KR20170141775A - 유리 제조 기기 및 방법 - Google Patents

유리 제조 기기 및 방법 Download PDF

Info

Publication number
KR20170141775A
KR20170141775A KR1020177034444A KR20177034444A KR20170141775A KR 20170141775 A KR20170141775 A KR 20170141775A KR 1020177034444 A KR1020177034444 A KR 1020177034444A KR 20177034444 A KR20177034444 A KR 20177034444A KR 20170141775 A KR20170141775 A KR 20170141775A
Authority
KR
South Korea
Prior art keywords
molten material
free surface
pressure
height
atmospheric pressure
Prior art date
Application number
KR1020177034444A
Other languages
English (en)
Inventor
마이클 제임스 부크홀츠
마크 알랜 쿠크
타이투스 짐머맨
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20170141775A publication Critical patent/KR20170141775A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • C03B5/245Regulating the melt or batch level, depth or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

유리 제조 방법은 대기압보다 크거나 작은 용융된 재료의 자유 표면에 압력을 적용함으로써 이송 기기 내의 용융 재료의 자유 표면을 작동 높이로 편향시키는 단계(I)를 포함한다. 일부 실시예에서, 적용된 압력은 0kPa보다 크고 3.5kPa보다 작거나 같은 절대값을 갖는다. 다른 실시예에서, 유리 제조 기기는 이송 기기의 내부 체적과 유체 연통하는 압력 공급원을 포함한다. 상기 압력 공급원은 용융된 재료의 자유 표면을 작동 높이로 편향시키기 위해 이송 기기의 내부 체적 내의 자유 표면으로 대기압보다 크거나 작은 압력을 적용하도록 구성된다.

Description

유리 제조 기기 및 방법
본 출원은 35 U.S.C. § 119하에서, 2015년 4월 29일에 제출된 미국 가출원 번호 62/154385 의 우선권을 주장하며, 그 내용 전체가 참조로 본원에 포함된다.
유리 제조 기기의 용융된 재료 스테이션 내에 자유 표면을 포함하는 다량의 용융된 재료를 유리 제조 기기에 제공하는 것이 공지되어 있다. 상기 자유 표면의 높이는 용융된 재료의 체적 유량, 용융된 재료의 조성, 및 대기압과 같은 다양한 조건에 따라 결정될 수 있다.
다음은 상세한 설명에 설명된 몇몇 예시 실시예의 기본 이해를 제공하기 위해 본 발명의 간략하된 요약을 제공한다.
본 발명은 일반적으로 유리 제조 기기 및 방법에 대한 것으로서, 더욱 구체적으로는, 이송 용기를 포함하는 유리 제조 기기와, 용융된 재료 스테이션 내의 융융된 재료의 자유 표면을 작동 높이로 편향시키면서 유리를 제조하는 방법에 대한 것이다.
제1 실시예에 따라서, 유리 제조 방법은, 대기압보다 크거나 또는 작은 용융된 재료의 압력을 자유 표면에 적용함으로써 이송 기기 내의 용융 재료의 자유 표면을 작동 높이로 편향시키는(biasing) 단계(I)를 포함한다. 상기 방법은 상기 자유 표면이 작동 높이로 편향되는 동안 상기 이송 기기로부터 성형 용기로 용융된 재료를 통과시키는 단계(II)를 더 포함한다.
하나의 실시예에서, 단계(I)는 상기 자유 표면이 대기압하에서 얻어지는 기준 높이보다 상기 작동 높이가 더 낮도록 대기압보다 큰 압력을 자유 표면에 적용하는 단계를 포함한다.
또 다른 실시예에서, 단계(I)는 작동 높이의 소정의 범위 내에서 상기 작동 높이를 유지하는 단계를 포함한다.
다른 실시예에서, 방법은 상기 이송 기기 내에 용융된 재료의 자유 표면의 실제 높이를 측정하는 단계를 더 포함하며, 단계(I)는 실제 높이로부터 작동 높이로 용융된 재료의 자유 표면을 편향시키기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함한다.
또 다른 실시예에서, 방법은 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경하는 용융된 재료의 조성을 변경하는 단계를 더 포함하며, 단계(I)는 용융된 재료의 조성의 변경을 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함한다.
또 다른 실시예에서, 상기 방법은 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경하는 이송 기기를 통해 지나가는 용융된 재료의 체적 유량을 변경하는 단계를 더 포함하며, 단계(I)는 용융된 재료의 체적 유량의 변경을 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함한다.
다른 실시예에서, 적용된 압력은 0kPa보다 크고 3.5kPa 이하의 절대값을 갖는다.
제2 실시예에 따라서, 유리를 제조하는 방법은 0kPa보다 크고 3.5kPa 이하의 절대값만큼 대기압보다 크거나 작은 압력을 용융 재료의 자유 표면으로 적용함으로써 상류의 용융된 재료 스테이션 내의 용융된 재료의 자유 표면을 작동 높이로 편향시키는 단계(I)를 포함한다. 이때 상기 방법은 자유 표면이 작동 높이로 편향되는 동안 상류의 용융된 재료 스테이션으로부터 하류 용융된 재료 스테이션으로 용융된 재료를 통과시키는 단계(II)를 포함한다.
하나의 실시예에서, 단계(I)는 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 작동 높이가 낮도록 대기압보다 더 큰 압력을 자유 표면으로 적용하는 단계를 포함한다.
제2 실시예의 다른 실시예에서, 단계(I)는 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 작동 높이가 더 높도록 대기압보다 낮은 압력을 자유 표면으로 적용하는 단계를 포함한다.
또 다른 실시예에서, 단계(I)는 작동 높이의 소정의 범위 내에서 상기 작동 높이를 유지하는 단계를 포함한다.
또 다른 실시예에서, 상기 방법은 이송 기기 내에서 용융된 재료의 자유 표면의 실제 높이를 측정하는 단계를 더 포함하며, 단계(I)는 실제 높이에서 작동 높이로 용융된 재료의 자유 표면을 편향시키기 위해 용융된 재료의 자유 표면으로 적용된 압력을 조정하는 단계를 포함한다.
또 다른 실시예에서, 상기 방법은 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경하는 이송 기기를 통해 지나가는 용융된 재료의 체적 유량을 변경하는 단계를 더 포함하며, 단계(I)는 용융된 재료의 체적 유량의 변경을 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함한다.
또 다른 실시예에서, 상류의 용융된 재료 스테이션은 청징 용기, 혼합 용기, 및 이송 기기로 구성된 그룹으로부터 선택된다.
제3 실시예에 따라서, 유리 제조 기기는 용융된 재료로부터 유리를 형성하도록 구성된 성형 용기와 상류의 용융된 재료 스테이션으로부터 성형 용기로 용융된 재료를 통과시키도록 구성된 내부 체적을 포함하는 이송 기기를 포함하지만, 상기 용융된 재료는 이송 장치의 내부 체적 내에 자유 표면을 포함한다. 상기 유리 제조 기기는 상기 이송 기기의 내부 체적과 유체 연통하는 압력 공급원을 더 포함한다. 압력 공급원은 이송 기기의 내부 체적 내에 자유 표면으로 대기압보다 더 크거나 작은 압력을 적용하도록 구성되어 용융된 재료의 자유 표면을 작동 높이로 편향시킨다.
하나의 실시예에서, 상기 압력 공급원은 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 더 낮도록 대기압보다 더 큰 압력을 자유 표면으로 적용하도록 구성된다.
다른 실시예에서, 상기 압력 공급원은 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 더 높도록 대기압보다 더 작은 압력을 자유 표면으로 적용하도록 구성된다.
또 다른 실시예에서, 상기 기기는 작동 높이의 소정의 범위 내에서 작동 높이를 유지하기 위해 압력 공급원을 작동하도록 구성된 제어기를 더 포함한다.
또 다른 실시예에서, 상기 기기는 용융된 재료의 자유 표면의 실제 높이를 측정하도록 구성된 측정 장치를 더 포함한다. 제어기는 자유 표면의 측정된 실제 높이에 대응하여 압력 공급원을 작동하여 용융된 재료의 자유 표면을 작동 높이의 소정의 범위 내에서 실제 높이로부터 작동 높이로 편향시키도록 구성된다.
전술한 일반적인 설명 및 다음의 상세한 설명은 모두 본 발명의 실시예를 나타내며, 설명되고 청구된 실시예들의 본질 및 특성을 이해하기 위한 개요 또는 프레임워크를 제공하기 위한 것임을 이해해야 한다. 첨부 도면은 실시예에 대한 이해를 돕기 위해 포함되며, 본 명세서에 통합되어 본 명세서의 일부를 구성한다. 도면은 본 발명의 다양한 실시예를 도시하고, 설명과 함께 그 원리 및 동작을 설명한다.
본 발명의 이들 및 다른 특징, 실시예 및 이점은 첨부된 도면을 참조하여 읽을 때 더 이해 될 수 있다.
도 1은 본 발명의 실시예에 따른 유리 제조 기기를 개략적으로 도시한 것이다.
도 2는 도 1의 선 2-2를 따른 유리 제조 기기의 단면 사시도이다.
도 3은 대기압하에서 하나의 높이에서의 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
도 4는 대기압하에서 다른 높이에서의 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
도 5는 대기압보다 낮은 압력을 용융된 재료의 자유 표면으로 적용함으로써 작동 높이로 편향된 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
도 6은 대기압하에서 하나의 높이에서의 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
도 7은 대기압하에서 다른 높이에서의 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
도 8은 대기압보다 큰 압력을 용융된 재료의 자유 표면으로 적용함으로써 작동 높이로 편향된 용융된 재료 스테이션의 용융된 재료의 자유 표면을 나타낸다.
첨부된 도면을 참조하여 하기에서 본 발명의 실시예가 도시된 장치 및 방법을 보다 상세하게 설명한다. 가능한 한, 동일한 도면 부호는 동일하거나 유사한 부분을 나타내기 위해 도면 전체에 걸쳐 사용된다. 그러나, 본 발명은 많은 상이한 형태로 구체화 될 수 있으며 본 명세서에 설명된 실시예에 한정되는 것으로 해석되어서는 안된다.
본 발명의 다양한 유리 제조 기기 및 방법은 유리 물품(예, 용기, 리본 등)을 제조하는데 사용될 수 있다. 하나의 특정 실시예에서, 유리 제조 기기 및 방법은 하나 이상의 유리 시트로 추가 처리될 수 있는 유리 리본을 포함하는 유리 제품을 제조하는데 사용될 수 있다. 예를 들어, 유리 제조 기기는 하향 인발, 상향 인발, 플로트 (float), 융합, 프레스 롤링(press rolling), 슬롯 인발, 또는 다른 유리 성형 기술에 의해 유리 리본을 형성하도록 구성 될 수 있다.
이들 공정들 중 임의의 공정으로부터의 유리 리본은 추후 분할되어 원하는 디스플레이 분야로의 추가 공정에 적합한 유리 시트를 제공 할 수 있다. 유리 시트는 액정 디스플레이 (LCD), 전기 영동 디스플레이 (EPD), 유기 발광 다이오드 디스플레이 (OLED), 플라즈마 디스플레이 패널 (PDP) 등과 같은 광범위한 디스플레이 응용에 사용될 수 있다.
도 1는 유리 리본(103)을 인발하도록 구성된 유리 제조 기기(101)를 개략적으로 도시한다. 설명을 목적으로,비록 상향 인발, 플롯, 프레스 롤링 (press rolling), 슬롯 드로우 (slot draw)을 위해 구성된 다른 유리 제조 기기가 추가 실시예에서 제공될 수 있지만, 유리 제조 기기(101)는 융합 하향 인발 기기로서 도시된다. 또한, 전술한 바와 같이, 본 발명의 실시예는 유리 리본을 제조하는 것에 한정되지 않는다. 실제로, 본 발명에 제시된 개념은 넓은 범위의 유리 제품을 생산하기 위한 광범위한 유리 제조 기기에서 사용될 수 있다.
도시된 바와 같이, 유리 제조 기기(101)는 저장 빈(109, bin)으로부터 배치 재료(107, batch material)를 수용하도록 구성된 용융 용기(105)를 포함할 수 있다. 배치 재료(107)는 모터(113)에 의해 구동되는 배치 이송 장치(111)에 의해 도입될 수 있다. 용융 용기(105)는 화살표(117)로 표시된 바와 같이 원하는 양의 배치 재료(107)를 용융 용기(105) 내로 주입 할 수 있다. 이어서, 용융 용기(105)는 배치 재료(107)를 다량의 용융 재료(121)로 용융시킬 수 있다.
또한, 유리 제조 기기(101)는 용융 용기(105)의 하류에 위치되고 제1 연결 튜브(129)를 통해 용융 용기(105)에 연결되는, 예를 들어 청징 튜브와 같은 청징 용기(127)를 포함할 수 있다. 예컨대, 교반 챔버와 같은 혼합 용기(131)는 또한 상기 청징 용기(127)의 하류에 위치될 수 있으며 이송 기기(133)는 상기 혼합 용기(131)의 하류에 위치될 수 있다. 도시된 바와 같이, 제2 연결 튜브(135)는 청징 용기(127)를 혼합 용기(131)에 결합시킬 수 있고, 제3 연결 튜브(137)는 혼합 용기(131)를 이송 기기(133)로 결합시킬 수 있다. 추가 도시된 것처럼, 선택 이송 파이프(139)는 이송 기기(133)의 이송 용기(161)로부터 융합 인발 기계(140)로 용융된 재료(121)를 이송하기 위해 배치될 수 있다. 하기에 더 충분히 설명된 것처럼, 융합 인발 기계(140)는 용융된 재료(121)를 유리 리본(103)으로 인발하도록 구성될 수 있다. 도시된 실시예에서, 윤합 인발 기계(140)는 예를 들어 이송 파이프(139)에 의해 직접적으로 또는 간접적으로 이송 용기(161)로부터 용융된 재료를 수용하도록 구성된 유입구(141)가 제공된 성형 용기(143)를 포함할 수 있다. 제공된 경우, 이송 파이프(139)는 용융된 재료를 이송 용기(161)로부터 수용하도록 구성될 수 있으며 상기 성형 용기(143)의 유입구(141)는 상기 이송 파이프(139)로부터 용융된 재료를 수용하도록 구성 될 수 있다.
도시된 바와 같이, 용융 용기(105), 청징 용기(127), 혼합 용기(131), 이송 기기(133), 및 성형 용기(143)는 유리 제조 기기(101)를 따라 연속적으로 위치될 수 있는 용융된 재료 스테이션의 실시예이다.
용융 용기(105) 및 성형 용기(143)의 특징은 일반적으로 내화성 재료, 예를 들어 내화 세라믹(예, 세라믹 벽돌, 세라믹 단일체 성형체 등)으로 만들어진다. 유리 제조 기기(101)는 전형적으로 백금 또는 백금 함유 금속, 예를 들어 백금-로듐, 백금-이리듐 및 이들의 조합물로 제조되지만, 몰리브덴, 팔라듐, 레늄, 탄탈륨, 티타늄, 텅스텐, 루테늄, 오스뮴, 지르코늄 및 이들의 합금 및/또는 이산화 지르코늄과 같은 내화성 금속을 또한 포함 할 수 있다. 백금 함유 성분은 제1 연결 튜브 (129), 청징 용기(127)(예를 들어, 미세 튜브), 제2 연결 튜브(135), 혼합 용기(131)(예를 들어, 교반 챔버), 제3 연결 튜브(133), 성형 용기(143)의 유입구(141) 및 특징 중 하나이상을 포함할 수 있다. 또한, 이송 장치(133)의 일부는 이송 용기(161), 이송 파이프(139) 및/또는 이송 장치(133)의 스탠드 파이프(163)와 같은 백금 함유 성분을 포함 할 수 있다.
도 2는 도 1의 선 2-2를 따른 유리 제조 기기(101)의 단면 사시도이다. 도시된 바와 같이, 성형 용기(143)는 유입구(141)로부터 용융된 재료(121)를 수용하도록 구성된 트로프(200, trough)를 포함할 수 있다. 성형 용기(143)는 성형 웨지(201, forming wedge)의 양쪽 말단부 사이에서 연장되는 한 쌍의 하향 경사 수렴 표면부(203, 205)를 포함하는 성형 웨지(201)를 더 포함한다. 상기 한 쌍의 하향 경사 수렴 표면부(203, 205)는 루트(209), root)를 형성하기 위해 인발 방향(207)을 따라 모여진다. 인발 평면(211)은 루트(209)를 통해 연장되고, 상기 유리 리본(103)은 상기 인발 평면(211)을 따른 인발 방향(207)으로 인발될 수 있다. 도시된 바와 같이, 비록 상기 인발 평면(211)이 상기 루트(209)에 대해 다른 방향에서 연장될 수 있지만, 상기 인발 평면(211)은 루트(209)를 양분할 수 있다.
도 2를 참고하면, 하나의 실시예에서, 융용된 재료(121)는 유입구(141)로부터 성형 용기(143)의 트로프(200)로 흐를 수 있다. 용융된 재료(121)는 이후 해당 위어(202a, 202b, weir) 너머 그리고 상기 해당 위어(202a, 202b)의 외부면(204a, 204b) 너머 아래로 동시에 흘러 트로프(200)로부터 넘쳐 흐를 수 있다. 이때 용융된 재료의 각각의 스트림은 성형 웨지(201)의 하향 경사 수렴 표면부(203, 205)를 따라 흘러 성형 용기(143)의 루트(209)로부터 인발되며, 상기 유동은 수렴되어 유리 리본(103)으로 융합된다. 유리 리본(103)은 이후 인발 평면(211) 상에서 인발 방향(207)을 따라 루트(209)에서 인발될 수 있다.
도 2에서 볼 수 있는 것처럼, 유리 리본(103)은 제1 주 표면(213) 및 제2 주 표면(215)으로 루트(209)로부터 인발될 수 있다. 도시된 것처럼, 상기 제1 주 표면(213) 및 제2 주 표면(215)은 두께(217)를 가지고 반대 방향을 향해 있으며, 상기 두께는 약 1mm 이하일 수 있으며, 그 사이의 모든 하위 범위를 포함하여, 예컨대 약 50㎛에서 약 750㎛, 예컨대 약 100㎛에서 약 700㎛, 예컨대 약 200㎛에서 약 600㎛, 예컨대 약 300㎛에서 약 500㎛의 범위일 수 있다. 상기 범위 및 하위 범위에 더해서, 추가 실시예에서, 상기 두께(217)는 1mm이상일 수 있으며, 예컨대 약 1mm에서 약 3mm, 그리고 그 사이의 모든 하위 범위일 수 있다.
일부 실시예에서, 유리 리본을 융합 인발하기 위한 유리 제조 기기(101)는 적어도 하나의 에지 롤 조립체(149a, 149b, edge roll assembly)를 포함할 수 있다. 각각 도시된 에지 롤 조립체(149a, 149b)는 유리 리본(103)의 상응하는 대향하는 에지 부분(223a, 223b)의 적절한 마감을 제공하도록 구성된 한 쌍의 에지 롤(221)을 포함할 수 있다. 추가 실시예에서, 유리 제조 기기(101)는 제1 및 제2 풀 롤 조립체(151a, 151b, pull roll assembly)를 더 포함할 수 있다. 각각 도시된 풀 롤 조립체(151a, 151b)는 인발 평면(211)의 인발 방향(207)으로 유리 리본(103)을 견인하기 쉽게 구성된 한 쌍의 풀 롤(153)을 포함할 수 있다.
유리 제조 기기(101)는 유리 제조 기기의 하나 이상의 용융된 재료 스테이션(예, 청징 용기(127), 혼합 용기(131), 및 이송 기기(133))의 내부 체적과 유체 연통하는 압력 공급원을 더 포함할 수 있다. 제공된 경우, 압력 공급원은 작동 높이로 용융된 재료의 자유 표면을 편향시키기 위해 용융된 재료 스테이션의 내부 체적 내에서 용융된 재료의 자유 표면으로 대기압보다 크거나 작을 수 있는 압력을 적용하도록 구성될 수 있다. 상기 적용을 통해, 대기압은 해수면에 대한 용융된 재료 스테이션의 높이에서의 대기의 압력으로 간주될 수 있다(즉, 101.325kPa). 예를 들어, 대기압은 용융된 재료 스테이션이 해수면에 위치한 경우, 1 대기압(즉, 101.325kPa)으로 이루어질 수 있다. 추가 실시예에서, 대기압은 용융된 재료 스테이션이 해수면보다 낮은 높이에 있는 경우, 1 대기압보다 클 수 있다. 마찬가지로, 또 다른 실시예에서, 대기압은 용융된 재료 스테이션이 해수면 위에 있는 경우 1 대기압보다 낮을 수 있다.
일부 실시예에서, 유리 제조 기기(101) 전체 또는 일부분은 유리 제조 공정에 불리한 영향을 줄 수 있는 상태를 제어하도록 디자인된 격납 용기 내에 배치될 수 있다. 예를 들어, 유리 제조 기기(101)의 일부 또는 전체는 불활성 가스(예, 질소)로 차있는 격납 용기 내에 배치되어 유리 제조 기기의 일부분을 산화시킬 수 있는 산소와 유리 제조 기기의 백금 또는 다른 조성과의 접촉을 줄이거나 없앨 수 있다. 상기 실시예에서, 격납 용기는 격납 용기로 산소가 풍부한 공기의 누출을 막기 위해 가압될 수 있다. 상기 실시예에서, 대기압은 격납 영역 내에서의 가스의 절대압력으로 간주될 수 있다(즉, 해수면에 대해 용융된 재료 스테이션의 높이에서의 게이지 압력과 대기압의 합).
적용을 통해, 대기압보다 큰 압력을 적용하는 것은 Pabsolute = PA + Pgauge가 되도록 대기압 PA 보다 게이지 압력 Pgauge 만큼 큰 절대 압력 Pabsolute을 적용하는 것을 의미한다. 게다가, 적용을 통해, 대기압보다 작은 압력을 적용하는 것은 Pabsolute = PA - Pgauge가 되도록 대기압 PA 보다 게이지 압력 Pgauge 만큼 작은 절대 압력 Pabsolute을 적용하는 것을 의미한다.
적용을 통해, 용융된 재료의 자유 표면의 작동 높이는 성형 용기(143)로 고품질의 유리를 생성하면서 자유 표면이 유지되는 높이를 의미할 수 있다. 고품질 유리는 유리의 광학적 성능을 방해할 수 있는 결함이 실질적으로 없는, 최상 품질의 유리와 같은, 수용 가능한 품질의 유리를 생산할 것으로 기대되는 생산 품질 유리를 포함한다. 일부 실시예에서, 작동 높이는 고품질 유리가 용융된 재료 스테이션으로부터 하류에서 제조되고 있는 동안 용융된 재료 스테이션 내에 용융된 재료의 높이이다. 예를 들어, 용융된 재료가 작동 높이에서 자유 표면을 포함하고 있으면서, 용융된 재료는 용융된 재료 스테이션을 통해 지나갈 수 있다. 이러한 용융된 재료는 결국 성형 용기에 의해 고품질 유리로 처리될 수 있다. 임의의 특정 실시예에 한정되는 것은 아니지만, 하나의 실시예에서, 용융된 재료는 용융된 재료의 자유 표면이 작동 높이에 유지되는 동안 이송 기기(133)를 통과 할 수 있다. 이후, 용융된 재료는 성형 용기(143)에 의해 유리 리본으로 인발될 수 있으며, 유리 리본은 유리의 광학 성능을 방해할 수 있는 결함이 실질적으로 없는 고품질의 유리 리본을 포함한다. 일부 실시예에서, 용융 재료의 자유 표면은 고품질 유리 리본이 성형 용기(143)로부터 연속적으로 인출되는 동안 수 시간, 일, 주 또는 그 이상 동안 작동 높이에서 유지 될 수 있다.
전술한 바와 같이, 압력 공급원은 유리 제조 기기의 하나 이상의 용융된 재료 스테이션(예를 들어, 청징 용기(127), 혼합 용기(131) 및 이송 기기(133))의 내부 체적과 유체 연통될 수 있다. 예를 들어, 도 1에 개략적으로 도시된 바와 같이, 압력 공급원(171)은 압력 라인(173a, 173b)에 의해 선택적으로 청징 용기(127)와 유체 연통 가능하게 제공 될 수 있다. 선택적으로, 압력 공급원(171)에 의해 청징 용기(127)에 원하는 수준의 압력을 제공하도록 제어기(177)에 의해 작동 될 수 있는 유체 매니폴드(175, manifold)가 제공 될 수 있다. 일부 실시예에서, 압력 공급원은 유리 제조 기기의 백금 또는 백금-합금 재료의 산화를 감소 또는 방지하기 위해 불활성 가스(예를 들어, 질소 등)의 공급원을 포함 할 수 있다. 비록 추가의 실시예에서 하나 이상의 펌프 또는 다른 압력 공급원이 제공 될 수 있지만, 압력 공급원은 압축기에 의해 가압된 압력 용기를 포함 할 수 있다.
추가로 도시된 바와 같이, 압력 공급원(171)은 선택적으로 압력 라인(173a, 173c)에 의해 혼합 용기(131)와 유체 연통하게 제공 될 수 있다. 선택적으로, 유체 매니폴드(175)는 압력 공급원(171)에 의해 원하는 수준의 압력을 혼합 용기(131)에 제공하도록 제어기(177)에 의해 작동 될 수 있도록 제공 될 수 있다. 또한 추가로 도시된 것처럼, 압력 공급원(171)은 선택적으로 압력 라인(173a, 173d)에 의해 이송 기기(133)와 유체 연통할 수 있다. 선택적으로, 압력 공급원(171)에 의해 이송 기기(133)에 원하는 수준의 압력을 제공하도록 제어기(177)에 의해 작동 될 수 있는 유체 매니폴드(175)가 제공 될 수 있다.
단일 압력 공급원(171)이 도 1에 도시되어 있지만, 도 1을 참조하면, 다른 실시예는 복수의 압력 공급원을 포함 할 수 있다. 예를 들어, 양압 공급원 및 음압 공급원이 제공 될 수 있다. 추가 실시예에서, 각각의 용융된 재료 스테이션(예를 들어, 청징 용기(127), 혼합 용기(131) 및 이송 기기(133))은 상응하는 별도의 압력 공급원(171)을 포함 할 수 있다. 더욱이, 일부 실시예에서, 압력 라인은 도시된 유체 매니폴트 없이 용융된 재료 스테이션과 직접 연통되도록 배치될 수 있다.
도시된 실시예에서, 청징 용기(127)는 성형 용기(143)에 의해 하류에 수용되도록 상류의 용융된 재료 스테이션(예, 도시된 용융 용기(105))으로부터 용융된 재료(121)를 통과시키도록 구성된 내부 체적(179)을 포함하며, 용융된 재료(121)는 청징 용기(127)의 내부 체적(179) 내에 자유 표면(181)을 포함한다. 추가 도시된 것처럼, 혼합 용기(131)는 성형 용기(143)에 의해 하류에 수용되도록 상류의 용융된 재료 스테이션(예, 도시된 청징 용기(127))으로부터 용융된 재료(121)를 통과시키도록 구성된 내부 체적(183)을 포함하며, 용융된 재료(121)는 혼합 용기(131)의 내부 체적 내에 자유 표면(185)을 포함한다. 또한 추가 도시된 것처럼, 이송 기기(133)는 상류의 용융된 재료 스테이션(예, 도시된 혼합 용기(131))으로부터 성형 용기(143)로 용융된 재료(121)를 통과시키도록 구성된 내부 체적(187)을 포함하며, 용융된 재료(121)는 이송 기기(133)의 내부 체적 내에 자유 표면(187)을 포함한다. 하나의 실시예에서, 도시되 것처럼, 이송 기기(133)는 이송 기기(133)의 이송 파이프(139)로부터 성형 용기(143)의 유입구(141)로 용융된 재료(121)를 통과시킴으로써 성형 용기(143)로 직접 용융된 재료(121)를 통과시킨다. 도시된 것처럼, 자유 표면이 추가 실시예에서 이송 용기(161) 내에 배치될 수 있지만, 이송 기기(133)의 자유 표면(189)은 스탠드파이프(163, stand pipe) 내에 배치된다.
전술한 바와 같이, 압력 공급원(171)은 용융 재료 스테이션(예를 들어, 청징 용기(127), 혼합 용기(131), 이송 기기(133))의 내부 체적(179, 183, 187)과 유체 연통 상태로 배치될 수 있다. 압력 공급원(171)은 용융 재료의 자유 표면을 작동 높이로 편향시키기 위해 용융 재료 스테이션(예를 들어, 청징 용기(127), 혼합 용기(131), 이송 기기(133))의 내부 체적(179, 183, 187) 내의 자유 표면(181, 185, 189)으로 대기압보다 높거나 낮을 수 있는 압력을 적용하도록 구성될 수 있다.
하나의 특정 실시예에서, 압력 공급원(171)은 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 작동 높이가 낮도록 대기압보다 클 수 있는 압력을 자유 표면에 적용하도록 구성 될 수 있다. 다른 실시예에서, 부가적으로 또는 대안으로서, 압력 공급원(171)은 자유 표면이 대기압 하에서 달성 할 수 있는 기준 높이보다 작동 높이가 높도록 대기압보다 낮을 수 있는 압력을 자유 표면에 적용하도록 구성 될 수 있다.
선택적으로, 작동 높이의 소정의 범위 내에서 작동 높이를 유지하기 위해 압력 공급원(171)을 작동하도록 구성될 수 있는(예, "프로그램된", "코딩된", "디자인된", 및/또는 "만들어진") 제어기(177)가 제공될 수 있다. 예를 들어, 제어기(177)는 용융 재료 스테이션 중 상응하는 하나에서 자유 표면(181, 185, 189)의 실제 높이를 측정하는 측정 장치(191a, 191b, 191c)로부터 통신선로(193a, 193b, 193c)를 이용하여 신호를 수신할 수 있다. 제어기(177)는 작동 높이의 소정의 범위 내에서 실제 높이에서 작동 높이로 용융된 재료의 자유 표면을 편향시키기 위해 자유 표면의 측정된 실제 높이에 대응하여 압력 공급원(171)을 작동하도록 구성될 수 있다.
유리 제조 방법은 도 3-8에 도시된 이송 기기(133)를 참고하여 설명될 것이며, 상기 방법은 추가 실시예에서 다른 용융 재료 스테이션(예, 청징 용기 (127), 혼합 용기 (131) 등)에 적용될 수 있음을 이해해야 한다. 도 3-8은 이송 기기(133)의 내부 체적(187) 내의 자유 표면(189) 위에 가스(303)의 압력을 나타내기 위해 선택적으로 제공 될 수 있는 압력 표시기(301)를 포함한다.
도 3은 개략적인 높이 게이지(305)에 의해 "0"으로 지시된 작동 높이에서 이송 기기(133) 내의 용융된 재료(121)의 자유 표면(189)을 개략적으로 도시한다. 처리 조건이 변경되면 작동 높이가 그에 상응하여 변경될 수 있다. 하나의 실시예에서, 생산 활동이 끝날 때, 용융된 재료의 조성이 변경될 수 있다. 이러한 조성 변화는 자유 표면(189)의 작동 높이의 상응하는 변화를 초래할 수 있는 용융된 재료의 밀도, 점도 또는 다른 속성의 변화를 초래할 수 있다. 예를 들어, 용융된 재료의 조성을 변화시키는 것은 용융 재료의 점도를 증가시킬 수 있으며, 이는 도 4의 높이 게이지(305)에 의해 "-1"로 개략적으로 표시된 것처럼, 자유 표면(189)의 작동 높이를 낮추게 할 수 있다. 도 4의 "-1"로 나타낸 높이는, 이로써, 용융된 재료의 조성 변화에 기초하여 자유 표면이 대기압 하에서 달성하는 기준 높이의 변화를 나타낼 수 있다.
다른 실시예에서, 이송 기기를 통과하는 용융된 재료의 체적 유량은 자유 표면(189)의 작동 높이의 상응하는 변화를 초래할 수 있다. 예를 들어, 체적 유량을 감소시키는 것은 도 4의 높이 게이지(305)에 의해 "-1"로 개략적으로 나타낸 것처럼, 자유 표면(189)의 작동 높이를 낮추게 할 수 있다. 이와 같이, 도 4의 "-1"로 나타낸 높이는, 또한 자유 표면이 이송 기기를 통과하는 용융된 재료의 체적 유량의 변화에 의해 달성되는 기준 높이의 변화를 나타낼 수 있다.
본 발명의 실시예는 도 5의 높이 게이지(305)에 의해 "0"으로 나타낸 작동 높이로 도 4에 도시된 것과 같이 이송 기기 내의 용융된 재료의 자유 표면(189)을 편향시키는 단계를 포함할 수 있다. 편향시키는 단계는, 3.5kPa 이상의 압력이 추가 실시예에서 사용될 수 있지만, 0kPa보다 크고 3.5kPa보다 작거나 같은 압력만큼 대기압보다 작은 음압을 용융 재료의 자유 표면으로 적용하는 것을 통해 성취될 수 있다. 예시를 통해, 대기압보다 작은 3.5kPa의 압력(음압)은 도 4에 도시된 높이로부터 도 5에 도시된 높이로 자유 표면(189)의 작동 높이를 증가시킬 수 있다. 이와 같이, 용융된 재료의 자유 표면에 적용된 압력은 용융된 재료의 조성의 변화 또는 체적 유량의 변화를 보완하도록 조정될 수 있다. 실제로, 도 5에서 볼 수 있는 것처럼, 방법은 자유 표면이 대기압(도 4에 압력 표시기(301)에 의해 "0" 압력으로 나타낸) 하에서 얻어지는 기준 높이(예, 도 4의 "-1"로 지시된 높이)보다 작동 높이(도 5 참고)가 높도록 대기압보다 작은 압력(예, -3.5kPa까지)을 자유 표면(189)에 적용하는 단계를 포함할 수 있다.
다른 실시예에서, 용융된 재료의 조성을 변경하는 것은 도 6의 높이 게이지에 개략적으로 나타난 "0"으로부터 도 7의 높이 게이지(305)에 개략적으로 지시된 높이 "+1"로 자유 표면(189)의 작동 높이를 상승시키게 할 수 있는 용융된 재료의 점도의 감소를 야기할 수 있다. 이로써, 도 7의 "+1"로 나타낸 높이는 용융된 재료의 조성의 변화에 기반한 자유 표면이 대기압하에서 얻어지는 기준 높이의 변화를 나타낼 수 있다.
다른 실시예에서, 체적 유량을 증가시키는 것은 도 6의 높이 게이지에 개략적으로 나타난 "0"으로부터 도 7의 높이 게이지(305)에 개략적으로 지시된 높이 "+1"로 자유 표면(189)의 작동 높이를 상승시키게 할 수 있다. 이와 같이, 도 7의 "+1"로 나타낸 높이는 또한 이송 기기를 통과해 지나가는 용융된 재료의 체적 유량의 변화에 의해 자유 표면이 얻어지는 기준 높이의 변화를 나타낼 수 있다.
본 발명의 실시예는 도 8의 높이 게이지(305)에 의해 "0"으로 나타낸 작동 높이로 도 7에서 볼 수 있는 것과 같은 이송 기기 내의 용융된 재료의 자유 표면(189)을 편향시키는 단계를 포함할 수 있다. 편향시키는 것은, 3.5kPa보다 더 큰 압력을 적용시키는 것이 추가 실시예에서 사용될 수 있지만, 0kPa보다 크고 3.5kPa보다 작거나 같도록 대기압보다 큰 양압을 용융된 재료의 자유 표면에 적용함으로써 얻어질 수 있다. 예시를 통해, 대기압보다 큰 3.5kPa의 압력은 도 7에 도시된 높이로부터 도 8에 도시된 높이로 자유 표면(189)의 작동 높이를 낮출 수 있다. 이와 같이, 용융된 재료의 자유 표면에 적용된 압력은 용융된 재료의 체적 유량의 변화 또는 조성의 변화를 보완하도록 조정될 수 있다. 실제로, 도 8에 도시된 것처럼, 상기 방법은 자유 표면이 대기압(도 7에 압력 표시기(301)에 의해 "0" 압력으로 나타낸) 하에서 얻어지는 기준 높이(예, 도 7의 "+1"로 지시된 높이)보다 작동 높이(도 8 참고)가 낮도록 대기압보다 높은 압력(예, 3.5kPa까지)을 자유 표면(189)에 적용하는 단계를 포함할 수 있다.
본 발명의 방법은 또한 작동 높이의 소정의 범위 내에서 작동 높이를 유지하는 단계를 포함할 수 있다. 예를 들어, 예시를 통해, 자유 표면(189)의 작동 높이는 도 3-8에서 압력 표시기에 의해 나타낸 것과 같이 -1과 +1 사이에서 유지될 수 있다. 측정 장치(191c)는 이송 기기(133) 내의 용융된 재료(121)의 자유 표면(189)의 실제 높이를 측정할 수 있다. 자유 표면(189)에 적용된 압력은 이후 실제 높이에서 작동 높이로 용융된 재료의 자유 표면을 편향시키도록 조정될 수 있다. 예를 들어, 측정 장치(191c)가 도 4에 도시된 "-1" 이하로 떨어진 것으로 자유 표면(189)의 실제 높이를 측정한 경우, 제어기(177)는 도 5에 도시된 작동 높이로 자유 표면의 높이를 상승시키기 위해 압력 공급원(171)으로부터 음압을 적용되게 하도록 유체 매니폴드(175)를 작동시킬 수 있다. 다른 한편, 상기 측정 장치(191c)가 자유 표면(189)의 실제 높이가 도 7에 도시된 "+1" 이상으로 증가된 것으로 측정한 경우, 제어기(177)는 상기 자유 표면의 높이를 도 8에 도시된 작동 높이로 내리기 위해 압력 공급원(171)으로부터 양압이 적용되게 하도록 유체 매니폴드(175)를 작동할 수 있다.
상기 자유 표면이 작동 높이로 편향되면, 상기 방법은 상기 자유 표면이 작동 높이로 편향되는 동안 이송 기기에서 성형 용기로 용융된 재료를 통과시키는 단계를 더 포함할 수 있다.
추가 실시예에서, 전술한 방법과 유사하거나 또는 동일한 특징을 포함할 수 있는 추가적인 방법이 제공될 수 있다. 추가 실시예에서, 상기 방법은, 추가 실시예에서 3.5kPa보다 큰 값이 제공될 수 있지만, 0kPa보다 크고 3.5kPa보다 작거나 같을 수 있는 절대값만큼 대기압보다 크거나 작을 수 있는 압력을 용융된 자유 표면에 적용함으로써 상류의 용융된 재료 스테이션(예, 청징 용기(127), 혼합 용기(131), 이송 기기(133)) 내의 용융된 재료(121)의 자유 표면(189)을 작동 높이로 편향시키는 단계를 포함할 수 있다. 상기 방법은 이후 자유 표면이 작동 높이로 편향되는 동안 상류의 용융된 재료 스테이션에서 하류의 용융된 재료 스테이션으로 용융된 재료를 통과시키는 단계를 포함할 수 있다.
자유 표면의 원하는 작동 높이를 제공하기 위한 자유 표면으로의 압력 적용은, 시스템의 변화를 야기하게 되는 다른 작동 높이를 수용하기 위해 용융된 재료 스테이션을 재설계하지 않고, 시스템의 변화(예, 용융된 재료의 체적 유량, 용융된 재료의 조성 등)를 보완할 수 있다. 이와 같이, 시스템의 변화로 인해 변화된 자유 표면 높이로 작동하기 위해 전체 용융된 재료 스테이션을 재설계하는 것 대신, 용융된 재료 스테이션이 보완될 수 있는 높의 범위 내에서 자유 표면의 높이를 유지하도록 압력이 조정될 수 있다. 상기 실시예에서, 원하는 높이로 자유 표면을 유지하게 돕도록 압력이 조정될 수 있기 때문에 다양한 시스템 설계를 보완할 수 있는 단일 용융된 재료 스테이션이 제공될 수 있다.
본원에 기술된 실시예들 및 기능 작동들은 본 명세서에 개시된 구조들과 그 구조적 등가물들 또는 그들의 하나 이상의 조합을 포함하는, 디지털 전자 회로, 또는 컴퓨터 소프트웨어, 펌웨어 또는 하드웨어로 구현 될 수 있다. 본원에 설명된 실시예는 하나 이상의 컴퓨터 프로그램 제품, 즉 데이터 처리 장치에 의해 실행되거나 데이터 처리 장치의 동작을 제어하기 위한 유형(有形)의 프로그램 캐리어 상에 인코딩된 컴퓨터 프로그램 명령의 하나 이상의 모듈로서 구현 될 수 있다. 유형의 프로그램 캐리어는 컴퓨터 판독 가능 매체 일 수 있다. 컴퓨터 판독 가능 매체는 기계 판독 가능 저장 장치, 기계 판독 가능 저장 기판, 메모리 장치, 또는 이들 중 하나 이상의 조합 일 수 있다.
앞서 개략적으로 도시되고 설명된 것처럼, 제어기(177)(도 1 참고)는 다양한기능 또는 기능의 조합 중 임의의 하나를 수행하도록 제공될 수 있다. 비록 단일 제어기(177)로 도시되었짐나, 복수의 제어기가 추가 실시예에서 제공될 수 있으며, "제어기"라는 용어는(예, "프로세서") 예로서, 프로그램 가능한 프로세서, 컴퓨터, 또는 복수의 프로세서 또는 컴퓨터를 포함하는, 데이터 처리를 위한 모든 기기, 장치, 및 기계를 포함할 수 있다. 상기 프로세서는 하드웨어에 더해, 문제의 컴퓨터 프로그램을 위한 실행 환경을 생성하는 코드, 예컨대, 프로토콜 스택, 데이터베이스 관리 시스템, 작동 시스템, 또는 이들 하나 이상의 조합을 구성하는 코드를 포함할 수 있다.
컴퓨터 프로그램(또한 프로그램, 소프트웨어, 소프트웨어 어플리케이션, 스크립트, 또는 코드로 알려진)은 컴파일되거나 해석된 언어, 또는 선언적 또는 절차적 언어를 포함하느 어떤 형태의 프로그램 언어로 작성될 수 있으며, 자립형 프로그램이나 모듈, 구성 요소, 서브 루틴 또는 컴퓨팅 환경에서 사용하기에 적합한 다른 장치를 포함한 모든 형태로 배포될 수 있다. 컴퓨터 프로그램이 파일 시스템의 파일과 일치할 필요는 없다. 프로그램은, 문제의 프로그램 전용 파일 하나 또는 여러 개의 조정 파일(예, 하나 이상의 모듈, 하위 프로그램 또는 코드의 일부를 저장하는 파일)에 다른 프로그램이나 데이터(예, 마크업 언어 문서에 저장된 하나 이상의 스크립트)를 보유하는 파일의 일부에 저장될 수 있다. 컴퓨터 프로그램은 하나의 사이트에 있거나 여러 사이트에 분산되어 있으며 통신 네트워크로 상호 연결된 하나의 컴퓨터 또는 여러 대의 컴퓨터에서 실행되도록 배포될 수 있다.
본원에 설명된 프로세스는 입력 데이터를 조작하고 출력을 생성함으로써 기능을 수행하기 위해 하나 이상의 컴퓨터 프로그램을 실행하는 하나 이상의 프로그램 가능한 프로세서를 포함 할 수 있는 하나 이상의 제어기에 의해 수행될 수 있다. 프로세스 및 논리 흐름은 또한 예를 들어 FPGA (현장 프로그램 가능 게이트 어레이) 또는 ASIC (주문형 집적 회로)와 같은 특수 목적의 논리 회로에 의해 수행 될 수 있고, 장치는 또한 특수 목적의 논리 회로로서 구현 될 수 있다.
컴퓨터 프로그램의 실행에 적합한 프로세서는, 예시로서, 일반 및 특수 목적 마이크로프로세서와, 임의의 하나 이상의 임의의 종류의 디지털 컴퓨터를 포함한다. 일반적으로, 프로세서는 읽기전용 메모리 또는 무작위 접근 메모리 또는 둘 모두로부터 명령 및 데이터를 수신할 것이다. 컴퓨터의 필수 요소는 명령을 수행하기 위한 프로세서와 명령 및 데이터를 저장하기 위한 하나 이상의 데이터 기억 장치이다. 일반적으로, 컴퓨터는 또한, 예컨대, 자기, 광 자기 디스크, 또는 광 디스크와 같은, 데이터를 수신하거나 데이터를 전송하기 위한, 또는 둘 모두를 위한, 데이터 저장을 위한 하나 이상의 대용량 저장 장치를 포함하거나, 이와 작동하도록 연결된다. 그러나, 상기 장치가 반드시 필요한 것은 아니다. 더욱이, 컴퓨터는 예컨대, 휴대 전화기, 개인 휴대 정보 단말기(PDA) 등과 같은 다른 장치에 내장될 수 있다.
컴퓨터 프로그램 명령 및 데이터를 저장하기에 적합한 컴퓨터 판독 가능 매체는 예를 들어 EPROM, EEPROM 및 플래시 메모리 장치와 같은 반도체 메모리 장치를 포함하는 비 휘발성 메모리, 매체 및 메모리 장치를 포함하는 모든 형태의 데이터 메모리; 내부 하드 디스크 또는 이동식 디스크와 같은 자기 디스크; 광 자기 디스크; 및 CD ROM 및 DVD-ROM 디스크. 프로세서 및 메모리는 특수 목적 논리 회로에 의해 보완되거나 그 안에 포함될 수 있다.
사용자와의 상호 작용을 제공하기 위해, 본원에 설명된 실시예는 정보를 사용자에게 디스플레이하기 위한 디스플레이 장치, 예를 들어 CRT(브라운관) 또는 LCD(액정 디스플레이) 모니터 등을 갖는 컴퓨터 상에 구현 될 수 있으며, 키보드 및 포인팅 장치, 예를 들어, 마우스 또는 트랙볼, 또는 사용자가 컴퓨터에 입력을 제공 할 수 있는 터치 스크린을 포함 할 수 있다. 다른 종류의 장치가 사용자와의 상호 작용을 제공하는 데 사용될 수 있다. 예를 들어, 사용자로부터의 입력은 음향, 음성 또는 촉각 입력을 포함하는 임의의 형태로 수신 될 수 있다.
본 명세서에 기술된 실시예들은, 예를 들어 데이터 서버로서, 또는 미들웨어 컴포넌트(middleware component), 예를 들어 애플리케이션 서버를 포함하거나, 프론트 엔드 컴포넌트(front end component), 예를 들어, 애플리케이션 서버를 포함하는 백엔드 컴포넌트(back end component)를 포함하는 컴퓨팅 시스템에서 구현 될 수 있다. 그래픽 사용자 인터페이스 또는 본 명세서에 설명된 주제의 구현과 상호 작용할 수 있는 웹 브라우저, 또는 하나 이상의 이러한 백엔드, 미들웨어 또는 프론트 엔드 구성 요소의 임의의 조합을 포함하는 웹 브라우저를 갖는 클라이언트 컴퓨터를 포함 할 수 있다. 시스템의 컴포넌트는 디지털 데이터 통신의 임의의 형태 또는 매체, 예를 들어 통신 네트워크에 의해 상호 접속 될 수 있다. 통신 네트워크의 예는 근거리 통신망 ("LAN") 및 광역 통신망 ("WAN"), 예를 들어 인터넷을 포함한다.
컴퓨팅 시스템에는 클라이언트와 서버(client and server)가 포함될 수 있다. 클라이언트와 서버는 일반적으로 서로 멀리 떨어져 있으며 일반적으로 통신 네트워크를 통해 상호 작용한다. 클라이언트와 서버의 관계는 각각의 컴퓨터에서 실행되고 서로 클라이언트-서버 관계를 갖는 컴퓨터 프로그램을 통해 발생한다.
다양한 개시된 실시예는 그 특정 실시예와 관련하여 기술된 특정 특징, 요소 또는 단계를 포함할 수 있음을 이해할 것이다. 하나의 특정 실시예와 관련하여 기술되었지만, 특정한 특징, 요소 또는 단계는 다양한 예시되지 않은 조합 또는 순열에서 대체 실시예와 상호 교환되거나 결합될 수 있음을 이해할 것이다.
본원에 사용된 바와 같이, "그", "한" 또는 "하나"라는 용어는 "적어도 하나"를 의미하고, 달리 명시되지 않는 한 "하나"에만 국한되어서는 안된다는 것을 이해해야 한다. 마찬가지로, "다수의"는 "둘 이상"을 의미한다.
범위는 본원에서 "약" 하나의 특정 값으로부터 및/또는 "약" 다른 특정 값으로 표현될 수 있다. 이러한 범위가 표현될 때, 실시예는 하나의 특정 값 및/또는 다른 특정 값을 포함한다. 유사하게, 값이 근사치로 표현될 때, "약" 이라는 전제를 사용함으로써, 특정 값이 또 다른 양상을 이룬다는 것을 이해할 수 있다. 범위 각각의 종단점은 다른 종점과 관련하여, 그리고 다른 종점과는 독립적으로 중요하다는 것이 더 이해될 것이다.
본원에 사용된 용어 "실질적인", "실질적으로" 및 이들의 변형은 설명된 특징이 값 또는 설명과 동일하거나 거의 동일하다는 것을 나타내기 위한 것이다.
달리 명시적으로 언급되지 않는 한, 본원에 기재된 임의의 방법은 그 단계가 특정 순서로 수행될 것을 요구하는 것으로 해석되어서는 안된다. 따라서, 방법 청구 범위가 실제로 그 단계가 뒤따라야 할 순서를 암시하지 않으며, 또는 단계들이 특정 순서로 제한되어야 한다는 것이 청구항 또는 설명에 특별히 명시되지 않는 경우, 어떤 특정 순서도 추론될 수 없다.
특정 실시예의 다양한 특징, 요소 또는 단계가 과도적인 구절 "포함하다"를 사용하여 개시될 수 있지만, "구성되는" 또는 "본질적으로 이루어진 "이라는 과도적인 구절을 사용하여 기술될 수 있는 대안의 실시예가 함축된 것으로 이해되어야 한다. 따라서, 실시예에 대해, A + B + C를 포함하는 장치에 대한 암시된 대안 실시예는 장치가 A + B + C로 이루어진 실시예 및 장치가 본질적으로 A + B + C로 이루어지는 실시예를 포함한다.
본 발명의 사상 및 범위를 벗어나지 않으면서 본 개시물에 대한 다양한 변경 및 변형이 이루어질 수 있음은 당업자에게 명백할 것이다. 따라서, 본 발명은 첨부된 청구 범위 및 그 등가물의 범위 내에서 본 발명의 변형 및 변경을 포함하는 것으로 의도된다.

Claims (21)

  1. (I) 대기압보다 크거나 작은 압력을 용융된 재료의 자유 표면에 적용함으로써 이송 기기 내의 용융된 재료의 자유 표면을 작동 높이로 편향시키는 단계; 및
    (II) 상기 자유 표면이 작동 높이로 편향되는 동안 상기 이송 기기로부터 성형 용기로 용융된 재료를 통과시키는 단계;를 포함하는 유리 제조 방법.
  2. 청구항 1에 있어서,
    단계 (I)는 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 낮도록 대기압보다 큰 압력을 상기 자유 표면에 적용하는 단계를 포함하는, 유리 제조 방법.
  3. 청구항 1에 있어서,
    단계 (I)는 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 높도록 대기압보다 작은 압력을 상기 자유 표면에 적용하는 단계를 포함하는, 유리 제조 방법.
  4. 청구항 1에 있어서,
    단계 (I)는 작동 높이의 소정의 범위 내에서 상기 작동 높이를 유지하는 단계를 포함하는, 유리 제조 방법.
  5. 청구항 1에 있어서,
    상기 이송 기기 내의 용융된 재료의 자유 표면의 실제 높이를 측정하는 단계를 더 포함하며, 단계 (I)는 상기 용융 재료의 자유 표면을 실제 높이로부터 작동 높이로 편향시키기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  6. 청구항 1에 있어서,
    상기 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경시키는 용융 재료의 조성을 변경시키는 단계를 더 포함하며, 단계 (I)는 용융된 재료의 조성의 변화를 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  7. 청구항 1에 있어서,
    상기 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경시키는 상기 이송 기기를 통해 지나가는 용융된 재료의 체적 유량을 변화시키는 단계를 더 포함하며, 단계 (I)는 용융된 재료의 체적 유량의 변화를 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  8. 청구항 1에 있어서,
    상기 적용된 압력은 0kPa보다 크고 3.5kPa보다 작거나 같은 절대값을 갖는, 유리 제조 방법.
  9. (I) 0kPa보다 크고 3.5kPa보다 작거나 같은 절대값만큼 대기압보다 크거나 작은 압력을 용융된 재료의 자유 표면에 적용함으로써 상류의 용유된 재료 스테이션 내의 용융된 재료의 자유 표면을 작동 높이로 편향시키는 단계; 및
    (II) 상기 자유 표면이 작동 높이로 편향되는 동안 상류의 용융된 재료 스테이션으로부터 하류의 용융된 재료 스테이션으로 용융된 재료를 통과시키는 단계;를 포함하는, 유리 제조 방법.
  10. 청구항 9에 있어서,
    단계 (I)는 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 낮도록 대기압보다 큰 압력을 상기 자유 표면에 적용하는 단계를 포함하는, 유리 제조 방법.
  11. 청구항 9에 있어서,
    단계 (I)는 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 높도록 대기압보다 작은 압력을 상기 자유 표면에 적용하는 단계를 포함하는, 유리 제조 방법.
  12. 청구항 9에 있어서,
    단계 (I)는 작동 높이의 소정의 범위 내에서 상기 작동 높이를 유지하는 단계를 포함하는, 유리 제조 방법.
  13. 청구항 9에 있어서,
    상기 이송 기기 내의 용융된 재료의 자유 표면의 실제 높이를 측정하는 단계를 더 포함하며, 단계 (I)는 상기 용융 재료의 자유 표면을 실제 높이로부터 작동 높이로 편향시키기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  14. 청구항 9에 있어서,
    상기 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경시키는 용융 재료의 조성을 변경시키는 단계를 더 포함하며, 단계 (I)는 용융된 재료의 조성의 변화를 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  15. 청구항 9에 있어서,
    상기 자유 표면이 대기압 하에서 얻어지는 기준 높이를 변경시키는 상기 이송 기기를 통해 지나가는 용융된 재료의 체적 유량을 변화시키는 단계를 더 포함하며, 단계 (I)는 용융된 재료의 체적 유량의 변화를 보완하기 위해 용융된 재료의 자유 표면에 적용된 압력을 조정하는 단계를 포함하는, 유리 제조 방법.
  16. 청구항 9에 있어서,
    상기 상류의 용융된 재료 스테이션은: 청징 용기, 혼합 용기, 및 이송 기기로 이루어진 그룹으로부터 선택되는, 유리 제조 방법.
  17. 용융된 재료로부터 유리를 성형하도록 구성된 성형 용기;
    상류의 용융된 재료 스테이션으로부터 상기 성형 용기로 용융된 재료를 통과시키도록 구성된 내부 체적을 포함하는 이송 기기로서; 상기 용융된 재료가 상기 이송 기기의 내부 체적 내에 자유 표면을 포함하며, 및
    상기 이송 기기의 내부 체적과 유체 연통하며, 상기 용융된 재료의 자유 표면을 작동 높이로 편향시키기 위해 상기 이송 기기의 내부 체적 내의 자유 표면으로 대기압보다 크거나 작은 압력을 적용하도록 구성된 압력 공급원;을 포함하는, 유리 제조 기기.
  18. 청구항 17에 있어서,
    상기 압력 공급원은 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 낮도록 대기압보다 큰 압력을 상기 자유 표면에 적용하도록 구성되는, 유리 제조 기기.
  19. 청구항 17에 있어서,
    상기 압력 공급원은 상기 자유 표면이 대기압 하에서 얻어지는 기준 높이보다 상기 작동 높이가 높도록 대기압보다 작은 압력을 상기 자유 표면에 적용하도록 구성되는, 유리 제조 기기.
  20. 청구항 17에 있어서,
    상기 작동 높이를 작동 높이의 소정의 범위 내에서 유지하기 위해 상기 압력 공급원을 작동하도록 구성된 제어기를 더 포함하는, 유리 제조 기기.
  21. 청구항 20에 있어서,
    상기 용융된 재료의 자유 표면의 실제 높이를 측정하도록 구성된 측정 장치를 더 포함하며, 상기 제어기는 상기 용융된 재료의 자유 표면을 작동 높이의 소정의 범위 내에서 실제 높이에서 작동 높이로 편향시키기 위해 자유 표면의 측정된 실제 높이에 대응하여 압력 공급원을 작동하도록 구성되는, 유리 제조 기기.
KR1020177034444A 2015-04-29 2016-04-19 유리 제조 기기 및 방법 KR20170141775A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562154385P 2015-04-29 2015-04-29
US62/154,385 2015-04-29
PCT/US2016/028199 WO2016176073A1 (en) 2015-04-29 2016-04-19 Glass manufacturing apparatus and methods

Publications (1)

Publication Number Publication Date
KR20170141775A true KR20170141775A (ko) 2017-12-26

Family

ID=57198728

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177034444A KR20170141775A (ko) 2015-04-29 2016-04-19 유리 제조 기기 및 방법

Country Status (5)

Country Link
JP (1) JP2018520077A (ko)
KR (1) KR20170141775A (ko)
CN (1) CN107709253A (ko)
TW (1) TWI706920B (ko)
WO (1) WO2016176073A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912608B2 (en) 2019-10-01 2024-02-27 Owens-Brockway Glass Container Inc. Glass manufacturing

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL261438A (ko) * 1960-03-02 1900-01-01
US3973940A (en) * 1974-05-30 1976-08-10 Ppg Industries, Inc. Delivery of molten glass to a glass forming process
GB2043049B (en) * 1979-02-27 1983-06-15 Wiederaufarbeitung Von Kernbre Method for controlling the discharge of molten material
DE4005748A1 (de) * 1990-02-23 1991-08-29 Kernforschungsz Karlsruhe Ablassvorrichtung fuer einen glasschmelzofen
JPH05116953A (ja) * 1991-10-29 1993-05-14 Sumitomo Heavy Ind Ltd 溶融ガラスの供給装置
CA2164676C (en) * 1995-01-18 2006-10-10 Michael T. Dembicki Method and apparatus for delivering a glass stream for forming charges of glass
US5785726A (en) * 1996-10-28 1998-07-28 Corning Incorporated Method of reducing bubbles at the vessel/glass interface in a glass manufacturing system
JP4103236B2 (ja) * 1999-04-08 2008-06-18 旭硝子株式会社 減圧脱泡によるガラスの製造装置
DE10108831C1 (de) * 2001-02-23 2002-06-13 Omg Ag & Co Kg Elektrisch direkt beheizte, aus PGM-Werkstoff gefertigte Auslaufdüse für die Glasschmelze
JP3986070B2 (ja) * 2003-08-08 2007-10-03 Hoya株式会社 熔融ガラスの製造方法及びガラス成形体の製造方法
US6993936B2 (en) * 2003-09-04 2006-02-07 Corning Incorporated System and method for suppressing the formation of oxygen inclusions and surface blisters in glass sheets and the resulting glass sheets
CN1948195A (zh) * 2005-10-14 2007-04-18 株式会社小原 玻璃制造装置以及玻璃制造方法
JP2007131515A (ja) * 2005-10-14 2007-05-31 Ohara Inc ガラス製造装置及びガラス製造方法
CN102173561A (zh) * 2006-01-05 2011-09-07 日本电气硝子株式会社 熔融玻璃供给装置及玻璃成形品的制造方法
JP5864690B2 (ja) * 2013-09-30 2016-02-17 AvanStrate株式会社 ガラス基板の製造方法、ガラス基板製造装置、及び熔融ガラス処理装置
CN203848900U (zh) * 2014-05-15 2014-09-24 湖北新华光信息材料有限公司 一种光学玻璃连熔炉用液位测定装置
CN104370437B (zh) * 2014-10-17 2017-07-14 广东华兴玻璃股份有限公司 一种玻璃熔窑定量脉冲鼓泡装置

Also Published As

Publication number Publication date
TWI706920B (zh) 2020-10-11
TW201704158A (zh) 2017-02-01
WO2016176073A1 (en) 2016-11-03
CN107709253A (zh) 2018-02-16
JP2018520077A (ja) 2018-07-26

Similar Documents

Publication Publication Date Title
US8347654B2 (en) Vacuum degassing apparatus and vacuum degassing method for molten glass
JP5885674B2 (ja) ガラス物品を作製する装置および方法
US20130102228A1 (en) Glass plate, glass plate polishing method, method of producing the same, and apparatus for producing the same
KR20140025396A (ko) 유리 물품 제조 장치 및 방법
KR20180030410A (ko) 감압된 캐비티를 갖는 유리 제조 장치 및 방법
JP2019514831A (ja) ガラスを処理する方法及び装置
US9073772B2 (en) Conduit structure for molten glass, vacuum degassing apparatus, vacuum degassing method for molten glass and process for producing glass products employing said conduit structure
US9586846B2 (en) Apparatus and methods for processing molten material
KR20170141775A (ko) 유리 제조 기기 및 방법
US20150360990A1 (en) Method and device for producing a glass article from a glass melt
TWI596067B (zh) Manufacturing method of a glass substrate, and manufacturing apparatus of a glass substrate
KR20180006458A (ko) 플로우 쓰루가 가능한 유리 제조 장치 및 방법
TWI761524B (zh) 重整玻璃製造系統之方法
US20210163332A1 (en) Methods and apparatus for forming laminated glass sheets
JP5454535B2 (ja) 板ガラスの製造方法及び製造装置
JP6536576B2 (ja) 溶融ガラスの異質素地排出構造、ガラス物品の製造装置および製造方法
TW201733919A (zh) 用於增加的分批溶解與玻璃同質性的玻璃熔融系統及方法
KR20170118789A (ko) 유리 제조 장치 및 방법
CN113233739B (zh) 一种基板玻璃和制造方法
KR20160001275A (ko) 유리 제조 장치 및 이를 이용한 유리 제조 방법
CN117923758A (zh) 一种大引出量溢流系统稳定供料的设计方法及相关装置
JP2016069235A (ja) ガラス基板の製造方法、および、ガラス基板の製造装置
TW202204272A (zh) 用於減少玻璃熔體系統中的缺陷的設備與方法