KR20170141196A - 반도체 x-선 검출기 - Google Patents
반도체 x-선 검출기 Download PDFInfo
- Publication number
- KR20170141196A KR20170141196A KR1020177026648A KR20177026648A KR20170141196A KR 20170141196 A KR20170141196 A KR 20170141196A KR 1020177026648 A KR1020177026648 A KR 1020177026648A KR 20177026648 A KR20177026648 A KR 20177026648A KR 20170141196 A KR20170141196 A KR 20170141196A
- Authority
- KR
- South Korea
- Prior art keywords
- ray
- voltage
- controller
- voltage comparator
- layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title description 58
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 230000005540 biological transmission Effects 0.000 claims abstract description 21
- 239000002800 charge carrier Substances 0.000 claims description 50
- 230000008859 change Effects 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 27
- 238000010521 absorption reaction Methods 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 238000007689 inspection Methods 0.000 claims description 15
- 239000003990 capacitor Substances 0.000 claims description 12
- 238000002591 computed tomography Methods 0.000 claims description 12
- 238000004846 x-ray emission Methods 0.000 claims description 12
- 230000001066 destructive effect Effects 0.000 claims description 9
- 238000002601 radiography Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910004613 CdTe Inorganic materials 0.000 claims description 4
- 229910004611 CdZnTe Inorganic materials 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 238000002583 angiography Methods 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 3
- 230000007547 defect Effects 0.000 claims description 3
- 238000009607 mammography Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 3
- 210000001015 abdomen Anatomy 0.000 claims description 2
- 238000003491 array Methods 0.000 claims 1
- 230000002123 temporal effect Effects 0.000 description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000005684 electric field Effects 0.000 description 6
- 229910000679 solder Inorganic materials 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000002059 diagnostic imaging Methods 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 230000003187 abdominal effect Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- XQPRBTXUXXVTKB-UHFFFAOYSA-M caesium iodide Chemical compound [I-].[Cs+] XQPRBTXUXXVTKB-UHFFFAOYSA-M 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011976 chest X-ray Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 208000002925 dental caries Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004373 mandible Anatomy 0.000 description 1
- 210000002050 maxilla Anatomy 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 210000002379 periodontal ligament Anatomy 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 235000009518 sodium iodide Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000003963 x-ray microscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
- G01T1/247—Detector read-out circuitry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/20—Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
- G01V5/22—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
- G01V5/222—Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/115—Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K7/00—Gamma- or X-ray microscopes
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Geophysics (AREA)
- Medical Informatics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- General Engineering & Computer Science (AREA)
- Measurement Of Radiation (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
X-선을 검출하는데 적합한 장치가 개시되며, 이러한 장치는, 전극을 포함하는 X-선 흡수 층(110); 그리고 전자기기 층(120)을 포함하고, 여기서 전자기기 층(120)은, 제 1 표면(124) 및 제 2 표면(128)을 갖는 기판(122); 기판(122) 내에 혹은 기판(122) 상에 있는 전자기기 시스템(121); 제 1 표면(124) 상에 있는 전기적 접촉부(125); 비아(126); 그리고 제 2 표면(128) 상에 있는 재배선 층(RDL)(123)을 포함하고, RDL(123)은 전송 라인(127)을 포함하고, 비아(126)는 제 1 표면(124)으로부터 제 2 표면(128)으로 연장되고, 전극은 전기적 접촉부(125)에 전기적으로 연결되고, 전자기기 시스템(121)은 비아(126)를 통해 전기적 접촉부(125) 및 전송 라인(127)에 전기적으로 연결된다.
Description
본 명세서에서의 개시내용은 X-선 검출기(X-ray detector)들에 관한 것이며, 특히 반도체 X-선 검출기(semiconductor X-ray detector)들에 관한 것이다.
X-선 검출기들은 X-선들의 유속(flux), 공간적 분포(spatial distribution), 스펙트럼(spectrum) 혹은 다른 속성(property)들을 측정하는데 사용되는 디바이스(device)일 수 있다.
X-선 검출기들은 많은 응용분야에 대해 사용될 수 있다. 한 가지 중요한 응용분야는 영상화(imaging)이다. X-선 영상화는 방사선촬영(radiography) 기법이고, 그리고 사람의 신체와 같이 불-균일하게 구성된 불투명 물체의 내부 구조를 표출시키는데 사용될 수 있다.
영상화를 위한 초기 X-선 검출기들은 사진 플레이트(photographic plate)들 및 사진 필름(photographic film)들을 포함한다. 사진 플레이트는 광감성 유제(light-sensitive emulsion)의 코팅(coating)을 갖는 유리 플레이트(glass plate)일 수 있다. 사진 플레이트들이 사진 필름들로 대체되었을 지라도, 사진 플레이트들은 이들이 제공하는 월등한 품질 그리고 이들의 극도로 좋은 안정성으로 인해 특별한 상황에서 여전히 사용될 수 있다. 사진 필름은 광감성 유제의 코팅을 갖는 플라스틱 필름(plastic film)(예를 들어, 스트립(strip) 혹은 시트(sheet))일 수 있다.
1980년대에는, 광자극성 인광체(PhotoStimulable Phosphor, PSP) 플레이트들이 이용가능하게 되었다. PSP 플레이트는 그 격자(lattice) 내에 색 중심(color center)들을 갖는 인광체 물질을 함유할 수 있다. PSP 플레이트가 X-선에 노출되는 경우, X-선에 의해 여기(excite)된 전자들은 이들이 플레이트 표면에 걸친 레이저 빔 스캐닝(laser beam scanning)에 의해 자극을 받을 때까지 색 중심들 내에 갇혀 있다. 플레이트가 레이저에 의해 스캐닝됨에 따라, 그 갇혀 있는 여기된 전자들은 광을 발산하고, 이것은 광증배기 튜브(photomultiplier tube)에 의해 수집된다. 수집된 광은 디지털 영상(digital image)으로 변환된다. 사진 플레이트들 및 사진 필름들과는 대조적으로, PSP 플레이트들은 재사용될 수 있다.
또 하나의 다른 종류의 X-선 검출기들은 X-선 영상 증폭기(X-ray image intensifier)들이다. X-선 영상 증폭기의 구성요소(component)들은 일반적으로 진공에서 밀봉된다. 사진 플레이트들, 사진 필름들, 및 PSP 플레이트들과는 대조적으로, X-선 영상 증폭기들은 실시간 영상들을 생성할 수 있는데, 즉, 영상들의 생성을 위한 노출-후 처리(post-exposure processing)를 요구하지 않는다. X-선은 먼저 입력 인광체(예를 들어, 세슘 요오드화물(cesium iodide))에 부딪치고, 그리고 가시광(visible light)으로 변환된다. 그 다음에, 이러한 가시광은 광음극(photocathode)(예를 들어, 세슘(cesium) 및 안티몬(antimony) 화합물들을 함유하는 얇은 금속 층)에 부딪치고 전자들의 방출을 일으킨다. 방출되는 전자들의 수는 입사하는 X-선의 강도에 비례한다. 방출된 전자들은 전자 광학기(electron optics)를 통해 출력 인광체에 투사(project)되고, 그리고 출력 인광체로 하여금 가시광 영상(visible-light image)을 생성하도록 한다.
섬광체(scintillator)들은, 섬광체들(예를 들어, 소듐 요오드화물(sodium iodide))이 X-선을 흡수하고 가시광을 방출하며 그 다음에 이것이 가시광에 대한 적절한 영상 감지기(image sensor)에 의해 검출될 수 있다는 점에서, X-선 영상 증폭기들과 약간 유사하게 동작한다. 섬광체들 내에서, 가시광은 모든 방향으로 퍼지고 산란하며, 이에 따라 공간 해상도(spatial resolution)를 감소시킨다. 섬광체 두께를 감소시키는 것은 공간 해상도를 향상시키는데 도움을 주지만 이것은 또한 X-선의 흡수를 감소시킨다. 따라서, 섬광체는 흡수 효율과 해상도 간의 타협점을 찾아야만 한다.
반도체 X-선 검출기들은 X-선을 전기적 신호(electric signal)들로 직접 변환함으로써 이러한 문제를 대부분 극복한다. 반도체 X-선 검출기는 관심 있는 파장들에서의 X-선을 흡수하는 반도체 층을 포함할 수 있다. X-선 광자(X-ray photon)가 반도체 층에 흡수되는 경우, 복수의 전하 운반자(charge carrier)들(예를 들어, 전자들 및 정공들)이 발생되고 그리고 전기장 하에서 반도체 층 상의 전기적 접촉부(electrical contact)들을 향해 쓸린다. 현재 이용가능한 반도체 X-선 검출기들(예를 들어, 메디픽스(Medipix))에서 요구되는 처리 곤란한 열 관리는 넓은 면적 및 많은 수의 픽셀(pixel)들을 갖는 검출기의 생성을 어렵게 할 수 있거나 불가능하게 할 수 있다.
본 명세서에서 개시되는 것은 X-선을 검출하는데 적합한 장치이고, 이러한 장치는, 전극(electrode)을 포함하는 X-선 흡수 층; 그리고 전자기기 층(electronics layer)을 포함하고, 여기서 전자기기 층은, 제 1 표면 및 제 2 표면을 갖는 기판; 기판 내에 혹은 기판 상에 있는 전자기기 시스템(electronics system); 제 1 표면 상에 있는 전기적 접촉부(electrical contact); 비아(via); 그리고 제 2 표면 상에 있는 재배선 층(ReDistribution Layer, RDL)을 포함하고, RDL은 전송 라인(transmission line)을 포함하고, 비아는 제 1 표면으로부터 제 2 표면으로 연장되고, 전극은 전기적 접촉부에 전기적으로 연결되고, 전자기기 시스템은 비아를 통해 전기적 접촉부 및 전송 라인에 전기적으로 연결된다.
일 실시예에 따르면, 기판은 200 ㎛ 이하의 두께를 갖는다.
일 실시예에 따르면, 전자기기 시스템은, 전극의 전압을 제 1 임계치와 비교하도록 구성된 제 1 전압 비교기; 전압을 제 2 임계치와 비교하도록 구성된 제 2 전압 비교기; X-선 흡수 층에 도달한 X-선 광자(X-ray photon)들의 수를 기록(register)하도록 되어 있는 계수기(counter); 그리고 제어기를 포함하고, 여기서 제어기는, 전압의 절대값(absolute value)이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기가 결정한 시간으로부터 시간 지연(time delay)을 시작하도록 구성되고; 제어기는 시간 지연 동안 제 2 전압 비교기를 활성화(activate)시키도록 구성되고; 제어기는, 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기가 결정한다면, 계수기에 의해 기록된 수가 1만큼 증가하게 하도록 구성된다.
일 실시예에 따르면, 제어기는 시간 지연이 시작될 때 제 1 전압 비교기를 비활성화(deactivate)시키도록 구성된다.
일 실시예에 따르면, 제어기는, 시간 지연이 만료된 때, 또는 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기가 결정한 때, 또는 그 사이의 임의의 시간에, 제 2 전압 비교기를 비활성화시키도록 구성된다.
일 실시예에 따르면, 장치는 또한, 전극에 전기적으로 연결되는 커패시터 모듈(capacitor module)을 포함하고, 여기서 커패시터 모듈은 전극으로부터 전하 운반자(charge carrier)들을 수집하도록 구성된다.
일 실시예에 따르면, 제어기는 시간 지연이 시작될 때 혹은 만료될 때 제 2 전압 비교기를 활성화시키도록 구성된다.
일 실시예에 따르면, 장치는 또한, 전압계(voltmeter)를 포함하고, 여기서 제어기는 시간 지연이 만료될 때 전압계로 하여금 전압을 측정하게 하도록 구성된다.
일 실시예에 따르면, 제어기는 시간 지연이 만료될 때 측정된 전압의 값에 근거하여 X-선 광자 에너지를 결정하도록 구성된다.
일 실시예에 따르면, 제어기는 전극을 전기적 접지(electrical ground)에 연결하도록 구성된다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 영(zero)이다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 0이 아니다.
일 실시예에 따르면, X-선 흡수 층은 다이오드(diode)를 포함한다.
일 실시예에 따르면, X-선 흡수 층은, 실리콘(silicon), 게르마늄(germanium), GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합을 포함한다.
일 실시예에 따르면, 장치는 섬광체(scintillator)를 포함하지 않는다.
일 실시예에 따르면, 장치는 픽셀(pixel)들의 배열(array)을 포함한다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원(X-ray source)을 포함하는 시스템이고, 이러한 시스템은 인간의 흉부 혹은 복부에 관해 X-선 방사선촬영(X-ray radiography)을 수행하도록 구성된다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원을 포함하는 시스템이고, 이러한 시스템은 인간의 입(mouth)에 관해 X-선 방사선촬영을 수행하도록 구성된다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝(cargo scanning) 혹은 비-해체 검사(Non-Intrusive Inspection, NII) 시스템이고, 이러한 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 후방산란된 X-선(backscattered X-ray)을 사용하여 영상(image)을 형성하도록 구성된다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템이고, 이러한 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 검사되는 물체(object)를 통과해 전송되는 X-선을 사용하여 영상을 형성하도록 구성된다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원을 포함하는 전신 스캐너 시스템(full-body scanner system)이다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치 그리고 X-선 방출원을 포함하는 X-선 컴퓨터 단층촬영(Computed Tomography, CT)(X-선 CT) 시스템이다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치, 전자 방출원(electron source) 그리고 전자적 광학 시스템(electronic optical system)을 포함하는 전자 현미경(electron microscope)이다.
본 명세서에서 개시되는 것은 본 명세서에서 개시된 장치를 포함하는 시스템이고, 이러한 시스템은 X-선 망원경(X-ray telescope) 혹은 X-선 현미경(X-ray microscopy)이고, 또는 이러한 시스템은 유방촬영(mammography), 산업분야 결함 검출(industrial defect detection), 미세방사선촬영(microradiography), 주조 검사(casting inspection), 용접 검사(weld inspection), 혹은 디지털 감산 혈관촬영(digital subtraction angiography)을 수행하도록 구성된다.
본 명세서에서 개시되는 것은 방법이고, 이러한 방법은, 전극을 포함하는 X-선 흡수 층을 획득하는 것; 전자기기 층을 획득하는 것(여기서, 전자기기 층은, 제 1 표면 및 제 2 표면을 갖는 기판; 기판 내에 혹은 기판 상에 있는 전자기기 시스템; 제 1 표면 상에 있는 전기적 접촉부; 비아; 그리고 제 2 표면 상에 있는 재배선 층(RDL)을 포함함); 그리고 전극이 전기적 접촉부에 전기적으로 연결되도록 X-선 흡수 층과 전자기기 층을 본딩(bonding)하는 것을 포함하고, 여기서 RDL은 전송 라인을 포함하고, 비아는 제 1 표면으로부터 제 2 표면으로 연장되고, 그리고 전자기기 시스템은 비아를 통해 전기적 접촉부 및 전송 라인에 전기적으로 연결된다.
도 1a는, 일 실시예에 따른, 반도체 X-선 검출기를 도식적으로 보여준다.
도 1b는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 보여준다.
도 2는, 일 실시예에 따른, 도 1a에서의 검출기의 일부를 위에서 본 예시적 상면도를 보여준다.
도 3a는 일 실시예에 따른, 전자기기 층(120)을 도식적으로 보여준다.
도 3b는 일 실시예에 따른, 전자기기 층(120)을 도식적으로 보여준다.
도 3c는 일 실시예에 따른, 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다.
도 3d는 일 실시예에 따른, 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다.
도 3e는 일 실시예에 따른, 전자기기 층(120)의 단면도를 도식적으로 보여준다.
도 4a는 X-선 흡수 층과 전자적 층(electronic layer) 간의 직접 본딩(direct bonding)을 도식적으로 보여준다.
도 4b는 X-선 흡수 층과 전자적 층 간의 플립 칩 본딩(flip chip bonding)을 도식적으로 보여준다.
도 5는 전자적 층을 밑에서 본 밑면도를 도식적으로 보여준다.
도 6a는 도 3a, 도 3b, 도 3c, 도 3d, 혹은 도 3e에서 보여지는 바와 같은 전자기기 층이 복수의 반도체 X-선 검출기들의 적층을 가능하게 함을 보여준다.
도 6b는 적층된 복수의 반도체 X-선 검출기들(100)을 위에서 본 상면도를 도식적으로 보여준다.
도 7a 및 도 7b 각각은, 일 실시예에 따른, 도 1a 혹은 도 1b에서의 검출기의 전자적 시스템(electronic system)의 구성요소 도면을 보여준다.
도 8은, 일 실시예에 따른, X-선에 노출된 X-선 흡수 층의 저항기(resistor)의 전기적 접촉부 혹은 다이오드의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층 상에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 9는, 일 실시예에 따른, 도 8에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(noise)(예를 들어, 암전류(dark current))에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 10은, 일 실시예에 따른, 전자적 시스템이 입사하는 X-선 광자들을 더 높은 비율로 검출하도록 동작할 때, X-선에 노출된 X-선 흡수 층의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 11은, 일 실시예에 따른, 도 10에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(예를 들어, 암전류)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 12는, 일 실시예에 따른, RST가 te 전에 만료되는 경우, 도 10에서 보여진 방식으로 동작하는 전자적 시스템에서, X-선 흡수 층에 입사하는 일련의 X-선 광자들이 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화를 도식적으로 보여준다.
도 13은, 일 실시예에 따른, 흉부 X-선 방사선촬영, 복부 X-선 방사선촬영, 등과 같은 의료적 영상화에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 14는, 일 실시예에 따른, 치아 X-선 방사선촬영에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 15는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 16은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 또 하나의 다른 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 17은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전신 스캐너 시스템을 도식적으로 보여준다.
도 18은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 X-선 컴퓨터 단층촬영(X-선 CT) 시스템을 도식적으로 보여준다.
도 19는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전자 현미경을 도식적으로 보여준다.
도 1b는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 보여준다.
도 2는, 일 실시예에 따른, 도 1a에서의 검출기의 일부를 위에서 본 예시적 상면도를 보여준다.
도 3a는 일 실시예에 따른, 전자기기 층(120)을 도식적으로 보여준다.
도 3b는 일 실시예에 따른, 전자기기 층(120)을 도식적으로 보여준다.
도 3c는 일 실시예에 따른, 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다.
도 3d는 일 실시예에 따른, 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다.
도 3e는 일 실시예에 따른, 전자기기 층(120)의 단면도를 도식적으로 보여준다.
도 4a는 X-선 흡수 층과 전자적 층(electronic layer) 간의 직접 본딩(direct bonding)을 도식적으로 보여준다.
도 4b는 X-선 흡수 층과 전자적 층 간의 플립 칩 본딩(flip chip bonding)을 도식적으로 보여준다.
도 5는 전자적 층을 밑에서 본 밑면도를 도식적으로 보여준다.
도 6a는 도 3a, 도 3b, 도 3c, 도 3d, 혹은 도 3e에서 보여지는 바와 같은 전자기기 층이 복수의 반도체 X-선 검출기들의 적층을 가능하게 함을 보여준다.
도 6b는 적층된 복수의 반도체 X-선 검출기들(100)을 위에서 본 상면도를 도식적으로 보여준다.
도 7a 및 도 7b 각각은, 일 실시예에 따른, 도 1a 혹은 도 1b에서의 검출기의 전자적 시스템(electronic system)의 구성요소 도면을 보여준다.
도 8은, 일 실시예에 따른, X-선에 노출된 X-선 흡수 층의 저항기(resistor)의 전기적 접촉부 혹은 다이오드의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층 상에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 9는, 일 실시예에 따른, 도 8에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(noise)(예를 들어, 암전류(dark current))에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 10은, 일 실시예에 따른, 전자적 시스템이 입사하는 X-선 광자들을 더 높은 비율로 검출하도록 동작할 때, X-선에 노출된 X-선 흡수 층의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 11은, 일 실시예에 따른, 도 10에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(예를 들어, 암전류)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 12는, 일 실시예에 따른, RST가 te 전에 만료되는 경우, 도 10에서 보여진 방식으로 동작하는 전자적 시스템에서, X-선 흡수 층에 입사하는 일련의 X-선 광자들이 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화를 도식적으로 보여준다.
도 13은, 일 실시예에 따른, 흉부 X-선 방사선촬영, 복부 X-선 방사선촬영, 등과 같은 의료적 영상화에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 14는, 일 실시예에 따른, 치아 X-선 방사선촬영에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 15는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 16은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 또 하나의 다른 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 17은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전신 스캐너 시스템을 도식적으로 보여준다.
도 18은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 X-선 컴퓨터 단층촬영(X-선 CT) 시스템을 도식적으로 보여준다.
도 19는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전자 현미경을 도식적으로 보여준다.
도 1a는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 도식적으로 보여준다. 반도체 X-선 검출기(100)는 X-선 흡수 층(110) 및 전자기기 층(120)(예를 들어, ASIC)을 포함할 수 있는데, 여기서 전자기기 층(120)(예를 들어, ASIC)은 입사하는 X-선이 X-선 흡수 층(110) 내에서 발생시키는 전기적 신호들을 처리 혹은 분석하기 위한 층이다. 일 실시예에서, 반도체 X-선 검출기(100)는 섬광체를 포함하지 않는다. X-선 흡수 층(110)은 실리콘, 게르마늄, GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합과 같은 반도체 물질을 포함할 수 있다. 반도체는 관심 있는 X-선 에너지에 대해 높은 질량 감쇠 계수(mass attenuation coefficient)를 가질 수 있다. X-선 흡수 층(110)은 제 1 도핑된 영역(doped region)(111), 제 2 도핑된 영역(113)의 하나 이상의 개별 영역들(114)에 의해 형성되는 하나 이상의 다이오드들(예를 들어, p-i-n 혹은 p-n)을 포함할 수 있다. 제 2 도핑된 영역(113)은 선택사항인 진성 영역(intrinsic region)(112)에 의해 제 1 도핑된 영역(111)으로부터 분리될 수 있다. 개별 부분들(114)은 제 1 도핑된 영역(111) 혹은 진성 영역(112)에 의해 서로 분리된다. 제 1 도핑된 영역(111)과 제 2 도핑된 영역(113)은 반대 타입(types)의 도핑을 갖는다(예를 들어, 영역(111)이 p-타입이고 영역(113)이 n-타입이거나, 혹은 영역(111)이 n-타입이고 영역(113)이 p-타입임). 도 1a의 예에서, 제 2 도핑된 영역(113)의 개별 영역들(114) 각각은 제 1 도핑된 영역(111) 및 선택사항인 진성 영역(112)과 함께 다이오드를 형성한다. 다시 말해, 도 1a의 예에서, X-선 흡수 층(110)은 제 1 도핑된 영역(111)을 공유된 전극으로서 갖는 복수의 다이오드들을 갖는다. 제 1 도핑된 영역(111)도 또한 개별 부분들을 가질 수 있다.
도 1b는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 보여준다. 반도체 X-선 검출기(100)는 X-선 흡수 층(110) 및 전자기기 층(120)(예를 들어, ASIC)을 포함할 수 있는데, 여기서 전자기기 층(120)(예를 들어, ASIC)은 입사하는 X-선이 X-선 흡수 층(110) 내에서 발생시키는 전기적 신호들을 처리 혹은 분석하기 위한 층이다. 일 실시예에서, 반도체 X-선 검출기(100)는 섬광체를 포함하지 않는다. X-선 흡수 층(110)은 실리콘, 게르마늄, GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합과 같은 반도체 물질을 포함할 수 있다. 반도체는 관심 있는 X-선 에너지에 대해 높은 질량 감쇠 계수를 가질 수 있다. X-선 흡수 층(110)은 다이오드를 포함하지 않을 수 있고, 하지만 저항기를 포함할 수 있다.
다이오드들을 포함하는 X-선 흡수 층(110)에 X-선 광자가 부딪치는 경우, X-선 광자는 흡수될 수 있고 다수의 메커니즘(mechanism)들에 의해 하나 이상의 전하 운반자들을 발생시킬 수 있다. X-선 광자는 10개 내지 100000개의 전하 운반자들을 발생시킬 수 있다. 전하 운반자들은 전기장 하에서 다이오드들 중 하나의 다이오드의 전극들로 표류(drift)할 수 있다. 전기장은 외부 전기장일 수 있다. 전기적 접촉부(119B)는 개별 부분들을 포함할 수 있고, 이러한 개별 부분들 각각은 개별 영역들(114)과 전기적으로 접촉한다. 일 실시예에서, 전하 운반자들은 단일 X-선 광자에 의해 발생된 전하 운반자들이 2개의 상이한 개별 영역들(114)에 의해 실질적으로 공유되지 않도록 하는 방향으로 표류할 수 있다(여기서 "실질적으로 공유되지 않는다"는 의미는 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 개별 영역들(114) 중 (전하 운반자들의 나머지가 있는 곳과는 다른) 상이한 개별 영역으로 흐름을 의미함). 일 실시예에서, 단일 X-선 광자에 의해 발생된 전하 운반자들은 2개의 상이한 개별 영역들(114)에 의해 공유될 수 있다. 도 2는 개별 영역들(114)의 4행×4열 배열(4-by-4 array)을 갖는 디바이스(100)의 일부를 위에서 본 예시적 상면도를 보여준다. 이러한 개별 영역들(114) 중 하나의 개별 영역의 풋프린트(footprint) 내에 입사하는 X-선 광자에 의해 발생된 전하 운반자들은 이러한 개별 영역들(114) 중 또 하나의 다른 개별 영역과 실질적으로 공유되지 않는다. 다시 말해, 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 하나의 개별 영역의 풋프린트를 넘어 흐른다. 개별 영역들(114) 각각으로 흐르는 표류 전류(drift current)를 측정함으로써, 혹은 개별 영역들(114) 각각의 전압의 변화율을 측정함으로써, 흡수된 X-선 광자들의 수(이것은 입사하는 X-선 강도와 관련됨), 그리고/또는 개별 영역들(114)의 풋프린트들 내에서의 X-선 광자들의 에너지들이 결정될 수 있다. 따라서, 입사하는 X-선 강도의 공간적 분포(예를 들어, 영상)는, 개별 영역들(114)의 배열 중 각각의 개별 영역으로 흐르는 표류 전류를 개별적으로 측정함으로써, 또는 개별 영역들(114)의 배열 중 각각의 개별 영역의 전압의 변화율을 개별적으로 측정함으로써, 결정될 수 있다. 개별 영역들(114) 각각의 풋프린트는 픽셀로 지칭될 수 있다. 픽셀들은 정사각형 배열, 삼각형 배열, 및 벌집형 배열(honeycomb array)과 같은 임의의 적절한 배열로 구조화될 수 있다. 픽셀들은 원형, 삼각형, 정사각형, 직사각형, 및 육각형과 같은 임의의 적절한 형상을 가질 수 있다. 픽셀들은 개별적으로 주소지정이 가능(addressable)할 수 있다.
다이오드들이 아닌 저항기를 포함하는 X-선 흡수 층(110)에 X-선 광자가 부딪치는 경우, X-선 광자는 흡수될 수 있고 다수의 메커니즘들에 의해 하나 이상의 전하 운반자들을 발생시킬 수 있다. X-선 광자는 10개 내지 100000개의 전하 운반자들을 발생시킬 수 있다. 전하 운반자들은 전기장 하에서 전기적 접촉부들(119A 및 119B)로 표류할 수 있다. 전기장은 외부 전기장일 수 있다. 전기적 접촉부(119B)는 개별 부분들을 포함한다. 일 실시예에서, 전하 운반자들은 단일 X-선 광자에 의해 발생된 전하 운반자들이 전기적 접촉부(119B)의 2개의 상이한 개별 영역들(114)에 의해 실질적으로 공유되지 않도록 하는 방향으로 표류할 수 있다(여기서 "실질적으로 공유되지 않는다"는 의미는 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 개별 부분들 중 (전하 운반자들의 나머지가 있는 곳과는 다른) 상이한 개별 부분으로 흐름을 의미함). 일 실시예에서, 단일 X-선 광자에 의해 발생된 전하 운반자들은 전기적 접촉부(119B)의 2개의 상이한 개별 부분들에 의해 공유될 수 있다. 전기적 접촉부(119B)의 이러한 개별 부분들 중 하나의 개별 부분의 풋프린트 내에 입사하는 X-선 광자에 의해 발생된 전하 운반자들은 전기적 접촉부(119B)의 이러한 개별 부분들 중 또 하나의 다른 개별 부분과 실질적으로 공유되지 않는다. 다시 말해, 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 전기적 접촉부(119B)의 하나의 개별 부분의 풋프린트를 넘어 흐른다. 전기적 접촉부(119B)의 개별 부분 각각으로 흐르는 표류 전류를 측정함으로써, 혹은 전기적 접촉부(119B)의 개별 부분들 각각의 전압의 변화율을 측정함으로써, 흡수된 X-선 광자들의 수(이것은 입사하는 X-선 강도와 관련됨), 그리고/또는 전기적 접촉부(119B)의 개별 부분들의 풋프린트들 내에서의 X-선 광자들의 에너지들이 결정될 수 있다. 따라서, 입사하는 X-선 강도의 공간적 분포(예를 들어, 영상)는, 전기적 접촉부(119B)의 개별 부분들의 배열 중 각각의 개별 부분으로 흐르는 표류 전류를 개별적으로 측정함으로써, 또는 전기적 접촉부(119B)의 개별 부분들의 배열 중 각각의 개별 부분의 전압의 변화율을 개별적으로 측정함으로써, 결정될 수 있다. 전기적 접촉부(119B)의 개별 부분들 각각의 풋프린트는 픽셀로 지칭될 수 있다. 픽셀들은 정사각형 배열, 삼각형 배열, 및 벌집형 배열과 같은 임의의 적절한 배열로 구조화될 수 있다. 픽셀들은 원형, 삼각형, 정사각형, 직사각형, 및 육각형과 같은 임의의 적절한 형상을 가질 수 있다. 픽셀들은 개별적으로 주소지정이 가능할 수 있다.
전자기기 층(120)은 X-선 흡수 층(110)에 입사하는 X-선 광자들에 의해 발생된 신호들을 처리 혹은 해석하는데 적합한 전자적 시스템(121)을 포함할 수 있다. 전자적 시스템(121)은 필터 회로망(filter network), 증폭기(amplifiers), 적분기(integrators), 및 비교기(comparators)와 같은 아날로그 회로를 포함할 수 있고, 또는 마이크로프로세서 및 메모리와 같은 디지털 회로를 포함할 수 있다. 전자적 시스템(121)은 다수의 픽셀들에 의해 공유되는 구성요소들을 포함할 수 있고, 또는 단일 픽셀에 전용으로 사용되는 구성요소들을 포함할 수 있다. 예를 들어, 전자적 시스템(121)은 각각의 픽셀에 전용으로 사용되는 증폭기, 그리고 모든 픽셀들 간에 공유되는 마이크로프로세서를 포함할 수 있다. 전자적 시스템(121)은 비아(via)들(131)에 의해 픽셀들에 전기적으로 연결될 수 있다. 비아들 간의 공간은 충전제 물질(filler material)(130)로 충전(fill)될 수 있으며, 이것은 전자기기 층(120)을 X-선 흡수 층(110)에 연결하는 연결의 기계적 안정성을 증가시킬 수 있다. 전자적 시스템(121)을 비아들을 사용함이 없이 픽셀들에 연결하는 다른 본딩 기법(bonding technique)들이 가능하다.
도 3a는 일 실시예에 따른, 전자기기 층(120)을 도식적으로 보여준다. 전자적 층(120)은 제 1 표면(124) 및 제 2 표면(128)를 갖는 기판(122)을 포함한다. 본 명세서에서 사용되는 바와 같은 "표면"은 반드시 노출될 필요는 없고 전체적으로 혹은 부분적으로 매립될 수 있다. 전자적 층(120)은 제 1 표면(124) 상에 하나 이상의 전기적 접촉부들(125)을 포함한다. 하나 이상의 전기적 접촉부들(125)은 X-선 흡수 층(110)의 하나 이상의 전극들에 전기적으로 연결되도록 구성될 수 있다. 전자기기 시스템(121)은 기판(122) 내에 혹은 기판(122) 상에 있을 수 있다. 전자적 층(120)은 제 1 표면(124)으로부터 제 2 표면(128)으로 연장되는 하나 이상의 비아들(126)을 포함한다. 전자적 층(120)은 제 2 표면(128) 상에 재배선 층(RDL)(123)을 포함한다. RDL(123)은 하나 이상의 전송 라인들(127)을 포함할 수 있다. 전자기기 시스템(121)은 비아들(126)을 통해 전기적 접촉부들(125) 및 전송 라인들(127)에 전기적으로 연결된다. RDL(123)은, 각각의 칩이 전자적 층(120)을 갖는 그러한 복수의 칩들이 더 큰 크기를 갖는 검출기를 형성하기 위해 배열 형태로 정렬될 때, 혹은 전자적 층(120)이 포토리소그래피 공정(photolithography process)에서 동시에 노출될 수 있는 면적보다 더 클 때, 특히 유용하다.
기판(122)은 박막화된 기판(thinned substrate)일 수 있다. 예를 들어, 기판의 두께는 750 미크론(microns) 이하일 수 있거나, 200 미크론 이하일 수 있거나, 100 미크론 이하일 수 있거나, 50 미크론 이하일 수 있거나, 20 미크론 이하일 수 있거나, 또는 5 미크론 이하일 수 있다. 기판(122)은 실리콘 기판일 수 있거나, 임의의 기판 또는 다른 적절한 반도체 혹은 절연체일 수 있다. 기판(122)은 더 두꺼운 기판을 원하는 두께까지 연마(grinding)함으로써 생성될 수 있다.
하나 이상의 전기적 접촉부들(125)은 금속 혹은 도핑된 반도체(doped semiconductor)로 된 층일 수 있다. 예를 들어, 전기적 접촉부들(125)은 금, 구리, 백금, 팔라듐(palladium), 도핑된 실리콘, 등일 수 있다.
비아들(126)은 기판(122)을 통과하고, 제 1 표면(124) 상의 전기적 구성요소들(예를 들어, 전기적 접촉부들(125))을 제 2 표면(128) 상의 전기적 구성요소들(예를 들어, RDL)에 전기적으로 연결한다. 비아들(126)은 전력을 제공하기 위해 사용될 수 있고, 그리고 검출기(100) 내의 전기적 구성요소들로부터 그리고 이러한 전기적 구성요소들로 신호들을 전송하기 위해 사용될 수 있다. 비아들(126)은 때때로 (비록 이들이 실리콘과는 다른 물질들로 된 기판들 내에 제조될 수 있을지라도) "실리콘-관통 비아(through-silicon via)들"로 지칭된다.
RDL(123)은 하나 이상의 전송 라인들(127)을 포함할 수 있다. 전송 라인들(127)은 기판(122) 내의 전기적 구성요소들(예를 들어, 비아들(126))을 기판(122) 상의 다른 위치들에 있는 본딩 패드(bonding pad)들에 전기적으로 연결한다. 전송 라인들(127)은 특정 비아들(126) 및 특정 본딩 패드들을 제외하고는 기판(122)으로부터 전기적으로 격리될 수 있다. 전송 라인들(127)은 X-선의 감소가 작은 물질(예컨대, Al)일 수 있다. RDL(123)은 전기적 연결들을 더 편리한 위치들로 재배선할 수 있다.
도 3b는 도 3a에서 보여진 실시예와 유사한 일 실시예에 따른 전자기기 층(120)을 도식적으로 보여준다. 전기적 접촉부들(125) 각각은 자신의 전용 제어기(310)를 가질 수 있다.
도 3c는 전기적 접촉부들(125)의 그룹이 주변부 회로(peripheral circuit)(319)를 공유하는 일 실시예에 따른 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다. 주변부 회로(319)는 제 1 표면(124) 상에서 다른 구성요소들(예를 들어, 전기적 접촉부들(125)의 그룹, 및 전자적 시스템(121))에 의해 점유되지 않은 영역들에 정렬될 수 있다. 만약 전자기기 층(120)이 포토리소그래피를 사용하여 제조된다면, 동시에 노출되는 영역 내의 전기적 접촉부들(125) 중 일부 혹은 모두는 하나의 주변부 회로(319)를 공유할 수 있다. 주변부 회로(319)는 하나보다 많은 비아들(126)에 의해 하나보다 많은 전송 라인들(127)에 연결될 수 있다. 도 3d는 상이한 구성의 주변부 회로(319)를 갖는 일 실시예에 따른 전자기기 층(120)을 위에서 본 상면도를 도식적으로 보여준다. 주변부 회로(319)의 구성은 이러한 예들로만 한정되지 않는다. 주변부 회로(319)는 예비회로(redundancy)를 가질 수 있다. 예비회로는 주변부 회로(319)의 부분적 고장으로 인해 반도체 X-선 검출기(100)가 비활성화되지 않도록 할 수 있다. 만약 주변부 회로(319)의 한 부분이 고장난 경우, 다른 부분이 활성화될 수 있다. 예를 들어, 만약 복수의 픽셀들이 동일한 주변부 회로(319)를 공유하고 있다면, 주변부 회로(319)의 전체 고장은 이러한 픽셀들을 모두 비활성화시킬 것이고 아울러 전체 검출기(100)가 동작할 수 없게 할 가능성이 있다. 예비회로를 갖는 것은 전체 고장의 가능성을 감소시킨다. 주변부 회로(319)는 다중화(multiplexing), 입력/출력, 전력 제공, 데이터 캐싱(data caching), 등과 같은 다양한 기능들을 수행하도록 구성될 수 있다.
주변부 회로(319)가 반드시 제 1 표면 상에 정렬될 필요는 없다. 도 3e는 기판(122)과 RDL(123) 사이에 삽입(sandwhich)된 기판(123A)의 표면(128) 상에 주변부 회로(319)가 정렬된 일 실시예에 따른 전자기기 층(120)의 단면도를 도식적으로 보여준다. 주변부 회로(319)는, 기판(122) 내에서 연장되는 제 1 그룹의 비아들(126A)에 의해 전기적 접촉부들(125)에 전기적으로 연결될 수 있고, 아울러 기판(123A) 내에서 연장되는 제 2 그룹의 비아들(126B)에 의해 전송 라인들(127)에 전기적으로 연결될 수 있다. 전기적 접촉부들(125) 각각은 주변부 회로(319)로의 연결을 위해 전용 비아들(126A)을 가질 수 있다.
도 4a는 전기적 접촉부들(125) 및 전기적 접촉부(119B)의 개별 부분에서 전자적 층(120)과 X-선 흡수 층(110) 간의 직접 본딩을 도식적으로 보여준다. 직접 본딩은 임의의 추가적인 중간 층들(예를 들어, 솔더 범프(solder bump)들)이 없는 웨이퍼 본딩 공정이다. 본딩 공정은 두 개의 표면들 간의 화학적 결합에 기반을 두고 있다. 직접 본딩은 상승된 온도에서 수행될 수 있지만 반드시 그럴 필요는 없다.
도 4b는 전기적 접촉부들(125) 및 전기적 접촉부(119B)의 개별 부분에서 전자적 층(120)과 X-선 흡수 층(110) 간의 플립 칩 본딩을 도식적으로 보여준다. 플립 칩 본딩은 접촉 패드(contact pad)들(예를 들어, X-선 흡수 층(110)의 전극들, 혹은 전기적 접촉부들(125)) 상에 증착되는 솔더 범프들(199)을 사용한다. X-선 흡수 층(110) 혹은 전자적 층(120)이 뒤집혀 지고, X-선 흡수 층(110)의 전극들은 전기적 접촉부들(125)에 맞춰 정렬된다. 솔더 범프들(199)은 전극들과 전기적 접촉부들(125)을 함께 납땜하기 위해 용융될 수 있다. 솔더 범프들(199) 간의 임의의 빈 공간은 절연 물질로 충전될 수 있다. 구리 혹은 금으로 된 열 범프(thermal bump)들과 같은 다른 물질들이 솔더 범프들과 유사한 기능을 달성하기 위해 사용될 수 있다.
도 5는 시야를 가리는 다른 구성요소들이 생략된 상태에서 RDL(123)을 밑에서 본 밑면도를 도식적으로 보여준다. 전송 라인들(127)이 비아들(126)에 전기적으로 연결되는 것이 보여질 수 있으며, 아울러 비아들(126)을 다른 위치들로 재배선하는 것이 보여질 수 있다.
도 6a는 도 3a, 도 3b, 도 3c, 도 3d, 혹은 도 3e에서 보여지는 바와 같은 전자기기 층(120)이 복수의 반도체 X-선 검출기들(100)의 적층을 가능하게 함을 보여주는데, 이것은 RDL(123)과 비아들(126)이 복수의 층들을 통과하는 신호 경로들의 라우팅(routing)을 용이하게 하기 때문에, 아울러 아래에서 설명되는 바와 같은 전자적 시스템(121)이 부피가 큰 냉각 메커니즘들을 제거할 만큼 충분히 낮은 전력 소비를 가질 수 있기 때문에 가능하게 된다. 적층체에서의 복수의 반도체 X-선 검출기들(100)은 반드시 동일할 필요는 없다. 예를 들어, 복수의 반도체 X-선 검출기들(100)은 두께, 구조, 혹은 물질에 있어 서로 다를 수 있다.
도 6b는 적층된 복수의 반도체 X-선 검출기들(100)을 위에서 본 상면도를 도식적으로 보여준다. 각각의 층은 더 넓은 영역을 포괄할 수 있도록 타일(tile)화된 복수의 검출기들(100)을 가질 수 있다. 하나의 층에서의 타일화된 검출기들(100)은 또 하나의 다른 층에서의 타일화된 검출기들(100)에 대해 서로 엇갈려 정렬될 수 있고, 이것은 입사하는 X-선 광자들이 검출될 수 없는 틈(gaps)을 제거할 수 있다.
일 실시예에 따르면, 반도체 X-선 검출기(100)는, 전극을 포함하는 X-선 흡수 층을 획득하는 것; 전자기기 층을 획득하는 것(여기서, 전자기기 층은, 제 1 표면 및 제 2 표면을 갖는 기판; 기판 내에 혹은 기판 상에 있는 전자기기 시스템; 제 1 표면 상에 있는 전기적 접촉부; 비아; 그리고 제 2 표면 상에 있는 재배선 층(RDL)을 포함함); 그리고 전극이 전기적 접촉부에 전기적으로 연결되도록 X-선 흡수 층과 전자기기 층을 본딩하는 것을 포함하는 방법을 사용하여 제조될 수 있으며, 여기서 RDL은 전송 라인을 포함하고, 비아는 제 1 표면으로부터 제 2 표면으로 연장되고, 그리고 전자기기 시스템은 비아를 통해 전기적 접촉부 및 전송 라인에 전기적으로 연결된다.
도 7a 및 도 7b 각각은, 일 실시예에 따른, 전자적 시스템(121)의 구성요소 도면을 보여준다. 전자적 시스템(121)은 제 1 전압 비교기(301), 제 2 전압 비교기(302), 계수기(320), 스위치(305), 전압계(306) 및 제어기(301)를 포함할 수 있다.
제 1 전압 비교기(301)는 다이오드(300)의 전극의 전압을 제 1 임계치와 비교하도록 구성된다. 다이오드는 제 1 도핑된 영역(111), 제 2 도핑된 영역(113)의 개별 영역들(114) 중 하나의 개별 영역, 그리고 선택사항인 진성 영역(112)에 의해 형성되는 다이오드일 수 있다. 대안적으로, 제 1 전압 비교기(301)는 전기적 접촉부(예를 들어, 전기적 접촉부(119B)의 개별 부분)의 전압을 제 1 임계치와 비교하도록 구성된다. 제 1 전압 비교기(301)는, 전압을 직접적으로 모니터링하도록 구성될 수 있고, 또는 임의의 기간에 걸쳐 다이오드 혹은 전기적 접촉부를 통해 흐른 전류를 적분(integrating)함으로써 전압을 계산하도록 구성될 수 있다. 제 1 전압 비교기(301)는 제어기(310)에 의해 제어가능하게 활성화 혹은 비활성화될 수 있다. 제 1 전압 비교기(301)는 연속 비교기(continuous comparator)일 수 있다. 다시 말해, 제 1 전압 비교기(301)는 연속적으로 활성화되도록 구성될 수 있고, 아울러 전압을 연속적으로 모니터링하도록 구성될 수 있다. 연속 비교기로서 구성된 제 1 전압 비교기(301)는 시스템(121)이 임의의 입사하는 X-선 광자에 의해 발생된 신호들을 놓칠 가능성을 감소시킨다. 연속 비교기로서 구성된 제 1 전압 비교기(301)는 입사하는 X-선 강도가 상대적으로 높을 때 특히 적합하다. 제 1 전압 비교기(301)는 클럭동작 비교기(clocked comparator)일 수 있는데, 이러한 클럭동작 비교기는 전력 소비가 더 낮은 혜택을 갖는다. 클럭동작 비교기로서 구성된 제 1 전압 비교기(301)는 시스템(121)으로 하여금 일부 입사하는 X-선 광자들에 의해 발생된 신호들을 놓쳐버리게 할 수 있다. 입사하는 X-선 강도가 낮은 경우, 입사하는 X-선 광자를 놓칠 가능성은 낮아지는데, 왜냐하면 2개의 연속하는 광자들 간의 시간 간격이 상대적으로 길기 때문이다. 따라서, 클럭동작 비교기로서 구성된 제 1 전압 비교기(301)는 입사하는 X-선 강도가 상대적으로 낮을 때 특히 적합하다. 제 1 임계치는 하나의 입사하는 X-선 광자가 다이오드 혹은 저항기에서 발생시킬 수 있는 최대 전압의 5-10%, 10%-20%, 20-30%, 30-40% 혹은 40-50%일 수 있다. 최대 전압은 입사하는 X-선 광자의 에너지(즉, 입사하는 X-선의 파장), X-선 흡수 층(110)의 물질, 그리고 다른 인자들에 따라 달라질 수 있다. 예를 들어, 제 1 임계치는 50 mV, 100 mV, 150 mV, 혹은 200 mV일 수 있다.
제 2 전압 비교기(302)는 전압을 제 2 임계치와 비교하도록 구성된다. 제 2 전압 비교기(302)는, 전압을 직접적으로 모니터링하도록 구성될 수 있고, 또는 임의의 기간에 걸쳐 다이오드 혹은 전기적 접촉부를 통해 흐른 전류를 적분함으로써 전압을 계산하도록 구성될 수 있다. 제 2 전압 비교기(302)는 연속 비교기일 수 있다. 제 2 전압 비교기(302)는 제어기(310)에 의해 제어가능하게 활성화 혹은 비활성화될 수 있다. 제 2 전압 비교기(302)가 비활성화되는 경우, 제 2 전압 비교기(302)의 전력 소비는 제 2 전압 비교기(302)가 활성화된 경우의 전력 소비의 1%보다 적을 수 있거나, 혹은 5%보다 적을 수 있거나, 혹은 10%보다 적을 수 있거나, 혹은 20%보다 적을 수 있다. 제 2 임계치의 절대값은 제 1 임계치의 절대값보다 크다. 본 명세서에서 사용되는 바와 같은 용어로서, 실수(real number) x의 "절대값(absolute value)" 혹은 "모듈러스(modulus)" |x|는 x의 부호에 관해 고려함이 없는 x의 비-음수적 값(non-negative value)이다. 다시 말해, . 제 2 임계치는 제 1 임계치의 200%-300%일 수 있다. 제 2 임계치는 하나의 입사하는 X-선 광자가 다이오드 혹은 저항기에서 발생시킬 수 있는 최대 전압의 적어도 50%일 수 있다. 예를 들어, 제 2 임계치는 100 mV, 150 mV, 200 mV, 250 mV 혹은 300 mV일 수 있다. 제 2 전압 비교기(302)와 제 1 전압 비교기(301)는 동일한 구성요소일 수 있다. 다시 말해, 시스템(121)은 서로 다른 시간에 전압을 2개의 상이한 임계치들과 비교할 수 있는 하나의 전압 비교기를 가질 수 있다.
제 1 전압 비교기(301) 혹은 제 2 전압 비교기(302)는 하나 이상의 연산 증폭기(op-amp)들 혹은 임의의 다른 적절한 회로를 포함할 수 있다. 제 1 전압 비교기(301) 혹은 제 2 전압 비교기(302)는 입사하는 X-선의 높은 유속 하에서 시스템(121)이 동작할 수 있도록 하기 위해 높은 속도를 가질 수 있다. 하지만, 높은 속도를 갖는 것은 종종 전력 소비를 희생시킨다.
계수기(320)는 다이오드 혹은 저항기에 도달하는 X-선 광자들의 수를 기록하도록 구성된다. 계수기(320)는 소프트웨어 구성요소일 수 있거나(예를 들어, X-선 광자들의 수가 컴퓨터 메모리에 저장됨), 혹은 하드웨어 구성요소(예를 들어, 4017 IC 및 7490 IC)일 수 있다.
제어기(310)는 마이크로제어기 및 마이크로프로세서와 같은 하드웨어 구성요소일 수 있다. 제어기(310)는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기(301)가 결정한 시간으로부터 시간 지연을 시작하도록 구성된다(예를 들어, 전압의 절대값은 제 1 임계치의 절대값 아래로부터 제 1 임계치의 절대값과 동일한 값 혹은 제 1 임계치의 절대값보다 큰 값까지 증가함). 다이오드의 캐소드의 전압인지 아니면 애노드의 전압인지에 따라 혹은 어느쪽 전기적 접촉부가 사용되는지에 따라 전압은 음수 혹은 양수일 수 있기 때문에 여기서는 절대값이 사용된다. 제어기(310)는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기(301)가 결정하는 시간 전에, 제 1 전압 비교기(301)의 동작이 요구하지 않는 제 2 전압 비교기(302), 계수기(320) 및 임의의 다른 회로들을 비활성화된 상태로 유지시키도록 구성될 수 있다. 시간 지연은 전압이 안정화되기 전에 혹은 안정화된 후에(즉, 전압의 변화율이 실질적으로 영이 되기 전에 혹은 영이 된 후에) 만료될 수 있다. "전압의 변화율이 실질적으로 영이다"는 표현은 전압의 시간적 변화가 0.1%/ns보다 작은 것을 의미한다. "전압의 변화율이 실질적으로 영이 아니다"는 표현은 전압의 시간적 변화가 적어도 0.1%/ns인 것을 의미한다.
제어기(310)는 시간 지연 동안(시작과 만료를 포함함) 제 2 전압 비교기를 활성화시키도록 구성될 수 있다. 일 실시예에서, 제어기(310)는 시간 지연이 시작될 때 제 2 전압 비교기를 활성화시키도록 구성된다. 용어 "활성화"는 (예를 들어, 전압 펄스(voltage pulse) 혹은 로직 레벨(logic level)과 같은 신호의 전송, 전력 제공, 등을 행함으로써) 해당 구성요소가 동작 상태에 진입하도록 하는 것을 의미한다. 용어 "비활성화"는 (예를 들어, 전압 펄스 혹은 로직 레벨과 같은 신호의 전송, 전력 차단, 등을 행함으로써) 해당 구성요소가 비-동작 상태에 진입하도록 하는 것을 의미한다. 동작 상태는 비-동작 상태보다 더 높은 전력 소비(예를 들어, 10배 더 높은 전력 소비, 100배 더 높은 전력 소비, 1000배 더 높은 전력 소비)를 가질 수 있다. 제어기(310) 자체는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과하는 경우 제 1 전압 비교기(301)의 출력이 제어기(310)를 활성화시킬 때까지, 비활성화될 수 있다.
제어기(310)는, 만약 시간 지연 동안 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 계수기(320)에 의해 기록된 수가 1만큼 증가하게 하도록 구성될 수 있다.
제어기(310)는 시간 지연이 만료될 때 전압계(306)로 하여금 전압을 측정하게 하도록 구성될 수 있다. 제어기(310)는 전극을 전기적 접지에 연결하도록 구성될 수 있고, 이에 따라 전압은 재설정되게 되고, 전극에 축적된 임의의 전하 운반자들은 방전되게 된다. 일 실시예에서, 전극은 시간 지연이 만료된 후에 전기적 접지에 연결된다. 일 실시예에서, 전극은 유한의 재설정 기간(finite reset time period) 동안 전기적 접지에 연결된다. 제어기(310)는 스위치(305)를 제어함으로써 전극을 전기적 접지에 연결할 수 있다. 스위치는 전계-효과 트랜지스터(Field-Effect Transistor, FET)와 같은 트랜지스터일 수 있다.
일 실시예에서, 시스템(121)은 아날로그 필터 회로망(예를 들어, RC 회로망)을 갖지 않는다. 일 실시예에서, 시스템(121)은 아날로그 회로를 갖지 않는다.
전압계(306)는 자신이 측정한 전압을 아날로그 신호 혹은 디지털 신호로서 제어기(310)에 공급할 수 있다.
시스템(121)은 다이오드(300)의 전극 혹은 전기적 접촉부에 전기적으로 연결되는 커패시터 모듈(309)을 포함할 수 있고, 여기서 커패시터 모듈은 전극으로부터 전하 운반자들을 수집하도록 구성된다. 커패시터 모듈은 증폭기의 피드백 경로 내에 커패시터를 포함할 수 있다. 이와 같이 구성되는 증폭기는 용량성 트랜스임피던스 증폭기(Capacitive TransImpedance Amplifier, CTIA)로 지칭된다. CTIA는 증폭기가 포화되지 않도록 유지시킴으로써 높은 동적 범위를 갖고 있으며, 신호 경로 내에서 대역폭을 제한함으로써 신호-대-노이즈 비(signal-to-noise ratio)를 개선한다. 전극으로부터의 전하 운반자들은 일정 기간("통합 기간(integration period)")(예를 들어, 도 8에서 보여지는 바와 같이, t0 내지 t1 사이 혹은 t1 내지 t2 사이)에 걸쳐 커패시터에 축적된다. 통합 기간이 만료된 후에, 커패시터 전압은 표본화(sampling)되고, 그 다음에 재설정 스위치에 의해 재설정된다. 커패시터 모듈은 전극에 직접적으로 연결되는 커패시터를 포함할 수 있다.
도 8은, 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 저항기 혹은 다이오드에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 전압은 시간에 대한 전류의 적분일 수 있다. 시간(t0)에서, X-선 광자는 다이오드 혹은 저항기에 부딪치고, 전하 운반자들이 다이오드 혹은 저항기에서 발생되기 시작하고, 전류가 다이오드의 전극 혹은 저항기를 통해 흐르기 시작하고, 그리고 전극 혹은 전기적 접촉부의 전압의 절대값이 증가하기 시작한다. 시간(t1)에서, 제 1 전압 비교기(301)는 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과한다고 결정하고, 그리고 제어기(310)는 시간 지연(TD1)을 시작하며, 그리고 제어기(310)는 TD1이 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 제어기(310)가 t1 전에 비활성화된다면, 제어기(310)는 t1에서 활성화된다. TD1 동안, 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 본 명세서에서 사용되는 바와 같은 시간 지연 "동안"이라는 용어는 시작과 만료(즉, 끝), 그리고 그 사이의 임의의 시간을 의미한다. 예를 들어, 제어기(310)는 TD1이 만료될 때 제 2 전압 비교기(302)를 활성화시킬 수 있다. 만약 TD1 동안 시간(t2)에서 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 제어기(310)는 계수기(320)에 의해 기록된 수가 1만큼 증가하도록 한다. 시간(te)에서, X-선 광자에 의해 발생된 모든 전하 운반자들은 X-선 흡수 층(110) 밖으로 표류한다. 시간(ts)에서, 시간 지연(TD1)은 만료된다. 도 8의 예에서, 시간(ts)은 시간(te) 이후에 존재하는데, 다시 말해 TD1은 X-선 광자에 의해 발생된 모든 전하 운반자들이 X-선 흡수 층(110) 밖으로 표류한 후에 만료된다. 따라서 ts에서 전압의 변화율은 실질적으로 영이다. 제어기(310)는 TD1이 만료된 때, 혹은 t2에서, 혹은 그 사이의 임의의 시간에 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다.
제어기(310)는 시간 지연(TD1)이 만료될 때 전압계(306)로 하여금 전압을 측정하게 하도록 구성될 수 있다. 일 실시예에서, 제어기(310)는 시간 지연(TD1)의 만료 이후 전압의 변화율이 실질적으로 영이 된 후에 전압계(306)로 하여금 전압을 측정하도록 한다. 이러한 순간에서의 전압은 X-선 광자에 의해 발생된 전하 운반자들의 양에 비례하는데, 이러한 전하 운반자들의 양은 X-선 광자의 에너지와 관련되어 있다. 제어기(310)는 전압계(306)가 측정한 전압에 근거하여 X-선 광자의 에너지를 결정하도록 구성될 수 있다. 에너지를 결정하는 한 가지 방법은 전압을 비닝(binning)함으로써 에너지를 결정하는 것이다. 계수기(320)는 각각의 빈(bin)에 대한 하위-계수기(sub-counter)를 가질 수 있다. X-선 광자의 에너지가 빈 내에 들어온다고 제어기(310)가 결정하는 경우, 제어기(310)는 해당하는 그 빈에 대한 하위-계수기에 기록된 수가 1만큼 증가하도록 할 수 있다. 따라서, 시스템(121)은 X-선 영상을 검출할 수 있고, 각각의 X-선 광자의 X-선 광자 에너지들을 분석(resolve)할 수 있다.
TD1이 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. RST 이후, 시스템(121)은 또 하나의 다른 입사하는 X-선 광자를 검출할 준비가 된다. 암시적으로, 도 8의 예에서 시스템(121)이 처리할 수 있는 입사하는 X-선 광자들의 비율은 1/(TD1+RST)에 의해 제한된다. 만약 제 1 전압 비교기(301)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전 임의의 시간에 제 1 전압 비교기(301)를 활성화시킬 수 있다. 만약 제어기(310)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전에 활성화될 수 있다.
도 9는, 도 8에서 보여진 방식으로 동작하는 시스템(121)에서, 노이즈(예를 들어, 암전류, 배경 방사선(background radiation), 산란된 X-선들, 형광 X-선들, 인접하는 픽셀들로부터의 공유된 전하들)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 시간(t0)에서, 노이즈가 시작한다. 만약 노이즈가 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크지 않다면, 제어기(310)는 제 2 전압 비교기(302)를 활성화시키지 않는다. 만약 노이즈가 제 1 전압 비교기(301)에 의해 결정되는 바와 같이 시간(t1)에서 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크다면, 제어기(310)는 시간 지연(TD1)을 시작하고, 그리고 제어기(310)는 TD1이 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. TD1 동안(예를 들어, TD1이 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 노이즈가 TD1 동안 전압의 절대값이 V2의 절대값을 초과하게 할 만큼 충분히 클 가능성은 매우 희박하다. 따라서, 제어기(310)는 계수기(320)에 의해 기록된 수가 증가하도록 하지 않는다. 시간(te)에서, 노이즈가 끝난다. 시간(ts)에서, 시간 지연(TD1)이 만료된다. 제어기(310)는 TD1이 만료될 때 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다. 제어기(310)는 만약 TD1 동안 전압의 절대값이 V2의 절대값을 초과하지 않는다면 전압계(306)로 하여금 전압을 측정하게 하지 않도록 구성될 수 있다. TD1이 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 노이즈의 결과로서 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 따라서, 시스템(121)은 노이즈 제거(noise rejection)에 있어 매우 효과적일 수 있다.
도 10은, 시스템(121)이 1/(TD1+RST)보다 더 높은 비율로 입사하는 X-선 광자들을 검출하도록 동작할 때, 저항기 혹은 다이오드에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 전압은 시간에 대한 전류의 적분일 수 있다. 시간(t0)에서, X-선 광자는 다이오드 혹은 저항기에 부딪치고, 전하 운반자들이 다이오드 혹은 저항기에서 발생되기 시작하고, 전류가 다이오드의 전극 혹은 저항기의 전기적 접촉부를 통해 흐르기 시작하고, 그리고 전극 혹은 전기적 접촉부의 전압의 절대값이 증가하기 시작한다. 시간(t1)에서, 제 1 전압 비교기(301)는 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과한다고 결정하고, 그리고 제어기(310)는 TD1보다 짧은 시간 지연(TD2)을 시작하며, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 제어기(310)가 t1 전에 비활성화된다면, 제어기(310)는 t1에서 활성화된다. TD2 동안(예를 들어, TD2가 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 만약 TD2 동안 시간(t2)에서 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 제어기(310)는 계수기(320)에 의해 기록된 수가 1만큼 증가하도록 한다. 시간(te)에서, X-선 광자에 의해 발생된 모든 전하 운반자들은 X-선 흡수 층(110) 밖으로 표류한다. 시간(th)에서, 시간 지연(TD2)은 만료된다. 도 10의 예에서, 시간(th)은 시간(te) 이전에 존재하는데, 다시 말해 TD2는 X-선 광자에 의해 발생된 모든 전하 운반자들이 X-선 흡수 층(110) 밖으로 표류하기 전에 만료된다. 따라서 th에서 전압의 변화율은 실질적으로 영이 아니다. 제어기(310)는 TD2가 만료된 때, 혹은 t2에서, 혹은 그 사이의 임의의 시간에 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다.
제어기(310)는 TD2 동안 시간에 따른 전압으로부터 te에서의 전압을 추정(extrapolate)하도록 구성될 수 있고, 그리고 그 추정된 전압을 X-선 광자의 에너지를 결정하는데 사용하도록 구성될 수 있다.
TD2가 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 일 실시예에서, RST는 te 전에 만료된다. RST 이후 전압의 변화율은 실질적으로 영이 아닌데, 왜냐하면 X-선 광자에 의해 발생된 모든 전하 운반자들이 te 이전 RST가 만료될 때 X-선 흡수 층(110) 밖으로 표류하지 않았기 때문이다. 전압의 변화율은 te 이후 실질적으로 영이 되고, 전압은 te 이후 잔류 전압(residue voltage)(VR)으로 안정화된다. 일 실시예에서, RST는 te에서 혹은 te 이후에 만료하고, RST 이후 전압의 변화율은 실질적으로 영이 될 수 있는데, 왜냐하면 X-선 광자에 의해 발생된 모든 전하 운반자들이 te에서 X-선 흡수 층(110) 밖으로 표류하기 때문이다. RST 이후, 시스템(121)은 또 하나의 다른 입사하는 X-선 광자를 검출할 준비가 된다. 만약 제 1 전압 비교기(301)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전 임의의 시간에 제 1 전압 비교기(301)를 활성화시킬 수 있다. 만약 제어기(310)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전에 활성화될 수 있다.
도 11은, 도 10에서 보여진 방식으로 동작하는 시스템(121)에서, 노이즈(예를 들어, 암전류, 배경 방사선, 산란된 X-선들, 형광 X-선들, 인접하는 픽셀들로부터의 공유된 전하들)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 시간(t0)에서, 노이즈가 시작한다. 만약 노이즈가 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크지 않다면, 제어기(310)는 제 2 전압 비교기(302)를 활성화시키지 않는다. 만약 노이즈가 제 1 전압 비교기(301)에 의해 결정되는 바와 같이 시간(t1)에서 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크다면, 제어기(310)는 시간 지연(TD2)을 시작하고, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. TD2 동안(예를 들어, TD2가 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 노이즈가 TD2 동안 전압의 절대값이 V2의 절대값을 초과하게 할 만큼 충분히 클 가능성은 매우 희박하다. 따라서, 제어기(310)는 계수기(320)에 의해 기록된 수가 증가하도록 하지 않는다. 시간(te)에서, 노이즈가 끝난다. 시간(th)에서, 시간 지연(TD2)이 만료된다. 제어기(310)는 TD2가 만료될 때 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다. TD2가 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 노이즈의 결과로서 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 따라서, 시스템(121)은 노이즈 제거에 있어 매우 효과적일 수 있다.
도 12는, RST가 te 전에 만료되는 경우, 도 10에서 보여진 방식으로 동작하는 시스템(121)에서, 저항기 혹은 다이오드에 입사하는 일련의 X-선 광자들이 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화를 도식적으로 보여준다. 각각의 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어난 전압 곡선은 해당하는 그 광자 이전의 잔류 전압에 의해 편차(offset)를 갖고 있다. 잔류 전압의 절대값은 각각의 입사하는 광자와 함께 연속적으로 증가한다. 잔류 전압의 절대값이 V1을 초과하는 경우(도 12에서 점선으로 된 사각형 부분 참조), 제어기는 시간 지연(TD2)을 시작하고, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 TD2 동안 다른 어떤 X-선 광자도 다이오드 혹은 저항기에 입사하지 않는다면, 제어기는 TD2가 끝날 때 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하고, 이에 따라 잔류 전압이 재설정되게 된다. 따라서, 잔류 전압은 계수기(320)에 의해 기록된 수가 증가되도록 하지 않는다.
도 13은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 시스템을 도식적으로 보여준다. 이러한 시스템은 흉부 X-선 방사선촬영, 복부 X-선 방사선촬영, 등과 같은 의료적 영상화를 위해 사용될 수 있다. 시스템은 X-선 방출원(1201)을 포함한다. X-선 방출원(1201)으로부터 방출된 X-선은 물체(1202)(예를 들어, 흉부, 손발, 복부와 같은 인간 신체 부분)를 관통하고, 물체(1202)의 내부 구조(예를 들어, 뼈, 근육, 지방, 및 장기(organs), 등)에 의해 상이한 정도(degrees)로 감쇠되고, 그리고 반도체 X-선 검출기(100)에 투사된다. 반도체 X-선 검출기(100)는 X-선의 강도 분포를 검출함으로써 영상을 형성한다.
도 14는 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 시스템을 도식적으로 보여준다. 이러한 시스템은 치아 X-선 방사선촬영과 같은 의료적 영상화를 위해 사용될 수 있다. 시스템은 X-선 방출원(1301)을 포함한다. X-선 방출원(1301)으로부터 방출된 X-선은 포유류(예를 들어, 인간)의 입의 일부인 물체(1302)를 관통한다. 물체(1302)는 상악골(maxilla bone), 구개골(palate bone), 이빨(tooth), 하악골(mandible), 혹은 혀(tongue)를 포함할 수 있다. X-선은 물체(1302)의 상이한 구조들에 의해 상이한 정도로 감쇠되고, 그리고 반도체 X-선 검출기(100)에 투사된다. 반도체 X-선 검출기(100)는 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 이빨은 충치(dental caries), 감염 치아(dental infections), 치근막(periodontal ligament)보다 더 많은 X-선을 흡수한다. 치아 환자에 의해 수용되는 X-선 방사선의 조사량(dosage)은 전형적으로 작다(일련의 전체 입에 대해 대략 0.150 mSv).
도 15는 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다. 이러한 시스템은, 선적 컨테이너, 차량, 선박, 수하물, 등과 같은 운송 체계에서 물품(goods)을 검사 및 식별하는데 사용될 수 있다. 시스템은 X-선 방출원(1401)을 포함한다. X-선 방출원(1401)으로부터 방출된 X-선은 물체(1402)(예를 들어, 선적 컨테이너, 차량, 선박, 등)로부터 후방산란될 수 있고, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 물체(1402)의 상이한 내부 구조들은 X-선을 서로 다르게 후방산란시킬 수 있다. 반도체 X-선 검출기(100)는 후방산란된 X-선의 강도 분포 및/또는 후방산란된 X-선 광자들의 에너지들을 검출함으로써 영상을 형성한다.
도 16은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 또 하나의 다른 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다. 이러한 시스템은 공공 운송기관 정류장 및 공항에서 수하물 검열을 수행하기 위해 사용될 수 있다. 시스템은 X-선 방출원(1501)을 포함한다. X-선 방출원(1501)으로부터 방출된 X-선은 하나의 수하물(1502)을 관통할 수 있고, 수하물의 내용물에 의해 상이하게 감쇠될 수 있으며, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 반도체 X-선 검출기(100)는 투과된 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 이러한 시스템은 수하물의 내용물이 드러나게 할 수 있고, 그리고 공공 운송기관에서 금지된 화기, 마약, 날카로운 무기, 인화성 물질과 같은 품목들을 식별할 수 있다.
도 17은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 전신 스캐너 시스템을 도식적으로 보여준다. 전신 스캐너 시스템은 보안 검열 목적으로 사람의 신체 상의 물체들을 물리적으로 옷을 벗도록 함이 없이 혹은 물리적으로 접촉함이 없이 검출할 수 있다. 전신 스캐너 시스템은 비-금속 물체들을 검출할 수 있다. 전신 스캐너 시스템은 X-선 방출원(1601)을 포함한다. X-선 방출원(1501)으로부터 방출되는 X-선은 검열되는 인간(1602) 및 그 신체 상의 물체들로부터 후방산란될 수 있고, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 물체들 및 인간 신체는 X-선을 서로 다르게 후방산란시킬 수 있다. 반도체 X-선 검출기(100)는 후방산란된 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 반도체 X-선 검출기(100) 및 X-선 방출원(1601)은 선형 방향으로 혹은 회전 방향으로 인간을 스캐닝하도록 구성될 수 있다.
도 18은 X-선 컴퓨터 단층촬영(X-선 CT) 시스템을 도식적으로 보여준다. X-선 CT 시스템은 스캐닝되는 물체의 특정 영역들의 단층촬영 영상들(가상 "슬라이스(slice)들")을 생성하기 위해 컴퓨터로-처리되는 X-선들을 사용한다. 단층촬영 영상들은 다양한 의료 분야에서 진단 및 치료 목적으로 사용될 수 있고, 또는 결함 검출(flaw detection), 고장 분석(failure analysis), 계측(metrology), 조립체 분석(assembly analysis), 및 역공학(reverse engineering)을 위해 사용될 수 있다. X-선 CT 시스템은 본 명세서에서 설명되는 반도체 X-선 검출기(100) 그리고 X-선 방출원(1701)을 포함한다. 반도체 X-선 검출기(100)와 X-선 방출원(1701)은 하나 이상의 원형 혹은 나선형 경로들을 따라 동기화되어 회전하도록 구성될 수 있다.
도 19는 전자 현미경을 도식적으로 보여준다. 전자 현미경은 전자들을 방출하도록 구성된 전자 방출원(1801)(이것은 또한 전자총(electron gun)으로 지칭됨)을 포함한다. 전자 방출원(1801)은 열이온(thermionic) 방출, 광음극(photocathode) 방출, 냉음극 방출(cold emission), 혹은 플라즈마 방출원과 같은 다양한 방출 메커니즘들을 가질 수 있다. 방출된 전자들은, 전자들을 성형하는 것, 가속화시키는 것, 혹은 집속시키는 것을 수행하도록 구성될 수 있는 전자적 광학 시스템(1803)을 통과한다. 그 다음에 전자들은 표본(sample)(1802)에 도달하고, 영상 검출기는 이로부터 영상을 형성할 수 있다. 전자 현미경은, 에너지-분산형 X-선 분광분석(Energy-Dispersive X-ray Spectroscopy, EDS)을 수행하기 위해, 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함할 수 있다. EDS는 표본의 원소 분석 혹은 화학적 특성분석을 위해 사용되는 분석 기법이다. 전자들이 표본에 입사하는 경우, 전자들은 해당 표본으로부터 특유의 X-선들을 방출시킨다. 입사하는 전자들은 표본 내의 원자의 안쪽 껍질(inner shell) 안의 전자를 여기(excite)시킬 수 있으며, 여기된 전자는 껍질로부터 방출되고 아울러 전자가 있었던 곳에는 전자 구멍(electron hole)이 생성된다. 그 다음에, 바깥쪽 더 높은 에너지 껍질로부터의 전자가 그 구멍을 채우고, 그리고 더 높은 에너지 껍질과 더 낮은 에너지 껍질 간의 에너지에서의 차이가 X-선의 형태로 방출될 수 있다. 표본으로 방출된 X-선들의 수 및 에너지는 반도체 X-선 검출기(100)에 의해 측정될 수 있다.
본 명세서에서 설명되는 반도체 X-선 검출기(100)는 다른 응용분야를 가질 수 있는데, 예컨대, X-선 망원경, X-선 유방촬영, 산업분야 X-선 결함 검출, X-선 현미경, 혹은 미세방사선촬영, X-선 주조 검사, X-선 비-파괴 시험, X-선 용접 검사, X-선 디지털 감산 혈관촬영, 등에서 응용될 수 있다. 사진 플레이트, 사진 필름, PSP 플레이트, X-선 영상 증폭기, 섬광체, 혹은 다른 반도체 X-선 검출기 대신에 본 발명의 반도체 X-선 검출기(100)를 사용하는 것이 적합할 수 있다.
다양한 실시형태들 및 실시예들이 본 명세서에서 설명되었지만, 다른 실시형태들 및 실시예들이 본 발명의 기술분야에서 숙련된 자들에게는 명백하게 될 것이다. 본 명세서에서 개시되는 다양한 실시형태들 및 실시예들은 예시적 목적으로 제공되는 것이지 한정의 의미로 의도된 것이 아니며, 본 발명의 진정한 범위 및 사상은 아래의 청구항들에 의해 제시된다.
Claims (27)
- X-선(X-ray)을 검출하는데 적합한 장치로서, 상기 장치는,
전극(electrode)을 포함하는 X-선 흡수 층과; 그리고
전자기기 층(electronics layer)을 포함하고,
상기 전자기기 층은,
제 1 표면 및 제 2 표면을 갖는 기판,
상기 기판 내에 혹은 상기 기판 상에 있는 전자기기 시스템(electronics system),
상기 제 1 표면 상에 있는 전기적 접촉부(electrical contact),
비아(via), 그리고
상기 제 2 표면 상에 있는 재배선 층(ReDistribution Layer, RDL)을 포함하고,
상기 RDL은 전송 라인(transmission line)을 포함하고,
상기 비아는 상기 제 1 표면으로부터 상기 제 2 표면으로 연장되고,
상기 전극은 상기 전기적 접촉부에 전기적으로 연결되고,
상기 전자기기 시스템은 상기 비아를 통해 상기 전기적 접촉부 및 상기 전송 라인에 전기적으로 연결되고,
상기 전자기기 시스템은,
상기 전극의 전압을 제 1 임계치와 비교하도록 되어 있는 제 1 전압 비교기;
상기 전압을 제 2 임계치와 비교하도록 되어 있는 제 2 전압 비교기;
상기 X-선 흡수 층에 도달한 X-선 광자(X-ray photon)들의 수를 기록(register)하도록 되어 있는 계수기(counter); 그리고
제어기를 포함하고,
상기 제어기는, 상기 전압의 절대값(absolute value)이 상기 제 1 임계치의 절대값과 동일하거나 혹은 상기 제 1 임계치의 절대값을 초과한다고 상기 제 1 전압 비교기가 결정한 시간으로부터 시간 지연(time delay)을 시작하도록 되어 있고,
상기 제어기는 상기 시간 지연 동안 상기 제 2 전압 비교기를 활성화(activate)시키도록 되어 있고,
상기 제어기는, 만약 상기 전압의 절대값이 상기 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과한다고 상기 제 2 전압 비교기가 결정한다면, 상기 계수기에 의해 기록된 상기 수가 1만큼 증가하게 하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 기판은 200 ㎛ 이하의 두께를 갖는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 장치는 또한, 상기 전극에 전기적으로 연결되는 커패시터 모듈(capacitor module)을 포함하고,
상기 커패시터 모듈은 상기 전극으로부터 전하 운반자(charge carrier)들을 수집하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 제어기는 상기 시간 지연이 시작될 때 혹은 만료될 때 상기 제 2 전압 비교기를 활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 장치는 또한, 전압계(voltmeter)를 포함하고,
상기 제어기는 상기 시간 지연이 만료될 때 상기 전압계로 하여금 상기 전압을 측정하게 하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제5항에 있어서,
상기 제어기는 상기 시간 지연이 만료될 때 측정된 상기 전압의 값에 근거하여 X-선 광자 에너지를 결정하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 제어기는 상기 전극을 전기적 접지(electrical ground)에 연결하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영(zero)인 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영이 아닌 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 X-선 흡수 층은 다이오드(diode)를 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 X-선 흡수 층은, 실리콘(silicon), 게르마늄(germanium), GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합을 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 장치는 섬광체(scintillator)를 포함하지 않는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 장치는 픽셀(pixel)들의 배열(array)을 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항의 상기 장치 그리고 X-선 방출원(X-ray source)을 포함하는 시스템으로서, 상기 시스템은 인간의 흉부 혹은 복부에 관해 X-선 방사선촬영(X-ray radiography)을 수행하도록 되어 있는 것을 특징으로 하는 시스템.
- 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 시스템으로서, 상기 시스템은 인간의 입(mouth)에 관해 X-선 방사선촬영을 수행하도록 되어 있는 것을 특징으로 하는 시스템.
- 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝(cargo scanning) 혹은 비-해체 검사(Non-Intrusive Inspection, NII) 시스템으로서, 상기 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 후방산란된 X-선(backscattered X-ray)을 사용하여 영상(image)을 형성하도록 되어 있는 것을 특징으로 하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템.
- 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템으로서, 상기 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 검사되는 물체(object)를 통과해 전송되는 X-선을 사용하여 영상을 형성하도록 되어 있는 것을 특징으로 하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템.
- 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 전신 스캐너 시스템(full-body scanner system).
- 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 X-선 컴퓨터 단층촬영(Computed Tomography, CT)(X-선 CT) 시스템.
- 제1항의 상기 장치, 전자 방출원(electron source) 그리고 전자적 광학 시스템(electronic optical system)을 포함하는 전자 현미경(electron microscope).
- 제1항의 상기 장치를 포함하는 시스템으로서,
상기 시스템은 X-선 망원경(X-ray telescope) 혹은 X-선 현미경(X-ray microscopy)이고, 또는
상기 시스템은 유방촬영(mammography), 산업분야 결함 검출(industrial defect detection), 미세방사선촬영(microradiography), 주조 검사(casting inspection), 용접 검사(weld inspection), 혹은 디지털 감산 혈관촬영(digital subtraction angiography)을 수행하도록 되어 있는 것을 특징으로 하는 시스템. - 제1항에 있어서,
상기 제어기는 상기 시간 지연이 시작될 때 상기 제 1 전압 비교기를 비활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합 장치. - 제1항에 있어서,
상기 제어기는,
상기 시간 지연이 만료된 때, 또는
상기 전압의 절대값이 상기 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과한다고 상기 제 2 전압 비교기가 결정한 때, 또는
상기 만료된 때와 상기 결정한 때 사이의 임의의 시간에,
상기 제 2 전압 비교기를 비활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 전자기기 층은 또한, 상기 제 1 표면 상에 정렬되는 주변부 회로(peripheral circuit)를 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 제1항에 있어서,
상기 전자기기 층은 또한, 상기 제 1 표면과 상기 제 2 표면 사이에 정렬되는 주변부 회로를 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치. - 2개의 층들로 된 적층체(stack)를 포함하는 시스템으로서, 상기 2개의 층들 각각은 배열 형태로 정렬되는 제1항의 상기 장치들을 포함하고, 상기 2개의 층들의 상기 배열들은 서로에 대해 엇갈려 정렬되는 것을 특징으로 하는 시스템.
- 방법으로서, 상기 방법은,
전극을 포함하는 X-선 흡수 층을 획득하는 단계와;
전자기기 층을 획득하는 단계와; 그리고
상기 X-선 흡수 층과 상기 전자기기 층을 본딩(bonding)하는 단계를 포함하고,
상기 전자기기 층은,
제 1 표면 및 제 2 표면을 갖는 기판,
상기 기판 내에 혹은 상기 기판 상에 있는 전자기기 시스템,
상기 제 1 표면 상에 있는 전기적 접촉부,
비아, 그리고
상기 제 2 표면 상에 있는 재배선 층(RDL)을 포함하고,
상기 X-선 흡수 층과 상기 전자기기 층을 본딩하는 단계는 상기 전극이 상기 전기적 접촉부에 전기적으로 연결되도록 이루어지고,
상기 RDL은 전송 라인을 포함하고,
상기 비아는 상기 제 1 표면으로부터 상기 제 2 표면으로 연장되고,
상기 전자기기 시스템은 상기 비아를 통해 상기 전기적 접촉부 및 상기 전송 라인에 전기적으로 연결되는 것을 특징으로 하는 방법.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/075941 WO2016161542A1 (en) | 2015-04-07 | 2015-04-07 | Semiconductor x-ray detector |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170141196A true KR20170141196A (ko) | 2017-12-22 |
KR101941898B1 KR101941898B1 (ko) | 2019-01-24 |
Family
ID=57071683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177026648A KR101941898B1 (ko) | 2015-04-07 | 2015-04-07 | 반도체 x-선 검출기 |
Country Status (9)
Country | Link |
---|---|
US (3) | US10007009B2 (ko) |
EP (1) | EP3281040B1 (ko) |
JP (1) | JP6554554B2 (ko) |
KR (1) | KR101941898B1 (ko) |
CN (1) | CN107533146B (ko) |
IL (1) | IL254538B (ko) |
SG (1) | SG11201707508PA (ko) |
TW (1) | TWI632391B (ko) |
WO (1) | WO2016161542A1 (ko) |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016161542A1 (en) * | 2015-04-07 | 2016-10-13 | Shenzhen Xpectvision Technology Co.,Ltd. | Semiconductor x-ray detector |
US10539691B2 (en) | 2015-06-10 | 2020-01-21 | Shenzhen Xpectvision Technology Co., Ltd. | Detector for X-ray fluorescence |
EP3341756A4 (en) * | 2015-08-27 | 2019-05-22 | Shenzhen Xpectvision Technology Co., Ltd. | X-RAY IMAGING WITH A DETECTOR LIKELY TO RESOLVE PHOTONIC ENERGY |
WO2018006258A1 (en) * | 2016-07-05 | 2018-01-11 | Shenzhen Xpectvision Technology Co., Ltd. | Bonding materials of dissimilar coefficients of thermal expansion |
EP3516425B1 (en) | 2016-09-23 | 2021-05-19 | Shenzhen Xpectvision Technology Co., Ltd. | Method of packaging of semiconductor x-ray detectors |
EP3532873B1 (en) | 2016-10-27 | 2021-06-23 | Shenzhen Xpectvision Technology Co., Ltd. | Dark noise compensation in a radiation detector |
WO2018090162A1 (en) | 2016-11-15 | 2018-05-24 | Shenzhen Xpectvision Technology Co., Ltd. | Imaging system configured to statistically determine charge sharing |
EP3547919A4 (en) * | 2016-12-05 | 2020-07-08 | Shenzhen Xpectvision Technology Co., Ltd. | X-RAY IMAGING SYSTEM AND X-RAY IMAGING METHOD |
EP3558124A4 (en) * | 2016-12-20 | 2020-08-12 | Shenzhen Xpectvision Technology Co., Ltd. | IMAGE SENSORS WITH X-RAY DETECTORS |
WO2018133088A1 (en) * | 2017-01-23 | 2018-07-26 | Shenzhen Xpectvision Technology Co., Ltd. | A radiation detector |
CN110291423A (zh) * | 2017-01-23 | 2019-09-27 | 深圳帧观德芯科技有限公司 | 制作半导体x射线检测器的方法 |
EP3571531A4 (en) * | 2017-01-23 | 2020-08-05 | Shenzhen Xpectvision Technology Co., Ltd. | X-RAY DETECTORS CAPABLE OF IDENTIFYING AND MANAGING LOAD SHARING |
US10162066B2 (en) * | 2017-02-06 | 2018-12-25 | General Electric Company | Coincidence-enabling photon-counting detector |
WO2018176434A1 (en) | 2017-04-01 | 2018-10-04 | Shenzhen Xpectvision Technology Co., Ltd. | A portable radiation detector system |
WO2018201308A1 (en) * | 2017-05-03 | 2018-11-08 | Shenzhen Xpectvision Technology Co., Ltd. | Method of making radiation detector |
CN110914712B (zh) * | 2017-07-26 | 2024-01-12 | 深圳帧观德芯科技有限公司 | 具有内置去极化装置的辐射检测器 |
EP3658963A4 (en) * | 2017-07-26 | 2021-03-03 | Shenzhen Xpectvision Technology Co., Ltd. | X-RAY DETECTOR |
CN110892292B (zh) * | 2017-07-26 | 2023-09-22 | 深圳帧观德芯科技有限公司 | 辐射检测器和用于从该辐射检测器输出数据的方法 |
WO2019019048A1 (en) * | 2017-07-26 | 2019-01-31 | Shenzhen Xpectvision Technology Co., Ltd. | RADIOLOGICAL IMAGING SYSTEM AND METHOD OF MONITORING RADIOLOGICAL IMAGE |
CN111107788B (zh) * | 2017-07-26 | 2023-12-19 | 深圳帧观德芯科技有限公司 | 具有空间扩展性x射线源的x射线成像系统 |
CN111093502B (zh) * | 2017-07-26 | 2023-09-22 | 深圳帧观德芯科技有限公司 | 一体化x射线源 |
WO2019080036A1 (en) | 2017-10-26 | 2019-05-02 | Shenzhen Xpectvision Technology Co., Ltd. | RADIATION DETECTOR CAPABLE OF PROCESSING NOISE |
EP3701291B1 (en) * | 2017-10-26 | 2023-05-10 | Shenzhen Xpectvision Technology Co., Ltd. | X-ray detector with cooling system |
WO2019084703A1 (en) | 2017-10-30 | 2019-05-09 | Shenzhen Xpectvision Technology Co., Ltd. | Radiation detector with dc-to-dc converter based on mems switches |
CN111279222B (zh) * | 2017-10-30 | 2023-07-28 | 深圳源光科技有限公司 | 具有高时间分辨率的lidar检测器 |
WO2019144324A1 (en) * | 2018-01-24 | 2019-08-01 | Shenzhen Xpectvision Technology Co., Ltd. | Packaging of radiation detectors in an image sensor |
EP3743743B1 (en) * | 2018-01-24 | 2024-03-20 | Shenzhen Xpectvision Technology Co., Ltd. | Radiation detector |
EP3743738A4 (en) * | 2018-01-24 | 2021-07-28 | Shenzhen Xpectvision Technology Co., Ltd. | STRIPE PIXEL DETECTOR |
EP3743744A4 (en) * | 2018-01-25 | 2021-07-28 | Shenzhen Xpectvision Technology Co., Ltd. | RADIATION DETECTOR PACKAGING |
CN111656224B (zh) * | 2018-01-25 | 2024-06-18 | 深圳帧观德芯科技有限公司 | 具有量子点闪烁器的辐射检测器 |
CN111587389B (zh) * | 2018-02-03 | 2024-09-06 | 深圳帧观德芯科技有限公司 | 恢复辐射检测器的方法 |
WO2019148477A1 (en) * | 2018-02-03 | 2019-08-08 | Shenzhen Xpectvision Technology Co., Ltd. | An endoscope |
CN112040868A (zh) * | 2018-05-14 | 2020-12-04 | 深圳帧观德芯科技有限公司 | 用于对前列腺进行成像的装置 |
CN112449685B (zh) * | 2018-07-12 | 2023-08-01 | 深圳帧观德芯科技有限公司 | 辐射检测器 |
CN112368602B (zh) | 2018-07-12 | 2023-03-14 | 深圳帧观德芯科技有限公司 | 具有高时间分辨率的光学雷达 |
CN112470038B (zh) * | 2018-07-12 | 2024-07-12 | 深圳帧观德芯科技有限公司 | 辐射检测器 |
EP3830558A4 (en) * | 2018-07-27 | 2022-03-16 | Shenzhen Xpectvision Technology Co., Ltd. | MULTIPLE-SOURCE CONE BEAM COMPUTED TOMOGRAPHY |
WO2020047831A1 (en) * | 2018-09-07 | 2020-03-12 | Shenzhen Xpectvision Technology Co., Ltd. | An image sensor having radiation detectors of different orientations |
CN112703427A (zh) * | 2018-09-21 | 2021-04-23 | 深圳帧观德芯科技有限公司 | 一种成像系统 |
CN112888967B (zh) | 2018-11-06 | 2024-06-28 | 深圳帧观德芯科技有限公司 | 具有辐射检测器和掩模的图像传感器 |
CN112955787B (zh) * | 2018-11-06 | 2023-05-30 | 深圳帧观德芯科技有限公司 | 一种辐射检测器 |
JP7292868B2 (ja) * | 2018-12-18 | 2023-06-19 | キヤノン株式会社 | 検出器 |
WO2020142976A1 (en) * | 2019-01-10 | 2020-07-16 | Shenzhen Xpectvision Technology Co., Ltd. | X-ray detectors based on an epitaxial layer and methods of making |
EP3690490A1 (en) * | 2019-02-04 | 2020-08-05 | ams International AG | X-ray detector component, x-ray detection module, imaging device and method for manufacturing an x-ray detector component |
US10955568B2 (en) | 2019-02-08 | 2021-03-23 | International Business Machines Corporation | X-ray sensitive device to detect an inspection |
EP3948357A4 (en) * | 2019-03-29 | 2022-11-02 | Shenzhen Xpectvision Technology Co., Ltd. | SOLID-STATE X-RAY DETECTOR |
WO2021016746A1 (en) * | 2019-07-26 | 2021-02-04 | Shenzhen Xpectvision Technology Co., Ltd. | Radiation detector with quantum dot scintillators |
EP4004604A4 (en) * | 2019-07-29 | 2023-04-19 | Shenzhen Xpectvision Technology Co., Ltd. | AMPLIFIER FOR DARK NOISE COMPENSATION |
EP4111238A4 (en) * | 2020-02-26 | 2023-12-06 | Shenzhen Xpectvision Technology Co., Ltd. | RADIATION DETECTOR |
CN114981685A (zh) * | 2020-02-26 | 2022-08-30 | 深圳帧观德芯科技有限公司 | 半导体辐射检测器 |
EP4111234A4 (en) | 2020-02-27 | 2023-11-15 | Shenzhen Xpectvision Technology Co., Ltd. | GLYCEMIA RATE DETECTION DEVICE |
US20240096589A1 (en) * | 2020-11-23 | 2024-03-21 | Asml Netherlands B.V. | Semiconductor charged particle detector for microscopy |
CN118489073A (zh) * | 2021-12-28 | 2024-08-13 | 深圳帧观德芯科技有限公司 | 具有小而薄的集成电路芯片的图像传感器 |
WO2024168452A1 (en) * | 2023-02-13 | 2024-08-22 | Shenzhen Xpectvision Technology Co., Ltd. | Imaging systems and corresponding operation methods for elimination of effects of dark currents |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265883A (ja) * | 2003-01-08 | 2004-09-24 | Hamamatsu Photonics Kk | 配線基板、及びそれを用いた放射線検出器 |
JP2010507797A (ja) * | 2006-10-25 | 2010-03-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | X放射線を検出する装置、撮像装置及び方法 |
US20120223241A1 (en) * | 2011-03-04 | 2012-09-06 | Samsung Electronics Co., Ltd. | Large-Scale X-Ray Detectors |
WO2014037247A1 (de) * | 2012-09-06 | 2014-03-13 | Siemens Aktiengesellschaft | Strahlungsdetektor und verfahren zur herstellung eines strahlungsdetektors |
KR20150032754A (ko) * | 2012-07-31 | 2015-03-27 | 지멘스 악티엔게젤샤프트 | X-선 방사선의 검출 및 x-선 검출기 시스템 |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56103379A (en) * | 1980-01-22 | 1981-08-18 | Horiba Ltd | Semiconductor x-ray detector |
JP3220500B2 (ja) | 1992-03-16 | 2001-10-22 | オリンパス光学工業株式会社 | 軟x線検出器 |
US5245191A (en) | 1992-04-14 | 1993-09-14 | The Board Of Regents Of The University Of Arizona | Semiconductor sensor for gamma-ray tomographic imaging system |
US5389792A (en) | 1993-01-04 | 1995-02-14 | Grumman Aerospace Corporation | Electron microprobe utilizing thermal detector arrays |
EP0778983B1 (en) * | 1994-07-27 | 2000-05-31 | 1294339 Ontario, Inc. | Radiation imaginging system |
US5635718A (en) | 1996-01-16 | 1997-06-03 | Minnesota Mining And Manufacturing Company | Multi-module radiation detecting device and fabrication method |
JP2002217444A (ja) | 2001-01-22 | 2002-08-02 | Canon Inc | 放射線検出装置 |
US6791091B2 (en) | 2001-06-19 | 2004-09-14 | Brian Rodricks | Wide dynamic range digital imaging system and method |
GB2392308B (en) | 2002-08-15 | 2006-10-25 | Detection Technology Oy | Packaging structure for imaging detectors |
JP4414646B2 (ja) | 2002-11-18 | 2010-02-10 | 浜松ホトニクス株式会社 | 光検出装置 |
JP2004362905A (ja) * | 2003-06-04 | 2004-12-24 | Nippon Telegr & Teleph Corp <Ntt> | 直接メタノール型燃料電池用電解質膜の製造方法 |
US20060289777A1 (en) | 2005-06-29 | 2006-12-28 | Wen Li | Detector with electrically isolated pixels |
US7231017B2 (en) * | 2005-07-27 | 2007-06-12 | Physical Optics Corporation | Lobster eye X-ray imaging system and method of fabrication thereof |
US7456409B2 (en) | 2005-07-28 | 2008-11-25 | Carestream Health, Inc. | Low noise image data capture for digital radiography |
CN1947660B (zh) | 2005-10-14 | 2010-09-29 | 通用电气公司 | 用于多管芯背光照明二极管的系统、方法和模块组件 |
US7480362B2 (en) | 2005-10-28 | 2009-01-20 | Koninklijke Philips Electronics N.V. | Method and apparatus for spectral computed tomography |
WO2008008663A2 (en) | 2006-07-10 | 2008-01-17 | Koninklijke Philips Electronics, N.V. | Energy spectrum reconstruction |
US8237128B2 (en) | 2006-12-13 | 2012-08-07 | Koninklijke Philips Electronics N.V. | Apparatus, imaging device and method for counting X-ray photons |
JP4734224B2 (ja) * | 2006-12-18 | 2011-07-27 | 本田技研工業株式会社 | バッファ層膜厚測定方法 |
WO2008093275A2 (en) | 2007-02-01 | 2008-08-07 | Koninklijke Philips Electronics N.V. | Event sharing restoration for photon counting detectors |
US7696483B2 (en) | 2007-08-10 | 2010-04-13 | General Electric Company | High DQE photon counting detector using statistical recovery of pile-up events |
CN101796429A (zh) | 2007-09-07 | 2010-08-04 | 皇家飞利浦电子股份有限公司 | 具有若干转换层的辐射探测器 |
US7916836B2 (en) * | 2007-09-26 | 2011-03-29 | General Electric Company | Method and apparatus for flexibly binning energy discriminating data |
EP2198324B1 (en) | 2007-09-27 | 2016-01-06 | Koninklijke Philips N.V. | Processing electronics and method for determining a count result, and detector for an x-ray imaging device |
US8304739B2 (en) | 2007-12-20 | 2012-11-06 | Koninklijke Philips Electronics N.V. | Direct conversion detector |
US20110036989A1 (en) | 2008-04-30 | 2011-02-17 | Koninklijke Philips Electronics N.V. | Counting detector |
CN101644780A (zh) | 2008-08-04 | 2010-02-10 | 北京大学 | 一种闪烁晶体阵列探测装置 |
CA2650066A1 (en) | 2009-01-16 | 2010-07-16 | Karim S. Karim | Photon counting and integrating pixel readout architecture with dynamic switching operation |
JP2010237643A (ja) * | 2009-03-09 | 2010-10-21 | Fuji Xerox Co Ltd | 表示媒体、書込装置、及び表示装置 |
US8384038B2 (en) * | 2009-06-24 | 2013-02-26 | General Electric Company | Readout electronics for photon counting and energy discriminating detectors |
DE102009055807B4 (de) | 2009-11-26 | 2016-11-24 | Siemens Healthcare Gmbh | Schaltungsanordnung zur Zählung von Röntgenquanten einer Röntgenstrahlung mittels quantenzählender Detektoren sowie anwendungsspezifische integrierte Schaltung und Strahler-Detektor-System |
CN101862200B (zh) | 2010-05-12 | 2012-07-04 | 中国科学院上海应用物理研究所 | 一种快速x射线荧光ct方法 |
KR101634250B1 (ko) * | 2010-06-21 | 2016-06-28 | 삼성전자주식회사 | 대면적 엑스선 검출기 및 제조방법 |
JP5208186B2 (ja) | 2010-11-26 | 2013-06-12 | 富士フイルム株式会社 | 放射線画像検出装置およびその駆動制御方法 |
US8659148B2 (en) | 2010-11-30 | 2014-02-25 | General Electric Company | Tileable sensor array |
EP2490441A1 (en) | 2011-02-16 | 2012-08-22 | Paul Scherrer Institut | Single photon counting detector system having improved counter architecture |
JP5508340B2 (ja) | 2011-05-30 | 2014-05-28 | 富士フイルム株式会社 | 放射線画像検出装置及び放射線画像検出装置の制御方法 |
JP5875790B2 (ja) | 2011-07-07 | 2016-03-02 | 株式会社東芝 | 光子計数型画像検出器、x線診断装置、及びx線コンピュータ断層装置 |
WO2013012809A1 (en) | 2011-07-15 | 2013-01-24 | Brookhaven Science Associates, Llc | Radiation detector modules based on multi-layer cross strip semiconductor detectors |
JP6034786B2 (ja) | 2011-07-26 | 2016-11-30 | 富士フイルム株式会社 | 放射線撮影装置及びその制御方法、並びに放射線画像検出装置 |
WO2013057803A1 (ja) | 2011-10-19 | 2013-04-25 | Oya Nagato | 補正装置と解析表示装置を具備する放射線およびイオン検出装置および解析表示方法 |
US8929507B2 (en) | 2011-10-19 | 2015-01-06 | Kabushiki Kaisha Toshiba | Method and system for substantially reducing ring artifact based upon ring statistics |
JPWO2013084839A1 (ja) | 2011-12-09 | 2015-04-27 | ソニー株式会社 | 撮像装置、電子機器、輝尽発光検出スキャナーおよび撮像方法 |
JP2013142578A (ja) | 2012-01-10 | 2013-07-22 | Shimadzu Corp | 放射線検出器 |
CN103296035B (zh) | 2012-02-29 | 2016-06-08 | 中国科学院微电子研究所 | X射线平板探测器及其制造方法 |
US8933412B2 (en) * | 2012-06-21 | 2015-01-13 | Honeywell International Inc. | Integrated comparative radiation sensitive circuit |
DE102012213404B3 (de) | 2012-07-31 | 2014-01-23 | Siemens Aktiengesellschaft | Verfahren zur Temperaturstabilisierung, Röntgenstrahlungsdetektor und CT-System |
DE102012215041A1 (de) | 2012-08-23 | 2014-02-27 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines Halbleiterelementes eines direktkonvertierenden Röntgendetektors |
JP6061129B2 (ja) | 2012-09-14 | 2017-01-18 | 株式会社島津製作所 | 放射線検出器の製造方法 |
KR101410736B1 (ko) * | 2012-11-26 | 2014-06-24 | 한국전기연구원 | 면 광원 일체형의 다층 구조를 가지는 디지털 엑스-선 영상 검출기 |
US9024269B2 (en) * | 2012-12-27 | 2015-05-05 | General Electric Company | High yield complementary metal-oxide semiconductor X-ray detector |
US9791590B2 (en) | 2013-01-31 | 2017-10-17 | Rapiscan Systems, Inc. | Portable security inspection system |
KR20140132098A (ko) * | 2013-05-07 | 2014-11-17 | 삼성전자주식회사 | 엑스선 검출기, 이를 포함하는 엑스선 영상 장치 및 그 제어 방법 |
JP2015011018A (ja) | 2013-07-02 | 2015-01-19 | 株式会社東芝 | 試料分析方法、プログラムおよび試料分析装置 |
JP6214031B2 (ja) | 2013-07-19 | 2017-10-18 | 国立研究開発法人理化学研究所 | 放射線検出器のための信号データ処理方法、信号データ処理装置、および放射線検出システム |
JP6108575B2 (ja) | 2013-09-18 | 2017-04-05 | 株式会社吉田製作所 | 画像処理装置及びx線撮影装置 |
US9520439B2 (en) | 2013-09-23 | 2016-12-13 | Omnivision Technologies, Inc. | X-ray and optical image sensor |
CN103715214A (zh) | 2013-12-02 | 2014-04-09 | 江苏龙信电子科技有限公司 | 一种高清晰度数字x射线平板探测器的制造方法 |
WO2016161542A1 (en) * | 2015-04-07 | 2016-10-13 | Shenzhen Xpectvision Technology Co.,Ltd. | Semiconductor x-ray detector |
EP3281041B1 (en) * | 2015-04-07 | 2020-06-10 | Shenzhen Xpectvision Technology Co., Ltd. | Methods of making semiconductor x-ray detector |
-
2015
- 2015-04-07 WO PCT/CN2015/075941 patent/WO2016161542A1/en active Application Filing
- 2015-04-07 JP JP2017554401A patent/JP6554554B2/ja active Active
- 2015-04-07 SG SG11201707508PA patent/SG11201707508PA/en unknown
- 2015-04-07 EP EP15888099.7A patent/EP3281040B1/en active Active
- 2015-04-07 US US15/122,456 patent/US10007009B2/en active Active
- 2015-04-07 CN CN201580077791.0A patent/CN107533146B/zh active Active
- 2015-04-07 KR KR1020177026648A patent/KR101941898B1/ko active IP Right Grant
-
2016
- 2016-04-07 TW TW105110957A patent/TWI632391B/zh active
-
2017
- 2017-09-17 IL IL254538A patent/IL254538B/en unknown
-
2018
- 2018-01-10 US US15/866,928 patent/US10502843B2/en active Active
-
2019
- 2019-11-06 US US16/676,425 patent/US11009614B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004265883A (ja) * | 2003-01-08 | 2004-09-24 | Hamamatsu Photonics Kk | 配線基板、及びそれを用いた放射線検出器 |
JP2010507797A (ja) * | 2006-10-25 | 2010-03-11 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | X放射線を検出する装置、撮像装置及び方法 |
US20120223241A1 (en) * | 2011-03-04 | 2012-09-06 | Samsung Electronics Co., Ltd. | Large-Scale X-Ray Detectors |
JP2012185159A (ja) * | 2011-03-04 | 2012-09-27 | Samsung Electronics Co Ltd | 大面積x線検出器 |
KR20150032754A (ko) * | 2012-07-31 | 2015-03-27 | 지멘스 악티엔게젤샤프트 | X-선 방사선의 검출 및 x-선 검출기 시스템 |
WO2014037247A1 (de) * | 2012-09-06 | 2014-03-13 | Siemens Aktiengesellschaft | Strahlungsdetektor und verfahren zur herstellung eines strahlungsdetektors |
Also Published As
Publication number | Publication date |
---|---|
TWI632391B (zh) | 2018-08-11 |
JP6554554B2 (ja) | 2019-07-31 |
SG11201707508PA (en) | 2017-10-30 |
US20180156927A1 (en) | 2018-06-07 |
KR101941898B1 (ko) | 2019-01-24 |
TW201643468A (zh) | 2016-12-16 |
US10502843B2 (en) | 2019-12-10 |
EP3281040A1 (en) | 2018-02-14 |
JP2018512596A (ja) | 2018-05-17 |
EP3281040A4 (en) | 2018-07-11 |
US20180017686A1 (en) | 2018-01-18 |
US11009614B2 (en) | 2021-05-18 |
WO2016161542A1 (en) | 2016-10-13 |
IL254538A0 (en) | 2017-11-30 |
US10007009B2 (en) | 2018-06-26 |
CN107533146A (zh) | 2018-01-02 |
CN107533146B (zh) | 2019-06-18 |
IL254538B (en) | 2021-08-31 |
EP3281040B1 (en) | 2021-11-24 |
US20200072986A1 (en) | 2020-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11009614B2 (en) | Semiconductor X-ray detector | |
US10712456B2 (en) | Method of making semiconductor X-ray detectors | |
TWI776834B (zh) | 具有x射線檢測器的圖像傳感器 | |
US11353604B2 (en) | Packaging methods of semiconductor X-ray detectors | |
US11002863B2 (en) | Systems with multiple layers of semiconductor X-ray detectors | |
EP3571529B1 (en) | Methods of making semiconductor x-ray detector | |
WO2018053774A1 (en) | Packaging of semiconductor x-ray detectors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |