KR20170140175A - 반도체 x-선 검출기 - Google Patents

반도체 x-선 검출기 Download PDF

Info

Publication number
KR20170140175A
KR20170140175A KR1020177026651A KR20177026651A KR20170140175A KR 20170140175 A KR20170140175 A KR 20170140175A KR 1020177026651 A KR1020177026651 A KR 1020177026651A KR 20177026651 A KR20177026651 A KR 20177026651A KR 20170140175 A KR20170140175 A KR 20170140175A
Authority
KR
South Korea
Prior art keywords
ray
voltage
absolute value
time delay
threshold
Prior art date
Application number
KR1020177026651A
Other languages
English (en)
Other versions
KR101941899B1 (ko
Inventor
페이얀 카오
Original Assignee
선전 엑스펙트비전 테크놀로지 컴퍼니, 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 선전 엑스펙트비전 테크놀로지 컴퍼니, 리미티드 filed Critical 선전 엑스펙트비전 테크놀로지 컴퍼니, 리미티드
Publication of KR20170140175A publication Critical patent/KR20170140175A/ko
Application granted granted Critical
Publication of KR101941899B1 publication Critical patent/KR101941899B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/244Auxiliary details, e.g. casings, cooling, damping or insulation against damage by, e.g. heat, pressure or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/247Detector read-out circuitry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2928Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using solid state detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/222Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays measuring scattered radiation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K7/00Gamma- or X-ray microscopes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

X-선을 검출하기 위한 장치(100)가 개시되며, 이러한 장치는, 전극을 포함하는 X-선 흡수 층(110); 전극의 전압을 제 1 임계치(V1)와 비교하도록 구성된 제 1 전압 비교기(301); 전압을 제 2 임계치(V2)와 비교하도록 구성된 제 2 전압 비교기(302); X-선 흡수 층(110)에 의해 흡수된 X-선 광자들의 수를 기록하도록 구성된 계수기(320); 그리고 제어기(310)를 포함한다. 제어기(310)는, 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과한다고 제 1 전압 비교기(301)가 결정한 시간으로부터 시간 지연(TD1, TD2)을 시작하는 것; 시간 지연(TD1, TD2) 동안 제 2 전압 비교기(302)를 활성화시키는 것; 그리고 만약 시간 지연(TD1, TD2) 동안 전압의 절대값이 제 2 임계치(V2)의 절대값과 동일하거나 혹은 제 2 임계치(V2)의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 계수기(320)에 의해 기록된 수가 1만큼 증가하게 하는 것을 수행하도록 구성된다.

Description

반도체 X-선 검출기
본 명세서에서의 개시내용은 X-선 검출기(X-ray detector)들에 관한 것이며, 특히 반도체 X-선 검출기(semiconductor X-ray detector)들에 관한 것이다.
X-선 검출기들은 X-선들의 유속(flux), 공간적 분포(spatial distribution), 스펙트럼(spectrum) 혹은 다른 속성(property)들을 측정하는데 사용되는 디바이스(device)일 수 있다.
X-선 검출기들은 많은 응용분야에 대해 사용될 수 있다. 한 가지 중요한 응용분야는 영상화(imaging)이다. X-선 영상화는 방사선촬영(radiography) 기법이고, 그리고 사람의 신체와 같이 불-균일하게 구성된 불투명 물체의 내부 구조를 표출시키는데 사용될 수 있다.
영상화를 위한 초기 X-선 검출기들은 사진 플레이트(photographic plate)들 및 사진 필름(photographic film)들을 포함한다. 사진 플레이트는 광감성 유제(light-sensitive emulsion)의 코팅(coating)을 갖는 유리 플레이트(glass plate)일 수 있다. 사진 플레이트들이 사진 필름들로 대체되었을 지라도, 사진 플레이트들은 이들이 제공하는 월등한 품질 그리고 이들의 극도로 좋은 안정성으로 인해 특별한 상황에서 여전히 사용될 수 있다. 사진 필름은 광감성 유제의 코팅을 갖는 플라스틱 필름(plastic film)(예를 들어, 스트립(strip) 혹은 시트(sheet))일 수 있다.
1980년대에는, 광자극성 인광체(PhotoStimulable Phosphor, PSP) 플레이트들이 이용가능하게 되었다. PSP 플레이트는 그 격자(lattice) 내에 색 중심(color center)들을 갖는 인광체 물질을 함유할 수 있다. PSP 플레이트가 X-선에 노출되는 경우, X-선에 의해 여기(excite)된 전자들은 이들이 플레이트 표면에 걸친 레이저 빔 스캐닝(laser beam scanning)에 의해 자극을 받을 때까지 색 중심들 내에 갇혀 있다. 플레이트가 레이저에 의해 스캐닝됨에 따라, 그 갇혀 있는 여기된 전자들은 광을 발산하고, 이것은 광증배기 튜브(photomultiplier tube)에 의해 수집된다. 수집된 광은 디지털 영상(digital image)으로 변환된다. 사진 플레이트들 및 사진 필름들과는 대조적으로, PSP 플레이트들은 재사용될 수 있다.
또 하나의 다른 종류의 X-선 검출기들은 X-선 영상 증폭기(X-ray image intensifier)들이다. X-선 영상 증폭기의 구성요소(component)들은 일반적으로 진공에서 밀봉된다. 사진 플레이트들, 사진 필름들, 및 PSP 플레이트들과는 대조적으로, X-선 영상 증폭기들은 실시간 영상들을 생성할 수 있는데, 즉, 영상들의 생성을 위한 노출-후 처리(post-exposure processing)를 요구하지 않는다. X-선은 먼저 입력 인광체(예를 들어, 세슘 요오드화물(cesium iodide))에 부딪치고, 그리고 가시광(visible light)으로 변환된다. 그 다음에, 이러한 가시광은 광음극(photocathode)(예를 들어, 세슘(cesium) 및 안티몬(antimony) 화합물들을 함유하는 얇은 금속 층)에 부딪치고 전자들의 방출을 일으킨다. 방출되는 전자들의 수는 입사하는 X-선의 강도에 비례한다. 방출된 전자들은 전자 광학기(electron optics)를 통해 출력 인광체에 투사(project)되고, 그리고 출력 인광체로 하여금 가시광 영상(visible-light image)을 생성하도록 한다.
섬광체(scintillator)들은, 섬광체들(예를 들어, 소듐 요오드화물(sodium iodide))이 X-선을 흡수하고 가시광을 방출하며 그 다음에 이것이 가시광에 대한 적절한 영상 감지기(image sensor)에 의해 검출될 수 있다는 점에서, X-선 영상 증폭기들과 약간 유사하게 동작한다. 섬광체들 내에서, 가시광은 모든 방향으로 퍼지고 산란하며, 이에 따라 공간 해상도(spatial resolution)를 감소시킨다. 섬광체 두께를 감소시키는 것은 공간 해상도를 향상시키는데 도움을 주지만 이것은 또한 X-선의 흡수를 감소시킨다. 따라서, 섬광체는 흡수 효율과 해상도 간의 타협점을 찾아야만 한다.
반도체 X-선 검출기들은 X-선을 전기적 신호(electric signal)들로 직접 변환함으로써 이러한 문제를 대부분 극복한다. 반도체 X-선 검출기는 관심 있는 파장들에서의 X-선을 흡수하는 반도체 층을 포함할 수 있다. X-선 광자(X-ray photon)가 반도체 층에 흡수되는 경우, 복수의 전하 운반자(charge carrier)들(예를 들어, 전자들 및 정공들)이 발생되고 그리고 전기장 하에서 반도체 층 상의 전기적 접촉부(electrical contact)들을 향해 쓸린다. 현재 이용가능한 반도체 X-선 검출기들(예를 들어, 메디픽스(Medipix))에서 요구되는 처리 곤란한 열 관리는 넓은 면적 및 많은 수의 픽셀(pixel)들을 갖는 검출기의 생성을 어렵게 할 수 있거나 불가능하게 할 수 있다.
본 명세서에서 개시되는 것은 X-선을 검출하는데 적합한 장치이고, 이러한 장치는, 전극(electrode)을 포함하는 X-선 흡수 층; 전극의 전압을 제 1 임계치와 비교하도록 구성된 제 1 전압 비교기; 전압을 제 2 임계치와 비교하도록 구성된 제 2 전압 비교기; X-선 흡수 층에 의해 흡수된 X-선 광자들의 수를 기록(register)하도록 구성된 계수기(counter); 그리고 제어기를 포함하고, 여기서 제어기는, 전압의 절대값(absolute value)이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기가 결정한 시간으로부터 시간 지연(time delay)을 시작하도록 구성되고; 제어기는 시간 지연 동안(시작과 만료를 포함함) 제 2 전압 비교기를 활성화(activate)시키도록 구성되고; 제어기는, 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기가 결정한다면, 계수기에 의해 기록된 수가 1만큼 증가하게 하도록 구성된다. 제 1 전압 비교기와 제 2 전압 비교기는 동일한 구성요소일 수 있다. 전압의 절대값이 임계치의 절대값과 동일하거나 혹은 임계치의 절대값을 초과하는지 여부를 전압 비교기가 결정할 때, 전압 비교기가 반드시 절대값들을 비교할 필요는 없다. 대신, 전압 및 임계치가 모두 음수(negative)인 경우, 전압 비교기는 전압 및 임계치의 실제 값들을 비교할 수 있고, 전압이 임계치와 동등하거나 혹은 임계치보다 더 음의 값인 경우, 전압의 절대값은 임계치의 절대값과 동일하거나 혹은 임계치의 절대값을 초과한다.
일 실시예에 따르면, 장치는 또한, 전극에 전기적으로 연결되는 커패시터 모듈(capacitor module)을 포함하고, 여기서 커패시터 모듈은 전극으로부터 전하 운반자들을 수집하도록 구성된다.
일 실시예에 따르면, 제어기는 시간 지연이 시작될 때 혹은 만료될 때 제 2 전압 비교기를 활성화시키도록 구성된다. 일 실시예에 따르면, 제어기는 시간 지연이 시작될 때 혹은 시간 지연 동안 제 1 전압 비교기를 비활성화(deactivate)시키도록 구성된다. 일 실시예에 따르면, 제어기는, 시간 지연이 만료될 때, 또는 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기가 결정할 때, 제 2 전압 비교기를 비활성화시키도록 구성된다.
일 실시예에 따르면, 장치는 또한, 전압계(voltmeter)를 포함하고, 제어기는 시간 지연이 만료될 때 전압계로 하여금 전압을 측정하게 하도록 구성된다.
일 실시예에 따르면, 제어기는 시간 지연이 만료될 때 측정된 전압의 값에 근거하여 X-선 광자 에너지를 결정하도록 구성된다.
일 실시예에 따르면, 제어기는 전극을 전기적 접지(electrical ground)에 연결하도록 구성된다. 전기적 접지는 가상 접지(virtual ground)일 수 있다. 가상 접지(이것은 또한 "가상의 접지(virtual earth)"로 알려지기도 함)는 임의의 안정된 기준 전위에서 (그 기준 전위에 직접적으로 연결됨이 없이) 유지되는 회로의 노드(node)이다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 영(zero)이다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 0이 아니다.
일 실시예에 따르면, X-선 흡수 층은 다이오드(diode)를 포함한다.
일 실시예에 따르면, X-선 흡수 층은, 실리콘(silicon), 게르마늄(germanium), GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합을 포함한다.
일 실시예에 따르면, 장치는 섬광체를 포함하지 않는다.
일 실시예에 따르면, 장치는 픽셀들의 배열(array)을 포함한다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치 그리고 X-선 방출원(X-ray source)을 포함하는 시스템이고, 이러한 시스템은 인간의 흉부 혹은 복부에 관해 X-선 방사선촬영(X-ray radiography)을 수행하도록 구성된다.
일 실시예에 따른 시스템은 앞에서 설명된 장치 그리고 X-선 방출원을 포함하고, 이러한 시스템은 인간의 입(mouth)에 관해 X-선 방사선촬영을 수행하도록 구성된다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝(cargo scanning) 혹은 비-해체 검사(Non-Intrusive Inspection, NII) 시스템이고, 이러한 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 후방산란된 X-선(backscattered X-ray)을 사용하여 영상을 형성하도록 구성된다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템이고, 이러한 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 검사되는 물체(object)를 통과해 전송되는 X-선을 사용하여 영상을 형성하도록 구성된다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치 그리고 X-선 방출원을 포함하는 전신 스캐너 시스템(full-body scanner system)이다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치 그리고 X-선 방출원을 포함하는 X-선 컴퓨터 단층촬영(Computed Tomography, CT)(X-선 CT) 시스템이다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치, 전자 방출원(electron source) 그리고 전자적 광학 시스템(electronic optical system)을 포함하는 전자 현미경(electron microscope)이다.
본 명세서에서 개시되는 것은 앞에서 설명된 장치를 포함하는 시스템이고, 이러한 시스템은 X-선 망원경(X-ray telescope) 혹은 X-선 현미경(X-ray microscopy)이고, 또는 이러한 시스템은 유방촬영(mammography), 산업분야 결함 검출(industrial defect detection), 미세방사선촬영(microradiography), 주조 검사(casting inspection), 용접 검사(weld inspection), 혹은 디지털 감산 혈관촬영(digital subtraction angiography)을 수행하도록 구성된다.
본 명세서에서 개시되는 것은 방법이고, 이러한 방법은, X-선 흡수 층의 전극의 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과하는 시간으로부터 시간 지연을 시작하는 것; 시간 지연 동안(시작과 만료를 포함함) 제 2 회로를 활성화시키는 것; 그리고 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다면, X-선 흡수 층에 입사하는 X-선 광자의 계수(count)를 1만큼 증가시키는 것을 포함한다.
일 실시예에 따르면, 방법은 또한, 전극을 전기적 접지에 연결하는 것을 포함한다.
일 실시예에 따르면, 방법은 또한, 시간 지연이 만료될 때 전압을 측정하는 것을 포함한다.
일 실시예에 따르면, 방법은 또한, 시간 지연이 만료될 때의 전압의 값에 근거하여 X-선 광자 에너지를 결정하는 것을 포함한다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 영이다.
일 실시예에 따르면, 전압의 변화율은 시간 지연이 만료될 때 실질적으로 영이 아니다.
일 실시예에 따르면, 제 2 회로를 활성화시키는 것은 시간 지연이 시작될 때 혹은 만료될 때에 일어난다.
일 실시예에 따르면, 제 2 회로는 전압의 절대값을 제 2 임계치의 절대값과 비교하도록 구성된다.
일 실시예에 따르면, 방법은 또한, 시간 지연이 시작될 때 제 1 회로를 비활성화시키는 것을 포함한다.
일 실시예에 따르면, 제 1 회로는 전압의 절대값을 제 1 임계치의 절대값과 비교하도록 구성된다. 제 1 회로와 제 2 회로는 동일한 회로일 수 있다.
본 명세서에서 개시되는 것은 위상-대조 X-선 영상화(Phase-Contrast X-ray Imaging, PCI)에 적합한 시스템이고, 이러한 시스템은, 앞에서 설명된 장치, 제 2 X-선 검출기, 그리고 이격기(spacer)를 포함하며, 여기서 장치와 제 2 X-선 검출기는 이격기에 의해 떨어져 이격되어 있다.
일 실시예에 따르면, 장치 및 제 2 X-선 검출기는 물체의 영상을 동시에 각각 포착(capture)하도록 구성된다.
일 실시예에 따르면, 제 2 X-선 검출기는 장치와 동일하다.
본 명세서에서 개시되는 것은 위상-대조 X-선 영상화(PCI)에 적합한 시스템이고, 이러한 시스템은 앞에서 설명된 장치를 포함하며, 장치는 입사하는 X-선에 노출되어 있는 물체로 이동하여 물체의 영상들을 물체로부터 상이한 거리들에서 포착하도록 구성된다.
도 1a는, 일 실시예에 따른, 반도체 X-선 검출기를 도식적으로 보여준다.
도 1b는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 보여준다.
도 2는, 일 실시예에 따른, 도 1a에서의 검출기의 일부를 위에서 본 예시적 상면도를 보여준다.
도 3a 및 도 3b 각각은, 일 실시예에 따른, 도 1a 혹은 도 1b에서의 검출기의 전자적 시스템(electronic system)의 구성요소 도면을 보여준다.
도 4는, 일 실시예에 따른, X-선에 노출된 X-선 흡수 층의 저항기(resistor)의 전기적 접촉부 혹은 다이오드의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층 상에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 5는, 일 실시예에 따른, 도 4에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(noise)(예를 들어, 암전류(dark current))에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 6은, 일 실시예에 따른, 전자적 시스템이 입사하는 X-선 광자들을 더 높은 비율로 검출하도록 동작할 때, X-선에 노출된 X-선 흡수 층의 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 X-선 흡수 층에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 7은, 일 실시예에 따른, 도 6에서 보여진 방식으로 동작하는 전자적 시스템에서, 노이즈(예를 들어, 암전류)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다.
도 8은, 일 실시예에 따른, RST가 te 전에 만료되는 경우, 도 6에서 보여진 방식으로 동작하는 전자적 시스템에서, X-선 흡수 층에 입사하는 일련의 X-선 광자들이 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화를 도식적으로 보여준다.
도 9a는, 일 실시예에 따른, 도 4에서 보여진 바와 같이 동작하는 전자적 시스템과 같은 그러한 시스템을 사용하여 X-선을 검출하는데 적합한 방법에 대한 흐름도를 보여준다.
도 9b는, 일 실시예에 따른, 도 6에서 보여진 바와 같이 동작하는 전자적 시스템과 같은 그러한 시스템을 사용하여 X-선을 검출하는데 적합한 방법에 대한 흐름도를 보여준다.
도 10은, 일 실시예에 따른, 위상-대조 X-선 영상화(PCI)에 적합한 시스템을 도식적으로 보여준다.
도 11은, 일 실시예에 따른, 위상-대조 X-선 영상화(PCI)에 적합한 시스템을 도식적으로 보여준다.
도 12는, 일 실시예에 따른, 흉부 X-선 방사선촬영, 복부 X-선 방사선촬영, 등과 같은 의료적 영상화에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 13은, 일 실시예에 따른, 치아 X-선 방사선촬영에 적합한, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 시스템을 도식적으로 보여준다.
도 14는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 15는, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 또 하나의 다른 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다.
도 16은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전신 스캐너 시스템을 도식적으로 보여준다.
도 17은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 X-선 컴퓨터 단층촬영(X-선 CT) 시스템을 도식적으로 보여준다.
도 18은, 일 실시예에 따른, 본 명세서에서 설명되는 반도체 X-선 검출기를 포함하는 전자 현미경을 도식적으로 보여준다.
도 1a는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 도식적으로 보여준다. 반도체 X-선 검출기(100)는 X-선 흡수 층(110) 및 전자기기 층(electronics layer)(120)(예를 들어, ASIC)을 포함할 수 있는데, 여기서 전자기기 층(120)(예를 들어, ASIC)은 입사하는 X-선이 X-선 흡수 층(110) 내에서 발생시키는 전기적 신호들을 처리 혹은 분석하기 위한 층이다. 일 실시예에서, 반도체 X-선 검출기(100)는 섬광체를 포함하지 않는다. X-선 흡수 층(110)은 실리콘, 게르마늄, GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합과 같은 반도체 물질을 포함할 수 있다. 반도체는 관심 있는 X-선 에너지에 대해 높은 질량 감쇠 계수(mass attenuation coefficient)를 가질 수 있다. X-선 흡수 층(110)은 제 1 도핑된 영역(doped region)(111), 제 2 도핑된 영역(113)의 하나 이상의 개별 영역들(114)에 의해 형성되는 하나 이상의 다이오드들(예를 들어, p-i-n 혹은 p-n)을 포함할 수 있다. 제 2 도핑된 영역(113)은 선택사항인 진성 영역(intrinsic region)(112)에 의해 제 1 도핑된 영역(111)으로부터 분리될 수 있다. 개별 부분들(114)은 제 1 도핑된 영역(111) 혹은 진성 영역(112)에 의해 서로 분리된다. 제 1 도핑된 영역(111)과 제 2 도핑된 영역(113)은 반대 타입(types)의 도핑을 갖는다(예를 들어, 영역(111)이 p-타입이고 영역(113)이 n-타입이거나, 혹은 영역(111)이 n-타입이고 영역(113)이 p-타입임). 도 1a의 예에서, 제 2 도핑된 영역(113)의 개별 영역들(114) 각각은 제 1 도핑된 영역(111) 및 선택사항인 진성 영역(112)과 함께 다이오드를 형성한다. 다시 말해, 도 1a의 예에서, X-선 흡수 층(110)은 제 1 도핑된 영역(111)을 공유된 전극으로서 갖는 복수의 다이오드들을 갖는다. 제 1 도핑된 영역(111)도 또한 개별 부분들을 가질 수 있다.
도 1b는, 일 실시예에 따른, 반도체 X-선 검출기(100)를 보여준다. 반도체 X-선 검출기(100)는 X-선 흡수 층(110) 및 전자기기 층(120)(예를 들어, ASIC)을 포함할 수 있는데, 여기서 전자기기 층(120)(예를 들어, ASIC)은 입사하는 X-선이 X-선 흡수 층(110) 내에서 발생시키는 전기적 신호들을 처리 혹은 분석하기 위한 층이다. 일 실시예에서, 반도체 X-선 검출기(100)는 섬광체를 포함하지 않는다. X-선 흡수 층(110)은 실리콘, 게르마늄, GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합과 같은 반도체 물질을 포함할 수 있다. 반도체는 관심 있는 X-선 에너지에 대해 높은 질량 감쇠 계수를 가질 수 있다. X-선 흡수 층(110)은 다이오드를 포함하지 않을 수 있고, 하지만 저항기를 포함할 수 있다.
다이오드들을 포함하는 X-선 흡수 층(110)에 X-선 광자가 부딪치는 경우, X-선 광자는 흡수될 수 있고 다수의 메커니즘(mechanism)들에 의해 하나 이상의 전하 운반자들을 발생시킬 수 있다. X-선 광자는 10개 내지 100000개의 전하 운반자들을 발생시킬 수 있다. 전하 운반자들은 전기장 하에서 다이오드들 중 하나의 다이오드의 전극들로 표류(drift)할 수 있다. 전기장은 외부 전기장일 수 있다. 전기적 접촉부(119B)는 개별 부분들을 포함할 수 있고, 이러한 개별 부분들 각각은 개별 영역들(114)과 전기적으로 접촉한다. 일 실시예에서, 전하 운반자들은 단일 X-선 광자에 의해 발생된 전하 운반자들이 2개의 상이한 개별 영역들(114)에 의해 실질적으로 공유되지 않도록 하는 방향으로 표류할 수 있다(여기서 "실질적으로 공유되지 않는다"는 의미는 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 개별 영역들(114) 중 (전하 운반자들의 나머지가 있는 곳과는 다른) 상이한 개별 영역으로 흐름을 의미함). 일 실시예에서, 단일 X-선 광자에 의해 발생된 전하 운반자들은 2개의 상이한 개별 영역들(114)에 의해 공유될 수 있다. 도 2는 개별 영역들(114)의 4행×4열 배열(4-by-4 array)을 갖는 디바이스(100)의 일부를 위에서 본 예시적 상면도를 보여준다. 이러한 개별 영역들(114) 중 하나의 개별 영역의 풋프린트(footprint) 내에 입사하는 X-선 광자에 의해 발생된 전하 운반자들은 이러한 개별 영역들(114) 중 또 하나의 다른 개별 영역과 실질적으로 공유되지 않는다. 다시 말해, 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 하나의 개별 영역의 풋프린트를 넘어 흐른다. 개별 영역들(114) 각각으로 흐르는 표류 전류(drift current)를 측정함으로써, 혹은 개별 영역들(114) 각각의 전압의 변화율을 측정함으로써, 흡수된 X-선 광자들의 수(이것은 입사하는 X-선 강도와 관련됨), 그리고/또는 개별 영역들(114)의 풋프린트들 내에서의 X-선 광자들의 에너지들이 결정될 수 있다. 따라서, 입사하는 X-선 강도의 공간적 분포(예를 들어, 영상)는, 개별 영역들(114)의 배열 중 각각의 개별 영역으로 흐르는 표류 전류를 개별적으로 측정함으로써, 또는 개별 영역들(114)의 배열 중 각각의 개별 영역의 전압의 변화율을 개별적으로 측정함으로써, 결정될 수 있다. 개별 영역들(114) 각각의 풋프린트는 픽셀로 지칭될 수 있다. 픽셀들은 정사각형 배열, 삼각형 배열, 및 벌집형 배열(honeycomb array)과 같은 임의의 적절한 배열로 구조화될 수 있다. 픽셀들은 원형, 삼각형, 정사각형, 직사각형, 및 육각형과 같은 임의의 적절한 형상을 가질 수 있다. 픽셀들은 개별적으로 주소지정이 가능(addressable)할 수 있다.
다이오드들이 아닌 저항기를 포함하는 X-선 흡수 층(110)에 X-선 광자가 부딪치는 경우, X-선 광자는 흡수될 수 있고 다수의 메커니즘들에 의해 하나 이상의 전하 운반자들을 발생시킬 수 있다. X-선 광자는 10개 내지 100000개의 전하 운반자들을 발생시킬 수 있다. 전하 운반자들은 전기장 하에서 전기적 접촉부들(119A 및 119B)로 표류할 수 있다. 전기장은 외부 전기장일 수 있다. 전기적 접촉부(119B)는 개별 부분들을 포함한다. 일 실시예에서, 전하 운반자들은 단일 X-선 광자에 의해 발생된 전하 운반자들이 전기적 접촉부(119B)의 2개의 상이한 개별 영역들(114)에 의해 실질적으로 공유되지 않도록 하는 방향으로 표류할 수 있다(여기서 "실질적으로 공유되지 않는다"는 의미는 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 개별 부분들 중 (전하 운반자들의 나머지가 있는 곳과는 다른) 상이한 개별 부분으로 흐름을 의미함). 일 실시예에서, 단일 X-선 광자에 의해 발생된 전하 운반자들은 전기적 접촉부(119B)의 2개의 상이한 개별 부분들에 의해 공유될 수 있다. 전기적 접촉부(119B)의 이러한 개별 부분들 중 하나의 개별 부분의 풋프린트 내에 입사하는 X-선 광자에 의해 발생된 전하 운반자들은 전기적 접촉부(119B)의 이러한 개별 부분들 중 또 하나의 다른 개별 부분과 실질적으로 공유되지 않는다. 다시 말해, 이러한 전하 운반자들의 5%보다 적은, 혹은 2%보다 적은, 혹은 1%보다 적은 전하 운반자들이 전기적 접촉부(119B)의 하나의 개별 부분의 풋프린트를 넘어 흐른다. 전기적 접촉부(119B)의 개별 부분 각각으로 흐르는 표류 전류를 측정함으로써, 혹은 전기적 접촉부(119B)의 개별 부분들 각각의 전압의 변화율을 측정함으로써, 흡수된 X-선 광자들의 수(이것은 입사하는 X-선 강도와 관련됨), 그리고/또는 전기적 접촉부(119B)의 개별 부분들의 풋프린트들 내에서의 X-선 광자들의 에너지들이 결정될 수 있다. 따라서, 입사하는 X-선 강도의 공간적 분포(예를 들어, 영상)는, 전기적 접촉부(119B)의 개별 부분들의 배열 중 각각의 개별 부분으로 흐르는 표류 전류를 개별적으로 측정함으로써, 또는 전기적 접촉부(119B)의 개별 부분들의 배열 중 각각의 개별 부분의 전압의 변화율을 개별적으로 측정함으로써, 결정될 수 있다. 전기적 접촉부(119B)의 개별 부분들 각각의 풋프린트는 픽셀로 지칭될 수 있다. 픽셀들은 정사각형 배열, 삼각형 배열, 및 벌집형 배열과 같은 임의의 적절한 배열로 구조화될 수 있다. 픽셀들은 원형, 삼각형, 정사각형, 직사각형, 및 육각형과 같은 임의의 적절한 형상을 가질 수 있다. 픽셀들은 개별적으로 주소지정이 가능할 수 있다.
전자기기 층(120)은 X-선 흡수 층(110)에 입사하는 X-선 광자들에 의해 발생된 신호들을 처리 혹은 해석하는데 적합한 전자적 시스템(121)을 포함할 수 있다. 전자적 시스템(121)은 필터 회로망(filter network), 증폭기(amplifiers), 적분기(integrators), 및 비교기(comparators)와 같은 아날로그 회로를 포함할 수 있고, 또는 마이크로프로세서 및 메모리와 같은 디지털 회로를 포함할 수 있다. 전자적 시스템(121)은 다수의 픽셀들에 의해 공유되는 구성요소들을 포함할 수 있고, 또는 단일 픽셀에 전용으로 사용되는 구성요소들을 포함할 수 있다. 예를 들어, 전자적 시스템(121)은 각각의 픽셀에 전용으로 사용되는 증폭기, 그리고 모든 픽셀들 간에 공유되는 마이크로프로세서를 포함할 수 있다. 전자적 시스템(121)은 비아(via)들(131)에 의해 픽셀들에 전기적으로 연결될 수 있다. 비아들 간의 공간은 충전제 물질(filler material)(130)로 충전(fill)될 수 있으며, 이것은 전자기기 층(120)을 X-선 흡수 층(110)에 연결하는 연결의 기계적 안정성을 증가시킬 수 있다. 전자적 시스템(121)을 비아들을 사용함이 없이 픽셀들에 연결하는 다른 본딩 기법(bonding technique)들이 가능하다.
도 3a 및 도 3b 각각은, 일 실시예에 따른, 전자적 시스템(121)의 구성요소 도면을 보여준다. 전자적 시스템(121)은 제 1 전압 비교기(301), 제 2 전압 비교기(302), 계수기(320), 스위치(305), 전압계(306) 및 제어기(301)를 포함할 수 있다.
제 1 전압 비교기(301)는 다이오드(300)의 전극의 전압을 제 1 임계치와 비교하도록 구성된다. 다이오드는 제 1 도핑된 영역(111), 제 2 도핑된 영역(113)의 개별 영역들(114) 중 하나의 개별 영역, 그리고 선택사항인 진성 영역(112)에 의해 형성되는 다이오드일 수 있다. 대안적으로, 제 1 전압 비교기(301)는 전기적 접촉부(예를 들어, 전기적 접촉부(119B)의 개별 부분)의 전압을 제 1 임계치와 비교하도록 구성된다. 제 1 전압 비교기(301)는, 전압을 직접적으로 모니터링하도록 구성될 수 있고, 또는 임의의 기간에 걸쳐 다이오드 혹은 전기적 접촉부를 통해 흐른 전류를 적분(integrating)함으로써 전압을 계산하도록 구성될 수 있다. 제 1 전압 비교기(301)는 제어기(310)에 의해 제어가능하게 활성화 혹은 비활성화될 수 있다. 제 1 전압 비교기(301)는 연속 비교기(continuous comparator)일 수 있다. 다시 말해, 제 1 전압 비교기(301)는 연속적으로 활성화되도록 구성될 수 있고, 아울러 전압을 연속적으로 모니터링하도록 구성될 수 있다. 연속 비교기로서 구성된 제 1 전압 비교기(301)는 시스템(121)이 임의의 입사하는 X-선 광자에 의해 발생된 신호들을 놓칠 가능성을 감소시킨다. 연속 비교기로서 구성된 제 1 전압 비교기(301)는 입사하는 X-선 강도가 상대적으로 높을 때 특히 적합하다. 제 1 전압 비교기(301)는 클럭동작 비교기(clocked comparator)일 수 있는데, 이러한 클럭동작 비교기는 전력 소비가 더 낮은 혜택을 갖는다. 클럭동작 비교기로서 구성된 제 1 전압 비교기(301)는 시스템(121)으로 하여금 일부 입사하는 X-선 광자들에 의해 발생된 신호들을 놓쳐버리게 할 수 있다. 입사하는 X-선 강도가 낮은 경우, 입사하는 X-선 광자를 놓칠 가능성은 낮아지는데, 왜냐하면 2개의 연속하는 광자들 간의 시간 간격이 상대적으로 길기 때문이다. 따라서, 클럭동작 비교기로서 구성된 제 1 전압 비교기(301)는 입사하는 X-선 강도가 상대적으로 낮을 때 특히 적합하다. 제 1 임계치는 하나의 입사하는 X-선 광자가 다이오드 혹은 저항기에서 발생시킬 수 있는 최대 전압의 5-10%, 10%-20%, 20-30%, 30-40% 혹은 40-50%일 수 있다. 최대 전압은 입사하는 X-선 광자의 에너지(즉, 입사하는 X-선의 파장), X-선 흡수 층(110)의 물질, 그리고 다른 인자들에 따라 달라질 수 있다. 예를 들어, 제 1 임계치는 50 mV, 100 mV, 150 mV, 혹은 200 mV일 수 있다.
제 2 전압 비교기(302)는 전압을 제 2 임계치와 비교하도록 구성된다. 제 2 전압 비교기(302)는, 전압을 직접적으로 모니터링하도록 구성될 수 있고, 또는 임의의 기간에 걸쳐 다이오드 혹은 전기적 접촉부를 통해 흐른 전류를 적분함으로써 전압을 계산하도록 구성될 수 있다. 제 2 전압 비교기(302)는 연속 비교기일 수 있다. 제 2 전압 비교기(302)는 제어기(310)에 의해 제어가능하게 활성화 혹은 비활성화될 수 있다. 제 2 전압 비교기(302)가 비활성화되는 경우, 제 2 전압 비교기(302)의 전력 소비는 제 2 전압 비교기(302)가 활성화된 경우의 전력 소비의 1%보다 적을 수 있거나, 혹은 5%보다 적을 수 있거나, 혹은 10%보다 적을 수 있거나, 혹은 20%보다 적을 수 있다. 제 2 임계치의 절대값은 제 1 임계치의 절대값보다 크다. 본 명세서에서 사용되는 바와 같은 용어로서, 실수(real number) x의 "절대값(absolute value)" 혹은 "모듈러스(modulus)" |x|는 x의 부호에 관해 고려함이 없는 x의 비-음수적 값(non-negative value)이다. 다시 말해,
Figure pct00001
. 제 2 임계치는 제 1 임계치의 200%-300%일 수 있다. 제 2 임계치는 하나의 입사하는 X-선 광자가 다이오드 혹은 저항기에서 발생시킬 수 있는 최대 전압의 적어도 50%일 수 있다. 예를 들어, 제 2 임계치는 100 mV, 150 mV, 200 mV, 250 mV 혹은 300 mV일 수 있다. 제 2 전압 비교기(302)와 제 1 전압 비교기(301)는 동일한 구성요소일 수 있다. 다시 말해, 시스템(121)은 서로 다른 시간에 전압을 2개의 상이한 임계치들과 비교할 수 있는 하나의 전압 비교기를 가질 수 있다.
제 1 전압 비교기(301) 혹은 제 2 전압 비교기(302)는 하나 이상의 연산 증폭기(op-amp)들 혹은 임의의 다른 적절한 회로를 포함할 수 있다. 제 1 전압 비교기(301) 혹은 제 2 전압 비교기(302)는 입사하는 X-선의 높은 유속 하에서 시스템(121)이 동작할 수 있도록 하기 위해 높은 속도를 가질 수 있다. 하지만, 높은 속도를 갖는 것은 종종 전력 소비를 희생시킨다.
계수기(320)는 다이오드 혹은 저항기에 도달하는 X-선 광자들의 수를 기록하도록 구성된다. 계수기(320)는 소프트웨어 구성요소일 수 있거나(예를 들어, X-선 광자들의 수가 컴퓨터 메모리에 저장됨), 혹은 하드웨어 구성요소(예를 들어, 4017 IC 및 7490 IC)일 수 있다.
제어기(310)는 마이크로제어기 및 마이크로프로세서와 같은 하드웨어 구성요소일 수 있다. 제어기(310)는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기(301)가 결정한 시간으로부터 시간 지연을 시작하도록 구성된다(예를 들어, 전압의 절대값은 제 1 임계치의 절대값 아래로부터 제 1 임계치의 절대값과 동일한 값 혹은 제 1 임계치의 절대값보다 큰 값까지 증가함). 다이오드의 캐소드의 전압인지 아니면 애노드의 전압인지에 따라 혹은 어느쪽 전기적 접촉부가 사용되는지에 따라 전압은 음수 혹은 양수일 수 있기 때문에 여기서는 절대값이 사용된다. 제어기(310)는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다고 제 1 전압 비교기(301)가 결정하는 시간 전에, 제 1 전압 비교기(301)의 동작이 요구하지 않는 제 2 전압 비교기(302), 계수기(320) 및 임의의 다른 회로들을 비활성화된 상태로 유지시키도록 구성될 수 있다. 시간 지연은 전압이 안정화되기 전에 혹은 안정화된 후에(즉, 전압의 변화율이 실질적으로 영이 되기 전에 혹은 영이 된 후에) 만료될 수 있다. "전압의 변화율이 실질적으로 영이다"는 표현은 전압의 시간적 변화가 0.1%/ns보다 작은 것을 의미한다. "전압의 변화율이 실질적으로 영이 아니다"는 표현은 전압의 시간적 변화가 적어도 0.1%/ns인 것을 의미한다.
제어기(310)는 시간 지연 동안(시작과 만료를 포함함) 제 2 전압 비교기를 활성화시키도록 구성될 수 있다. 일 실시예에서, 제어기(310)는 시간 지연이 시작될 때 제 2 전압 비교기를 활성화시키도록 구성된다. 용어 "활성화"는 (예를 들어, 전압 펄스(voltage pulse) 혹은 로직 레벨(logic level)과 같은 신호의 전송, 전력 제공, 등을 행함으로써) 해당 구성요소가 동작 상태에 진입하도록 하는 것을 의미한다. 용어 "비활성화"는 (예를 들어, 전압 펄스 혹은 로직 레벨과 같은 신호의 전송, 전력 차단, 등을 행함으로써) 해당 구성요소가 비-동작 상태에 진입하도록 하는 것을 의미한다. 동작 상태는 비-동작 상태보다 더 높은 전력 소비(예를 들어, 10배 더 높은 전력 소비, 100배 더 높은 전력 소비, 1000배 더 높은 전력 소비)를 가질 수 있다. 제어기(310) 자체는, 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과하는 경우 제 1 전압 비교기(301)의 출력이 제어기(310)를 활성화시킬 때까지, 비활성화될 수 있다.
제어기(310)는, 만약 시간 지연 동안 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 계수기(320)에 의해 기록된 수가 1만큼 증가하게 하도록 구성될 수 있다.
제어기(310)는 시간 지연이 만료될 때 전압계(306)로 하여금 전압을 측정하게 하도록 구성될 수 있다. 제어기(310)는 전극을 전기적 접지에 연결하도록 구성될 수 있고, 이에 따라 전압은 재설정되게 되고, 전극에 축적된 임의의 전하 운반자들은 방전되게 된다. 일 실시예에서, 전극은 시간 지연이 만료된 후에 전기적 접지에 연결된다. 일 실시예에서, 전극은 유한의 재설정 기간(finite reset time period) 동안 전기적 접지에 연결된다. 제어기(310)는 스위치(305)를 제어함으로써 전극을 전기적 접지에 연결할 수 있다. 스위치는 전계-효과 트랜지스터(Field-Effect Transistor, FET)와 같은 트랜지스터일 수 있다.
일 실시예에서, 시스템(121)은 아날로그 필터 회로망(예를 들어, RC 회로망)을 갖지 않는다. 일 실시예에서, 시스템(121)은 아날로그 회로를 갖지 않는다.
전압계(306)는 자신이 측정한 전압을 아날로그 신호 혹은 디지털 신호로서 제어기(310)에 공급할 수 있다.
시스템(121)은 다이오드(300)의 전극 혹은 전기적 접촉부에 전기적으로 연결되는 커패시터 모듈(309)을 포함할 수 있고, 여기서 커패시터 모듈은 전극으로부터 전하 운반자들을 수집하도록 구성된다. 커패시터 모듈은 증폭기의 피드백 경로 내에 커패시터를 포함할 수 있다. 이와 같이 구성되는 증폭기는 용량성 트랜스임피던스 증폭기(Capacitive TransImpedance Amplifier, CTIA)로 지칭된다. CTIA는 증폭기가 포화되지 않도록 유지시킴으로써 높은 동적 범위를 갖고 있으며, 신호 경로 내에서 대역폭을 제한함으로써 신호-대-노이즈 비(signal-to-noise ratio)를 개선한다. 전극으로부터의 전하 운반자들은 일정 기간("통합 기간(integration period)")(예를 들어, 도 4에서 보여지는 바와 같이, t0 내지 t1 사이 혹은 t1 내지 t2 사이)에 걸쳐 커패시터에 축적된다. 통합 기간이 만료된 후에, 커패시터 전압은 표본화(sampling)되고, 그 다음에 재설정 스위치에 의해 재설정된다. 커패시터 모듈은 전극에 직접적으로 연결되는 커패시터를 포함할 수 있다.
도 4는, 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며(여기서, 전류는 저항기 혹은 다이오드에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어남), 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 전압은 시간에 대한 전류의 적분일 수 있다. 시간(t0)에서, X-선 광자는 다이오드 혹은 저항기에 부딪치고, 전하 운반자들이 다이오드 혹은 저항기에서 발생되기 시작하고, 전류가 다이오드의 전극 혹은 저항기를 통해 흐르기 시작하고, 그리고 전극 혹은 전기적 접촉부의 전압의 절대값이 증가하기 시작한다. 시간(t1)에서, 제 1 전압 비교기(301)는 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과한다고 결정하고, 그리고 제어기(310)는 시간 지연(TD1)을 시작하며, 그리고 제어기(310)는 TD1이 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 제어기(310)가 t1 전에 비활성화된다면, 제어기(310)는 t1에서 활성화된다. TD1 동안, 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 본 명세서에서 사용되는 바와 같은 시간 지연 "동안"이라는 용어는 시작과 만료(즉, 끝), 그리고 그 사이의 임의의 시간을 의미한다. 예를 들어, 제어기(310)는 TD1이 만료될 때 제 2 전압 비교기(302)를 활성화시킬 수 있다. 만약 TD1 동안 시간(t2)에서 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 제어기(310)는 계수기(320)에 의해 기록된 수가 1만큼 증가하도록 한다. 시간(te)에서, X-선 광자에 의해 발생된 모든 전하 운반자들은 X-선 흡수 층(110) 밖으로 표류한다. 시간(ts)에서, 시간 지연(TD1)은 만료된다. 도 4의 예에서, 시간(ts)은 시간(te) 이후에 존재하는데, 다시 말해 TD1은 X-선 광자에 의해 발생된 모든 전하 운반자들이 X-선 흡수 층(110) 밖으로 표류한 후에 만료된다. 따라서 ts에서 전압의 변화율은 실질적으로 영이다. 제어기(310)는 TD1이 만료된 때, 혹은 t2에서, 혹은 그 사이의 임의의 시간에 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다.
제어기(310)는 시간 지연(TD1)이 만료될 때 전압계(306)로 하여금 전압을 측정하게 하도록 구성될 수 있다. 일 실시예에서, 제어기(310)는 시간 지연(TD1)의 만료 이후 전압의 변화율이 실질적으로 영이 된 후에 전압계(306)로 하여금 전압을 측정하도록 한다. 이러한 순간에서의 전압은 X-선 광자에 의해 발생된 전하 운반자들의 양에 비례하는데, 이러한 전하 운반자들의 양은 X-선 광자의 에너지와 관련되어 있다. 제어기(310)는 전압계(306)가 측정한 전압에 근거하여 X-선 광자의 에너지를 결정하도록 구성될 수 있다. 에너지를 결정하는 한 가지 방법은 전압을 비닝(binning)함으로써 에너지를 결정하는 것이다. 계수기(320)는 각각의 빈(bin)에 대한 하위-계수기(sub-counter)를 가질 수 있다. X-선 광자의 에너지가 빈 내에 들어온다고 제어기(310)가 결정하는 경우, 제어기(310)는 해당하는 그 빈에 대한 하위-계수기에 기록된 수가 1만큼 증가하도록 할 수 있다. 따라서, 시스템(121)은 X-선 영상을 검출할 수 있고, 각각의 X-선 광자의 X-선 광자 에너지들을 분석(resolve)할 수 있다.
TD1이 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. RST 이후, 시스템(121)은 또 하나의 다른 입사하는 X-선 광자를 검출할 준비가 된다. 암시적으로, 도 4의 예에서 시스템(121)이 처리할 수 있는 입사하는 X-선 광자들의 비율은 1/(TD1+RST)에 의해 제한된다. 만약 제 1 전압 비교기(301)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전 임의의 시간에 제 1 전압 비교기(301)를 활성화시킬 수 있다. 만약 제어기(310)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전에 활성화될 수 있다.
도 5는, 도 4에서 보여진 방식으로 동작하는 시스템(121)에서, 노이즈(예를 들어, 암전류, 배경 방사선(background radiation), 산란된 X-선들, 형광 X-선들, 인접하는 픽셀들로부터의 공유된 전하들)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 시간(t0)에서, 노이즈가 시작한다. 만약 노이즈가 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크지 않다면, 제어기(310)는 제 2 전압 비교기(302)를 활성화시키지 않는다. 만약 노이즈가 제 1 전압 비교기(301)에 의해 결정되는 바와 같이 시간(t1)에서 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크다면, 제어기(310)는 시간 지연(TD1)을 시작하고, 그리고 제어기(310)는 TD1이 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. TD1 동안(예를 들어, TD1이 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 노이즈가 TD1 동안 전압의 절대값이 V2의 절대값을 초과하게 할 만큼 충분히 클 가능성은 매우 희박하다. 따라서, 제어기(310)는 계수기(320)에 의해 기록된 수가 증가하도록 하지 않는다. 시간(te)에서, 노이즈가 끝난다. 시간(ts)에서, 시간 지연(TD1)이 만료된다. 제어기(310)는 TD1이 만료될 때 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다. 제어기(310)는 만약 TD1 동안 전압의 절대값이 V2의 절대값을 초과하지 않는다면 전압계(306)로 하여금 전압을 측정하게 하지 않도록 구성될 수 있다. TD1이 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 노이즈의 결과로서 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 따라서, 시스템(121)은 노이즈 제거(noise rejection)에 있어 매우 효과적일 수 있다.
도 6은, 시스템(121)이 1/(TD1+RST)보다 더 높은 비율로 입사하는 X-선 광자들을 검출하도록 동작할 때, 저항기 혹은 다이오드에 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 전압은 시간에 대한 전류의 적분일 수 있다. 시간(t0)에서, X-선 광자는 다이오드 혹은 저항기에 부딪치고, 전하 운반자들이 다이오드 혹은 저항기에서 발생되기 시작하고, 전류가 다이오드의 전극 혹은 저항기의 전기적 접촉부를 통해 흐르기 시작하고, 그리고 전극 혹은 전기적 접촉부의 전압의 절대값이 증가하기 시작한다. 시간(t1)에서, 제 1 전압 비교기(301)는 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과한다고 결정하고, 그리고 제어기(310)는 TD1보다 짧은 시간 지연(TD2)을 시작하며, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 제어기(310)가 t1 전에 비활성화된다면, 제어기(310)는 t1에서 활성화된다. TD2 동안(예를 들어, TD2가 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 만약 TD2 동안 시간(t2)에서 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다고 제 2 전압 비교기(302)가 결정한다면, 제어기(310)는 계수기(320)에 의해 기록된 수가 1만큼 증가하도록 한다. 시간(te)에서, X-선 광자에 의해 발생된 모든 전하 운반자들은 X-선 흡수 층(110) 밖으로 표류한다. 시간(th)에서, 시간 지연(TD2)은 만료된다. 도 6의 예에서, 시간(th)은 시간(te) 이전에 존재하는데, 다시 말해 TD2는 X-선 광자에 의해 발생된 모든 전하 운반자들이 X-선 흡수 층(110) 밖으로 표류하기 전에 만료된다. 따라서 th에서 전압의 변화율은 실질적으로 영이 아니다. 제어기(310)는 TD2가 만료된 때, 혹은 t2에서, 혹은 그 사이의 임의의 시간에 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다.
제어기(310)는 TD2 동안 시간에 따른 전압으로부터 te에서의 전압을 추정(extrapolate)하도록 구성될 수 있고, 그리고 그 추정된 전압을 X-선 광자의 에너지를 결정하는데 사용하도록 구성될 수 있다.
TD2가 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 일 실시예에서, RST는 te 전에 만료된다. RST 이후 전압의 변화율은 실질적으로 영이 아닌데, 왜냐하면 X-선 광자에 의해 발생된 모든 전하 운반자들이 te 이전 RST가 만료될 때 X-선 흡수 층(110) 밖으로 표류하지 않았기 때문이다. 전압의 변화율은 te 이후 실질적으로 영이 되고, 전압은 te 이후 잔류 전압(residue voltage)(VR)으로 안정화된다. 일 실시예에서, RST는 te에서 혹은 te 이후에 만료하고, RST 이후 전압의 변화율은 실질적으로 영이 될 수 있는데, 왜냐하면 X-선 광자에 의해 발생된 모든 전하 운반자들이 te에서 X-선 흡수 층(110) 밖으로 표류하기 때문이다. RST 이후, 시스템(121)은 또 하나의 다른 입사하는 X-선 광자를 검출할 준비가 된다. 만약 제 1 전압 비교기(301)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전 임의의 시간에 제 1 전압 비교기(301)를 활성화시킬 수 있다. 만약 제어기(310)가 비활성화되었다면, 제어기(310)는 RST가 만료되기 전에 활성화될 수 있다.
도 7은, 도 6에서 보여진 방식으로 동작하는 시스템(121)에서, 노이즈(예를 들어, 암전류, 배경 방사선, 산란된 X-선들, 형광 X-선들, 인접하는 픽셀들로부터의 공유된 전하들)에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화(아래쪽 곡선)를 도식적으로 보여준다. 시간(t0)에서, 노이즈가 시작한다. 만약 노이즈가 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크지 않다면, 제어기(310)는 제 2 전압 비교기(302)를 활성화시키지 않는다. 만약 노이즈가 제 1 전압 비교기(301)에 의해 결정되는 바와 같이 시간(t1)에서 전압의 절대값이 V1의 절대값을 초과하게 할 만큼 충분히 크다면, 제어기(310)는 시간 지연(TD2)을 시작하고, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. TD2 동안(예를 들어, TD2가 만료될 때), 제어기(310)는 제 2 전압 비교기(302)를 활성화시킨다. 노이즈가 TD2 동안 전압의 절대값이 V2의 절대값을 초과하게 할 만큼 충분히 클 가능성은 매우 희박하다. 따라서, 제어기(310)는 계수기(320)에 의해 기록된 수가 증가하도록 하지 않는다. 시간(te)에서, 노이즈가 끝난다. 시간(th)에서, 시간 지연(TD2)이 만료된다. 제어기(310)는 TD2가 만료될 때 제 2 전압 비교기(302)를 비활성화시키도록 구성될 수 있다. TD2가 만료된 이후, 제어기(310)는 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하여 노이즈의 결과로서 전극에 축적된 전하 운반자들이 접지로 흐를 수 있도록 하고 전압의 재설정이 일어나도록 한다. 따라서, 시스템(121)은 노이즈 제거에 있어 매우 효과적일 수 있다.
도 8은, RST가 te 전에 만료되는 경우, 도 6에서 보여진 방식으로 동작하는 시스템(121)에서, 저항기 혹은 다이오드에 입사하는 일련의 X-선 광자들이 발생시킨 전하 운반자들에 의해 일어나 전극을 통해 흐르는 전류의 시간적 변화(위쪽 곡선)를 도식적으로 보여주며, 아울러 그 전극의 전압의 대응하는 시간적 변화를 도식적으로 보여준다. 각각의 입사하는 X-선 광자가 발생시킨 전하 운반자들에 의해 일어난 전압 곡선은 해당하는 그 광자 이전의 잔류 전압에 의해 편차(offset)를 갖고 있다. 잔류 전압의 절대값은 각각의 입사하는 광자와 함께 연속적으로 증가한다. 잔류 전압의 절대값이 V1을 초과하는 경우(도 8에서 점선으로 된 사각형 부분 참조), 제어기는 시간 지연(TD2)을 시작하고, 그리고 제어기(310)는 TD2가 시작될 때 제 1 전압 비교기(301)를 비활성화시킬 수 있다. 만약 TD2 동안 다른 어떤 X-선 광자도 다이오드 혹은 저항기에 입사하지 않는다면, 제어기는 TD2가 끝날 때 재설정 기간(RST) 동안 전극을 전기적 접지에 연결하고, 이에 따라 잔류 전압이 재설정되게 된다. 따라서, 잔류 전압은 계수기(320)에 의해 기록된 수가 증가되도록 하지 않는다.
도 9a는, 도 4에서 보여진 바와 같이 동작하는 시스템(121)과 같은 그러한 시스템을 사용하여 X-선을 검출하는데 적합한 방법에 대한 흐름도를 보여준다. 단계(901)에서는, 예를 들어, 제 1 전압 비교기(301)를 사용하여, X-선에 노출된 저항기의 전기적 접촉부 혹은 다이오드의 전극의 전압을 제 1 임계치와 비교한다. 단계(902)에서는, 예를 들어, 제어기(310)로, 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과하는지 여부를 결정한다. 만약 전압의 절대값이 제 1 임계치의 절대값과 동일하지 않거나 혹은 제 1 임계치의 절대값을 초과하지 않는다면, 방법은 단계(901)로 되돌아 간다. 만약 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다면, 계속해서 단계(903)로 진행한다. 단계(903)에서는, 예를 들어, 제어기(310)를 사용하여, 시간 지연(TD1)을 시작한다. 단계(904)에서는, 예를 들어, 제어기(310)를 사용하여, 시간 지연(TD1) 동안(예를 들어, TD1이 만료될 때) 회로(예를 들어, 제 2 전압 비교기(301) 혹은 계수기(320))를 활성화시킨다. 단계(905)에서는, 예를 들어, 제 2 전압 비교기(302)를 사용하여, 전압을 제 2 임계치와 비교한다. 단계(906)에서는, 예를 들어, 제어기(310)를 사용하여, 전압의 절대값이 제 2 임계치(V2)의 절대값과 동일하거나 혹은 제 2 임계치(V2)의 절대값을 초과하는지 여부를 결정한다. 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하지 않거나 혹은 제 2 임계치의 절대값을 초과하지 않는다면, 방법은 단계(910)로 간다. 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다면, 계속해서 단계(907)로 진행한다. 단계(907)에서는, 예를 들어, 제어기(310)를 사용하여, 계수기(320)에 기록된 수가 1만큼 증가하도록 한다. 선택사항인 단계(908)에서는, 예를 들어, 전압계(306)를 사용하여, 시간 지연(TD1)이 만료될 때 전압을 측정한다. 선택사항인 단계(909)에서는, 예를 들어, 제어기(310)를 사용하여, 단계(908)에서 측정된 전압을 근거로 X-선 광자 에너지를 결정한다. 에너지 빈들 각각에 대한 계수기가 존재할 수 있다. X-선 광자 에너지를 측정한 이후, 그 광자 에너지가 속한 빈에 대한 계수기는 1만큼 증가될 수 있다. 방법은 단계(909) 이후 단계(910)로 간다. 단계(910)에서는, 예를 들어, 다이오드의 전극 혹은 저항기의 전기적 접촉부를 전기적 접지에 연결함으로써, 전압을 전기적 접지로 재설정한다. 단계(908) 및 단계(909)는 예를 들어, 이웃하는 픽셀들이 단일 광자로부터 발생된 전하 운반자들의 많은 부분(예를 들어, 30%보다 많은 부분)을 공유하는 경우, 생략될 수 있다.
도 9b는, 도 6에서 보여진 바와 같이 동작하는 시스템(121)과 같은 그러한 시스템을 사용하여 X-선을 검출하는데 적합한 방법에 대한 흐름도를 보여준다. 단계(1001)에서는, 예를 들어, 제 1 전압 비교기(301)를 사용하여, X-선에 노출된 저항기의 전기적 접촉부 혹은 다이오드의 전극의 전압을 제 1 임계치와 비교한다. 단계(1002)에서는, 예를 들어, 제어기(310)로, 전압의 절대값이 제 1 임계치(V1)의 절대값과 동일하거나 혹은 제 1 임계치(V1)의 절대값을 초과하는지 여부를 결정한다. 만약 전압의 절대값이 제 1 임계치의 절대값과 동일하지 않거나 혹은 제 1 임계치의 절대값을 초과하지 않는다면, 방법은 단계(1001)로 되돌아 간다. 만약 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 제 1 임계치의 절대값을 초과한다면, 계속해서 단계(1003)로 진행한다. 단계(1003)에서는, 예를 들어, 제어기(310)를 사용하여, 시간 지연(TD2)을 시작한다. 단계(1004)에서는, 예를 들어, 제어기(310)를 사용하여, 시간 지연(TD2) 동안(예를 들어, TD2가 만료될 때) 회로(예를 들어, 제 2 전압 비교기(302) 혹은 계수기(320))를 활성화시킨다. 단계(1005)에서는, 예를 들어, 제 2 전압 비교기(302)를 사용하여, 전압을 제 2 임계치와 비교한다. 단계(1006)에서는, 예를 들어, 제어기(310)를 사용하여, 전압의 절대값이 제 2 임계치(V2)의 절대값과 동일하거나 혹은 제 2 임계치(V2)의 절대값을 초과하는지 여부를 결정한다. 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하지 않거나 혹은 제 2 임계치의 절대값을 초과하지 않는다면, 방법은 단계(1010)로 간다. 만약 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 제 2 임계치의 절대값을 초과한다면, 계속해서 단계(1007)로 진행한다. 단계(1007)에서는, 예를 들어, 제어기(310)를 사용하여, 계수기(320)에 기록된 수가 1만큼 증가하도록 한다. 방법은 단계(1007) 이후 단계(1010)로 진행한다. 단계(1010)에서는, 예를 들어, 다이오드의 전극 혹은 저항기의 전기적 접촉부를 전기적 접지에 연결함으로써, 전압을 전기적 접지로 재설정한다.
반도체 X-선 검출기(100)는 위상-대조 X-선 영상화(PCI)(이것은 또한 위상-감지 X-선 영상화(phase-sensitive X-ray imaging)로 알려지기도 함)를 위해 사용될 수 있다. PCI는 물체에 의해 일어난 X-선 빔(X-ray beam)의 위상 변이(phase shift)를 (위상 변이의 공간적 분포를 포함하여) 적어도 부분적으로 사용하여 물체의 영상을 형성하는 기법들을 포괄한다. 위상 변이를 획득하기 위한 한 가지 방법은 위상을 강도에서의 변동(variations)으로 변환하는 것이다.
PCI는 물체의 굴절률(refractive index)의 실수 부분(real part)의 3D-분포를 획득하기 위해 단층촬영 기법(tomographic techniques)과 결합될 수 있다. PCI는 종래의 강도-기반 X-선 영상화(예를 들어, 방사선촬영)보다 물체에서의 밀도 변동에 더 민감하다. PCI는 특히 연조직(soft tissues)을 영상화하는데 유용하다.
일 실시예에 따르면, 도 10은 PCI에 적합한 시스템(1900)을 도식적으로 보여준다. 시스템(1900)은 적어도 2개의 X-선 검출기들(1910 및 1920)을 포함할 수 있다. 2개의 X-선 검출기들 중 하나(1910) 혹은 모두는 본 명세서에서 설명되는 반도체 X-선 검출기(100)이다. X-선 검출기들(1910 및 1920)은 이격기(1930)에 의해 떨어져 이격되어 있을 수 있다. 이격기(1930)는 X-선을 거의 흡수하지 않을 수 있다. 예를 들어, 이격기(1930)는 매우 작은 질량 감쇠 계수를 가질 수 있다(예를 들어, 질량 감쇠 계수 < 10 cm2g-1, 혹은 < 1 cm2g-1, 혹은 < 0.1 cm2g-1, 혹은 < 0.01 cm2g-1). 이격기(1930)의 질량 감쇠 계수는 균일할 수 있다(예를 들어, 이격기(1930) 내의 모든 2개의 지점들 간의 변동이 5%보다 작거나, 혹은 1%보다 작거나 혹은 0.1%보다 작음). 이격기(1930)는 이격기(1930)를 통과하는 X-선의 위상에 대해 동일한 양의 변화를 일으킬 수 있다. 예를 들어, 이격기(1930)는 기체(gas)(예를 들어, 공기(air)), 진공 챔버(vacuum chamber)일 수 있고, 알루미늄, 베릴륨, 실리콘, 혹은 이들의 임의의 조합을 포함할 수 있다.
시스템(1900)은 영상화되는 물체(1960)에 의해 일어난 입사하는 X-선(1950)의 위상 변이를 획득하는데 사용될 수 있다. X-선 검출기들(1910 및 1920)은 2개의 영상들(즉, 강도 분포들)을 동시에 포착할 수 있다. X-선 검출기들(1910 및 1920)이 이격기(1930)에 의해 분리되어 있기 때문에, 2개의 영상들은 물체(1960)로부터 상이한 거리에 있다. 위상은, 예를 들어, 프레넬 회절 적분(Fresnel diffraction integral)의 선형화(linearization)에 근거하는 알고리즘들을 사용하여, 2개의 영상들로부터 결정될 수 있다.
일 실시예에 따르면, 도 11은 PCI에 적합한 시스템(1800)을 도식적으로 보여준다. 시스템(1800)은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함한다. 반도체 X-선 검출기(100)는 입사하는 X-선(1850)에 노출되어 있는 물체(1860)로 이동하여 물체(1860)의 영상들을 물체(1860)로부터 상이한 거리들에서 포착하도록 구성된다. 영상들은 반드시 동시에 포착되지 않을 수 있다. 위상은, 예를 들어, 프레넬 회절 적분의 선형화에 근거하는 알고리즘들을 사용하여, 영상들로부터 결정될 수 있다.
도 12는 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 시스템을 도식적으로 보여준다. 이러한 시스템은 흉부 X-선 방사선촬영, 복부 X-선 방사선촬영, 등과 같은 의료적 영상화를 위해 사용될 수 있다. 시스템은 X-선 방출원(1201)을 포함한다. X-선 방출원(1201)으로부터 방출된 X-선은 물체(1202)(예를 들어, 흉부, 손발, 복부와 같은 인간 신체 부분)를 관통하고, 물체(1202)의 내부 구조(예를 들어, 뼈, 근육, 지방, 및 장기(organs), 등)에 의해 상이한 정도(degrees)로 감쇠되고, 그리고 반도체 X-선 검출기(100)에 투사된다. 반도체 X-선 검출기(100)는 X-선의 강도 분포를 검출함으로써 영상을 형성한다.
도 13은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 시스템을 도식적으로 보여준다. 이러한 시스템은 치아 X-선 방사선촬영과 같은 의료적 영상화를 위해 사용될 수 있다. 시스템은 X-선 방출원(1301)을 포함한다. X-선 방출원(1301)으로부터 방출된 X-선은 포유류(예를 들어, 인간)의 입의 일부인 물체(1302)를 관통한다. 물체(1302)는 상악골(maxilla bone), 구개골(palate bone), 이빨(tooth), 하악골(mandible), 혹은 혀(tongue)를 포함할 수 있다. X-선은 물체(1302)의 상이한 구조들에 의해 상이한 정도로 감쇠되고, 그리고 반도체 X-선 검출기(100)에 투사된다. 반도체 X-선 검출기(100)는 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 이빨은 충치(dental caries), 감염 치아(dental infections), 치근막(periodontal ligament)보다 더 많은 X-선을 흡수한다. 치아 환자에 의해 수용되는 X-선 방사선의 조사량(dosage)은 전형적으로 작다(일련의 전체 입에 대해 대략 0.150 mSv).
도 14는 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다. 이러한 시스템은, 선적 컨테이너, 차량, 선박, 수하물, 등과 같은 운송 체계에서 물품(goods)을 검사 및 식별하는데 사용될 수 있다. 시스템은 X-선 방출원(1401)을 포함한다. X-선 방출원(1401)으로부터 방출된 X-선은 물체(1402)(예를 들어, 선적 컨테이너, 차량, 선박, 등)로부터 후방산란될 수 있고, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 물체(1402)의 상이한 내부 구조들은 X-선을 서로 다르게 후방산란시킬 수 있다. 반도체 X-선 검출기(100)는 후방산란된 X-선의 강도 분포 및/또는 후방산란된 X-선 광자들의 에너지들을 검출함으로써 영상을 형성한다.
도 15는 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 또 하나의 다른 화물 스캐닝 혹은 비-해체 검사(NII) 시스템을 도식적으로 보여준다. 이러한 시스템은 공공 운송기관 정류장 및 공항에서 수하물 검열을 수행하기 위해 사용될 수 있다. 시스템은 X-선 방출원(1501)을 포함한다. X-선 방출원(1501)으로부터 방출된 X-선은 하나의 수하물(1502)을 관통할 수 있고, 수하물의 내용물에 의해 상이하게 감쇠될 수 있으며, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 반도체 X-선 검출기(100)는 투과된 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 이러한 시스템은 수하물의 내용물이 드러나게 할 수 있고, 그리고 공공 운송기관에서 금지된 화기, 마약, 날카로운 무기, 인화성 물질과 같은 품목들을 식별할 수 있다.
도 16은 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함하는 전신 스캐너 시스템을 도식적으로 보여준다. 전신 스캐너 시스템은 보안 검열 목적으로 사람의 신체 상의 물체들을 물리적으로 옷을 벗도록 함이 없이 혹은 물리적으로 접촉함이 없이 검출할 수 있다. 전신 스캐너 시스템은 비-금속 물체들을 검출할 수 있다. 전신 스캐너 시스템은 X-선 방출원(1601)을 포함한다. X-선 방출원(1501)으로부터 방출되는 X-선은 검열되는 인간(1602) 및 그 신체 상의 물체들로부터 후방산란될 수 있고, 그리고 반도체 X-선 검출기(100)로 투사될 수 있다. 물체들 및 인간 신체는 X-선을 서로 다르게 후방산란시킬 수 있다. 반도체 X-선 검출기(100)는 후방산란된 X-선의 강도 분포를 검출함으로써 영상을 형성한다. 반도체 X-선 검출기(100) 및 X-선 방출원(1601)은 선형 방향으로 혹은 회전 방향으로 인간을 스캐닝하도록 구성될 수 있다.
도 17은 X-선 컴퓨터 단층촬영(X-선 CT) 시스템을 도식적으로 보여준다. X-선 CT 시스템은 스캐닝되는 물체의 특정 영역들의 단층촬영 영상들(가상 "슬라이스(slice)들")을 생성하기 위해 컴퓨터로-처리되는 X-선들을 사용한다. 단층촬영 영상들은 다양한 의료 분야에서 진단 및 치료 목적으로 사용될 수 있고, 또는 결함 검출(flaw detection), 고장 분석(failure analysis), 계측(metrology), 조립체 분석(assembly analysis), 및 역공학(reverse engineering)을 위해 사용될 수 있다. X-선 CT 시스템은 본 명세서에서 설명되는 반도체 X-선 검출기(100) 그리고 X-선 방출원(1701)을 포함한다. 반도체 X-선 검출기(100)와 X-선 방출원(1701)은 하나 이상의 원형 혹은 나선형 경로들을 따라 동기화되어 회전하도록 구성될 수 있다.
도 18은 전자 현미경을 도식적으로 보여준다. 전자 현미경은 전자들을 방출하도록 구성된 전자 방출원(1801)(이것은 또한 전자총(electron gun)으로 지칭됨)을 포함한다. 전자 방출원(1801)은 열이온(thermionic) 방출, 광음극(photocathode) 방출, 냉음극 방출(cold emission), 혹은 플라즈마 방출원과 같은 다양한 방출 메커니즘들을 가질 수 있다. 방출된 전자들은, 전자들을 성형하는 것, 가속화시키는 것, 혹은 집속시키는 것을 수행하도록 구성될 수 있는 전자적 광학 시스템(1803)을 통과한다. 그 다음에 전자들은 표본(sample)(1802)에 도달하고, 영상 검출기는 이로부터 영상을 형성할 수 있다. 전자 현미경은, 에너지-분산형 X-선 분광분석(Energy-Dispersive X-ray Spectroscopy, EDS)을 수행하기 위해, 본 명세서에서 설명되는 반도체 X-선 검출기(100)를 포함할 수 있다. EDS는 표본의 원소 분석 혹은 화학적 특성분석을 위해 사용되는 분석 기법이다. 전자들이 표본에 입사하는 경우, 전자들은 해당 표본으로부터 특유의 X-선들을 방출시킨다. 입사하는 전자들은 표본 내의 원자의 안쪽 껍질(inner shell) 안의 전자를 여기(excite)시킬 수 있으며, 여기된 전자는 껍질로부터 방출되고 아울러 전자가 있었던 곳에는 전자 구멍(electron hole)이 생성된다. 그 다음에, 바깥쪽 더 높은 에너지 껍질로부터의 전자가 그 구멍을 채우고, 그리고 더 높은 에너지 껍질과 더 낮은 에너지 껍질 간의 에너지에서의 차이가 X-선의 형태로 방출될 수 있다. 표본으로 방출된 X-선들의 수 및 에너지는 반도체 X-선 검출기(100)에 의해 측정될 수 있다.
본 명세서에서 설명되는 반도체 X-선 검출기(100)는 다른 응용분야를 가질 수 있는데, 예컨대, X-선 망원경, X-선 유방촬영, 산업분야 X-선 결함 검출, X-선 현미경, 혹은 미세방사선촬영, X-선 주조 검사, X-선 비-파괴 시험, X-선 용접 검사, X-선 디지털 감산 혈관촬영, 등에서 응용될 수 있다. 사진 플레이트, 사진 필름, PSP 플레이트, X-선 영상 증폭기, 섬광체, 혹은 다른 반도체 X-선 검출기 대신에 본 발명의 반도체 X-선 검출기(100)를 사용하는 것이 적합할 수 있다.
다양한 실시형태들 및 실시예들이 본 명세서에서 설명되었지만, 다른 실시형태들 및 실시예들이 본 발명의 기술분야에서 숙련된 자들에게는 명백하게 될 것이다. 본 명세서에서 개시되는 다양한 실시형태들 및 실시예들은 예시적 목적으로 제공되는 것이지 한정의 의미로 의도된 것이 아니며, 본 발명의 진정한 범위 및 사상은 아래의 청구항들에 의해 제시된다.

Claims (37)

  1. X-선(X-ray)을 검출하는데 적합한 장치로서, 상기 장치는,
    전극(electrode)을 포함하는 X-선 흡수 층과;
    상기 전극의 전압을 제 1 임계치와 비교하도록 되어 있는 제 1 전압 비교기와;
    상기 전압을 제 2 임계치와 비교하도록 되어 있는 제 2 전압 비교기와;
    상기 X-선 흡수 층에 의해 흡수된 X-선 광자(X-ray photon)들의 수를 기록(register)하도록 되어 있는 계수기(counter)와; 그리고
    제어기를 포함하고,
    상기 제어기는, 상기 전압의 절대값(absolute value)이 상기 제 1 임계치의 절대값과 동일하거나 혹은 상기 제 1 임계치의 절대값을 초과한다고 상기 제 1 전압 비교기가 결정한 시간으로부터 시간 지연(time delay)을 시작하도록 되어 있고,
    상기 제어기는 상기 시간 지연 동안 상기 제 2 전압 비교기를 활성화(activate)시키도록 되어 있고,
    상기 제어기는, 만약 상기 전압의 절대값이 상기 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과한다고 상기 제 2 전압 비교기가 결정한다면, 상기 계수기에 의해 기록된 상기 수가 1만큼 증가하게 하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  2. 제1항에 있어서,
    상기 장치는 또한, 상기 전극에 전기적으로 연결되는 커패시터 모듈(capacitor module)을 포함하고,
    상기 커패시터 모듈은 상기 전극으로부터 전하 운반자(charge carrier)들을 수집하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  3. 제1항에 있어서,
    상기 제어기는 상기 시간 지연이 시작될 때 혹은 만료될 때 상기 제 2 전압 비교기를 활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  4. 제1항에 있어서,
    상기 장치는 또한, 전압계(voltmeter)를 포함하고,
    상기 제어기는 상기 시간 지연이 만료될 때 상기 전압계로 하여금 상기 전압을 측정하게 하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  5. 제4항에 있어서,
    상기 제어기는 상기 시간 지연이 만료될 때 측정된 상기 전압의 값에 근거하여 X-선 광자 에너지를 결정하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  6. 제1항에 있어서,
    상기 제어기는 상기 전극을 전기적 접지(electrical ground)에 연결하도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  7. 제1항에 있어서,
    상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영(zero)인 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  8. 제1항에 있어서,
    상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영이 아닌 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  9. 제1항에 있어서,
    상기 X-선 흡수 층은 다이오드(diode)를 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  10. 제1항에 있어서,
    상기 X-선 흡수 층은, 실리콘(silicon), 게르마늄(germanium), GaAs, CdTe, CdZnTe, 혹은 이들의 임의의 조합을 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  11. 제1항에 있어서,
    상기 장치는 섬광체(scintillator)를 포함하지 않는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  12. 제1항에 있어서,
    상기 장치는 픽셀(pixel)들의 배열(array)을 포함하는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  13. 제1항의 상기 장치 그리고 X-선 방출원(X-ray source)을 포함하는 시스템으로서, 상기 시스템은 인간의 흉부 혹은 복부에 관해 X-선 방사선촬영(X-ray radiography)을 수행하도록 되어 있는 것을 특징으로 하는 시스템.
  14. 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 시스템으로서, 상기 시스템은 인간의 입(mouth)에 관해 X-선 방사선촬영을 수행하도록 되어 있는 것을 특징으로 하는 시스템.
  15. 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝(cargo scanning) 혹은 비-해체 검사(Non-Intrusive Inspection, NII) 시스템으로서, 상기 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 후방산란된 X-선(backscattered X-ray)을 사용하여 영상(image)을 형성하도록 되어 있는 것을 특징으로 하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템.
  16. 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템으로서, 상기 화물 스캐닝 혹은 비-해체 검사(NII) 시스템은 검사되는 물체(object)를 통과해 전송되는 X-선을 사용하여 영상을 형성하도록 되어 있는 것을 특징으로 하는 화물 스캐닝 혹은 비-해체 검사(NII) 시스템.
  17. 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 전신 스캐너 시스템(full-body scanner system).
  18. 제1항의 상기 장치 그리고 X-선 방출원을 포함하는 X-선 컴퓨터 단층촬영(Computed Tomography, CT)(X-선 CT) 시스템.
  19. 제1항의 상기 장치, 전자 방출원(electron source) 그리고 전자적 광학 시스템(electronic optical system)을 포함하는 전자 현미경(electron microscope).
  20. 제1항의 상기 장치를 포함하는 시스템으로서,
    상기 시스템은 X-선 망원경(X-ray telescope) 혹은 X-선 현미경(X-ray microscopy)이고, 또는
    상기 시스템은 유방촬영(mammography), 산업분야 결함 검출(industrial defect detection), 미세방사선촬영(microradiography), 주조 검사(casting inspection), 용접 검사(weld inspection), 혹은 디지털 감산 혈관촬영(digital subtraction angiography)을 수행하도록 되어 있는 것을 특징으로 하는 시스템.
  21. X-선 흡수 층의 전극의 전압의 절대값이 제 1 임계치의 절대값과 동일하거나 혹은 상기 제 1 임계치의 절대값을 초과하는 시간으로부터 시간 지연을 시작하는 단계와;
    상기 시간 지연 동안 제 2 회로를 활성화시키는 단계와; 그리고
    만약 상기 전압의 절대값이 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과한다면, 상기 X-선 흡수 층에 입사하는 X-선 광자의 계수(count)를 1만큼 증가시키는 단계를 포함하는 것을 특징으로 하는 방법.
  22. 제21항에 있어서,
    상기 방법은 또한, 상기 전극을 전기적 접지에 연결하는 단계를 포함하는 것을 특징으로 하는 방법.
  23. 제21항에 있어서,
    상기 방법은 또한, 상기 시간 지연이 만료될 때 상기 전압을 측정하는 단계를 포함하는 것을 특징으로 하는 방법.
  24. 제21항에 있어서,
    상기 방법은 또한, 상기 시간 지연이 만료될 때의 상기 전압의 값에 근거하여 X-선 광자 에너지를 결정하는 단계를 포함하는 것을 특징으로 하는 방법.
  25. 제21항에 있어서,
    상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영인 것을 특징으로 하는 방법.
  26. 제21항에 있어서,
    상기 전압의 변화율은 상기 시간 지연이 만료될 때 실질적으로 영이 아닌 것을 특징으로 하는 방법.
  27. 제21항에 있어서,
    상기 제 2 회로를 활성화시키는 단계는 상기 시간 지연이 시작될 때 혹은 만료될 때에 일어나는 것을 특징으로 하는 방법.
  28. 제21항에 있어서,
    상기 제 2 회로는 상기 전압의 절대값을 상기 제 2 임계치의 절대값과 비교하도록 되어 있는 것을 특징으로 하는 방법.
  29. 제21항에 있어서,
    상기 방법은 또한, 상기 시간 지연이 시작될 때 혹은 상기 시간 지연 동안 제 1 회로를 비활성화(deactivate)시키는 단계를 포함하는 것을 특징으로 하는 방법.
  30. 제29항에 있어서,
    상기 제 1 회로는 상기 전압의 절대값을 상기 제 1 임계치의 절대값과 비교하도록 되어 있는 것을 특징으로 하는 방법.
  31. 제21항에 있어서,
    상기 방법은 또한, 상기 시간 지연이 만료될 때, 또는 상기 전압의 절대값이 상기 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과할 때, 상기 제 2 회로를 비활성화시키는 단계를 포함하는 것을 특징으로 하는 방법.
  32. 위상-대조 X-선 영상화(Phase-Contrast X-ray Imaging, PCI)에 적합한 시스템으로서, 상기 시스템은,
    제1항의 상기 장치와;
    제 2 X-선 검출기와; 그리고
    이격기(spacer)를 포함하고,
    상기 장치와 상기 제 2 X-선 검출기는 상기 이격기에 의해 떨어져 이격되어 있는 것을 특징으로 하는 위상-대조 X-선 영상화(PCI)에 적합한 시스템.
  33. 제32항에 있어서,
    상기 장치 및 상기 제 2 X-선 검출기는 물체의 영상을 동시에 각각 포착(capture)하도록 되어 있는 것을 특징으로 하는 위상-대조 X-선 영상화(PCI)에 적합한 시스템.
  34. 제32항에 있어서,
    상기 제 2 X-선 검출기는 상기 장치와 동일한 것을 특징으로 하는 위상-대조 X-선 영상화(PCI)에 적합한 시스템.
  35. 위상-대조 X-선 영상화(PCI)에 적합한 시스템으로서,
    상기 시스템은 제1항의 상기 장치를 포함하고,
    상기 장치는 입사하는 X-선에 노출되어 있는 물체로 이동하여 상기 물체의 영상들을 상기 물체로부터 상이한 거리들에서 포착하도록 되어 있는 것을 특징으로 하는 위상-대조 X-선 영상화(PCI)에 적합한 시스템.
  36. 제1항에 있어서,
    상기 제어기는 상기 시간 지연이 시작될 때 상기 제 1 전압 비교기를 비활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
  37. 제1항에 있어서,
    상기 제어기는,
    상기 시간 지연이 만료된 때, 또는
    상기 전압의 절대값이 상기 제 2 임계치의 절대값과 동일하거나 혹은 상기 제 2 임계치의 절대값을 초과한다고 상기 제 2 전압 비교기가 결정한 때, 또는
    상기 만료된 때와 상기 결정한 때 사이의 임의의 시간에,
    상기 제 2 전압 비교기를 비활성화시키도록 되어 있는 것을 특징으로 하는 X-선을 검출하는데 적합한 장치.
KR1020177026651A 2015-04-07 2015-04-07 반도체 x-선 검출기 KR101941899B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075950 WO2016161544A1 (en) 2015-04-07 2015-04-07 Semiconductor x-ray detector

Publications (2)

Publication Number Publication Date
KR20170140175A true KR20170140175A (ko) 2017-12-20
KR101941899B1 KR101941899B1 (ko) 2019-01-24

Family

ID=57071690

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177026651A KR101941899B1 (ko) 2015-04-07 2015-04-07 반도체 x-선 검출기

Country Status (10)

Country Link
US (4) US10061038B2 (ko)
EP (1) EP3281039B1 (ko)
JP (1) JP6385591B2 (ko)
KR (1) KR101941899B1 (ko)
CN (1) CN108271415B (ko)
ES (1) ES2795831T3 (ko)
IL (1) IL254526B (ko)
SG (1) SG11201707507RA (ko)
TW (1) TWI672517B (ko)
WO (1) WO2016161544A1 (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016161544A1 (en) * 2015-04-07 2016-10-13 Shenzhen Xpectvision Technology Co.,Ltd. Semiconductor x-ray detector
CN108449982B (zh) * 2015-08-27 2020-12-15 深圳帧观德芯科技有限公司 利用能够分辨光子能量的检测器的x射线成像
EP3482231B1 (en) * 2016-07-05 2022-09-07 Shenzhen Xpectvision Technology Co., Ltd. Bonding of materials with dissimilar coefficients of thermal expansion
US10775323B2 (en) * 2016-10-18 2020-09-15 Kla-Tencor Corporation Full beam metrology for X-ray scatterometry systems
WO2018076220A1 (en) * 2016-10-27 2018-05-03 Shenzhen Xpectvision Technology Co., Ltd. Dark noise compensation in a radiation detector
EP3542186A4 (en) * 2016-11-15 2020-07-08 Shenzhen Xpectvision Technology Co., Ltd. CONFIGURED IMAGING SYSTEM FOR STATISTICALLY DETERMINING LOAD SHARING
EP3547919A4 (en) * 2016-12-05 2020-07-08 Shenzhen Xpectvision Technology Co., Ltd. X-RAY IMAGING SYSTEM AND X-RAY IMAGING METHOD
EP3571530A4 (en) * 2017-01-23 2020-08-12 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR WITH DYNAMICALLY ALLOCATED MEMORY FOR PARTICLE COUNTING
WO2018133087A1 (en) 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. X-ray detectors capable of identifying and managing charge sharing
WO2018133088A1 (en) 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector
EP3607355B1 (en) * 2017-04-01 2023-11-22 Shenzhen Xpectvision Technology Co., Ltd. A portable radiation detector system
CN110494989B (zh) 2017-04-21 2022-08-26 深圳帧观德芯科技有限公司 制造半导体辐射检测器的方法
WO2019019038A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. X-RAY DETECTOR CAPABLE OF MANAGING LOAD SHARING AT ITS PERIPHERY
WO2019019047A1 (en) * 2017-07-26 2019-01-31 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR AND METHODS OF PRODUCING DATA THEREFROM
WO2019080036A1 (en) * 2017-10-26 2019-05-02 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR CAPABLE OF PROCESSING NOISE
CN111226136B (zh) 2017-10-30 2023-07-18 深圳帧观德芯科技有限公司 辐射检测器中的暗噪声补偿
EP3704516A4 (en) * 2017-10-30 2021-05-19 Shenzhen Genorivision Technology Co. Ltd. HIGH TIME RESOLUTION LIDAR DETECTOR
US20190154852A1 (en) * 2017-11-16 2019-05-23 NueVue Solutions, Inc. Analog Direct Digital X-Ray Photon Counting Detector For Resolving Photon Energy In Spectral X-Ray CT
EP3743742A4 (en) * 2018-01-24 2021-07-28 Shenzhen Xpectvision Technology Co., Ltd. PACKAGING RADIATION DETECTORS IN AN IMAGE SENSOR
WO2019144344A1 (en) 2018-01-25 2019-08-01 Shenzhen Xpectvision Technology Co., Ltd. Radiation detector with quantum dot scintillator
EP3525229A1 (en) * 2018-02-13 2019-08-14 Universiteit Maastricht Incident particle localization method and system
WO2019200180A1 (en) * 2018-04-11 2019-10-17 University Of Florida Research Foundation X-ray backscatter systems and methods for performing imaging tomosynthesis
FI20187059A1 (en) 2018-04-25 2019-10-26 Athlos Oy An ultra-fast scanning X-ray machine
CN112040868A (zh) 2018-05-14 2020-12-04 深圳帧观德芯科技有限公司 用于对前列腺进行成像的装置
EP3821277A4 (en) 2018-07-12 2022-02-23 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTOR
CN112368602B (zh) * 2018-07-12 2023-03-14 深圳帧观德芯科技有限公司 具有高时间分辨率的光学雷达
EP3821278B1 (en) 2018-07-12 2023-10-11 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector
JP7170448B2 (ja) * 2018-07-25 2022-11-14 キヤノン株式会社 撮像素子、撮像装置及び信号処理方法
CN112639452A (zh) * 2018-09-07 2021-04-09 深圳帧观德芯科技有限公司 电镀控制系统和方法
EP3847482A4 (en) * 2018-09-07 2022-04-13 Shenzhen Xpectvision Technology Co., Ltd. RADIATION DETECTION DEVICE
WO2020047835A1 (en) * 2018-09-07 2020-03-12 Shenzhen Xpectvision Technology Co., Ltd. Systems and methods for imaging the thyroid
CN112702950A (zh) * 2018-09-07 2021-04-23 深圳帧观德芯科技有限公司 用辐射成像对象的装置和方法
CN112638257A (zh) * 2018-09-19 2021-04-09 深圳帧观德芯科技有限公司 成像方法
WO2020093239A1 (en) * 2018-11-06 2020-05-14 Shenzhen Xpectvision Technology Co., Ltd. Apparatus for imaging the prostate
CN113302485A (zh) * 2019-01-10 2021-08-24 深圳帧观德芯科技有限公司 基于外延层的x射线检测器及其制备方法
EP3948357A4 (en) 2019-03-29 2022-11-02 Shenzhen Xpectvision Technology Co., Ltd. SOLID-STATE X-RAY DETECTOR
JP7225432B2 (ja) * 2019-04-18 2023-02-20 プリズマティック、センサーズ、アクチボラグ 医療用透過x線撮影におけるx線の操作に使用されるインラインx線集束光学系
DE102019111567A1 (de) * 2019-05-03 2020-11-05 Wipotec Gmbh Verfahren und Vorrichtung zur Röntgeninspektion von Produkten, insbesondere von Lebensmitteln
TR201921921A2 (tr) * 2019-12-27 2021-07-26 Selcuk Ueniversitesi Modernize edilmiş konvansiyonel koroner anjiyografi cihazı ile daha verimli yeni bir sistem.
CN114945844A (zh) * 2020-02-27 2022-08-26 深圳帧观德芯科技有限公司 用于血糖水平检测的装置
CN115087394A (zh) * 2020-11-25 2022-09-20 深圳帧观德芯科技有限公司 成像方法
CN115135245A (zh) * 2020-11-25 2022-09-30 深圳帧观德芯科技有限公司 成像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050283A2 (en) * 2006-10-25 2008-05-02 Koninklijke Philips Electronics N.V. Apparatus, imaging device and method for detecting x-ray radiation
JP2008178731A (ja) * 2008-04-21 2008-08-07 Konica Minolta Holdings Inc 放射線画像処理装置
JP2010107312A (ja) * 2008-10-29 2010-05-13 Institute Of Physical & Chemical Research 半導体放射線検出装置
US20140334600A1 (en) * 2013-05-07 2014-11-13 Samsung Electronics Co., Ltd. X-ray detector, x-ray imaging apparatus having the same and method of controlling the x-ray imaging apparatus
JP2015021866A (ja) * 2013-07-19 2015-02-02 独立行政法人理化学研究所 放射線検出器のための信号データ処理方法、信号データ処理装置、および放射線検出システム

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6441888A (en) * 1987-08-07 1989-02-14 Kanegafuchi Chemical Ind X-ray detection apparatus
JP3220500B2 (ja) * 1992-03-16 2001-10-22 オリンパス光学工業株式会社 軟x線検出器
US5245191A (en) 1992-04-14 1993-09-14 The Board Of Regents Of The University Of Arizona Semiconductor sensor for gamma-ray tomographic imaging system
US5389792A (en) 1993-01-04 1995-02-14 Grumman Aerospace Corporation Electron microprobe utilizing thermal detector arrays
WO1996003773A1 (en) 1994-07-27 1996-02-08 Litton Systems Canada Limited Radiation imaging panel
US6169287B1 (en) * 1997-03-10 2001-01-02 William K. Warburton X-ray detector method and apparatus for obtaining spatial, energy, and/or timing information using signals from neighboring electrodes in an electrode array
FI111759B (fi) * 2000-03-14 2003-09-15 Planmed Oy Anturijärjestelmä ja menetelmä digitaalisessa röntgenkuvantamisessa
JP2002217444A (ja) 2001-01-22 2002-08-02 Canon Inc 放射線検出装置
US6791091B2 (en) 2001-06-19 2004-09-14 Brian Rodricks Wide dynamic range digital imaging system and method
GB2392308B (en) 2002-08-15 2006-10-25 Detection Technology Oy Packaging structure for imaging detectors
JP4414646B2 (ja) 2002-11-18 2010-02-10 浜松ホトニクス株式会社 光検出装置
JP3993817B2 (ja) * 2002-12-11 2007-10-17 株式会社日立製作所 欠陥組成分析方法及び装置
JP2004362905A (ja) 2003-06-04 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> 直接メタノール型燃料電池用電解質膜の製造方法
US20060289777A1 (en) 2005-06-29 2006-12-28 Wen Li Detector with electrically isolated pixels
US7231017B2 (en) * 2005-07-27 2007-06-12 Physical Optics Corporation Lobster eye X-ray imaging system and method of fabrication thereof
US7456409B2 (en) * 2005-07-28 2008-11-25 Carestream Health, Inc. Low noise image data capture for digital radiography
CN1947660B (zh) 2005-10-14 2010-09-29 通用电气公司 用于多管芯背光照明二极管的系统、方法和模块组件
EP1943545A2 (en) 2005-10-28 2008-07-16 Koninklijke Philips Electronics N.V. Method and apparatus for spectral computed tomography
CN101578535B (zh) 2006-07-10 2013-11-06 皇家飞利浦电子股份有限公司 能谱重建
CN101558325B (zh) 2006-12-13 2012-07-18 皇家飞利浦电子股份有限公司 用于对x射线光子进行计数的装置、成像设备和方法
JP4734224B2 (ja) 2006-12-18 2011-07-27 本田技研工業株式会社 バッファ層膜厚測定方法
US8050385B2 (en) 2007-02-01 2011-11-01 Koninklijke Philips Electronics N.V. Event sharing restoration for photon counting detectors
US7696483B2 (en) * 2007-08-10 2010-04-13 General Electric Company High DQE photon counting detector using statistical recovery of pile-up events
WO2010043926A2 (en) * 2007-09-27 2010-04-22 Koninklijke Philips Electronics N. V. Processing electronics and method for determining a count result, and detector for an x-ray imaging device
WO2009083849A2 (en) 2007-12-20 2009-07-09 Koninklijke Philips Electronics, N.V. Direct conversion detector
WO2009133481A2 (en) * 2008-04-30 2009-11-05 Koninklijke Philips Electronics N.V. Counting detector
CN101644780A (zh) 2008-08-04 2010-02-10 北京大学 一种闪烁晶体阵列探测装置
DE102008048688B4 (de) * 2008-09-24 2011-08-25 Paul Scherrer Institut Röntgen-CT-System zur Erzeugung tomographischer Phasenkontrast- oder Dunkelfeldaufnahmen
JP5606723B2 (ja) * 2008-12-25 2014-10-15 日本電子株式会社 シリコンドリフト型x線検出器
CA2650066A1 (en) * 2009-01-16 2010-07-16 Karim S. Karim Photon counting and integrating pixel readout architecture with dynamic switching operation
JP2010237643A (ja) 2009-03-09 2010-10-21 Fuji Xerox Co Ltd 表示媒体、書込装置、及び表示装置
DE102009055807B4 (de) 2009-11-26 2016-11-24 Siemens Healthcare Gmbh Schaltungsanordnung zur Zählung von Röntgenquanten einer Röntgenstrahlung mittels quantenzählender Detektoren sowie anwendungsspezifische integrierte Schaltung und Strahler-Detektor-System
WO2011070493A1 (en) * 2009-12-10 2011-06-16 Koninklijke Philips Electronics N.V. Apparatus for phase-contrast imaging comprising a displaceable x-ray detector element and method
CN101862200B (zh) 2010-05-12 2012-07-04 中国科学院上海应用物理研究所 一种快速x射线荧光ct方法
JP5208186B2 (ja) * 2010-11-26 2013-06-12 富士フイルム株式会社 放射線画像検出装置およびその駆動制御方法
EP3270185B1 (en) * 2011-02-08 2023-02-01 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
EP2490441A1 (en) * 2011-02-16 2012-08-22 Paul Scherrer Institut Single photon counting detector system having improved counter architecture
KR101761817B1 (ko) 2011-03-04 2017-07-26 삼성전자주식회사 대면적 엑스선 검출기
JP5508340B2 (ja) 2011-05-30 2014-05-28 富士フイルム株式会社 放射線画像検出装置及び放射線画像検出装置の制御方法
JP5875790B2 (ja) * 2011-07-07 2016-03-02 株式会社東芝 光子計数型画像検出器、x線診断装置、及びx線コンピュータ断層装置
WO2013012809A1 (en) 2011-07-15 2013-01-24 Brookhaven Science Associates, Llc Radiation detector modules based on multi-layer cross strip semiconductor detectors
JP6034786B2 (ja) 2011-07-26 2016-11-30 富士フイルム株式会社 放射線撮影装置及びその制御方法、並びに放射線画像検出装置
US8929507B2 (en) * 2011-10-19 2015-01-06 Kabushiki Kaisha Toshiba Method and system for substantially reducing ring artifact based upon ring statistics
WO2013057803A1 (ja) * 2011-10-19 2013-04-25 Oya Nagato 補正装置と解析表示装置を具備する放射線およびイオン検出装置および解析表示方法
CN103975580B (zh) 2011-12-09 2018-10-23 索尼半导体解决方案公司 成像设备、电子装置、光激励发光检测扫描器和成像方法
JP2013142578A (ja) 2012-01-10 2013-07-22 Shimadzu Corp 放射線検出器
CN103296035B (zh) 2012-02-29 2016-06-08 中国科学院微电子研究所 X射线平板探测器及其制造方法
JP5914404B2 (ja) * 2012-04-12 2016-05-11 富士フイルム株式会社 X線露出制御装置、x線画像検出装置及びx線画像撮影システム
DE102012213404B3 (de) 2012-07-31 2014-01-23 Siemens Aktiengesellschaft Verfahren zur Temperaturstabilisierung, Röntgenstrahlungsdetektor und CT-System
DE102012215041A1 (de) 2012-08-23 2014-02-27 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Halbleiterelementes eines direktkonvertierenden Röntgendetektors
DE102012215818A1 (de) 2012-09-06 2014-03-06 Siemens Aktiengesellschaft Strahlungsdetektor und Verfahren zur Herstellung eines Strahlungsdetektors
JP6061129B2 (ja) * 2012-09-14 2017-01-18 株式会社島津製作所 放射線検出器の製造方法
KR101410736B1 (ko) 2012-11-26 2014-06-24 한국전기연구원 면 광원 일체형의 다층 구조를 가지는 디지털 엑스-선 영상 검출기
US9791590B2 (en) * 2013-01-31 2017-10-17 Rapiscan Systems, Inc. Portable security inspection system
JP2015011018A (ja) * 2013-07-02 2015-01-19 株式会社東芝 試料分析方法、プログラムおよび試料分析装置
WO2015040703A1 (ja) * 2013-09-18 2015-03-26 株式会社吉田製作所 画像処理装置及びx線撮影装置
US9520439B2 (en) 2013-09-23 2016-12-13 Omnivision Technologies, Inc. X-ray and optical image sensor
CN103715214A (zh) 2013-12-02 2014-04-09 江苏龙信电子科技有限公司 一种高清晰度数字x射线平板探测器的制造方法
EP3059613A1 (en) * 2015-02-23 2016-08-24 Institut de Física d'Altes Energies Photon counting
WO2016161544A1 (en) * 2015-04-07 2016-10-13 Shenzhen Xpectvision Technology Co.,Ltd. Semiconductor x-ray detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050283A2 (en) * 2006-10-25 2008-05-02 Koninklijke Philips Electronics N.V. Apparatus, imaging device and method for detecting x-ray radiation
JP2010507797A (ja) * 2006-10-25 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X放射線を検出する装置、撮像装置及び方法
JP2008178731A (ja) * 2008-04-21 2008-08-07 Konica Minolta Holdings Inc 放射線画像処理装置
JP2010107312A (ja) * 2008-10-29 2010-05-13 Institute Of Physical & Chemical Research 半導体放射線検出装置
US20140334600A1 (en) * 2013-05-07 2014-11-13 Samsung Electronics Co., Ltd. X-ray detector, x-ray imaging apparatus having the same and method of controlling the x-ray imaging apparatus
JP2015021866A (ja) * 2013-07-19 2015-02-02 独立行政法人理化学研究所 放射線検出器のための信号データ処理方法、信号データ処理装置、および放射線検出システム

Also Published As

Publication number Publication date
JP2018511809A (ja) 2018-04-26
CN108271415A (zh) 2018-07-10
US20180017685A1 (en) 2018-01-18
IL254526A0 (en) 2017-11-30
US20200064499A1 (en) 2020-02-27
KR101941899B1 (ko) 2019-01-24
US10514472B2 (en) 2019-12-24
CN108271415B (zh) 2019-03-05
TWI672517B (zh) 2019-09-21
EP3281039B1 (en) 2020-03-11
JP6385591B2 (ja) 2018-09-05
IL254526B (en) 2019-07-31
US11013479B2 (en) 2021-05-25
SG11201707507RA (en) 2017-10-30
US20180224563A1 (en) 2018-08-09
US10061038B2 (en) 2018-08-28
EP3281039A1 (en) 2018-02-14
US20210007685A1 (en) 2021-01-14
ES2795831T3 (es) 2020-11-24
US10820867B2 (en) 2020-11-03
TW201640142A (zh) 2016-11-16
WO2016161544A1 (en) 2016-10-13
EP3281039A4 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
US11013479B2 (en) Semiconductor X-ray detector
KR101941898B1 (ko) 반도체 x-선 검출기
US10945688B2 (en) X-ray imaging system and a method of X-ray imaging
US10955570B2 (en) X-ray detectors capable of managing charge sharing
KR20180003533A (ko) 반도체 x-선 검출기를 제조하는 방법
US20210185203A1 (en) Image sensor having radiation detectors of different orientations
EP3908185B1 (en) An imaging system having radiation detectors of different orientations
US11941850B2 (en) Image sensor having a calibration pattern
US20210321962A1 (en) Image sensor having radiation detectors of different orientations
US11947059B2 (en) Semiconductor x-ray detector

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right