360b, 360c)가 배치된다. 제1 빔계측부(360a, 360b, 360c)의 각각의 상류측과 하류측에는 렌즈전극이 마련된다.
본 변형예에서는, 제1 빔계측부(360a, 360b, 360c)가 마련되는 위치를 구획으로 하여 상류측으로부터 차례로 렌즈파라미터가 조정된다. 구체적으로는, 최초로 제1 유닛(311)의 1~5단째의 렌즈파라미터가 조정되고, 다음으로 제2 유닛(312)의 6~10단째의 렌즈파라미터가 조정되며, 그 다음으로 제3 유닛(313)의 11~15단째의 렌즈파라미터가 조정되고, 마지막으로 제4 유닛(314)의 16~21단째의 렌즈파라미터가 조정된다.
단수가 다른 복수의 위치에 배치되는 복수의 전극체(364a, 364b, 364c)는, 각각이 개구의 형상 및 치수 중 적어도 일방이 다르도록 구성되어도 된다. 예를 들면, 각 전극체가 배치되는 위치에 있어서의 이상 빔프로파일에 맞추어 개구의 형상 또는 치수가 달라도 된다. 그 외, 상류로부터 하류를 향하여 복수의 전극체(364a, 364b, 364c)의 각각의 개구(366a, 366b, 366c)의 치수가 서서히 작아지도록 해도 된다. 하류를 향하여 개구치수를 작게 해 나감으로써, 각 전극체에서 검출되는 전류량으로부터 빔엔벨로프의 형상을 추정할 수 있다.
(변형예 7)
상술의 실시형태에서는, 전극체(164)를 삽입위치에 배치한 그대로 이온주입처리를 실행하는 경우에 대하여 나타냈다. 본 변형예에 있어서는, 전극체(164)를 퇴피위치에 배치하여 이온주입처리를 실행하여도 된다. 전극체(164)를 퇴피시킴으로써, 전극체(164)에 의한 빔의 차폐를 방지하여, 출사되는 빔전류량을 최대화할 수 있다.
(변형예 8)
상술의 실시형태 및 변형예에서는, 다단선형가속유닛에 포함되는 사중극렌즈가 전장식인 경우를 나타냈다. 또 다른 변형예에 있어서는, 사중극렌즈가 자장식이어도 된다.
14a…고주파공진기
15a…제1 선형가속기
15b…제2 선형가속기
100…이온주입장치
110…다단선형가속유닛
111…제1 선형가속기
112…제2 선형가속기
160…제1 빔계측부
164…전극체
166…개구
170…제2 빔계측부

Claims (22)

  1. 설계상의 빔궤도를 따라 배치되어, 상기 빔궤도를 따라 수송되는 이온빔을 가속시키도록 구성되는 복수단의 고주파공진기와, 각 단의 고주파공진기의 사이에 배치되어, 상기 빔궤도와 직교하는 x방향 및 y방향 중 적어도 일방에 이온빔을 수렴시키고, 수송되는 이온빔의 상기 빔궤도와 직교하는 평면으로부터 볼 때의 빔프로파일을 조정하도록 구성되는 복수단의 수렴렌즈를 포함하는, 다단선형가속유닛과,
    상기 다단선형가속유닛의 도중에 마련되어, 상기 빔궤도와 직교하는 평면으로부터 볼 때 적어도 상기 빔궤도의 중심부근을 피하여 배치되는 전극체를 포함하고, 상기 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 상기 빔궤도의 중심부근의 외측에서 상기 전극체에 차폐되는 다른 빔부분의 전류량을 계측하도록 구성되는 제1 빔계측부와,
    상기 다단선형가속유닛의 하류에 마련되어, 상기 다단선형가속유닛으로부터 출사되는 이온빔의 전류량을 계측하도록 구성되는 제2 빔계측부와,
    상기 제1 빔계측부 및 상기 제2 빔계측부의 계측결과에 근거하여, 상기 다단선형가속유닛으로부터 출사되는 빔전류량이 목표치가 되도록 상기 복수단의 수렴렌즈의 제어파라미터를 조정하도록 구성되는 제어장치를 구비하는 것을 특징으로 하는 이온주입장치.
  2. 제1항에 있어서,
    상기 제어장치는, 상기 제1 빔계측부가 계측하는 전류량이 저감되고, 상기 제2 빔계측부가 계측하는 전류량이 증가하도록 상기 복수단의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  3. 제2항에 있어서,
    상기 제어장치는, 상기 제1 빔계측부가 계측하는 전류량이 저감되고, 상기 제2 빔계측부가 계측하는 전류량이 증가하도록 상기 전극체보다 상류측의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  4. 제3항에 있어서,
    상기 제어장치는, 상기 제1 빔계측부가 계측하는 전류량이 증가하도록 상기 전극체보다 상류측의 수렴렌즈의 제어파라미터를 조정한 후, 상기 제1 빔계측부가 계측하는 전류량이 저감되고, 또한 상기 제2 빔계측부가 계측하는 전류량이 증가하도록 상기 전극체보다 상류측의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제어장치는, 상기 전극체보다 상류측의 수렴렌즈의 제어파라미터를 조정한 후, 상기 제2 빔계측부가 계측하는 전류량이 증가하도록 상기 전극체보다 하류측의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제어장치는, 상기 제1 빔계측부 및 제2 빔계측부에서 동시에 계측되는 상기 제1 빔계측부의 계측결과인 제1 전류량과 상기 제2 빔계측부의 계측결과인 제2 전류량의 비에 근거하여 상기 복수단의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전극체는, 상기 중심부근의 빔부분을 통과시키기 위한 개구를 갖는 것을 특징으로 하는 이온주입장치.
  8. 제7항에 있어서,
    상기 전극체의 개구는, 원형, 타원형 또는 직사각형인 것을 특징으로 하는 이온주입장치.
  9. 제7항에 있어서,
    상기 전극체의 개구는, 상기 x방향의 치수와 상기 y방향의 치수가 다른 것을 특징으로 하는 이온주입장치.
  10. 제7항에 있어서,
    상기 제어장치는, 상기 다단선형가속유닛 내에서 수송되는 이온빔이 상기 빔궤도와 직교하는 평면으로부터 볼 때 설계상의 이상 빔프로파일을 갖도록 상기 복수단의 수렴렌즈를 조정하고,
    상기 전극체의 개구는, 상기 전극체의 위치에 있어서의 상기 이상 빔프로파일에 대응한 형상을 갖는 것을 특징으로 하는 이온주입장치.
  11. 제10항에 있어서,
    상기 전극체의 개구는, 상기 전극체의 위치에 있어서의 상기 이상 빔프로파일의 치수와 동일하거나, 또는 상기 전극체의 위치에 있어서의 상기 이상 빔프로파일의 치수보다 작은 것을 특징으로 하는 이온주입장치.
  12. 제10항에 있어서,
    상기 전극체는, 상기 빔궤도를 따른 방향의 위치가 상기 이상 빔프로파일의 치수가 극소가 되는 위치에 마련되는 것을 특징으로 하는 이온주입장치.
  13. 제8항에 있어서,
    상기 제1 빔계측부는, 개구치수가 다른 복수의 개구를 갖는 단일의 전극체, 또는 각각이 개구치수가 다른 개구를 갖는 복수의 전극체를 구비하고, 상기 빔궤도의 중심부근에 위치하는 개구의 개구치수를 변경 가능하게 되도록 구성되는 것을 특징으로 하는 이온주입장치.
  14. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전극체는, 상기 빔궤도의 중심부근을 통과하는 빔부분의 상기 x방향의 치수 및 상기 y방향의 치수 중 적어도 일방이 가변이 되도록 구성되는 것을 특징으로 하는 이온주입장치.
  15. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 전극체는, 상기 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 상기 빔궤도의 중심부근의 외측의 다른 빔부분을 차폐하는 삽입위치에 상기 전극체가 배치되는 상태와, 수송되는 이온빔이 상기 전극체에 의하여 차폐되지 않는 퇴피위치에 상기 전극체가 배치되는 상태의 사이에서 이동 가능하게 되도록 구성되는 것을 특징으로 하는 이온주입장치.
  16. 제15항에 있어서,
    상기 제어장치는, 상기 전극체가 상기 삽입위치에 배치된 상태로 상기 복수단의 수렴렌즈의 제어파라미터를 조정하고, 상기 전극체가 상기 퇴피위치에 배치된 상태로 웨이퍼에 대한 이온주입처리를 실행하는 것을 특징으로 하는 이온주입장치.
  17. 제15항에 있어서,
    상기 제어장치는, 상기 전극체가 상기 삽입위치에 배치된 상태로 웨이퍼에 대한 이온주입처리를 실행하고, 상기 제1 빔계측부의 계측결과에 근거하여 웨이퍼에 조사되는 이온빔을 모니터하는 것을 특징으로 하는 이온주입장치.
  18. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 다단선형가속유닛은, 복수단의 고주파 공진기를 갖는 제1 선형가속기와, 상기 제1 선형가속기의 하류에 마련되어, 복수단의 고주파 공진기를 갖는 제2 선형가속기를 포함하고,
    상기 전극체는, 상기 제1 선형가속기와 상기 제2 선형가속기의 사이의 위치에 마련되는 것을 특징으로 하는 이온주입장치.
  19. 제18항에 있어서,
    상기 제2 선형가속기가 갖는 고주파 공진기의 단수는, 상기 제1 선형가속기가 갖는 고주파 공진기의 단수보다 많은 것을 특징으로 하는 이온주입장치.
  20. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제1 빔계측부는, 상기 복수단의 고주파공진기의 각각 다른 단에 대응하는 위치에 각각이 배치되는 복수의 전극체를 포함하고, 상기 복수의 전극체 각각은, 상기 빔궤도와 직교하는 평면으로부터 볼 때 적어도 상기 빔궤도의 중심부근을 피하여 배치되어, 상기 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 상기 빔궤도의 중심부근의 외측에서 차폐되는 다른 빔부분의 전류량을 개별적으로 계측하도록 구성되며,
    상기 제어장치는, 상기 복수의 전극체 각각에서 계측되는 전류량에 근거하여 상기 복수단의 수렴렌즈의 제어파라미터를 조정하는 것을 특징으로 하는 이온주입장치.
  21. 청구항 20에 있어서,
    상기 복수의 전극체 각각은, 상기 중심부근의 빔부분을 통과시키기 위한 개구를 갖고, 상류측에 배치되는 전극체의 개구치수보다 하류측에 배치되는 전극체의 개구치수가 작은 것을 특징으로 하는 이온주입장치.
  22. 이온주입장치를 이용한 이온주입방법이며, 상기 이온주입장치는,
    설계상의 빔궤도를 따라 배치되어, 상기 빔궤도를 따라 수송되는 이온빔을 가속시키도록 구성되는 복수단의 고주파공진기와, 각 단의 고주파공진기의 사이에 배치되어, 상기 빔궤도와 직교하는 x방향 및 y방향 중 적어도 일방에 이온빔을 수렴시키고, 수송되는 이온빔의 상기 빔궤도와 직교하는 평면으로부터 볼 때의 빔프로파일을 조정하도록 구성되는 복수단의 수렴렌즈를 포함하는, 다단선형가속유닛과,
    상기 다단선형가속유닛의 도중에 마련되어, 상기 빔궤도와 직교하는 평면으로부터 볼 때 적어도 상기 빔궤도의 중심부근을 피하여 배치되는 전극체를 포함하고, 상기 빔궤도의 중심부근의 빔부분을 통과시키는 한편, 상기 빔궤도의 중심부근의 외측에서 상기 전극체에 차폐되는 다른 빔부분의 전류량을 계측하도록 구성되는 제1 빔계측부와,
    상기 다단선형가속유닛의 하류에 마련되어, 상기 다단선형가속유닛으로부터 출사되는 이온빔의 전류량을 계측하도록 구성되는 제2 빔계측부와,
    상기 제1 빔계측부 및 상기 제2 빔계측부의 계측결과에 근거하여, 상기 다단선형가속유닛으로부터 출사되는 빔전류량이 목표치가 되도록 상기 복수단의 수렴렌즈의 제어파라미터를 조정하도록 구성되는 제어장치를 구비하고,
    상기 이온주입방법은,
    상기 제1 빔계측부가 계측하는 전류량이 저감되고, 상기 제2 빔계측부가 계측하는 전류량이 증가하도록 상기 복수단의 수렴렌즈의 제어파라미터를 조정하는 공정과,
    상기 조정된 제어파라미터에 근거하여 동작하는 상기 다단선형가속유닛으로부터 출사되는 이온빔을 이용하여 웨이퍼에 이온을 주입하는 공정을 포함하는 것을 특징으로 하는 이온주입방법.
KR1020180000676A 2017-01-06 2018-01-03 이온주입방법 및 이온주입장치 KR102436193B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017000903A JP6831245B2 (ja) 2017-01-06 2017-01-06 イオン注入方法およびイオン注入装置
JPJP-P-2017-000903 2017-01-06

Publications (2)

Publication Number Publication Date
KR20180081458A true KR20180081458A (ko) 2018-07-16
KR102436193B1 KR102436193B1 (ko) 2022-08-26

Family

ID=62783469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180000676A KR102436193B1 (ko) 2017-01-06 2018-01-03 이온주입방법 및 이온주입장치

Country Status (5)

Country Link
US (1) US10395890B2 (ko)
JP (1) JP6831245B2 (ko)
KR (1) KR102436193B1 (ko)
CN (1) CN108281341B (ko)
TW (1) TWI716659B (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991546B1 (en) * 2019-10-25 2021-04-27 Applied Materials, Inc. Isolated LINAC resonator pickup circuit
US11476087B2 (en) * 2020-08-03 2022-10-18 Applied Materials, Inc. Ion implantation system and linear accelerator having novel accelerator stage configuration
US11574796B1 (en) * 2021-07-21 2023-02-07 Applied Materials, Inc. Dual XY variable aperture in an ion implantation system
US11825590B2 (en) * 2021-09-13 2023-11-21 Applied Materials, Inc. Drift tube, apparatus and ion implanter having variable focus electrode in linear accelerator
JP7341565B1 (ja) 2022-12-20 2023-09-11 株式会社amuse oneself 飛行体及び制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554997A (ja) * 1991-08-21 1993-03-05 Nissin High Voltage Co Ltd タンデム加速器
JP3448731B2 (ja) 1998-06-19 2003-09-22 住友イートンノバ株式会社 イオン注入装置
WO2006090787A1 (ja) * 2005-02-24 2006-08-31 Ulvac, Inc. イオン注入装置の制御方法、その制御システム、その制御プログラムおよびイオン注入装置
JP2014110236A (ja) * 2012-12-04 2014-06-12 Sen Corp イオン注入装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812249A (ja) 1981-07-16 1983-01-24 Nec Corp イオン注入装置用分析スリツト機構
JPS6212040A (ja) * 1985-07-10 1987-01-21 Ulvac Corp イオン注入装置用ビ−ムセンサ
JPH0693352B2 (ja) * 1987-06-25 1994-11-16 株式会社日立製作所 イオン打込装置
JPH01274352A (ja) * 1988-04-26 1989-11-02 Nec Corp イオン注入装置
US5440203A (en) 1991-08-02 1995-08-08 Mitsubishi Denki Kabushiki Kaisha Energy-variable RFQ linac
JP3098856B2 (ja) 1991-08-02 2000-10-16 三菱電機株式会社 エネルギ可変型4ヴェイン型高周波4極空洞およびエネルギ可変型分割同軸型高周波4極空洞
JP3093553B2 (ja) 1994-01-20 2000-10-03 三菱電機株式会社 エネルギー可変型高周波四重極ライナック
US6291828B1 (en) * 1999-12-21 2001-09-18 Axchlisrtechnologies, Inc. Glass-like insulator for electrically isolating electrodes from ion implanter housing
JP2002270129A (ja) 2001-03-08 2002-09-20 Nec Kansai Ltd イオン注入装置
GB2380601A (en) * 2001-10-05 2003-04-09 Applied Materials Inc Radio frequency linear accelerator
US6933507B2 (en) * 2002-07-17 2005-08-23 Kenneth H. Purser Controlling the characteristics of implanter ion-beams
JP2004259590A (ja) 2003-02-26 2004-09-16 Renesas Technology Corp 半導体装置の製造方法
US7442944B2 (en) * 2004-10-07 2008-10-28 Varian Semiconductor Equipment Associates, Inc. Ion beam implant current, spot width and position tuning
US7078707B1 (en) * 2005-01-04 2006-07-18 Axcelis Technologies, Inc. Ion beam scanning control methods and systems for ion implantation uniformity
ITCO20050007A1 (it) * 2005-02-02 2006-08-03 Fond Per Adroterapia Oncologia Sistema di accelerazione di ioni per adroterapia
US20080073553A1 (en) * 2006-02-13 2008-03-27 Ibis Technology Corporation Ion beam profiler
JP6166910B2 (ja) * 2013-02-26 2017-07-19 株式会社ニューフレアテクノロジー カソードの動作温度調整方法、及び描画装置
JP6500009B2 (ja) * 2013-03-15 2019-04-10 グレン レイン ファミリー リミテッド ライアビリティ リミテッド パートナーシップ 調節可能な質量分析アパーチャ
JP6080706B2 (ja) * 2013-06-24 2017-02-15 住友重機械イオンテクノロジー株式会社 高周波加速式のイオン加速・輸送装置
JP6076834B2 (ja) * 2013-05-28 2017-02-08 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置
CN104183447B (zh) * 2013-05-27 2018-05-22 斯伊恩股份有限公司 高能量离子注入装置
JP6253362B2 (ja) * 2013-11-21 2017-12-27 住友重機械イオンテクノロジー株式会社 高エネルギーイオン注入装置、ビーム電流調整装置、及びビーム電流調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554997A (ja) * 1991-08-21 1993-03-05 Nissin High Voltage Co Ltd タンデム加速器
JP3448731B2 (ja) 1998-06-19 2003-09-22 住友イートンノバ株式会社 イオン注入装置
WO2006090787A1 (ja) * 2005-02-24 2006-08-31 Ulvac, Inc. イオン注入装置の制御方法、その制御システム、その制御プログラムおよびイオン注入装置
JP2014110236A (ja) * 2012-12-04 2014-06-12 Sen Corp イオン注入装置

Also Published As

Publication number Publication date
KR102436193B1 (ko) 2022-08-26
CN108281341A (zh) 2018-07-13
US10395890B2 (en) 2019-08-27
JP6831245B2 (ja) 2021-02-17
JP2018110088A (ja) 2018-07-12
TW201826315A (zh) 2018-07-16
CN108281341B (zh) 2020-10-23
US20180197716A1 (en) 2018-07-12
TWI716659B (zh) 2021-01-21

Similar Documents

Publication Publication Date Title
KR102436193B1 (ko) 이온주입방법 및 이온주입장치
KR102195201B1 (ko) 고에너지 이온주입장치, 빔전류조정장치, 및 빔전류조정방법
JP6242314B2 (ja) イオン注入装置及びイオンビームの調整方法
US9343263B2 (en) Ion implanter, beam energy measuring device, and method of measuring beam energy
CN108091534B (zh) 离子注入方法及离子注入装置
KR102085387B1 (ko) 고에너지 정밀도의 고주파 가속식의 이온가속·수송장치
KR20140140479A (ko) 고에너지 이온주입장치
KR20140139957A (ko) 고에너지 이온주입장치
CN109817503B (zh) 离子注入装置及离子注入装置的控制方法
TW201447960A (zh) 高能量離子植入裝置
JP2019139909A (ja) イオン注入装置およびイオン注入方法
JP5989613B2 (ja) イオン注入装置、磁場測定装置、及びイオン注入方法
JP6985951B2 (ja) イオン注入装置および測定装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant