KR20170089426A - 이소프렌의 생산 방법 - Google Patents

이소프렌의 생산 방법 Download PDF

Info

Publication number
KR20170089426A
KR20170089426A KR1020170012696A KR20170012696A KR20170089426A KR 20170089426 A KR20170089426 A KR 20170089426A KR 1020170012696 A KR1020170012696 A KR 1020170012696A KR 20170012696 A KR20170012696 A KR 20170012696A KR 20170089426 A KR20170089426 A KR 20170089426A
Authority
KR
South Korea
Prior art keywords
isoprene
escherichia coli
seq
gene
gene encoding
Prior art date
Application number
KR1020170012696A
Other languages
English (en)
Other versions
KR101936825B1 (ko
Inventor
김선원
김정헌
차명석
장희정
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to PCT/KR2017/000990 priority Critical patent/WO2017131488A1/ko
Priority to US16/073,073 priority patent/US11746344B2/en
Publication of KR20170089426A publication Critical patent/KR20170089426A/ko
Application granted granted Critical
Publication of KR101936825B1 publication Critical patent/KR101936825B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01036Mevalonate kinase (2.7.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1229Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01034Hydroxymethylglutaryl-CoA reductase (NADPH) (1.1.1.34)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01194Acetoacetyl-CoA synthase (2.3.1.194)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/03Acyl groups converted into alkyl on transfer (2.3.3)
    • C12Y203/0301Hydroxymethylglutaryl-CoA synthase (2.3.3.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/04Phosphotransferases with a phosphate group as acceptor (2.7.4)
    • C12Y207/04002Phosphomevalonate kinase (2.7.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03027Isoprene synthase (4.2.3.27)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/03Intramolecular oxidoreductases (5.3) transposing C=C bonds (5.3.3)
    • C12Y503/03002Isopentenyl-diphosphate DELTA-isomerase (5.3.3.2)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 이소프렌 생산능을 가지며 recA 단백질을 코딩하는 유전자가 감쇄 또는 결실된 대장균을 탄소원을 포함하는 배지 중에서 배양하는 단계를 포함함으로써, 짧은 시간 내에 많은 양의 이소프렌을 생산할 수 있어, 이소프렌 생산 단가를 크게 낮출 수 있는 이소프렌의 생산 방법에 관한 것이다.

Description

이소프렌의 생산 방법{PREPARING METHOD FOR ISOPRENE}
본 발명은 이소프렌의 생산 방법에 관한 것이다.
이소프렌은 천연고무의 주요 구성성분인 동시에 합성고무 생산을 위한 기반화학물질이다. 이소프렌은 주로 타이어, 의료용품, 접착제 등을 만드는데 사용된다. 현재 이소프렌은 석유의 정제 과정을 통해 얻어지며, 최근 석유 가격의 등락, 이소프렌이 배제된 연료물질 생산에 초점을 맞춘 정제공정 그리고 합성고무의 수요 증가로 인하여 이소프렌의 가격은 꾸준히 상승하고 있는 추세이다. 또한 이소프렌은 수송용 연료와 제트연료로 사용이 가능하고, 다른 바이오연료에 비해 높은 에너지 효율과 낮은 온실가스를 배출하는 특징을 지니고 있어 드랍인(drop-in) 바이오 연료로서 적합하다.
미생물을 이용한 이소프렌의 생산은 순도가 매우 높아 고도의 정제과정이 필요 없고, 재생 가능한 자원과 단가가 낮은 원료로 생산이 가능하며 손쉽게 바이오연료와 바이오케미컬로 전환이 가능하다는 장점을 가지고 있다.
생물학적으로 이소프렌은 메발로네이트 경로(MVA pathway)와 맵 경로 (MEP pathway)에서 만들어진 DMAPP를 전구체로 이소프렌 신타제로부터 만들어진다(도 1). 포플러 종과 버드나무 종에서 이소프렌 생산과 방출에 대해서 처음 보고된 이후, 식물에서 이소프렌 배출 기작과 관련 효소에 대한 연구는 꾸준히 이어졌지만 미생물에서 이소프렌 생산과 미생물을 숙주로 활용한 이소프렌 생산에 대한 연구는 최근에서야 이루어지고 있다.
최근 세계적인 타이어제조 기업과 발효기업이 합작하여 석유 이외의 물질로부터 이소프렌을 대량 생산하는 방법에 대한 연구가 진행 중이다. 그 중 대표적인 그룹이 듀폰과 굿이어이다. 듀폰과 굿이어가 2008년 합작하여 미생물로부터 이소프렌 대량 생산을 위한 연구를 현재까지 수행 중이다. 이들은 다양한 포플러 종과 버드나무 종으로부터 이소프렌 신타제를 분리하여 효율을 비교하였으며, 전구물질 공급을 위한 다양한 대사경로를 조합하고 시험하였다. 현재 산업화의 80% 수준의 공정이 진행되었다고 보고되고 있다. 그러나, 이소프렌 생산성은 비록 높지만 많은 양의 탄소원을 소비하여 이루어지기 때문에 생산 효율이 낮은 문제점이 있다.
중국의 칭따오과학기술대학에서는 2012년부터 미생물을 이용한 이소프렌 생산 연구를 가속화하고 있다. 이들은 포플러 알바(Populus alba) 이소프렌 신타제와 효모(Saccharomyces cerevisiae)의 MVA 경로를 조합하여 대장균에서 최고 6.3g/L 생산을 달성하였다. 그러나, 단순 이소프렌 신타제와 전구체경로의 조합을 도입한 대장균 숙주로부터 이소프렌을 생산하였으며, 이소프렌 생산을 증가시키기 위해 이소프렌 생산에 영향을 미치는 숙주 미생물 고유 대사경로의 대사공학에 대한 고려를 하지 않아 배지에 첨가한 탄소원에 비해 낮은 이소프렌 생산성을 나타내는 단점이 있다.
그 외 다른 이소프렌 생산을 위한 다양한 생명공학 기업들과 석유화학 기업들간의 합작 연구들이 진행되고 있으나, 구체적인 연구결과들은 보고되고 있지 않다.
이러한 종래 기술에 의하면, 이소프렌 신타제와 전구체 생합성 경로인 메발로네이트 경로를 조합하고 대사공학 방법을 통해 이들 경로를 단순 최적화하는 방법을 통하여 미생물 숙주로부터 이소프렌을 생산해왔다. 이 같은 기술은 이소프렌을 생산하는 숙주 미생물의 전체적인 대사경로 효율성을 고려하지 않아서 투입되는 탄소원 기질에 비해 낮은 이소프렌 생산수율로 인하여 생산단가의 상승을 초래한다.
따라서, 미생물 발효를 통한 바이오연료 및 바이오케미칼 생산에서의 기질 비용이 차지하는 비중이 매우 높은 것을 고려할 때에 이소프렌 신타제와 전구체 생합성경로의 최적화 이외에 이소프렌 생산성에 영향을 미치는 숙주 미생물 고유대사경로의 엔지니어링을 통하여 이소프렌 생산성을 향상시키는 방법이 요구되고 있다.
한국공개특허 제2015-100666호
본 발명은 대장균의 고유 대사 경로를 엔지니어링하여 이소프렌 생산성을 극대화할 수 있는 이소프렌의 생산 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 구현예에 따른 이소프렌의 생산 방법은 이소프렌 생산능을 가지며, recA(recombinase A) 단백질을 코딩하는 유전자가 감쇄 또는 결실된 대장균을 탄소원을 포함하는 배지 중에서 배양하는 단계를 포함한다.
DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 등의 대장균 균주들이 생물전환반응에 의한 효소 생산에 산업적으로 많이 사용되고 있는데, 그 중, 생산성 측면에서 DH5α가 많이 사용된다. 한편, DH5α 균주는 티아민 생합성 유전자 결손 균주이므로 자체적으로 티아민 생산을 할 수 없는 문제가 있다. 이에, DH5α 이용시에는 배지에 티아민을 첨가해야 하는 비용적 부담이 있다.
한편, MG1655의 경우 생장 속도는 빠른 반면, 이소프렌 물질 생산 속도가 느린 단점이 있다. 본 발명자들은 상기 대장균 간 이소프렌 물질 생산 속도 차이가 어떠한 요인에 기인한 것인지 연구하여, recA 단백질이 이소프렌 생산 속도에 영향을 미치는 요인임을 발견하였다.
recA 단백질은 DNA 손상 복구 및 유지에 필요한 약 38kDa의 단백질로서, ATP가 존재하는 가운데 외가닥 DNA와 결합하는 것으로 활성화하여 ATPase의 작용을 나타내며, 2중가닥 DNA를 부분적으로 되감아서 외가닥의 상보적인 사슬과 수소결합을 형성시킴으로써 DNA 조합을 유발시키는 것으로 알려져 있다.
본 발명자들은 recA 단백질이 결실된 대장균이 보다 높은 이소프렌 생산량을 나타내는 것에 착안하여 본 발명을 고안하였다.
본 명세서에 있어서, 용어 "감쇄(attenuation)"는 대상 유전자의 발현이 모균주에 비하여 감소한 것을 나타낸다. 용어 "결실(deletion)"은 대상 유전자의 발현이 상실된 것을 나타낸다.
상기 감쇄 또는 결실은 유전자 서열의 변이, 예를 들면, 치환, 결실, 삽입 또는 그들의 조합에 의하여 발생할 수 있다. 상기 감쇄 또는 결실은 유전자 조절 부의 서열의 변이, 예를 들면, 치환, 결실, 삽입 또는 그들의 조합에 의하여 발생할 수 있다.
상기 대장균은 예를 들면 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합일 수 있으며, 균체 생장 속도 및 이소프렌 생산성의 측면에서 바람직하게는 MG1655일 수 있다.
recA 단백질을 코딩하는 유전자는 해당 대장균 균주의 recA 단백질을 코딩하는 유전자일 수 있다. 이는 NCBI genbank 등을 통해 공지되어 있다. 예를 들어, MG1655 균주의 recA 단백질을 코딩하는 유전자는 서열번호 76의 뉴클레오티드 서열을 갖는 것일 수 있다.
상기 대장균은 이소프렌 생산능을 갖는다. 본 명세서에서 이소프렌 생산능을 가지는 대장균은 이소프렌 생산에 필요한 효소를 내재적으로 발현하거나, 이들 효소를 코딩하는 유전자가 도입되어 이들 효소를 발현하는 미생물을 의미한다.
전술한 바와 같이 recA 단백질은 DNA 상동성 재조합에 관여하는 것인데, 본원에서 이소프렌 생산에 필요한 효소를 코딩하는 유전자가 도입된 경우에, 이들은 대장균 고유 유전자와 상동성이 없어 상동성 재조합이 일어날 수 없음에도 이소프렌 생산량이 증가되었다. 즉, 이소프렌 생산량 증가는 DNA 상동성 재조합 억제에 의한 것이 아닌 별개의 경로에 의한 것으로 판단된다. 이는 이소프렌 외에 다른 이소프레노이드에서는 관찰되지 않았다.
이소프렌 생산에 필요한 효소는 예를 들면 이소프렌 신타제 및 메발로네이트 경로에 관여하는 효소를 들 수 있다.
구체적으로, 상기 대장균은 이소프렌 신타제를 코딩하는 유전자로 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제(isoprene synthase)를 코딩하는 유전자를 내재적으로 또는 도입에 의해 갖는 것일 수 있다.
이소프렌 신타제를 코딩하는 유전자의 도입은 예를 들면 해당 리보솜 결합 부위가 강화된 플라스미드를 대장균에 형질전환시킴으로써 수행될 수 있다.
리보솜 결합 부위는 단백질 생합성 개시시에 mRNA가 리보솜과 결합하는 부위로서, 리보솜 결합 부위가 강화되면 이소프렌 신타제의 발현량이 증가할 수 있다.
리보솜 결합 부위의 강화는 예를 들면, 리보솜 결합 부위 서열의 전사시작비율(TIR: Translation Initiation rate) 값을 향상시키는 것으로 수행될 수 있다. 보다 구체적인 예를 들자면, 상기 이소프렌 신타제를 코딩하는 유전자는 그에 대응되는 리보솜 결합 부위 서열의 전사시작비율 값이 3,000 au 이상인 플라스미드에 도입된 것일 수 있다. 바람직하게는 5,000au, 보다 바람직하게는 10,000au, 더욱 바람직하게는 30,000au일 수 있다. 그러한 경우에, 이소프렌 신타제의 발현량이 현저히 증가될 수 있다. 그 상한은 특별히 한정되지 않으나 예를 들자면 100,000au일 수 있다.
전사시작비율 값은 리보솜 결합 부위와 전사시작 시점 사이의 서열을 변경함으로써 조절될 수 있다. 구체적인 예를 들자면 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제를 코딩하는 유전자의 경우, 리보솜 결합 부위와 전사시작 지점인 ATG까지의 서열을 기존 AGGAAACAGACC (전사시작비율 값 217 au)를 AGGAGGTAATAAACC (전사시작비율 값 39,327 au)로 변경함으로써 조절할 수 있다.
본 발명자들은 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제(isoprene synthase)의 발현을 증가시키기 위해 pTrc99A 벡터에서 리보솜 결합 부위 서열을 AGGAGGTAATAAACC로 변경하여 강화시킨 pTrc99SN 벡터를 이용하였으나, 이에 제한되는 것은 아니다. 또한, 특정 유전자에 대하여 특정 전사시작비율 값을 갖는 서열은 https://www.denovodna.com의 Reverse Engineer RBSs 프로그램을 사용하여 생성할 수도 있다.
도 1은 메발로네이트(MVA) 경로 및 맵(MEP) 경로를 포함한 이소프렌 생합성 경로를 나타낸 것으로, 이를 참조하면 메발로네이트 경로에 관여하는 효소는 acetoacetyl-CoA 신타제/HMG-CoA 리덕타제, HMG-CoA 신타제, 메발로네이트 카인아제, 메발로네이트 다이포스페이트 카복실아제, 포스포메발로네이트 카인아제 및 이소프레닐 파이로포스페이트 이소머라제이다.
상기 대장균은 예를 들면 엔테로코커스 속 (Enterococcus) 또는 스트렙토코커스 속 (Streptococcus) 또는 이들 조합의 메발로네이트계 경로에 관여하는 효소를 발현하는 것일 수 있다.
구체적으로, 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자로 서열번호 2의 엔테로코커스 페칼리스 (Enterococcus faecalis) 유래의 acetoacetyl-CoA 신타제와 HMG-CoA 리덕타제의 기능을 동시에 갖는 효소를 코딩하는 유전자, 서열번호 3의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 HMG-CoA 신타제를 코딩하는 유전자, 서열번호 4의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 카인아제를 코딩하는 유전자, 서열번호 5의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 다이포스페이트 카복실아제를 코딩하는 유전자 및 서열번호 6의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 포스포메발로네이트 카인아제를 코딩하는 유전자, 및 서열번호 7의 대장균 MG1655 (Escherichia coli MG1655) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자를 내재적으로 또는 도입에 의해 갖는 것일 수 있다.
또한, 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자는 증폭되거나, 증폭된 상태로 벡터를 통해 도입된 것일 수 있다. 그러한 경우에, 메발로네이트 경로에 관여하는 효소 발현이 증가되어, 균체 생장에 필요한 DMAPP를 충분히 공급할 수 있다. 이에, 균체 생장 저하를 막을 수 있다.
용어 "증폭(amplification)"은 유전자 카피의 증가 및/또는 유전자의 발현량 증가를 나타낸다. 상기 증폭은 일 양상으로 외래 유전자의 도입 또는 내재적 유전자의 카피 수의 증가에 의하여 이루어질 수 있다. 상기 증폭을 위해 유전자의 발현량을 늘릴 수 있도록 프로모터 또는 RBS(ribosomal binding site)를 대체할 수 있다.
또한, 상기 대장균은 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자로 서열번호 8의 사이네코 시스티스 (Synechocystis sp. PCC6803) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자, 서열번호 9의 스트렙토코쿠스 뉴모니아 (Streptococcus pneumoniae) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자 및 서열번호 10의 헤마토코쿠스 플라비아리스 (Haematococcus plavialis) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자 중 선택된 유전자를 내재적으로 또는 도입에 의해 더 갖는 것일 수 있고, 바람직하게는 서열번호 8의 사이네코 시스티스 (Synechocystis sp. PCC6803) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자를 더 갖는 것일 수 있다.
또한, 상기 대장균은 이소프렌 신타제를 코딩하는 유전자를 코딩하는 유전자 대신에 이소프렌 신타제와 이소프레닐 파이로포스페이트 이소머라제의 융합 단백질을 코딩하는 유전자를 가질 수 있다. 그러한 경우에 이소프렌 생산능이 더욱 향상될 수 있다. 해당 유전자는 벡터에 2개의 유전자를 클로닝하여 1개의 단백질로 발현되게 설계함으로써 얻어질 수 있다. 그 순서는 특별히 한정되지 않으며, 이소프렌 신타제를 코딩하는 유전자가 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자의 앞 또는 뒤에 오도록 설계할 수 있다.
보다 구체적으로, 상기 대장균은 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제(isoprene synthase)를 코딩하는 유전자를 코딩하는 유전자 대신에 서열번호 11의 포플러 트리코카파 유래의 이소프렌 신타제(서열번호 1)와 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 7)의 융합 단백질을 코딩하는 유전자(이소프렌 신타제를 코딩하는 유전자가 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자보다 앞에 위치), 서열번호 12의 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 7)와 포플러 트리코카파 유래의 이소프렌 신타제(서열번호 1)의 융합 단백질을 코딩하는 유전자(이소프렌 신타제를 코딩하는 유전자가 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자보다 뒤에 위치), 서열번호 13의 포플러 트리코카파 유래의 이소프렌 신타제(서열번호 1)와 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제(서열번호 8)의 융합 단백질을 코딩하는 유전자(이소프렌 신타제를 코딩하는 유전자가 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자보다 앞에 위치) 또는 서열번호 14의 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제 (서열번호 8)와 포플러 트리코카파 유래의 이소프렌 신타제 (서열번호 1)의 융합 단백질을 코딩하는 유전자(이소프렌 신타제를 코딩하는 유전자가 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자보다 뒤에 위치)를 갖는 것일 수 있다. 바람직하게는 서열번호 12의 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 7)와 포플러 트리코카파 유래의 이소프렌 신타제(서열번호 1)의 융합 단백질을 코딩하는 유전자를 갖는 것일 수 있다.
상기 이소프렌 신타제 및 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자는 각각 또는 하나의 플라스미드를 통해 대장균에 도입될 수 있다.
이소프렌 신타제 및 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자를 하나의 통합 플라스미드를 통해 미생물에 도입하는 경우, 상기 통합 플라스미드는 앰피실린 저항성 유전자(bla)(서열번호 18)를 카나마이신 저항성 유전자(nptII)(서열번호 19)로 치환한 것일 수 있다. 그러한 경우에, 플라스미드의 안정성 향상에 의해 이소프렌 생산량이 증가될 수 있다.
이소프렌 생산량 개선을 위해, 필요에 따라, 상기 통합 플라스미드의 도입시에 추가로 메발로네이트 경로에 관여하는 효소를 코딩하는 유전자를 포함하는 플라스미드를 더 도입할 수도 있다.
또한, 상기 대장균은 발효 부산물 생성 효소를 코딩하는 유전자가 감쇄 또는 결실된 것일 수 있다.
이소프렌 생산 반응 중에 발효에 의한 부산물로 아세테이트, 알코올, 락테이트, 아세토아세테이트, 포스포에놀파루베이트 등이 생성될 수 있는데, 이에 의해 메발로네이트 경로의 전구 물질인 아세틸-CoA가 소모된다. 결국, 이소프렌 생산 효율이 감소하게 된다. 발효는 예를 들면 이소프렌 생산과 더불어 혼합 유기산이 생성되는 발효일 수 있다.
그러나, 발효 부산물 생성 효소를 코딩하는 유전자가 감쇄 또는 결실되는 경우에는 전구 물질인 아세틸-CoA의 불필요한 소모를 막고, 이소프렌 생산성을 극대화 할 수 있다.
발효 부산물 생성 효소를 코딩하는 유전자는 예를 들면 락테이트 생성에 관여하는 dld, 아세토아세테이트 생성에 관여하는 atoD, atoA, 포스포에놀파루베이트 생성에 관여하는 pps 등을 들 수 있다. 상기 대장균은 이들 유전자 중 1개 이상의 유전자가 감쇄 또는 결실된 것일 수 있다. 바람직하게는 상기 유전자가 모두 감쇄 또는 결실된 것일 수 있다.
상기 유전자는 해당 대장균 균주 유래 서열일 수 있고, MG1655인 경우의 구체적인 예를 들면, dld는 서열번호 52의 뉴클레오티드 서열, atoAD는 서열번호 53의 뉴클레오티드 서열, pps는 서열번호 54의 뉴클레오티드 서열을 가지는 것일 수 있다.
또한, 발효 부산물 생성 효소를 코딩하는 유전자로 아세테이트 생성에 관여하는 ackA -pta, poxB, 알콜 생성에 관여하는 adhE, 락테이트 생성에 관여하는 ldhA 등을 더 예로 들 수 있다. 상기 대장균은 이들 유전자 중 1개 이상의 유전자가 감쇄 또는 결실된 것일 수 있다. 바람직하게는 상기 유전자가 모두 감쇄 또는 결실된 것일 수 있다.
상기 유전자는 해당 대장균 균주 유래 서열일 수 있고, MG1655인 경우의 구체적인 예를 들면, ackA-pta는 서열번호 48의 뉴클레오티드 서열, poxB는 서열번호 49의 뉴클레오티드 서열, adhE는 서열번호 50의 뉴클레오티드 서열, ldhA는 서열번호 51의 뉴클레오티드 서열을 가지는 것일 수 있다.
또한, 상기 대장균은 NudB 단백질을 코딩하는 유전자가 감쇄 또는 결실된 것일 수 있다.
NudB 단백질은 대장균의 내재(or 고유) 효소로서, 이소프렌의 전구물질인 IPP와 DMAPP를 각각 3-methyl-3-buten-1-ol과 3-methyl-2-buten-1-ol로의 전환을 촉매한다.
즉, NudB의 작용에 의해 이소프렌의 전구 물질이 감소됨으로써, 이소프렌 생성량이 저하되게 되는 바, 본 발명은 NudB 단백질을 코딩하는 유전자를 감소 또는 결실시킴으로써 이소프렌 생산량을 더욱 증가시킬 수 있다.
NudB 단백질을 코딩하는 유전자는 대장균의 공지된 NudB 서열일 수 있고, 구체적인 예를 들자면 MG1655 균주인 경우 서열번호 77의 뉴클레오티드 서열을 갖는 것일 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 대장균은 편모(flagellar)가 불활성화 또는 제거된 것일 수 있다.
편모는 대장균의 운동 기관으로, 대장균은 이를 통해 유영 운동을 하게 된다. 본 발명자는 편모를 불활성화 또는 제거시킴으로써 이소프렌 생산량을 더욱 증가시킬 수 있음을 발견하여 본 발명을 고안하였다.
편모를 불활성화시키거나 제거할 수 있는 것이라면 그 방법은 특별히 제한되지 않고, 예를 들자면 편모의 형성에 필수적인, 편모의 형성을 촉진하는 유전자를 감쇄 또는 결실시킴으로써 수행할 수 있다.
구체적으로는 fliF, fliG, fliH, fliI, fliJ 및 fliK로 이루어진 군에서 선택된 1개 이상의 유전자를 결실 또는 불활성화시킬 수 있다.
예를 들면, fliF은 서열번호 87, fliG은 서열번호 88, fliH은 서열번호 89, fliI은 서열번호 90, fliJ은 서열번호 91, fliK은 서열번호 92의 뉴클레오티드 서열을 가지는 것일 수 있다.
또한, 상기 각각의 서열 외에도 상기 서열들을 포함하는 오페론이 결손 또는 불활성화된 것일 수도 있다.
상기 서열들을 포함하는 오페론은 예를 들면 서열번호 93의 뉴클레오티드 서열을 가질 수 있다.
배양은 합성, 반합성, 또는 복합 배양 배지 상에서 수행될 수 있다. 배양 배지로는 탄소원, 질소원, 비타민 및 미네랄로 구성된 배지를 사용할 수 있다. 예를 들어, TB (Terrific medium) 액체 배지 및 단백질 발현 물질이 첨가된 액체 배지를 사용할 수 있다.
탄소원으로는 전분, 포도당, 자당, 갈락토스, 과당, 글리세롤 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 사용할 수 있으며, 바람직하게는 글리세롤이다. 질소원으로는 황산암모늄, 질산암모늄, 질산나트륨, 글루탐산, 카사미노산, 효모추출물, 펩톤, 트립톤, 대두박 및 이들의 혼합물로 이루어진 군으로부터 선택된 것을 사용할 수 있으며, 바람직하기로는 트립톤이다.
배양은 통상의 대장균 배양 조건으로 수행될 수 있다. 배양은 예를 들어 약 15-45℃, 예를 들면, 15-44℃, 15-43℃, 15-42℃, 15-41℃, 15-40℃, 15-39℃, 15-38℃, 15-37℃, 15-36℃, 15-35℃, 15-34℃, 15-33℃, 15-32℃, 15-31℃, 15-30℃, 20-45℃, 20-44℃, 20-43℃, 20-42℃, 20-41℃, 20-40℃, 20-39℃, 20-38℃, 20-37℃, 20-36℃, 20-35℃, 20-34℃, 20-33℃, 20-32℃, 20-31℃, 20-30℃, 25-45℃, 25-44℃, 25-43℃, 25-42℃, 25-41℃, 25-40℃, 25-39℃, 25-38℃, 25-37℃, 25-36℃, 25-35℃, 25-34℃, 25-33℃, 25-32℃, 25-31℃, 25-30℃, 27-45℃, 27-44℃, 27-43℃, 27-42℃, 27-41℃, 27-40℃, 27-39℃, 27-38℃, 27-37℃, 27-36℃, 27-35℃, 27-34℃, 27-33℃, 27-32℃, 27-31℃ 또는 27-30℃에서 수행될 수 있다.
배양액 중의 배양 배지를 제거하고 농축된 균체 만을 회수하거나 제거하기 위해 원심분리 또는 여과과정을 거칠 수 있으며 이러한 단계는 당업자의 필요에 따라 수행할 수 있다. 농축된 균체는 통상적인 방법에 따라 냉동하거나 냉동건조하여 그 활성을 잃지 않도록 보존할 수 있다.
배양의 일 예에 있어서, 배양은 탄소원으로서 글리세롤을 포함하는 배지에서 이루어지는 것일 수 있다. 글리세롤은 배지 중의 유일한 탄소원일 수 있다. 0.5-5.0%(w/v), 예를 들면, 0.5-4.5%(w/v), 0.5-4.0%(w/v), 0.5-3.5%(w/v), 0.5-3.0%(w/v), 0.5-2.5%(w/v), 0.5-2.0%(w/v), 1-5.0%(w/v), 1-4.5%(w/v), 1-4.0%(w/v), 1-3.5%(w/v), 1-3.0%(w/v) 또는 1-2.5%(w/v)의 글리세롤을 포함하는 배지에서 이루어지는 것일 수 있다. 상기 배지는 글리세롤이 첨가된 TB 배지일 수 있다. TB 배지는 리터당 24g yeast extract, 12g 트립톤, 9.4g K2HPO4, 2.2g KH2PO4 (pH 7.0)이다.
본 발명의 일 구체예에 따르면 대장균의 경우 상기 배양하는 단계에서 상기 배지는 1 내지 3.0부피% 농도의 글리세롤을 포함하고, 상기 에세리키아 속 미생물은 대장균 MG1655이고, 상기 배양하는 단계는 TB 배지 50 ml, 25 내지 35℃에서 24 내지 48시간 동안 배양시키는 것일 수 있다.
또한, 상기 배지는 대장균의 이소프렌 생산에 필요한 단백질의 발현량을 증가시키는 발현유도제를 더 포함할 수 있다.
이에 의해 이소프렌 생산량이 더욱 개선될 수 있다.
발현 유도제는 당 분야에 공지된 것이 제한없이 사용될 수 있으며, 예를 들면, IPTG(Isopropyl β-D-1-thiogalactopyranoside), 락토스(lactose)일 수 있고, 바람직하게는 락토스일 수 있다.
발현 유도제는 예를 들면 1g/l 내지 20g/l, 구체적으로는 1g/l 내지 10g/l의 함량으로 포함될 수 있으나, 이에 제한되는 것은 아니다.
또한, 상기 배지는 Mg2 +를 더 포함할 수 있다.
이에 의해 이소프렌 생산량이 더욱 개선될 수 있다.
Mg2 +는 예를 들면 5mM 이상, 구체적으로 10mM 이상, 보다 구체적으로 20mM 이상 포함될 수 있으며, 그 상한은 특별히 제한되지 않고 예를 들면 30mM일 수 있다. Mg2 +가 상기 범위로 포함되는 경우 이소프렌 생산성이 극대화 될 수 있다.
필요에 따라, 배양은 친유성 물질 존재 하의 배양 배지에서, 예를 들면 배지 표면에 친유성 물질인 도데칸 상(dodecane phase)을 위치시킨 상태로 수행될 수 있다.
친유성 물질은 옥탄, 데칸, 도데칸, 테트라데칸, 파이토스쿠알란, 미네랄 오일, 이소프로필 미리스테이트, 세틸 에틸헥사노에이트, 디옥타노일 데카노일 글리세롤, 스쿠알란, 또는 이들의 조합일 수 있다.
친유성 물질은 생산되는 이소프렌을 안정화시키는 것뿐만 아니라, 대장균에 의한 이소프렌의 생산성을 증가시킬 수 있다. 친유성 물질은 대장균의 생장에 영향을 미치지 않거나 적게 영향을 미치는 것일 수 있다.
배양은 교반되는 상태에서 수행될 수 있다. 교반되는 경우, 100 내지 300rpm, 예를 들면, 100 내지 280rpm, 100 내지 260rpm, 100 내지 240rpm, 100 내지 220rpm, 100 내지 200rpm, 100 내지 180rpm, 100 내지 160rpm, 100 내지 140rpm, 100 내지 120rpm, 120 내지 300rpm, 120 내지 280rpm, 120 내지 260rpm, 120 내지 240rpm, 120 내지 220rpm, 120 내지 200rpm, 120 내지 180rpm, 120 내지 160rpm, 120 내지 140rpm, 150 내지 300rpm, 150 내지 280rpm, 150 내지 260rpm, 150 내지 240rpm, 150 내지 220rpm, 150 내지 200rpm, 150 내지 180rpm, 140 내지 160rpm, 200 내지 300rpm, 200 내지 280rpm, 200 내지 260rpm, 200 내지 240rpm, 200 내지 220rpm, 또는 150 rpm으로 교반될 수 있다.
교반되는 경우, 상기 친유성 물질, 예컨대 도데칸은 배지 중에서 분산되어 세포와 접촉된다. 친유성 물질은 배지 중에 분산됨으로써 미생물과 접촉하는 면적이 넓어져 배양 중 이소프렌을 효율적으로 세포로부터 분리되게 하여 안정화 및/또는 용해시킬 수 있다.
친유성 물질, 예컨대 도데칸 상의 존재 하에 배양 배지에서 상기 미생물을 배양시키게 되면 생산된 이소프렌이 세포 내에서 분해되기 전에 친유성 물질, 예컨대 도데칸 상에 흡수되게 되어 이소프렌 생산량을 향상시킬 수 있다.
상기 친유성 물질, 예컨대 도데칸 상은 대장균의 세포 성장에 영향을 미치지 않고, 소수성 이소프렌의 추출을 위해 소수성이고, 낮은 휘발성을 갖는 것일 수 있다.
배지 대 친유성 물질의 부피비는 특정 범위의 비로 한정되지 않고, 예컨대, 배지 대 친유성 물질의 부피비가 1:0.1-3.0, 1:0.2-3.0, 1:0.5-3.0, 1:1.0-3.0, 1:1.5-3.0, 1:2.0-3.0, 1:2.5-3.0, 1:0.2-2.5, 1:0.2-2.0, 1:0.2-1.5, 1:0.2-1.0, 1:0.2-0.5, 1:0.5-2.5, 1:0.5-2.0, 1:0.5-1.5, 1:0.5-1.0, 1:0.8-2.5, 1:0.8-2.0, 1:0.8-1.5, 1:0.8-1.2, 1:0.8-1.0 등이 가능하다.
본 발명의 일 구현예에 따른 이소프렌 생산용 대장균은 이소프렌 생산능을 가지며, recA(recombinase A) 단백질을 코딩하는 유전자가 감쇄 또는 결실된 대장균이다.
상기 대장균은 예를 들면 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합일 수 있으며, 균체 생장 속도 및 이소프렌 생산성의 측면에서 바람직하게는 MG1655일 수 있다.
recA 단백질을 코딩하는 유전자는 해당 대장균 균주의 recA 단백질을 코딩하는 유전자일 수 있다. 이는 NCBI genbank 등을 통해 공지되어 있다. 예를 들어, MG1655 균주의 recA 단백질을 코딩하는 유전자는 서열번호 73의 뉴클레오티드 서열을 갖는 것일 수 있다.
상기 대장균은 전술한 이소프렌 생산에 필요한 효소를 내재적으로 발현하거나, 이들 효소를 코딩하는 유전자가 도입되어 이들 효소를 발현시킬 수 있다. 상기 유전자들은 전술한 플라스미드로 도입된 것일 수 있다.
또한, 상기 대장균은 전술한 발효 부산물 생성 효소를 코딩하는 유전자가 감쇄 또는 결실된 것일 수 있다.
또한, 상기 대장균은 전술한 NudB 단백질을 코딩하는 유전자가 감쇄 또는 결실된 것일 수 있다.
또한, 상기 대장균은 전술한 편모가 불활성화 또는 제거된 것일 수 있다.
본 발명의 이소프렌의 생산 방법은 이소프렌 생산성이 매우 우수하다. 이에 따라, 짧은 시간 내에 많은 양의 이소프렌을 생산할 수 있어, 생산 단가를 크게 낮출 수 있다.
본 발명의 이소프렌 생산용 대장균은 이소프렌 생산성이 우수하여, 고순도의 이소프렌을 다량으로 생산할 수 있다.
도 1은 메발로네이트 경로와 맵 경로를 포함한 이소프렌 생합성 경로를 나타낸 것이다.
도 2는 인공합성한 포플러 트리코카파 이소프렌 신타제를 포함하는 플라스미드와 메발로네이트 경로를 포함하는 플라스미드가 동시에 도입된 대장균 균주의 세포생장과 이소프렌 생산량을 나타낸 것이다.
도 3은 이소프렌 신타제와 메발로네이트 경로를 동시에 가지는 통합 플라스미드에 의한 이소프렌 생산성을 나타낸 것이다.
도 4는 이소프렌 신타제와 메발로네이트 경로를 동시에 가지는 통합 플라스미드의 대장균 내 플라스미드 안정성을 나타낸 것이다.
도 5는 통합 플라스미드의 안정성을 향상시킨 플라스미드를 도입한 대장균 형질전환체의 세포생장과 이소프렌 생산성 그리고 플라스미드 안정성을 나타낸 것이다.
도 6은 대장균 DH5α와 MG1655 간의 이소프렌 생산능 차이를 나타낸 것이다.
도 7은 MG1655의 recA와 relA 결손균주의 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
도 8은 MG1655와 MG1655의 nudB 결손 균주의 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
도 9는 MG1655의 nudB 결손주, recA 결손주, nudBrecA의 동시 결손균주의 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
도 10은 MG1655와 MG1655의 fli operon 결손 균주의 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
도 11은 AceCo 균주 제작과정을 도식화로 나타내었고, acetyl-CoA와 pyruvate를 대사경로와 AceCo 균주 제작을 위해 제거해야 할 유전자를 나타낸 것이다.
도 12는 탄소원 이용효율이 향상된 AceCo 균주와 대조군인 야생형 균주와 아세트산 생합성 경로인 ackA-pta 유전자가 결손된 균주의 세포생장과 이소프렌 생산성 그리고 유기산 생산성을 비교한 것이다.
도 13은 이소프렌 생산 플라스미드에 추가적인 idi 유전자를 도입하여 이소프렌 생산성 향상을 확인한 결과이다.
도 14는 IspS와 IDI 융합단백질을 이용한 이소프렌 생산성 향상 결과를 나타낸 것이다.
도 15는 이소프렌 생합성경로 발현을 위한 발현 유도제로 IPTG와 lactose를 사용해서 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
도 16은 이소프렌 생산용 배양 배지에서 Mg2 + 첨가 유무에 따른 이소프렌 생산성을 비교한 결과를 나타낸 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.
실시예
1. 대장균 숙주에 도입한 유전자 배열에 따른 이소프렌 생산성 향상 변화
(1) 이소프렌 생산을 위한 플라스미드 제작
이소프렌 생합성에 관여하는 유전자들의 정보는 하기 표 1에 나타내었고, 해당 유전자를 증폭하기 위한 프라이머는 하기 표 2에 나타내었다. 이소프렌 생합성을 위한 전구체 생산에 관여하는 유전자들의 정보는 하기 표 1에 나타내었고 전구체 합성에 관여하는 효소를 코딩하는 유전자는 Yoon et al. (2007) 문헌의 pS-NA 플라스미드를 이용하였다.
서열번호 유전자명 효소명
1 ispS 포플러 트리코카파 (Populus trichocarpa)의 이소프렌 신타제
2 mvaE 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 아세틸-CoA 아세틸트란스퍼라제/하이드록시메틸글루타릴 (HMG)-CoA 리덕타제
3 mvaS 엔테로코커스 페컬리스 유래의 하이드록시메틸글루타릴(HMG)-CoA 신타제
4 mvaK1 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 카인아제
5 mvaD 스트렙토코커스 뉴모니아 유래의 메발로네이트 다이포스페이트 카복실아제
6 mvaK2 스트렙토코커스 뉴모니아 유래의 포스포메발로네이트 카인아제
7 idi 대장균 MG1655 (Escherichia coli MG1655) 유래의 이소프레닐 파이로포스페이트 이소머라제
8 idi 사이네코 시스티스 (Synechocystis sp. PCC6803) 유래의 이소프레닐 파이로포스페이트 이소머라제
9 idi 스트렙토코쿠스 뉴모니아 (Streptococcus pneumoniae) 유래의 이소프레닐 파이로포스페이트 이소머라제
10 idi 헤마토코쿠스 플라비아리스 (Haematococcus plavialis) 유래의 이소프레닐 파이로포스페이트 이소머라제
11 ispS-L-Ecidi 포플러 트리코카파 유래의 이소프렌 신타제 (서열번호 1)와 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 7)의 융합 유전자
12 Ecidi-L-ispS 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 7)와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 유전자
13 ispS-L-Syidi 포플러 트리코카파 유래의 이소프렌 신타제(서열번호 1)와 스트렙토코쿠스 뉴모니아 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 8)의 융합 유전자
14 Syidi-L-ispS 스트렙토코쿠스 뉴모니아 유래의 이소프레닐 파이로포스페이트 이소머라제(서열번호 8)와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 유전자
15 pTrc99SN pTrc99A의 리보솜 결합 부위 서열을 강화시킨 벡터
이소프렌 생합성을 위해 상기 증폭한 유전자 또는 유전자 조합을 pTrc99A 벡터(Bacterial expression vector with inducible lacI promoter; amp resistance; restriction enzyme cloning)에 도입하여 이소프렌 생산용 벡터 4종을 제작하였다. 포플러 트리코카파 (Populus trichocarpa)의 이소프렌 신타제를 (ispS) 대장균의 코돈에 맞게 인공 합성하였다(서열번호 1). 인공합성을 위한 염기서열은 DNA2.0 프로그램을 이용하여 제작하였고, 유전자의 인공합성은 Genescript (USA)에 의뢰하였다. 인공합성한 포플러 트리코카파 이소프렌 신타제를 표 2의 프라이머 sPtispS-F와 sPtispS-R을 이용하여 PCR을 통해 증폭한 후 제한효소 NcoI과 XbaI으로 절단한 후 pTrc99A 벡터의 동일 부위에 삽입하여 pT-sPtispS를 제작하였다.
서열번호 프라이머 서열
16 sPtispS-F 5'- GCCATGGCTTGCTCTGTATCCAC -3'
17 sPtispS-R 5'- CTCTAGATTAGCGTTCGAACGGCAGAATTG -3'
다음으로 pTrc99A 벡터에 리보솜 결합 부위가 강화된 pTrc99SN을 제작하였으며(서열번호 15), 표 2의 프라이머 sPtispS-F와 sPtispS-R을 이용하여 PCR로 증폭하여 인공합성한 포플러 트리코카파 이소프렌 신타제를 삽입하여 pTSN-sPtispS를 제작하였다. 다음으로 상기 메발로네이트 경로가 도입된 플라스미드인 pS-NA로부터 전체 메발로네이트 경로를 증폭하여 (서열번호 2~7) 상기 제작한 pTSN-sPtispS 플라스미드의 XbaI 사이트에 도입하여 pTSN-sPtispS-MVA를 제작하였다. 다음으로 상기 제작한 pTSN-sPtispS-MVA의 앰피실린 저항성 유전자(서열번호 18)를 제한효소 BglII와 BspHI을 이용하여 제거하고, 동일 위치에 카나마이신 저항성 유전자(서열번호 19)를 삽입하여 pTSNK-sPtispS-MVA를 제작하였다.
상기 제작한 이소프렌 생산용 재조합 플라스미드 pT-sPtispS, pTSN-sPtispS, pTSN-sPtispS-MVA 그리고 pTSNK-sPtispS-MVA와 음성대조구인 pTrc99A 벡터를 대장균 DH5에 단독 또는 pS-NA 플라스미드와 동시에 도입하여 형질전환 하였으며, 사용된 형질전환방법은 Sambrook and Russell(2001)에 명시된 통상적인 방법을 따랐다.
(2) 대장균 DH5α 형질전환체를 이용한 이소프렌 생산
본 실시예에서는 상기 제작한 재조합 플라스미드인 pT-sPtispS, pTSN-sPtispS와 메발로네이트 경로 플라스미드인 pS-NA(서열번호 2~7의 유전자 도입)가 동시에 도입된 대장균 DH5α 형질전환체를 글리세롤을 포함하는 배지 중에서 배양하여 이소프렌을 생산한 내용을 포함한다.
대장균 DH5α에 pT-sPtispS와 pTSN-sPtispS를 메발로네이트 경로 플라스미드인 pS-NA와 각각 동시에 도입하여 리보솜 결합강도에 따른 이소프렌 생산성의 차이를 알아보았다.
이소프렌 생산능을 가진 형질전환체를 100 ㎍/ml의 앰피실린과 50 ㎍/ml의 크로람페니콜을 포함하는 5 ml의 TB 배지 (1리터 당 24g yeast extract, 12g tryptone, 9.4g K2HPO4, 2.2g KH2PO4)에 접종하여 30℃, 250rpm 조건으로 종배양한 후, 20g/L 글리세롤 및 100㎍/ml의 앰피실린과 50 ㎍/ml의 크로람페니콜을 포함하는 50 ml의 TB 배지에 접종하여 본배양하였다. 단백질 발현량을 높이기 위하여 발현유도제인 IPTG (Isopropyl β-D-1-thiogalactopyranoside)를 최종 농도 0.1 mM로 첨가하였다. 본배양은 홈이 파인 250 ml 삼각플라스크를 사용하였고, 30 ℃, 150 rpm 조건에서 36 시간 배양하였다.
이소프렌의 정량 분석을 위한 샘플링은 배양 6시간 후부터 배양 36시간까지 2시간 간격으로 실시하였다. 배양액 700㎕와 동량의 도데칸 (CH3(CH2)10CH3)을 혼합하여 30℃에서 10분간 반응하였다. 형질전환체로부터 10분간 생산된 이소프렌은 도데칸으로 포집되고, 도데칸 층을 배지와 분리하여 정량분석을 실시하였다. 이소프렌 정량분석은 가스크로마토그래피를 이용하였다. 에질런트 (Agilent, 미국) 사의 7890A 모델 가스크로마토그래피를 사용하였으며, 시료분리를 위한 칼럼은 19091N-133 HP-INNOWAX 칼럼 (길이, 30 m; 내부구경, 0.25 mm; 필름두께, 250 um) 사용하였다. 오븐의 온도는 최초 50 ℃에서 시작하여 2분간 정치 후 분당 30℃ 비율로 최고 250 ℃까지 상승시켰다. 질소를 운반가스로 사용하였고, 가스유입 압력은 15.345 psi로 설정하였다. FID (flame ionization detector) 탐지기를 이용하였으며 온도는 280 ℃로 설정하였다. 이소프렌의 분리 시간은 1.53분 이고, 정량을 위한 이소프렌 표준물질은 시그마(Sigma, 미국)에서 구매하였다.
배양 결과는 도 2에 나타내었다. 도 2를 참조하면 IPTG 미첨가 배양에서 강한 리보솜 결합 부위를 가진 플라스미드인 pTSN-sPtispS와 pS-NA가 동시 도입된 형질전환체에서 약 450 mg/L 이소프렌을 생산량을 보였으며, 이는 약 280 mg/L 이소프렌을 생산한 pT-sPtispS와 pS-NA가 동시 도입된 형질전환체에 비해 약 1.6배 높은 수치이다. 두 균주 간의 시간당 최고 이소프렌 생산량의 차이는 약 10 mg/L/hr 이었으며, 균체 생장속도의 차이는 거의 나타나지 않았으며 최종 OD(optical density)는 약 25를 나타내었다.
IPTG를 첨가한 배양에서는 두 균주 모두 초기 균체 생장에 저해를 보였지만 최종 균체 생장은 IPTG 미첨가 배양과 차이를 보이지 않았다. 이소프렌 생산량 역시 초기 균체 생장의 저해로 인하여 IPTG 미첨가 배양에 비해 초기 이소프렌 생산량은 낮지만 배양 18시간 이후부터 균체 생장과 함께 높아지는 양상을 보였고, pTSN-sPtispS와 pS-NA가 동시 도입된 형질전환체에서 420 mg/L 이소프렌을 생산하여 pT-sPtispS와 pS-NA가 동시 도입된 형질전환체에 (260 mg/L) 비해 1.6배 높은 생산성을 나타내었다.
최종적으로 강한 리보솜 결합 부위를 가진 플라스미드인 pTSN-sPtispS와 pS-NA가 동시 도입된 형질전환체의 이소프렌 생산성이 pT-sPtispS와 pS-NA가 동시 도입된 형질전환체에 비해 우수하였다. 이는 강한 리보솜 결합 부위로 인한 이소프렌 신타제의 발현량이 높아진 결과라고 볼 수 있다.
단백질 발현량 증가를 위한 IPTG 첨가 배양에서 초기 균체 생장의 저해를 보이는 원인은 다음과 같다. 강한 프로모터와 플라스미드 복제수가 높은 벡터에 클로닝된 이소프렌 신타제의 발현량이 상대적으로 약한 프로모터와 플라스미드 복제수가 낮은 벡터에 클로닝된 메발로네이트 경로에 비해 월등히 높다. 이로 인해 전구체인 DMAPP를 과소비하여 균체 생장에 필요한 DMAPP 부족현상에 따른 결과라고 판단된다.
(3) 전구체 생산 경로 발현량 증가에 따른 이소프렌 생산성 향상
본 실시예에서는 상기 실시예 1-(2)의 DMAPP 부족으로 인한 균체 생장 저해의 문제점을 해결하기 위하여 메발로네이트 경로의 발현량을 높인 플라스미드를 활용한 이소프렌 생산성 향상에 대한 내용을 포함한다. 메발로네이트 경로의 발현량을 높인 플라스미드인 pTSN-sPtispS-MVA 통합 플라스미드를 제작하고, 이 플라스미드의 안정성 향상을 위하여 앰피실린 저항성 유전자를 카나마이신 저항성 유전자로 대체한 pTSNK-sPtispS-MVA를 제작하였다.
이 두 가지 플라스미드의 제작 방법은 상기 실시예 1-(1)에 언급하였다.
먼저, 메발로네이트 경로의 발현량을 높인 pTSN-sPtispS-MVA를 도입한 대장균 DH5α 형질전환체를 만들고 pTSN-sPtispS와 pS-NA가 동시 도입된 형질전환체를 대조군으로 하여 이소프렌 생산성 향상 여부를 확인하기 위한 배양을 실시하였다.
배양을 위한 배지와 배양조건 그리고 이소프렌 정량은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 3에 나타내었다. 도 3을 참조하면 메발로네이트 경로의 발현량을 높인 통합 플라스미드를 도입한 균주에서 대조군에 비해 약 3배 높은 1.25 g/L 이소프렌 생산량을 나타내었다. 시간당 이소프렌 생산량(최고 약 90 mg/L/hr)과 단위 세포당 이소프렌 생산량(최고 약 5.5 mg/L/hr/OD600nm) 역시 통합 플라스미드를 도입한 균에서 대조군에 비해 월등히 높게 나타났다. 하지만 균체 성장 저해는 나타나지 않았다.
상기 이소프렌 생산성 향상은 상기 실시예 1-(2)의 DMAPP 부족 문제점을 전구체 생산경로인 메발로네이트 경로의 발현 증가를 통하여 극복한 결과라고 할 수 있으며, IspS와 MVA 경로의 균형적인 발현으로 인한 이소프렌 생산성 향상 결과라고 할 수 있다.
(4) 플라스미드 안정성 향상을 통한 이소프렌 생산성 향상
본 실시예에서는 상기 실시예 1-(3)에서 사용된 통합 플라스미드가 배양중 손실되는 문제점을 해결하기 위하여 통합 플라스미드 상의 앰피실린 저항성 유전자를 코딩하는 bla(서열번호 18)를 카나마이신 저항성 유전자를 코딩하는 nptII(서열번호 19)로 교체한 플라스미드를 활용한 이소프렌 생산성 향상에 대한 내용을 포함한다.
통합 플라스미드를 포함하는 대장균 배양 중 플라스미드의 손실 여부를 확인하였다. 플라스미드의 안정성 확인은 배양과정에서 6시간 단위로 배양중인 배양액을 배지와 희석하여 항생제가 없는 고체 배지와 항생제가 포함된 고체배지에 동량을 각각 도말하고 측정하였다. 플라스미드의 안정성 계산은 항생제가 없는 배지의 콜로니 수를 100%로 하여 항생제가 포함된 배지의 콜로니 수를 %로 나타내었다.
플라스미드 안정성 확인 결과는 도 4에 나타내었다. 도 4를 참조하면 플라스미드 안정성 확인 결과, IPTG를 첨가하지 않은 배양에서는 배양 종료 시점인 36시간에 플라스미드를 포함하는 대장균의 수가 50% 이하인 것을 확인하였고, IPTG를 첨가한 배양에서는 월등히 더 높은 비율로 플라스미드가 손실되는 것을 확인하였다.
상기 플라스미드 안정성이 낮은 문제를 해결하기 위하여 통합 플라스미드 상의 앰피실린 저항성 유전자를 코딩하는 bla를 카나마이신 저항성 유전자를 코딩하는 nptII로 교체하여 새로운 pTSNK-sPtispS-MVA 플라스미드를 구축하였다. 플라스미드 안정성 향상에 따른 이소프렌 생산성 변화를 확인하기 위하여 배양을 실시하였다
배양을 위한 배지와 배양조건 그리고 이소프렌 정량은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 5에 나타내었다. 도 5를 참조하면 안전성이 향상된 플라스미드를 도입한 균주에서 대조군에 비해 약 1.3 배 높은 약 1.6 g/L 이소프렌을 생산하였다. 플라스미드 안정성 또한 대조군에 비해 월등히 높게 나타났으며 배양 종료시점인 36시간에 90% 이상의 플라스미드를 유지하고 있는 것으로 나타났다. 배양 14시간 이후부터 카나마이신 저항성 유전자를 가진 플라스미드를 도입한 균주에서 시간당 이소프렌 생산량과 단위 세포당 이소프렌 생산량이 높아지는 것으로 확인되었다. 이는 플라스미드의 안정성 향상으로 인한 결과라고 할 수 있다.
2. 대장균 숙주 균주의 개량을 통한 이소프렌 생산성 향상
(1) 대장균 균주에 따른 이소프렌 생산성 변화
실시예 1에서 사용한 대장균 균주인 DH5α는 티아민 (thiamine) 생합성 유전자 결손 균주이므로 자체적으로 티아민 생산을 할 수 없다. 이러한 이유로 배지 내 티아민을 첨가해야 하는 비용적 부담이 있다. 또한 산업적으로 많이 사용되고 있는 대장균 MG1655 균주에 비해 생장 속도가 느린 단점이 있다.
본 실시예에서는 상기 실시예 1에서 언급한 숙주 대장균인 DH5α와 MG1655 균주간의 이소프렌 생산 능력을 비교하고, 두 숙주 대장균 간의 이소프렌 생산성에 영향을 미치는 유전 인자를 파악하여 산업적으로 더 유용한 균주인 MG1655를 이소프렌 생산을 위한 숙주 균주로 활용하는 내용을 포함한다.
먼저 대장균 DH5α와 MG1655 균주에 각각 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 이소프렌 생산성을 비교하였다.
배양을 위한 배지와 배양조건 그리고 이소프렌 정량은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 6에 나타내었다. 도 6을 참조하면 대장균 DH5α 형질전환체가 MG1655 형질전환체에 비해 이소프렌 생산량이 약 3.2배 높게 나타났다. 균체의 생장은 MG1655 형질전환체가 더 빠른 양상을 보였지만 pH의 빠른 하락과 더불어 최종 균체 생장량은 약간 낮은 것을 확인하였다.
이러한 이소프렌 생산성 차이는 대장균 균주 간의 유전적 특징에 의한 결과라고 판단되며, 아울러 MG1655 균주의 경우 탄소원을 과도하게 빠르게 소모하면서 유기산 등의 발효 부산물이 생성 및 축적되고, 그 결과 빠른 pH 하락이 발생하여 이소프렌 생산성 저하를 유발하였다고 판단된다.
(2) 대장균 균주 간 이소프렌 생산성 차이를 나타내는 인자 확인
본 실시예에서는 상기 실시예 2-(1)의 결과를 바탕으로 숙주 대장균인 DH5α와 MG1655 균주의 이소프렌 생산성 차이를 나타내는 유전인자를 파악하여 대장균 MG1655 균주의 유전형질을 변화시킴으로써 이소프렌 생산성이 대장균 DH5α 균주와 유사 또는 향상된 결과를 나타내도록 하는 내용을 포함하고 있다.
대장균 DH5α 균주에 결손되어 있는 유전자인 recA(서열번호 76)와 relA를 야생형 MG1655 균주에서 각각 결손을 시킨 MG1655 ΔrecA, MG1655 ΔrelA 균주를 각각 제작하였다. 유전자의 결손은 유전자 결손 키트 (Quick & Easy E. coli Gene Deletion Kit By Red®/ET® Recombination, Gene Bridges, Germany)를 사용하였으며, 키트의 사용방법을 따라 유전자를 결손하였다.
각각의 유전자 결손 대장균 균주에 pTSNK-sPtispS-MVA와 pS-NA를 동시 도입하여 대장균 형질전환체를 만든 후 대조군으로 야생형 대장균 MG1655와 DH5α의 형질전환체들을 이용하여 이소프렌 생산성을 비교하였다.
배양을 위한 배지와 배양조건 그리고 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 7에 나타내었다. 도 7을 참조하면 MG1655 recA 균주가 야생형 MG1655와 DH5α 균주들에 비해 각각 약 4.6배와 약 1.3배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 하지만 relA 결손균주는 야생형 MG1655와 이소프렌 생산성 차이를 보이지 않았다.
이러한 연구결과를 바탕으로 DH5α와 MG1655(DE3) 간에 이소프렌 생산성의 차이를 나타내는 유전인자가 recA 임을 확인하였다.
(3) nudB 결손을 통한 이소프렌 생산성 증가
본 실시예에서는 이소프렌의 전구물질인 IPP와 DMAPP를 각각 3-methyl-3-buten-1-ol과 3-methyl-2-buten-1-ol로 전환시켜주는 유전자인 nudB를 결손시킴으로써 이소프렌 생산성을 향상시킨 내용과 결과를 포함하고 있다.
이소프렌 신타아제의 전구체인 DMAPP의 불필요한 소모를 차단해서 이소프렌 생산성을 향상시키고자 야생형 MG1655 균주의 NudB 유전자(서열번호 77)가 결손 된 균주를 제작하였다.
유전자 결손을 위한 PCR 프라이머는 표 3에 나타내었다. 결손 균주의 제작은 실시예 2-(2)와 동일한 방법으로 진행하였고, 제작된 균주를 MG1655△nudB 라고 명명하였다.
MG1655△nudB 균주에 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 대조군으로 야생형 대장균 MG1655 형질전환체를 이용하여 이소프렌 생산성을 비교하였다.
이소프렌 생산능을 가진 형질전환체를 50 ㎍/ml의 카나마이신을 포함하는 5 ml의 TB 배지 (1리터 당 24g yeast extract, 12g tryptone, 9.4g K2HPO4, 2.2g KH2PO4)에 접종하여 37 ℃, 250 rpm 조건으로 종배양한 후, 20 g/L 글리세롤 및 50 ㎍/ml의 카나마이신을 포함하는 50 ml의 TB 배지에 접종하여 본배양하였다. 단백질 발현량을 높이기 위하여 발현유도제인 락토스(lactose)를 최종 농도 5 g/l로 첨가하였다. 본배양은 홈이 파인 250 ml 삼각플라스크를 사용하였고, 30 ℃, 150 rpm 조건에서 36 시간 배양하였다. 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 8에 나타내었다. 도 8을 참조하면 MG1655 nudB 균주가 야생형 MG1655 균주에 비해 약 1.35배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 이 결과를 통하여 nudB의 결손이 이소프렌 생산성 향상에 도움이 된다는 것으로 확인되었다.
서열번호 프라이머 서열
78 ΔnudB-F ATAACTATGTGAATGGGATGAGCGAAGGCAGTCAACGAAGAGGCAGCGTGCATATTTATTACCTCCTTGTAGGC
79 ΔnudB-R TAAAAATATCTCCAGATAGCCCTGCCTGTTCAGGCAGCGTTAATTACAAACATATGAATATCCTCCTTAGTTCC
80 nudB-CF-F1 CAGGACCGTAACCTTCGTAGATG
81 nudB-CF-F2 CAAACTCTACCGTGCGCTGAC
82 nudB-CF-R GACCGTCTGACCATGCTGCTG
83 Δflagella-F TTCCACTTTGCCAATAACGCCGTCCATAATCAGCCACGAGGTGCGCGATGGGGGATCCGTCGACCTGCAG
84 Δflagella-R AGACGCGGATTACGGTGCTACCTCTGACGTTAGGCGAAAATATCAACGCCCATATTTATTACCTCCTTGTAGGCTGGAGC
85 FlaCF-F GAGTGAATTTTTCTGCCTGCG
86 FlaCF-R GCTTGCTTTTCTTGCTTATCGC
(4) nudB와 recA 동시 결손을 통한 이소프렌 생산성 증가
본 실시예 에서는 실시예 2-(2)와 2-(3)의 결과를 바탕으로 nudB와 recA를 함께 결손 시킴으로써 이소프렌 생산성을 향상시킨 내용과 결과를 포함하고 있다.
MG1655△nudB 균주에 MG1655△recA 균주를 P1 transduction을 통하여 통합하여 MG1655△nudB,recA 균주를 제작하였고, MG1655△nudB,recA 균주에 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 대조군으로 MG1655△recA와 MG1655△nudB 균주 형질전환체들을 이용하여 이소프렌 생산성을 비교하였다.
배양을 위한 배지와 배양조건은 상기 실시예 2-(3)과 동일하며, 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하다.
배양 결과는 도 9에 나타내었다. 도 9를 참조하면 MG1655 nudB,recA 균주가 MG1655△recA와 MG1655△nudB 균주들에 비해 각각 약 1.4배와 약 2.15배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 이 결과를 통하여 nudB와 recA의 동시 결손이 이소프렌 생산성 향상에 도움이 된다는 것으로 확인되었다.
(5) 편모의 제거를 통한 이소프렌 생산성 확인
본 실시예에서는 편모(flagellar) 형성에 관여하는 유전자들 (fliF(서열번호 87), fliG(서열번호 88), fliH(서열번호 89), fliI(서열번호 90), fliJ(서열번호 91), fliK(서열번호 92))을 포함하는 오페론(서열번호 93)을 결손시킴으로써 이소프렌 생산성을 향상시킨 내용과 결과를 포함하고 있다.
편모를 작동시키기 위해서는 많은 양의 ATP가 소모된다. 하지만 야생이 아닌 인위적으로 조절 되는 미생물 생육에 적합한 배양 환경에서는 편모의 작동이 필수적이지 않다. ATP의 불필요한 소모를 차단해서 이소프렌 생산성을 향상시키고자 야생형 MG1655 균주의 편모 형성에 관여하는 유전자들의 오페론을 결손하여 편모가 제거된 MG1655 균주를 제작하였다.
유전자 결손을 위한 PCR 프라이머는 표 3에 나타내었다. 결손 균주의 제작은 실시예 2-(2)와 동일한 방법으로 진행하였고, 제작된 균주를 MG1655△fli operon 라고 명명하였다.
MG1655△fli operon 균주에 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 대조군으로 야생형 대장균 MG1655 형질전환체를 이용하여 이소프렌 생산성을 비교하였다.
이소프렌 생산능을 가진 형질전환체를 50 ㎍/ml의 카나마이신을 포함하는 5 ml의 2YT 배지 (1리터 당 10g yeast extract, 16g tryptone, 5g NaCl)에 접종하여 37 ℃, 250 rpm 조건으로 종배양한 후, 20 g/L 글리세롤 및 50 ㎍/ml의 카나마이신을 포함하는 50 ml의 MR 배지(1리터 당 KH2PO4 22g, (NH4)2HPO4 3g, MgSO4·7H2O 0.7g, Citrate 0.8g, Trace metal solution(1리터 당 ZnSO4·7H2O 0.55g, MnSO4·H2O 1.25g, Na2B4O7·10H2O 0.05g, FeSO4·7H2O 50g, CuSO4·5H2O 2.5g, CaCl2 5g, (NH4)6Mo7O24·4H2O 0.25g) 2ml)에 접종하여 본배양하였다. 단백질 발현량을 높이기 위하여 발현유도제인 lactose를 최종 농도 5 g/l로 첨가하였다. 본배양은 홈이 파인 250 ml 삼각플라스크를 사용하였고, 30 ℃, 150 rpm 조건에서 48 시간 배양하였다. 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 10에 나타내었다. 도 10을 참조하면 MG1655fli operon 균주가 야생형 MG1655 균주에 비해 약 1.3배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 이 결과를 통하여 편모의 제거가 이소프렌 생산성 향상에 도움이 된다는 것으로 확인되었다.
3. 탄소원 이용 효율 향상에 따른 이소프렌 생산성 증가
(1) 탄소원 이용 효율이 향상된 균주의 제작
본 실시예에서는 탄소원 이용 효율이 향상된 대장균 MG1655 균주 제작과 관련된 내용을 포함하고 있다.
메발로네이트 경로의 전구체인 acetyl-CoA의 불필요한 소모를 차단해서 이소프렌의 생산성과 탄소원의 이용효율을 향상시키고자 야생형 MG1655 균주의 유기산 및 알코올 생합성에 관여하는 9개의 유전자가 결손된 균주를 제작하였다.
유전자 결손을 위한 PCR 프라이머와 결손 균주의 목록과 결손과정은 표 4과 도 11에 나타내었다.
이름 서열번호 서열
프라이머
ΔackA-pta-F 20 TGGCTCCCTGACGTTTTTTTAGCCACGTATCAATTATAGGTACTTCCATGAATTAACCCTCACTAAAGGGCG
ΔackA-pta-R 21 GCAGCGCAAAGCTGCGGATGATGACGAGATTACTGCTGCTGTGCAGACTGTAATACGACTCACTATAGGGCTC
ackA-ptaCF-F 22 TGTCATCATGCGCTACGCTC
ackA-ptaCF-R 23 CAGTTAAGCAAGATAATCAG
ΔpoxB-F 24 GATGAACTAAACTTGTTACCGTTATCACATTCAGGAGATGGAGAACCATGAATTAACCCTCACTAAAGGGCG
ΔpoxB-R 25 CCTTATTATGACGGGAAATGCCACCCTTTTTACCTTAGCCAGTTTGTTTTTAATACGACTCACTATAGGGCTC
poxBCF-F 26 TTACGTACTGGCCTGCTCCTGC
poxBCF-R 27 GTCGGGTAACGGTATCACTGCG
ΔldhA-F 28 ATTTTTAGTAGCTTAAATGTGATTCAACATCACTGGAGAAAGTCTTATGAAATTAACCCTCACTAAAGGGCG
ΔldhA-R 29 CTCCCCTGGAATGCAGGGGAGCGGCAAGATTAAACCAGTTCGTTCGGGCATAATACGACTCACTATAGGGCTC
ldhACF-F 30 TCATCAGCAGCGTCAACGGC
ldhACF-R 31 CGCTGGTCACGGGCTTACCG
ΔadhE-F 32 CGAGCAGATGATTTACTAAAAAAGTTTAACATTATCAGGAGAGCATTATGAATTAACCCTCACTAAAGGGCG
ΔadhE-R 33 CCGTTTATGTTGCCAGACAGCGCTACTGATTAAGCGGATTTTTTCGCTTTTAATACGACTCACTATAGGGCTC
adhECF-F 34 CCGCACTGACTATACTCTCG
adhECF-R 35 TGATCGGCATTGCCCAGAAG
ΔatoDA-F 36 CTATTGCCTGACTGTACCCACAACGGTGTATGCAAGAGGGATAAAAAATGAATTAACCCTCACTAAAGGGCG
ΔatoDA-R 37 ACGCGTCATAAAACGCGATATGCGACCAATCATAAATCACCCCGTTGCGTTTAATACGACTCACTATAGGGCTC
atoDACF-F 38 TGGCGAGGTAAAAACAGCCCC
atoDACF-R 39 AAGCGCGATCACGAATGTTAGC
Δdld-F 40 CGCTATTCTAGTTTGTGATATTTTTTCGCCACCACAAGGAGTGGAAAATGAATTAACCCTCACTAAAGGGCG
Δdld-R 41 GGATGGCGATACTCTGCCATCCGTAATTTTTACTCCACTTCCTGCCAGTTTAATACGACTCACTATAGGGCTC
dldCF-F 42 CAGACTCACCGCGATTCCTACTG
dldCF-R 43 CGGTAAAGTGATGCCTGTGCC
Δpps-F 44 AGAAATGTGTTTCTCAAACCGTTCATTTATCACAAAAGGATTGTTCGATGAATTAACCCTCACTAAAGGGCG
Δpps-R 45 CGGCGACTAAACGCCGCCGGGGATTTATTTTATTTCTTCAGTTCAGCCAGTTAATACGACTCACTATAGGGCTC
ppsCF-F 46 GCAGATTTGCGCAACGCTGG
ppsCF-R 47 CTGCCGTATGGATGAGGCTGG
균주
IS1 E. coli MG1655 ΔackA -pta
IS2 E. coli MG1655 ΔpoxB
IS3 E. coli MG1655 ΔldhA
IS4 E. coli MG1655 Δdld
IS5 E. coli MG1655 ΔadhE
IS6 E. coli MG1655 Δpps
IS7 E. coli MG1655 ΔatoDA
IS8 E. coli MG1655 ΔackA -pta, poxB (IS1 + IS2)
IS9 E. coli MG1655ΔackA -pta, poxB , ldhA (IS8 + IS3)
IS10 E. coli MG1655ΔackA -pta, poxB , ldhA , dld (IS9 + IS4)
IS11 E. coli MG1655ΔackA -pta, poxB , ldhA , dld , adhE (IS10 + IS5)
IS12 E. coli MG1655ΔackA -pta, poxB , ldhA , dld , adhE , pps (IS11 + IS6)
Aceco E. coli MG1655ΔackA -pta, poxB , ldhA , dld , adhE , pps, atoDA (IS12 + IS7)
야생형 MG1655 균주의 acetate 생성에 관여하는 ackA-pta(서열번호 48)와 poxB(서열번호 49), 알콜 생성에 관여하는 adhE(서열번호 50), lactate 생성에 관여하는 ldhA(서열번호 51)와 dld(서열번호 52), acetoacetate 생성에 관여하는 atoDA(서열번호 53), phosphoenolpyruvate 생성에 관여하는 pps(서열번호 54)를 제거하였다. 결손 균주의 제작은 λ-Red recombinase를 이용한 homologous recombination 방법을 통하여 각각의 유전자가 결손된 균주를 제작하고, 제작된 유전자 결손 균주를 바탕으로 추가적인 유전자 결손 균주를 제작할 경우, 동일한 프로모터, 터미네이터, FRT site 등이 이미 균주 내에 존재하여 recombination을 이용한 방법을 사용할 수가 없기 때문에 각각의 유전자 결손들을 P1 transduction을 통하여 서로 합치는 방법을 사용하였다. 최종적으로 발효 부산물 생성에 관련된 9가지 유전자가 결손된 균주를 제작하였고, 이 균주를 MG1655 AceCo로 명명하였다.
AceCo 균주 제작과정에 사용된 PCR 프라이머와 최종 AceCo 제작 과정은 표 4과 도 11에 나타내었다. 실 예로 IS1 균주의 제작과정을 상세히 기술하면, 대장균의 ackA-pta 유전자(서열번호 48)의 가장자리 50 bp를 각각 포함하는 프라이머인 ΔackA-pta-F와 ΔackA-pta-R을 이용하여 프로모터, 마커유전자, FRT site, 터미네이터를 포함하는 유전자군(서열번호 55)을 PCR을 통해 증폭하고, 증폭된 DNA 조각을 대장균에 도입하여 λ-Red recombinase를 통한 homologous recombination을 유도하여 제작하였다. 유전자 결손 균주의 선별은 1차적으로 도입된 항생제 저항성 유전자에 상응하는 고체 항생제 배지를 통해 이루어졌고, 최종 결손 균주의 확인은 ackA-ptaCF-F와 ackA-ptaCF-R 프라이머를 이용한 PCR을 통해 유전자 결손을 확인하였다.
표 4와과 도 11을 참조하면, 먼저 IS1~IS7과 같이 하나의 유전자 혹은 오페론이 결손된 균주를 homologous recombination 방법을 통하여 각각의 유전자가 결손된 균주를 제작하고, IS1과 IS2를 P1 transduction을 통하여 서로 합친 IS8 균주를 제작하였다. 이렇게 제작된 IS8 균주에 IS3~IS6 균주를 P1 transduction을 통하여 순차적으로 통합하여 IS9~IS12 균주를 제작하였고 최종 IS12와 IS7 균주를 통합하여 AceCo 균주를 제작하였다.
(2) 탄소원 이용 효율이 향상된 균주를 이용한 이소프렌 생산성 향상 과 발효부산물 차단 확인
본 실시예에서는 상기 실시예 3-(1)에서 제작된 MG1655 AceCo 균주에 상기 실시예 1-(4)의 pTSNK-sPtispS-MVA 플라스미드를 도입하여 이소프렌 생산성 향상과 발효부산물 생성 차단을 확인한 결과를 포함하고 있다.
대조군으로는 야생형 대장균 MG1655와 MG1655에서 아세트산 생합성 경로 유전자인 ackA-pta 유전자를 제거한 결손주를 이용하였다. 대장균 MG1655에 ackA-pta 유전자가 결손된 균주는 상기 실시예 3-(1)에서 언급한 λ-Red recombinase를 이용한 homologous recombination 방법을 통하여 제작되었다. 제작에 사용된 프라이머는 표 4에 나타내었다.
배양을 위한 배지와 배양조건, 그리고 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다. 발효 부산물 분석은 시마즈(Shimadzu) 사의 액체크로마토그래피 (HPLC, LC-20A)를 사용하였다. 물질 분리를 위한 칼럼은 바이오라드(BIO-RAD) 사의 이온교환 칼럼 (AminexR, HPX-87H, 7.8 x 300 ㎜)을 사용하였다. 이동상으로 5 mM 황산을 사용하였으며 분당 0.6ml 속도로 이동 시켰다. 오븐의 온도는 40℃를 유지하였다. 배지 내 잔여 글리세롤의 분석은 RID 탐지기를 사용하였으며, 물질 분리를 위한 칼럼은 크로마실(Chromacyl) 사의 소수성 (100-5NH2, 250 x 4.6 ㎜) 칼럼을 사용하였다. 이동상으로 75% acetonitrile을 분당 1.5 ml 속도로 이동 시켰다. 정량 분석을 위한 표준물질은 시그마 사의 제품을 이용하였다.
배양 결과는 도 12에 나타내었다. 도 12를 참조하면 이소프렌 생산량에서 AceCo 균주가 대조군인 야생형 MG1655에 비해 약 3.5배, ackA-pta 결손 균주에 비해 약 2.6배 높은 생산량을 나타내었다. 반면 발효부산물인 아세트산 생산량은 AceCo 균주가 대조군인 야생형 MG1655에 비해 약 5.6배, ackA-pta 결손 균주에 비해 약 5.0배 낮은 1.3 g/L을 생산하였다. 세포내 acetyl-CoA 농도의 척도가 되는 전구체인 pyruvate의 농도는 AceCo 균주에서 3.1 g/L 농도로 확인되어 대조군인 야생형 MG1655와 ackA-pta 결손 균주에 비해 월등히 높은 농도를 나타내었다.
따라서 발효부산물 생합성경로를 차단하여 MVA 경로의 전구물질인 acetyl-CoA의 불필요한 소모를 막고, 탄소원 이용효율을 향상시켰을 경우 이소프렌 생산성을 월등히 향상시킬 수 있다는 연구결과를 확인하였다. 또한 아세트산 생합성에 관여하는 ackA와 pta의 유전자만을 결손 했을 경우, 아세트산 생산을 억제하는 효과가 없으며, 이소프렌 생산성 향상에도 도움을 주지 못하는 것으로 나타났다.
4. 이소프렌 전구체에서 이소프렌으로 효율적 전환을 통한 이소프렌 생산성 향상
(1) 다양한 미생물 유래 idi 유전자 추가도입에 의한 이소프렌 생산성 향상 확인
본 실시예 에서는 상기 실시예 1에서 제작된 플라스미드에 다양한 미생물 유래 idi 유전자를 추가 도입하여 새로운 플라스미드를 제작하고, 이를 이용한 이소프렌 생산성 향상 확인을 위한 배양 결과를 포함하고 있다.
상기 실시예 1-(1)에서 제작된 pTSN-sPtispS 플라스미드의 XbaI 제한효소 사이트를 이용하여 에세리키아 속(서열번호 7), 헤마토코커스 속(서열번호 10), 사이네코시스티스 속(서열번호 8), 스트렙토코커스 속(서열번호 9) idi 유전자를 삽입하였다. 실 예로 pTSN-sPtispS-Ecidi 플라스미드의 제작을 상세히 기술하면, 프라이머 Ecidi-F와 Ecidi-R을 이용하여 대장균의 지놈으로부터 유전자를 증폭하고, 증폭된 유전자를 pTSN-sPtispS의 XbaI 사이트에 도입하여 최종 완성하였다. 상기 네가지 idi 유전자를 동일한 방법으로 제작한 결과 pTSN-sPtispS-Ecidi, pTSN-sPtispS-HPidi, pTSN-sPtispS-Syidi 그리고 pTSN-sPtispS-Snidi 플라스미드를 제작하였다. 유전자 idi 추가 도입을 위해 사용된 PCR 프라이머는 표 5에 나타내었다.
서열번호 프라이머 서열
56 Ecidi-F 5'-CGAATTCAGGAGGAGAAATTATGCAAACGGAACACGTC-3'
57 Ecidi-R 5'-CCTGCAGGTCGAAATTCTTATTTAAGCTGGGTAAA-3'
58 Hpidi-F 5'-GGAATTCAGGAGGTAATAAAATATGCTTCGTTCGTTGCTCAG-3'
59 Hpidi-R 5'-CAAGCTTGATCACTAGTTACGCTTCGTTGATGTG-3'
60 Syidi-F 5'-GGAATTCAGGAGGATTCACTGATGGATAGCACCCCCCAC-3'
61 Syidi-R 5'-CCTGCAGGTCGACTCTAGTTAAGGTTTAGTTAACC-3'
62 Snidi-F 5'-TCTAGAGGAGGATAGGACATGACGACAAATCGTAAG-3'
63 Snidi-R 5'-GTCGACTCTAGTTACGCCTTTTTCATCTGATC-3'
상기 플라스미드들을 대장균 MG1655 AceCo ΔrecA 균주에 pS-NA와 같이 도입하여 형질전환체를 만들고 이소프렌 생산성 향상 여부를 확인하였다.
배양을 위한 배지와 배양조건 그리고 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 0.5 mM IPTG를 첨가하여 배양하였다.
배양 결과는 도 13에 나타내었다. 도 13을 참조하면 사이네코시스티스 속의 idi 유전자가 추가 도입된 균주가 가장 높은 이소프렌 생산량을 나타내었고, 나머지 idi 들이 추가된 균주 또한 대조군에 비해 높은 이소프렌 생산량을 나타내었다.
이 결과를 통하여 추가적인 idi의 도입이 이소프렌 생산성 향상에 도움이 되며 사이네코시스티스 속의 idi가 가장 효율이 좋은 것으로 확인되었다.
(2) 융합단백질 제작과 활용에 따른 이소프렌 생산성 향상 확인
본 실시예 에서는 상기 실시예 4-(1)의 결과를 바탕으로 이소프렌 생산성 향상 결과를 보인 사이네코시스티스 속 idi와 대장균 고유의 에세리키아 속 idi를 이소프렌 신타제와 융합한 형태의 융합단백질을 제작하고, 이를 이용한 이소프렌 생산성 향상 결과를 포함하고 있다.
이소프렌 신타제의 종결코돈을 제거(프라이머 FispS-F와 FispS-R을 이용하여 PCR로 증폭)하여 pTrc99SN 벡터의 NcoI과 XbaI 사이트에 클로닝을 한 후 세린-글리신 링커를 포함한 idi 유전자(프라이머 REcidi-F와 REcidi-R 또는 RSyidi-F와 RSyidi-R을 이용하여 PCR로 증폭)를 XbaI 사이트를 이용하여 이소프렌 신타제의 뒤쪽에 삽입하여 두 개의 유전자가 하나의 단백질로 발현되도록 설계하였다. 이렇게 만들어진 플라스미드를 pTSN-sPtispS-L-Sydid와 pTSN-sPtispS-L-Ecidi로 각각 명명하였다. 또한 idi (프라이머 FEcidi-F와 FEcidi-R 또는 FSyidi-F와 FSyidi-R을 이용하여 PCR로 증폭)를 pTrc99SN 벡터의 NcoI과 XbaI 사이트에 클로닝 후 세린-글리신 링커를 포함한 이소프렌 신타제(프라이머 RispS-F와 RispS-R을 이용하여 PCR로 증폭)를 XbaI 사이트를 이용하여 idi 유전자의 뒤쪽에 삽입한 형태의 pTSN-Syidi-L-sPtispS와 pTSN-Ecidi-L-sPtispS를 각각 제작하였다. 융합단백질을 코딩하는 유전자 제작에 사용된 PCR 프라이머는 표 6에 나타내었다.
서열번호 프라이머 서열
64 FispS-F 5'-GAATTCGAGCTCAGGAGGTAATAAATATGGCTTGCTCTGT ATCC-3'
65 FispS-R 5'-GGATCCGCCGCCACCCGAGCCACCGCCACCGCGTTCGAAC GGCAGAATTG-3'
66 RispS-F 5'-GGATCCATGGCTTGCTCTGTATCCACTGAG-3'
67 RispS-R 5'-CTGCAGGTCGACTTAGCGTTCGAACGGCAG-3'
68 FEcidi-F 5'-GAATTCGAGCTCAGGAGGTAATAAATATGCAAACGGAACA CGTC-3'
69 FEcidi-R 5'-GGATCCGCCGCCACCCGAGCCACCGCCACCTTTAAGCTGG GTAAATGC-3'
70 REcidi-F 5'-GGATCCATGCAAACGGAACACGTCATTTTATTG-3'
71 REcidi-R 5'-CTGCAGGTCGACTTATTTAAGCTGGGTAAATG-3'
72 FSyidi-F 5'-GAATTCGAGCTCAGGAGGTAATAAATATGGATAGCACCCC CCACCG-3'
73 FSyidi-R 5'-GGATCCGCCGCCACCCGAGCCACCGCCACCAGGTTTAGTT AACCTTTGTC-3'
74 RSyidi-F 5'-GGATCCATGGATAGCACCCCCCACCGTAAG-3'
75 RSyidi-R 5'-CTGCAGGTCGACTTAAGGTTTAGTTAACCTTTG-3'
상기 제작된 네가지 융합단백질을 코딩하는 유전자를 포함한 플라스미드들을 pS-NA와 대장균 DH5α에 동시 도입하여 이소프렌 생산성 향상 여부를 확인하기 위한 배양을 실시하였다
배양을 위한 배지와 배양조건 그리고 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 14에 나타내었다. 도 14를 참조하면 배양결과 IspS와 에세리키아 속 IDI 융합단백질이 사이네코시스티스 속 IDI 융합 단백질에 비해 높은 이소프렌 생산량을 나타내었으며, 특히 에세리키아 속 IDI가 IspS의 앞쪽에 융합된 형태에서 가장 높은 이소프렌 생산성을 나타내었고, 대조군에 비해 약 2.4배 높은 이소프렌 생산량을 보였다.
이러한 결과를 바탕으로 IspS와 IDI 융합단백질이 보다 효율적으로 IPP를 이소프렌으로 전환한다는 것을 확인하였다.
5. 배양 조건에 따른 이소프렌 생산성 확인
(1) 유도물질의 종류에 따른 이소프렌 생산성 확인
본 실시예에서는 단백질 발현량을 높이기 위한 발현유도제의 종류에 따른 이소프렌 생산성 확인을 위한 결과를 포함하고 있다.
Lactose는 β-galactosidase에 의해 glucose와 galactose로 분해된다. 그리고 glucose와 galactose는 β-galactosidase의 역반응에 의해 lactose로 합성되기도 하는데 이때 일정 확률로 allolactose가 생성되며 이 allolactose가 발현유도제로 작용한다. 이러한 사실을 바탕으로 균체량이 증가함에 비례하여 β-galactosidase의 발현량이 증가하고 그에 비례하여 allolactose의 양이 증가할 것이라고 예상한다. 균체량에 비례하여 이소프렌 생합성 관련 유전자들의 발현을 적절히 조절하기 위해 lactose를 첨가하여 이소프렌 생산성을 확인하였다.
MG1655△recA 균주에 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 이소프렌 생산능을 가진 형질전환체를 50 ㎍/ml의 카나마이신을 포함하는 5 ml의 TB 배지 (1리터 당 24g yeast extract, 12g tryptone, 9.4g K2HPO4, 2.2g KH2PO4)에 접종하여 37 ℃, 250 rpm 조건으로 종배양한 후, 20 g/L 글리세롤 및 50 ㎍/ml의 카나마이신을 포함하는 50 ml의 TB 배지에 접종하여 본배양하였다. 단백질 발현량을 높이기 위하여 발현유도제를 각각 IPTG를 최종 농도 0.03 mM, Lactose를 최종 농도 5 g/l, 10 g/l, 20g/l 로 첨가하였다. Lactose를 20 g/l 첨가한 조건에서는 글리세롤을 첨가하지 않았다. 본배양은 홈이 파인 250 ml 삼각플라스크를 사용하였고, 30 ℃, 150 rpm 조건에서 36 시간 배양하였다. 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 15에 나타내었다. 도 15를 참조하면 글리세롤과 함께 lactose를 첨가한 조건에서 IPTG를 첨가한 조건에 비해 약 2.3배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 이 결과를 통하여 발현유도제로써 락토스의 첨가는 이소프렌 생산성 향상에 도움이 된다는 것으로 확인되었다.
(2) 보조인자 Mg 2 + 의 첨가에 따른 이소프렌 생산성 확인
본 실시예에서는 이소프렌 신타아제의 보조인자인 Mg2 +을 추가로 첨가하여 이소프렌 생산성 확인을 위한 결과를 포함하고 있다.
이소프렌 신타아제는 20 mM의 Mg2 +이 보조인자로 존재하는 조건에서 최적 활성을 나타낸다고 보고된다. 따라서 과량의 Mg2 +을 첨가하여 이소프렌 생산성을 확인하였다.
MG1655△recA 균주에 pTSNK-sPtispS-MVA를 도입하여 대장균 형질전환체를 만든 후 이소프렌 생산능을 가진 형질전환체를 50 ㎍/ml의 카나마이신을 포함하는 5 ml의 2YT 배지 (1리터 당 10g yeast extract, 16g tryptone, 5g NaCl)에 접종하여 37 ℃, 250 rpm 조건으로 종배양한 후, 20 g/L 글리세롤 및 50 ㎍/ml의 카나마이신을 포함하는 50 ml의 MR 배지(1리터 당 KH2PO4 0.6g, MgSO4·7H2O 0.492g, Na2HPO4O7·2H2O 2.56g, NaCl2 0.1g, NH4Cl 0.2g)에 접종하여 본배양하였다. 단백질 발현량을 높이기 위하여 발현유도제인 lactose를 최종 농도 5 g/l로 첨가하였고 보조인자 Mg2 +을 30 mM 첨가하였다. 본배양은 홈이 파인 250 ml 삼각플라스크를 사용하였고, 30 ℃, 150 rpm 조건에서 60 시간 배양하였다. 이소프렌 정량 방법은 상기 실시예 1-(2)의 방법과 동일하며 IPTG는 첨가하지 않았다.
배양 결과는 도 16에 나타내었다. 도 16을 참조하면 MR 배지가 포함하고 있는 Mg2 +의 양에 추가로 30mM Mg2 +을 첨가한 조건에서 Mg2 +을 추가로 첨가하지 않은 조건에 비해 약 1.65배 높은 이소프렌 생산량을 나타내는 것으로 확인되었다. 이 결과를 통하여 보조인자로써 Mg2 +의 첨가는 이소프렌 생산성 향상에 도움이 된다는 것으로 확인되었다.
<110> GYEONGSANG NATIONAL UNIVERSITY OFFICE OF ACADEMY AND INDUSTRY COLLABORATION <120> PREPARING METHOD FOR ISOPRENE <130> 15P08032 <150> KR 10-2016-0009568 <151> 2016-01-26 <160> 93 <170> KopatentIn 2.0 <210> 1 <211> 1683 <212> DNA <213> Populus trichocarpa <400> 1 atggcttgct ctgtatccac tgagaacgta tctttcactg agactgaaac tgagacccgt 60 cgctctgcga actatgagcc aaactcttgg gattacgatt atctgctgtc ctctgacact 120 gacgaaagca ttgaagttta caaggacaaa gcgaaaaagc tggaagcgga ggttcgtcgc 180 gaaatcaaca acgagaaagc tgaattcctg actctgctgg agctgatcga caacgtacag 240 cgtctgggtc tgggttaccg tttcgagtct gacatccgcc gtgctctgga tcgcttcgtt 300 tccagcggcg gtttcgatgc agtgaccaag actagcctgc atgcgaccgc gctgtctttc 360 cgtctgctgc gtcagcacgg ttttgaagtt tctcaggaag cgttctctgg cttcaaggac 420 cagaacggta atttcctgga aaacctgaag gaggacatta aggcgattct gtccctgtac 480 gaagcgtctt ttctggcgct ggaaggcgag aacatcctgg acgaagcgaa agtattcgca 540 atctcccacc tgaaagaact gagcgaagaa aaaatcggta aagatctggc ggaacaggtg 600 aaccacgctc tggaactgcc tctgcatcgt cgtacccagc gtctggaggc tgtgctgtcc 660 attgaagcat accgtaagaa agaagatgca gatcaggttc tgctggaact ggcgatcctg 720 gactacaaca tgattcagtc tgtgtaccag cgtgacctgc gtgaaacctc tcgctggtgg 780 cgccgtgtgg gtctggcaac caaactgcac ttcgcacgcg atcgtctgat tgaatccttc 840 tactgggctg taggcgtggc cttcgaaccg cagtactccg attgccgtaa ctctgttgct 900 aaaatgttct ctttcgttac cattatcgat gacatctatg acgtttatgg taccctggat 960 gaactggagc tgttcaccaa cgcagttgaa cgctgggacg ttaacgcgat tgatgacctg 1020 cctgactaca tgaaactgtg cttcctggcg ctgtataaca ctatcaacga gatcgcgtat 1080 gataacctga aagaaaaagg tgaaaacatt ctgccgtatc tgaccaaagc ctgggccgac 1140 ctgtgtaacg cattcctgca ggaggccaaa tggctgtaca ataagtctac tcctactttc 1200 gacgattact tcggtaacgc ttggaaatct agctctggcc cgctgcaact ggtcttcgcc 1260 tatttcgcgg tagtgcaaaa catcaaaaag gaagagatcg agaatctgca gaaatatcac 1320 gacattatct cccgcccgag ccacatcttc cgcctgtgta acgacctggc ctccgcatcc 1380 gcagaaattg cacgcggcga aaccgccaac tccgtatcct gctatatgcg taccaaaggc 1440 atcagcgaag aactggctac cgaatccgtg atgaacctga tcgatgaaac ttggaagaag 1500 atgaacaaag aaaaactggg cggttctctg ttcgccaaac cattcgttga aaccgcgatt 1560 aacctggcgc gccaatctca ctgcacctat cataacggtg acgcacacac ctccccggat 1620 gaactgaccc gtaagcgtgt gctgtccgtt attaccgaac caattctgcc gttcgaacgc 1680 taa 1683 <210> 2 <211> 1197 <212> DNA <213> Enterococcus faecalis <400> 2 atggagttga aaacagtagt tattattgat gcattacgaa caccaattgg aaaatataaa 60 ggcagcttaa gtcaagtaag tgccgtagac ttaggaacac atgttacaac acaactttta 120 aaaagacatt ccactatttc tgaagaaatt gatcaagtaa tctttggaaa tgttttacaa 180 gctggaaatg gccaaaatcc cgcacgacaa atagcaataa acagcggttt gtctcatgaa 240 attcccgcaa tgacggttaa tgaggtctgc ggatcaggaa tgaaggccgt tattttggcg 300 aaacaattga ttcaattagg agaagcggaa gttttaattg ctggtgggat tgagaatatg 360 tcccaagcac ctaaattaca acgatttaat tacgaaacag aaagctacga tgcgcctttt 420 tctagtatga tgtacgatgg gttaacggat gcctttagtg gtcaggcaat gggcttaact 480 gctgaaaatg tggccgaaaa gtatcatgta actagagaag agcaagatca attttctgta 540 cattcacaat taaaagcagc tcaagcacaa gcagaaggga tattcgctga cgaaatagcc 600 ccattagaag tgtcaggaac gcttgtggag aaagatgaag ggattcgccc taattcgagc 660 gttgagaagc taggaacgct taaaacagtt tttaaagaag acggtactgt aacagcaggg 720 aatgcatcaa ccattaatga tggggcttct gctttgatta ttgcttcaca agaatatgcc 780 gaagcacacg gtcttcctta tttagctatt attcgagaca gtgtggaagt cggtattgat 840 ccagcctata tgggaatttc gccgattaaa gccattcaaa aactgttagc gcggaatcaa 900 cttactacgg aagaaattga tctgtatgaa atcaacgaag catttgcagc aacttcaatc 960 gtggtccaaa gagaactggc tttaccagag gaaaaggtca acatttatgg tggcggtatt 1020 tcattaggtc atgcgattgg tgccacaggt gctcgtttat taacgagttt aagttatcaa 1080 ttaaatcaaa aagaaaagaa atatggcgtg gcttctttat gtatcggcgg tggcttagga 1140 ctcgctatgc tactagagag acctcagcaa aaaaaaacag ccgattttat caaataa 1197 <210> 3 <211> 1152 <212> DNA <213> Enterococcus faecalis <400> 3 atgacaattg ggattgataa aattagtttt tttgtgcccc cttattatat tgatatgacg 60 gcactggctg aagccagaaa tgtagaccct ggaaaatttc atattggtat tgggcaagac 120 caaatggcgg tgaacccaat cagccaagat attgtgacat ttgcagccaa tgccgcagaa 180 gcgatcttga ccaaagaaga taaagaggcc attgatatgg tgattgtcgg gactgagtcc 240 agtatcgatg agtcaaaagc ggccgcagtt gtcttacatc gtttaatggg gattcaacct 300 ttcgctcgct ctttcgaaat caaggaagct tgttacggag caacagcagg cttacagtta 360 gctaagaatc acgtagcctt acatccagat aaaaaagtct tggtcgtagc agcagatatt 420 gcaaaatatg gcttaaattc tggcggtgag cctacacaag gagctggggc ggttgcaatg 480 ttagttgcta gtgaaccgcg cattttggct ttaaaagagg ataatgtgat gctgacgcaa 540 gatatctatg acttttggcg tccaacaggc catccatatc ctatggtcga tggtcctttg 600 tcaaacgaaa cctacatcca atcttttgcc caagtctggg atgaacataa aaaacgaacc 660 ggtcttgatt ttgcagatta tgatgcttta gcgttccata ttccttacac aaaaatgggc 720 aaaaaagcct tattagcaaa aatctccgac caaactgaag cagaacagga acgaatttta 780 gcccgttatg aagaaagcat catctatagt cgtcgcgtag gaaacttgta tacgggttca 840 ctttatctgg gactcatttc ccttttagaa aatgcaacga ctttaaccgc aggcaatcaa 900 attgggttat tcagttatgg ttctggtgct gtcgctgaat ttttcactgg tgaattagta 960 gctggttatc aaaatcattt acaaaaagaa actcatttag cactgctgga taatcggaca 1020 gaactttcta tcgctgaata tgaagccatg tttgcagaaa ctttagacac agacattgat 1080 caaacgttag aagatgaatt aaaatatagt atttctgcta ttaataatac cgttcgttct 1140 tatcgaaact aa 1152 <210> 4 <211> 879 <212> DNA <213> Streptococcus pneumoniae <400> 4 atgacaaaaa aagttggtgt cggtcaggca catagtaaga taattttaat aggggaacat 60 gcggtcgttt acggttatcc tgccatttcc ctgcctcttt tggaggtgga ggtgacctgt 120 aaggtagttc ctgcagagag tccttggcgc ctttatgagg aggatacctt gtccatggcg 180 gtttatgcct cactggagta tttggatatc acagaagcct gcattcgttg tgagattgac 240 tcggctatcc ctgagaaacg ggggatgggt tcgtcagcgg ctatcagcat agcggccatt 300 cgtgcggtat ttgactacta tcaggctgat ctgcctcatg atgtactaga aatcttggtc 360 aatcgagctg aaatgattgc ccatatgaat cctagtggtt tggatgctaa gacctgtctc 420 agtgaccaac ctattcgctt tatcaagaac gtaggattta cagaacttga gatggattta 480 tccgcctatt tggtgattgc cgatacgggt gtttatggtc atactcgtga agccatccaa 540 gtggttcaaa ataagggcaa ggatgcccta ccgtttttgc atgccttggg agaattaacc 600 cagcaagcag aagttgcgat ttcacaaaaa gatgctgaag gactgggaca aatcctcagt 660 caagcgcatt tacatttaaa agaaattgga gtcagtagcc ctgaggcaga ctttttggtt 720 gaaacgactc ttagccatgg tgctctgggt gccaagatga gcggtggtgg gctaggaggt 780 tgtatcatag ccttggtaac caatttgaca cacgcacaag aactagcaga aagattagaa 840 gagaaaggag ctgttcagac atggatagag agcctgtaa 879 <210> 5 <211> 954 <212> DNA <213> Streptococcus pneumoniae <400> 5 atggatagag agcctgtaac agtacgttcc tacgcaaata ttgctattat caaatattgg 60 ggaaagaaaa aagaaaaaga gatggtgcct gctactagca gtatttctct aactttggaa 120 aatatgtata cagagacgac cttgtcgcct ttaccagcca atgtaacagc tgacgaattt 180 tacatcaatg gtcagctaca aaatgaggtc gagcatgcca agatgagtaa gattattgac 240 cgttatcgtc cagctggtga gggctttgtc cgtatcgata ctcaaaacaa tatgcctact 300 gcagcgggcc tgtcctcaag ttctagtggt ttgtccgccc tggtcaaggc ttgtaatgct 360 tatttcaagc ttggattgga tagaagtcag ttggcacagg aagccaaatt tgcctcaggc 420 tcttcttctc ggagttttta tggaccacta ggagcctggg ataaggatag tggagaaatt 480 taccctgtag agacagactt gaaactagct atgattatgt tggtgctaga ggacaagaaa 540 aaaccaatct ctagccgtga cgggatgaaa ctttgtgtgg aaacctcgac gacttttgac 600 gactgggttc gtcagtctga gaaggactat caggatatgc tgatttatct caaggaaaat 660 gattttgcca agattggaga attaacggag aaaaatgccc tggctatgca tgctacgaca 720 aagactgcta gtccagcctt ttcttatctg acggatgcct cttatgaggc tatggacttt 780 gttcgccagc ttcgtgagaa aggagaggcc tgctacttta ccatggatgc tggtcccaat 840 gttaaggtct tctgtcagga gaaagacttg gagcatttat cagaaatttt cggtcatcgt 900 tatcgcttga ttgtgtcaaa aacaaaggat ttgagtcaag atgattgctg ttaa 954 <210> 6 <211> 1008 <212> DNA <213> Streptococcus pneumoniae <400> 6 atgattgctg ttaaaacttg cggaaaactc tattgggcag gtgaatatgc tattttagag 60 ccagggcagt tagctttgat aaaggatatt cccatctata tgagggctga gattgctttt 120 tctgacagct accgtatcta ttcagatatg tttgatttcg cagtggactt aaggcctaat 180 cctgactaca gcttgattca agaaacgatt gctttgatgg gagacttcct cgctgttcgt 240 ggtcagaatt taagaccttt ttctctagaa atctgtggca aaatggaacg agaagggaaa 300 aagtttggtc taggttctag tggcagcgtc gttgtcttgg ttgtcaaggc tttactggct 360 ctgtatgatg tttctgttga tcaggagctc ttgttcaagc tgactagcgc tgtcttgctc 420 aagcgaggag acaatggttc catgggcgac cttgcctgta ttgtggcaga ggatttggtt 480 ctctaccagt catttgatcg ccagaaggtg gctgcttggt tagaagaaga aaacttggcg 540 acagttctgg agcgtgattg gggcttttca atttcacaag tgaaaccaac tttagaatgt 600 gatttcttag tgggatggac caaggaagtg gctgtatcga gtcacatggt ccagcaaatc 660 aagcaaaata tcaatcaaaa ttttttaagt tcctcaaaag aaacggtggt ttctttggtc 720 gaagccttgg aacaggggaa atcagaaaag attatcgagc aagtagaagt agccagcaag 780 cttttagaag gcttgagtac agatatttac acgcctttgc ttagacagtt gaaagaagcc 840 agtcaagatt tgcaggccgt tgccaagagt agtggtgctg gtggtggtga ctgtggcatc 900 gccctgagtt ttgatgcgca atcaaccaaa accttaaaaa atcgttgggc cgatctgggg 960 attgagctct tatatcaaga aaggatagga catgacgaca aatcgtaa 1008 <210> 7 <211> 549 <212> DNA <213> Escherichia coli MG1655 <400> 7 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaataa 549 <210> 8 <211> 1050 <212> DNA <213> Synechocystis sp. PCC6803 <400> 8 atggatagca ccccccaccg taagtccgat catatccgca ttgtcctaga agaagatgtg 60 gtgggcaaag gcatttccac cggctttgaa agattgatgc tggaacactg cgctcttcct 120 gcggtggatc tggatgcagt ggatttggga ctgaccctct ggggtaaatc cttgacttac 180 ccttggttga tcagcagtat gaccggcggc acgccagagg ccaagcaaat taatctattt 240 ttagccgagg tggcccaggc tttgggcatc gccatgggtt tgggttccca acgggccgcc 300 attgaaaatc ctgatttagc cttcacctat caagtccgct ccgtcgcccc agatatttta 360 ctttttgcca acctgggatt agtgcaatta aattacggtt acggtttgga gcaagcccag 420 cgggcggtgg atatgattga agccgatgcg ctgattttgc atctcaatcc cctccaggaa 480 gcggtgcaac ccgatggcga tcgcctgtgg tcgggactct ggtctaagtt agaagcttta 540 gtagaggctt tggaagtgcc ggtaattgtc aaagaagtgg gcaatggcat tagcggtccg 600 gtggccaaaa gattgcagga atgtggggtc ggggcgatcg atgtggctgg agctgggggc 660 accagttgga gtgaagtgga agcccatcga caaaccgatc gccaagcgaa ggaagtggcc 720 cataactttg ccgattgggg attacccaca gcctggagtt tgcaacaggt agtgcaaaat 780 actgagcaga tcctggtttt cgccagcggc ggcattcgtt ccggcattga cggggccaag 840 gcgatcgccc tgggggccac cctggtgggt agtgcggcac cggtattagc agaagcgaaa 900 atcaacgccc aaagggttta tgaccattac caggcacggc taagggaact gcaaatcgcc 960 gccttttgtt gtgatgccgc caatctgacc caactggccc aagtccccct ttgggacaga 1020 caatcgggac aaaggttaac taaaccttaa 1050 <210> 9 <211> 1011 <212> DNA <213> Streptococcus pneumoniae <400> 9 atgacgacaa atcgtaagga cgagcatatc ctctatgccc ttgagcagaa aagttcctat 60 aatagctttg atgaggtgga gctgattcat tcttccttgc ctctttacaa tctggatgaa 120 atcgatcttt cgacagagtt tgctggtcga aagtgggact ttccttttta tatcaatgcc 180 atgactggtg gaagtaataa gggaagagaa atcaatcaaa agctggctca ggtggcggaa 240 tcctgtggta ttttatttgt aacgggttct tatagcgcag ccctcaaaaa tccaacggat 300 gattcttttt ctgtcaagtc tagtcatccc aatctcctcc ttggaaccaa tattggattg 360 gacaagcctg tcgagttagg acttcagact gtagaagaga tgaatcctgt tctattgcaa 420 gtgcatgtca atgtcatgca ggaattactc atgcccgagg gagaaaggaa gtttagaagc 480 tggcaatcgc atctagcaga ttatagcaag caaattcccg ttcctattgt cctcaaggaa 540 gtgggctttg gaatggatgc caagacaatc gaaagagcct atgaattcgg tgttcgtaca 600 gtggacctat cgggtcgtgg tggcaccagc tttgcctata tcgaaaaccg tcgtagtggc 660 cagcgtgatt acctcaatca atggggtcag tctaccatgc aggcccttct caatgcccaa 720 gaatggaaag ataaggtcga actcttggtt agtggagggg ttcggaatcc gctggatatg 780 attaagtgct tggtttttgg tgctaaggct gtgggattgt cacgaaccgt tctggaattg 840 gttgaaacct acacagttga agaagtgatt ggcattgtcc aaggctggaa agcagatcta 900 cgcttgatta tgtgttccct taactgtgcc accatagcag atctacaaaa agtagactat 960 cttctttatg gaaaattaaa agaagcaaag gatcagatga aaaaggcgta a 1011 <210> 10 <211> 918 <212> DNA <213> Haematococcus plavialis <400> 10 atgcttcgtt cgttgctcag aggcctcacg catatccccc gcgtgaactc cgcccagcag 60 cccagctgtg cacacgcgcg actccagttt aagctcagga gcatgcagat gacgctcatg 120 cagcccagca tctcagccaa tctgtcgcgc gccgaggacc gcacagacca catgaggggt 180 gcaagcacct gggcaggcgg gcagtcgcag gatgagctga tgctgaagga cgagtgcatc 240 ttggtggatg ttgaggacaa catcacaggc catgccagca agctggagtg tcacaagttc 300 ctaccacatc agcctgcagg cctgctgcac cgggccttct ctgtgttcct gtttgacgat 360 caggggcgac tgctgctgca acagcgtgca cgctcaaaaa tcaccttccc aagtgtgtgg 420 acgaacacct gctgcagcca ccctttacat gggcagaccc cagatgaggt ggaccaacta 480 agccaggtgg ccgacggaac agtacctggc gcaaaggctg ctgccatccg caagttggag 540 cacgagctgg ggataccagc gcaccagctg ccggcaagcg cgtttcgctt cctcacgcgt 600 ttgcactact gtgccgcgga cgtgcagcca gctgcgacac aatcagcgct ctggggcgag 660 cacgaaatgg actacatctt gttcatccgg gccaacgtca ccttggcgcc caaccctgac 720 gaggtggacg aagtcaggta cgtgacgcaa gaggagctgc ggcagatgat gcagccggac 780 aacgggctgc aatggtcgcc gtggtttcgc atcatcgccg cgcgcttcct tgagcgttgg 840 tgggctgacc tggacgcggc cctaaacact gacaaacacg aggattgggg aacggtgcat 900 cacatcaacg aagcgtaa 918 <210> 11 <211> 2259 <212> DNA <213> Artificial Sequence <220> <223> gene coding fusion protein of isoprene synthase and isoprenyl pyrophosphate isomerase <400> 11 atggcttgct ctgtatccac tgagaacgta tctttcactg agactgaaac tgagacccgt 60 cgctctgcga actatgagcc aaactcttgg gattacgatt atctgctgtc ctctgacact 120 gacgaaagca ttgaagttta caaggacaaa gcgaaaaagc tggaagcgga ggttcgtcgc 180 gaaatcaaca acgagaaagc tgaattcctg actctgctgg agctgatcga caacgtacag 240 cgtctgggtc tgggttaccg tttcgagtct gacatccgcc gtgctctgga tcgcttcgtt 300 tccagcggcg gtttcgatgc agtgaccaag actagcctgc atgcgaccgc gctgtctttc 360 cgtctgctgc gtcagcacgg ttttgaagtt tctcaggaag cgttctctgg cttcaaggac 420 cagaacggta atttcctgga aaacctgaag gaggacatta aggcgattct gtccctgtac 480 gaagcgtctt ttctggcgct ggaaggcgag aacatcctgg acgaagcgaa agtattcgca 540 atctcccacc tgaaagaact gagcgaagaa aaaatcggta aagatctggc ggaacaggtg 600 aaccacgctc tggaactgcc tctgcatcgt cgtacccagc gtctggaggc tgtgctgtcc 660 attgaagcat accgtaagaa agaagatgca gatcaggttc tgctggaact ggcgatcctg 720 gactacaaca tgattcagtc tgtgtaccag cgtgacctgc gtgaaacctc tcgctggtgg 780 cgccgtgtgg gtctggcaac caaactgcac ttcgcacgcg atcgtctgat tgaatccttc 840 tactgggctg taggcgtggc cttcgaaccg cagtactccg attgccgtaa ctctgttgct 900 aaaatgttct ctttcgttac cattatcgat gacatctatg acgtttatgg taccctggat 960 gaactggagc tgttcaccaa cgcagttgaa cgctgggacg ttaacgcgat tgatgacctg 1020 cctgactaca tgaaactgtg cttcctggcg ctgtataaca ctatcaacga gatcgcgtat 1080 gataacctga aagaaaaagg tgaaaacatt ctgccgtatc tgaccaaagc ctgggccgac 1140 ctgtgtaacg cattcctgca ggaggccaaa tggctgtaca ataagtctac tcctactttc 1200 gacgattact tcggtaacgc ttggaaatct agctctggcc cgctgcaact ggtcttcgcc 1260 tatttcgcgg tagtgcaaaa catcaaaaag gaagagatcg agaatctgca gaaatatcac 1320 gacattatct cccgcccgag ccacatcttc cgcctgtgta acgacctggc ctccgcatcc 1380 gcagaaattg cacgcggcga aaccgccaac tccgtatcct gctatatgcg taccaaaggc 1440 atcagcgaag aactggctac cgaatccgtg atgaacctga tcgatgaaac ttggaagaag 1500 atgaacaaag aaaaactggg cggttctctg ttcgccaaac cattcgttga aaccgcgatt 1560 aacctggcgc gccaatctca ctgcacctat cataacggtg acgcacacac ctccccggat 1620 gaactgaccc gtaagcgtgt gctgtccgtt attaccgaac caattctgcc gttcgaacgc 1680 ggtggcggtg gctcgggtgg cggcggatcc atgcaaacgg aacacgtcat tttattgaat 1740 gcacagggag ttcccacggg tacgctggaa aagtatgccg cacacacggc agacacccgc 1800 ttacatctcg cgttctccag ttggctgttt aatgccaaag gacaattatt agttacccgc 1860 cgcgcactga gcaaaaaagc atggcctggc gtgtggacta actcggtttg tgggcaccca 1920 caactgggag aaagcaacga agacgcagtg atccgccgtt gccgttatga gcttggcgtg 1980 gaaattacgc ctcctgaatc tatctatcct gactttcgct accgcgccac cgatccgagt 2040 ggcattgtgg aaaatgaagt gtgtccggta tttgccgcac gcaccactag tgcgttacag 2100 atcaatgatg atgaagtgat ggattatcaa tggtgtgatt tagcagatgt attacacggt 2160 attgatgcca cgccgtgggc gttcagtccg tggatggtga tgcaggcgac aaatcgcgaa 2220 gccagaaaac gattatctgc atttacccag cttaaataa 2259 <210> 12 <211> 2259 <212> DNA <213> Artificial Sequence <220> <223> gene coding fusion protein of isoprene synthase and isoprenyl pyrophosphate isomerase <400> 12 atgcaaacgg aacacgtcat tttattgaat gcacagggag ttcccacggg tacgctggaa 60 aagtatgccg cacacacggc agacacccgc ttacatctcg cgttctccag ttggctgttt 120 aatgccaaag gacaattatt agttacccgc cgcgcactga gcaaaaaagc atggcctggc 180 gtgtggacta actcggtttg tgggcaccca caactgggag aaagcaacga agacgcagtg 240 atccgccgtt gccgttatga gcttggcgtg gaaattacgc ctcctgaatc tatctatcct 300 gactttcgct accgcgccac cgatccgagt ggcattgtgg aaaatgaagt gtgtccggta 360 tttgccgcac gcaccactag tgcgttacag atcaatgatg atgaagtgat ggattatcaa 420 tggtgtgatt tagcagatgt attacacggt attgatgcca cgccgtgggc gttcagtccg 480 tggatggtga tgcaggcgac aaatcgcgaa gccagaaaac gattatctgc atttacccag 540 cttaaaggtg gcggtggctc gggtggcggc ggatccatgg cttgctctgt atccactgag 600 aacgtatctt tcactgagac tgaaactgag acccgtcgct ctgcgaacta tgagccaaac 660 tcttgggatt acgattatct gctgtcctct gacactgacg aaagcattga agtttacaag 720 gacaaagcga aaaagctgga agcggaggtt cgtcgcgaaa tcaacaacga gaaagctgaa 780 ttcctgactc tgctggagct gatcgacaac gtacagcgtc tgggtctggg ttaccgtttc 840 gagtctgaca tccgccgtgc tctggatcgc ttcgtttcca gcggcggttt cgatgcagtg 900 accaagacta gcctgcatgc gaccgcgctg tctttccgtc tgctgcgtca gcacggtttt 960 gaagtttctc aggaagcgtt ctctggcttc aaggaccaga acggtaattt cctggaaaac 1020 ctgaaggagg acattaaggc gattctgtcc ctgtacgaag cgtcttttct ggcgctggaa 1080 ggcgagaaca tcctggacga agcgaaagta ttcgcaatct cccacctgaa agaactgagc 1140 gaagaaaaaa tcggtaaaga tctggcggaa caggtgaacc acgctctgga actgcctctg 1200 catcgtcgta cccagcgtct ggaggctgtg ctgtccattg aagcataccg taagaaagaa 1260 gatgcagatc aggttctgct ggaactggcg atcctggact acaacatgat tcagtctgtg 1320 taccagcgtg acctgcgtga aacctctcgc tggtggcgcc gtgtgggtct ggcaaccaaa 1380 ctgcacttcg cacgcgatcg tctgattgaa tccttctact gggctgtagg cgtggccttc 1440 gaaccgcagt actccgattg ccgtaactct gttgctaaaa tgttctcttt cgttaccatt 1500 atcgatgaca tctatgacgt ttatggtacc ctggatgaac tggagctgtt caccaacgca 1560 gttgaacgct gggacgttaa cgcgattgat gacctgcctg actacatgaa actgtgcttc 1620 ctggcgctgt ataacactat caacgagatc gcgtatgata acctgaaaga aaaaggtgaa 1680 aacattctgc cgtatctgac caaagcctgg gccgacctgt gtaacgcatt cctgcaggag 1740 gccaaatggc tgtacaataa gtctactcct actttcgacg attacttcgg taacgcttgg 1800 aaatctagct ctggcccgct gcaactggtc ttcgcctatt tcgcggtagt gcaaaacatc 1860 aaaaaggaag agatcgagaa tctgcagaaa tatcacgaca ttatctcccg cccgagccac 1920 atcttccgcc tgtgtaacga cctggcctcc gcatccgcag aaattgcacg cggcgaaacc 1980 gccaactccg tatcctgcta tatgcgtacc aaaggcatca gcgaagaact ggctaccgaa 2040 tccgtgatga acctgatcga tgaaacttgg aagaagatga acaaagaaaa actgggcggt 2100 tctctgttcg ccaaaccatt cgttgaaacc gcgattaacc tggcgcgcca atctcactgc 2160 acctatcata acggtgacgc acacacctcc ccggatgaac tgacccgtaa gcgtgtgctg 2220 tccgttatta ccgaaccaat tctgccgttc gaacgctaa 2259 <210> 13 <211> 2760 <212> DNA <213> Artificial Sequence <220> <223> gene coding fusion protein of isoprene synthase and isoprenyl pyrophosphate isomerase <400> 13 atggcttgct ctgtatccac tgagaacgta tctttcactg agactgaaac tgagacccgt 60 cgctctgcga actatgagcc aaactcttgg gattacgatt atctgctgtc ctctgacact 120 gacgaaagca ttgaagttta caaggacaaa gcgaaaaagc tggaagcgga ggttcgtcgc 180 gaaatcaaca acgagaaagc tgaattcctg actctgctgg agctgatcga caacgtacag 240 cgtctgggtc tgggttaccg tttcgagtct gacatccgcc gtgctctgga tcgcttcgtt 300 tccagcggcg gtttcgatgc agtgaccaag actagcctgc atgcgaccgc gctgtctttc 360 cgtctgctgc gtcagcacgg ttttgaagtt tctcaggaag cgttctctgg cttcaaggac 420 cagaacggta atttcctgga aaacctgaag gaggacatta aggcgattct gtccctgtac 480 gaagcgtctt ttctggcgct ggaaggcgag aacatcctgg acgaagcgaa agtattcgca 540 atctcccacc tgaaagaact gagcgaagaa aaaatcggta aagatctggc ggaacaggtg 600 aaccacgctc tggaactgcc tctgcatcgt cgtacccagc gtctggaggc tgtgctgtcc 660 attgaagcat accgtaagaa agaagatgca gatcaggttc tgctggaact ggcgatcctg 720 gactacaaca tgattcagtc tgtgtaccag cgtgacctgc gtgaaacctc tcgctggtgg 780 cgccgtgtgg gtctggcaac caaactgcac ttcgcacgcg atcgtctgat tgaatccttc 840 tactgggctg taggcgtggc cttcgaaccg cagtactccg attgccgtaa ctctgttgct 900 aaaatgttct ctttcgttac cattatcgat gacatctatg acgtttatgg taccctggat 960 gaactggagc tgttcaccaa cgcagttgaa cgctgggacg ttaacgcgat tgatgacctg 1020 cctgactaca tgaaactgtg cttcctggcg ctgtataaca ctatcaacga gatcgcgtat 1080 gataacctga aagaaaaagg tgaaaacatt ctgccgtatc tgaccaaagc ctgggccgac 1140 ctgtgtaacg cattcctgca ggaggccaaa tggctgtaca ataagtctac tcctactttc 1200 gacgattact tcggtaacgc ttggaaatct agctctggcc cgctgcaact ggtcttcgcc 1260 tatttcgcgg tagtgcaaaa catcaaaaag gaagagatcg agaatctgca gaaatatcac 1320 gacattatct cccgcccgag ccacatcttc cgcctgtgta acgacctggc ctccgcatcc 1380 gcagaaattg cacgcggcga aaccgccaac tccgtatcct gctatatgcg taccaaaggc 1440 atcagcgaag aactggctac cgaatccgtg atgaacctga tcgatgaaac ttggaagaag 1500 atgaacaaag aaaaactggg cggttctctg ttcgccaaac cattcgttga aaccgcgatt 1560 aacctggcgc gccaatctca ctgcacctat cataacggtg acgcacacac ctccccggat 1620 gaactgaccc gtaagcgtgt gctgtccgtt attaccgaac caattctgcc gttcgaacgc 1680 ggtggcggtg gctcgggtgg cggcggatcc atggatagca ccccccaccg taagtccgat 1740 catatccgca ttgtcctaga agaagatgtg gtgggcaaag gcatttccac cggctttgaa 1800 agattgatgc tggaacactg cgctcttcct gcggtggatc tggatgcagt ggatttggga 1860 ctgaccctct ggggtaaatc cttgacttac ccttggttga tcagcagtat gaccggcggc 1920 acgccagagg ccaagcaaat taatctattt ttagccgagg tggcccaggc tttgggcatc 1980 gccatgggtt tgggttccca acgggccgcc attgaaaatc ctgatttagc cttcacctat 2040 caagtccgct ccgtcgcccc agatatttta ctttttgcca acctgggatt agtgcaatta 2100 aattacggtt acggtttgga gcaagcccag cgggcggtgg atatgattga agccgatgcg 2160 ctgattttgc atctcaatcc cctccaggaa gcggtgcaac ccgatggcga tcgcctgtgg 2220 tcgggactct ggtctaagtt agaagcttta gtagaggctt tggaagtgcc ggtaattgtc 2280 aaagaagtgg gcaatggcat tagcggtccg gtggccaaaa gattgcagga atgtggggtc 2340 ggggcgatcg atgtggctgg agctgggggc accagttgga gtgaagtgga agcccatcga 2400 caaaccgatc gccaagcgaa ggaagtggcc cataactttg ccgattgggg attacccaca 2460 gcctggagtt tgcaacaggt agtgcaaaat actgagcaga tcctggtttt cgccagcggc 2520 ggcattcgtt ccggcattga cggggccaag gcgatcgccc tgggggccac cctggtgggt 2580 agtgcggcac cggtattagc agaagcgaaa atcaacgccc aaagggttta tgaccattac 2640 caggcacggc taagggaact gcaaatcgcc gccttttgtt gtgatgccgc caatctgacc 2700 caactggccc aagtccccct ttgggacaga caatcgggac aaaggttaac taaaccttaa 2760 2760 <210> 14 <211> 2760 <212> DNA <213> Artificial Sequence <220> <223> gene coding fusion protein of isoprene synthase and isoprenyl pyrophosphate isomerase <400> 14 atggatagca ccccccaccg taagtccgat catatccgca ttgtcctaga agaagatgtg 60 gtgggcaaag gcatttccac cggctttgaa agattgatgc tggaacactg cgctcttcct 120 gcggtggatc tggatgcagt ggatttggga ctgaccctct ggggtaaatc cttgacttac 180 ccttggttga tcagcagtat gaccggcggc acgccagagg ccaagcaaat taatctattt 240 ttagccgagg tggcccaggc tttgggcatc gccatgggtt tgggttccca acgggccgcc 300 attgaaaatc ctgatttagc cttcacctat caagtccgct ccgtcgcccc agatatttta 360 ctttttgcca acctgggatt agtgcaatta aattacggtt acggtttgga gcaagcccag 420 cgggcggtgg atatgattga agccgatgcg ctgattttgc atctcaatcc cctccaggaa 480 gcggtgcaac ccgatggcga tcgcctgtgg tcgggactct ggtctaagtt agaagcttta 540 gtagaggctt tggaagtgcc ggtaattgtc aaagaagtgg gcaatggcat tagcggtccg 600 gtggccaaaa gattgcagga atgtggggtc ggggcgatcg atgtggctgg agctgggggc 660 accagttgga gtgaagtgga agcccatcga caaaccgatc gccaagcgaa ggaagtggcc 720 cataactttg ccgattgggg attacccaca gcctggagtt tgcaacaggt agtgcaaaat 780 actgagcaga tcctggtttt cgccagcggc ggcattcgtt ccggcattga cggggccaag 840 gcgatcgccc tgggggccac cctggtgggt agtgcggcac cggtattagc agaagcgaaa 900 atcaacgccc aaagggttta tgaccattac caggcacggc taagggaact gcaaatcgcc 960 gccttttgtt gtgatgccgc caatctgacc caactggccc aagtccccct ttgggacaga 1020 caatcgggac aaaggttaac taaacctggt ggcggtggct cgggtggcgg cggatccatg 1080 gcttgctctg tatccactga gaacgtatct ttcactgaga ctgaaactga gacccgtcgc 1140 tctgcgaact atgagccaaa ctcttgggat tacgattatc tgctgtcctc tgacactgac 1200 gaaagcattg aagtttacaa ggacaaagcg aaaaagctgg aagcggaggt tcgtcgcgaa 1260 atcaacaacg agaaagctga attcctgact ctgctggagc tgatcgacaa cgtacagcgt 1320 ctgggtctgg gttaccgttt cgagtctgac atccgccgtg ctctggatcg cttcgtttcc 1380 agcggcggtt tcgatgcagt gaccaagact agcctgcatg cgaccgcgct gtctttccgt 1440 ctgctgcgtc agcacggttt tgaagtttct caggaagcgt tctctggctt caaggaccag 1500 aacggtaatt tcctggaaaa cctgaaggag gacattaagg cgattctgtc cctgtacgaa 1560 gcgtcttttc tggcgctgga aggcgagaac atcctggacg aagcgaaagt attcgcaatc 1620 tcccacctga aagaactgag cgaagaaaaa atcggtaaag atctggcgga acaggtgaac 1680 cacgctctgg aactgcctct gcatcgtcgt acccagcgtc tggaggctgt gctgtccatt 1740 gaagcatacc gtaagaaaga agatgcagat caggttctgc tggaactggc gatcctggac 1800 tacaacatga ttcagtctgt gtaccagcgt gacctgcgtg aaacctctcg ctggtggcgc 1860 cgtgtgggtc tggcaaccaa actgcacttc gcacgcgatc gtctgattga atccttctac 1920 tgggctgtag gcgtggcctt cgaaccgcag tactccgatt gccgtaactc tgttgctaaa 1980 atgttctctt tcgttaccat tatcgatgac atctatgacg tttatggtac cctggatgaa 2040 ctggagctgt tcaccaacgc agttgaacgc tgggacgtta acgcgattga tgacctgcct 2100 gactacatga aactgtgctt cctggcgctg tataacacta tcaacgagat cgcgtatgat 2160 aacctgaaag aaaaaggtga aaacattctg ccgtatctga ccaaagcctg ggccgacctg 2220 tgtaacgcat tcctgcagga ggccaaatgg ctgtacaata agtctactcc tactttcgac 2280 gattacttcg gtaacgcttg gaaatctagc tctggcccgc tgcaactggt cttcgcctat 2340 ttcgcggtag tgcaaaacat caaaaaggaa gagatcgaga atctgcagaa atatcacgac 2400 attatctccc gcccgagcca catcttccgc ctgtgtaacg acctggcctc cgcatccgca 2460 gaaattgcac gcggcgaaac cgccaactcc gtatcctgct atatgcgtac caaaggcatc 2520 agcgaagaac tggctaccga atccgtgatg aacctgatcg atgaaacttg gaagaagatg 2580 aacaaagaaa aactgggcgg ttctctgttc gccaaaccat tcgttgaaac cgcgattaac 2640 ctggcgcgcc aatctcactg cacctatcat aacggtgacg cacacacctc cccggatgaa 2700 ctgacccgta agcgtgtgct gtccgttatt accgaaccaa ttctgccgtt cgaacgctaa 2760 2760 <210> 15 <211> 4179 <212> DNA <213> Artificial Sequence <220> <223> pTrc99SN vector <400> 15 gtttgacagc ttatcatcga ctgcacggtg caccaatgct tctggcgtca ggcagccatc 60 ggaagctgtg gtatggctgt gcaggtcgta aatcactgca taattcgtgt cgctcaaggc 120 gcactcccgt tctggataat gttttttgcg ccgacatcat aacggttctg gcaaatattc 180 tgaaatgagc tgttgacaat taatcatccg gctcgtataa tgtgtggaat tgtgagcgga 240 taacaatttc acacaggagg taataaacca tggaattcga gctcggtacc cggggatcct 300 ctagagtcga cctgcaggca tgcaagcttg gctgttttgg cggatgagag aagattttca 360 gcctgataca gattaaatca gaacgcagaa gcggtctgat aaaacagaat ttgcctggcg 420 gcagtagcgc ggtggtccca cctgacccca tgccgaactc agaagtgaaa cgccgtagcg 480 ccgatggtag tgtggggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa 540 cgaaaggctc agtcgaaaga ctgggccttt cgttttatct gttgtttgtc ggtgaacgct 600 ctcctgagta ggacaaatcc gccgggagcg gatttgaacg ttgcgaagca acggcccgga 660 gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggccatc 720 ctgacggatg gcctttttgc gtttctacaa actctttttg tttatttttc taaatacatt 780 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 840 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 900 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 960 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 1020 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 1080 tattatcccg tgttgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 1140 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 1200 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 1260 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa 1320 ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 1380 ccacgatgcc tacagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 1440 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac 1500 ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 1560 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 1620 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 1680 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 1740 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 1800 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag 1860 aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 1920 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 1980 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc 2040 cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 2100 tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa 2160 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 2220 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa 2280 gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa 2340 caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 2400 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc 2460 tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg 2520 ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg 2580 agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg 2640 aagcggaaga gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc 2700 gcatatggtg cactctcagt acaatctgct ctgatgccgc atagttaagc cagtatacac 2760 tccgctatcg ctacgtgact gggtcatggc tgcgccccga cacccgccaa cacccgctga 2820 cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg tgaccgtctc 2880 cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga ggcagcagat 2940 caattcgcgc gcgaaggcga agcggcatgc atttacgttg acaccatcga atggtgcaaa 3000 acctttcgcg gtatggcatg atagcgcccg gaagagagtc aattcagggt ggtgaatgtg 3060 aaaccagtaa cgttatacga tgtcgcagag tatgccggtg tctcttatca gaccgtttcc 3120 cgcgtggtga accaggccag ccacgtttct gcgaaaacgc gggaaaaagt ggaagcggcg 3180 atggcggagc tgaattacat tcccaaccgc gtggcacaac aactggcggg caaacagtcg 3240 ttgctgattg gcgttgccac ctccagtctg gccctgcacg cgccgtcgca aattgtcgcg 3300 gcgattaaat ctcgcgccga tcaactgggt gccagcgtgg tggtgtcgat ggtagaacga 3360 agcggcgtcg aagcctgtaa agcggcggtg cacaatcttc tcgcgcaacg cgtcagtggg 3420 ctgatcatta actatccgct ggatgaccag gatgccattg ctgtggaagc tgcctgcact 3480 aatgttccgg cgttatttct tgatgtctct gaccagacac ccatcaacag tattattttc 3540 tcccatgaag acggtacgcg actgggcgtg gagcatctgg tcgcattggg tcaccagcaa 3600 atcgcgctgt tagcgggccc attaagttct gtctcggcgc gtctgcgtct ggctggctgg 3660 cataaatatc tcactcgcaa tcaaattcag ccgatagcgg aacgggaagg cgactggagt 3720 gccatgtccg gttttcaaca aaccatgcaa atgctgaatg agggcatcgt tcccactgcg 3780 atgctggttg ccaacgatca gatggcgctg ggcgcaatgc gcgccattac cgagtccggg 3840 ctgcgcgttg gtgcggatat ctcggtagtg ggatacgacg ataccgaaga cagctcatgt 3900 tatatcccgc cgttaaccac catcaaacag gattttcgcc tgctggggca aaccagcgtg 3960 gaccgcttgc tgcaactctc tcagggccag gcggtgaagg gcaatcagct gttgcccgtc 4020 tcactggtga aaagaaaaac caccctggcg cccaatacgc aaaccgcctc tccccgcgcg 4080 ttggccgatt cattaatgca gctggcacga caggtttccc gactggaaag cgggcagtga 4140 gcgcaacgca attaatgtga gttagcgcga attgatctg 4179 <210> 16 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gccatggctt gctctgtatc cac 23 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 ctctagatta gcgttcgaac ggcagaattg 30 <210> 18 <211> 861 <212> DNA <213> ampicillin resistance gene <400> 18 atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60 gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120 cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180 gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc 240 cgtgttgacg ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300 gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360 tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420 ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480 gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540 cctacagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600 tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660 tcggcccttc cggctggctg gtttattgct gataaatctg gagccggtga gcgtgggtct 720 cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780 acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840 tcactgatta agcattggta a 861 <210> 19 <211> 816 <212> DNA <213> kanamycin resistance gene <400> 19 atgagccata ttcaacggga aacgtcttgc tctaggccgc gattaaattc caacatggat 60 gctgatttat atgggtataa atgggctcgc gataatgtcg ggcaatcagg tgcgacaatc 120 tatcgattgt atgggaagcc cgatgcgcca gagttgtttc tgaaacatgg caaaggtagc 180 gttgccaatg atgttacaga tgagatggtc agactaaact ggctgacgga atttatgcct 240 cttccgacca tcaagcattt tatccgtact cctgatgatg catggttact caccactgcg 300 atccccggga aaacagcatt ccaggtatta gaagaatatc ctgattcagg tgaaaatatt 360 gttgatgcgc tggcagtgtt cctgcgccgg ttgcattcga ttcctgtttg taattgtcct 420 tttaacagcg accgcgtatt tcgtctcgct caggcgcaat cacgaatgaa taacggtttg 480 gttgatgcga gtgattttga tgacgagcgt aatggctggc ctgttgaaca agtctggaaa 540 gaaatgcata aacttttgcc attctcaccg gattcagtcg tcactcatgg tgatttctca 600 cttgataacc ttatttttga cgaggggaaa ttaataggtt gtattgatgt tggacgagtc 660 ggaatcgcag accgatacca ggatcttgcc atcctatgga actgcctcgg tgagttttct 720 ccttcattac agaaacggct ttttcaaaaa tatggtattg ataatcctga tatgaataaa 780 ttgcagtttc atttgatgct cgatgagttt ttctaa 816 <210> 20 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tggctccctg acgttttttt agccacgtat caattatagg tacttccatg aattaaccct 60 cactaaaggg cg 72 <210> 21 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 gcagcgcaaa gctgcggatg atgacgagat tactgctgct gtgcagactg taatacgact 60 cactataggg ctc 73 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 tgtcatcatg cgctacgctc 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 cagttaagca agataatcag 20 <210> 24 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gatgaactaa acttgttacc gttatcacat tcaggagatg gagaaccatg aattaaccct 60 cactaaaggg cg 72 <210> 25 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ccttattatg acgggaaatg ccaccctttt taccttagcc agtttgtttt taatacgact 60 cactataggg ctc 73 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 ttacgtactg gcctgctcct gc 22 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gtcgggtaac ggtatcactg cg 22 <210> 28 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 atttttagta gcttaaatgt gattcaacat cactggagaa agtcttatga aattaaccct 60 cactaaaggg cg 72 <210> 29 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ctcccctgga atgcagggga gcggcaagat taaaccagtt cgttcgggca taatacgact 60 cactataggg ctc 73 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 tcatcagcag cgtcaacggc 20 <210> 31 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 cgctggtcac gggcttaccg 20 <210> 32 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 cgagcagatg atttactaaa aaagtttaac attatcagga gagcattatg aattaaccct 60 cactaaaggg cg 72 <210> 33 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 ccgtttatgt tgccagacag cgctactgat taagcggatt ttttcgcttt taatacgact 60 cactataggg ctc 73 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ccgcactgac tatactctcg 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 tgatcggcat tgcccagaag 20 <210> 36 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ctattgcctg actgtaccca caacggtgta tgcaagaggg ataaaaaatg aattaaccct 60 cactaaaggg cg 72 <210> 37 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 acgcgtcata aaacgcgata tgcgaccaat cataaatcac cccgttgcgt ttaatacgac 60 tcactatagg gctc 74 <210> 38 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 tggcgaggta aaaacagccc c 21 <210> 39 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 39 aagcgcgatc acgaatgtta gc 22 <210> 40 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 40 cgctattcta gtttgtgata ttttttcgcc accacaagga gtggaaaatg aattaaccct 60 cactaaaggg cg 72 <210> 41 <211> 73 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 41 ggatggcgat actctgccat ccgtaatttt tactccactt cctgccagtt taatacgact 60 cactataggg ctc 73 <210> 42 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 42 cagactcacc gcgattccta ctg 23 <210> 43 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 43 cggtaaagtg atgcctgtgc c 21 <210> 44 <211> 72 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 44 agaaatgtgt ttctcaaacc gttcatttat cacaaaagga ttgttcgatg aattaaccct 60 cactaaaggg cg 72 <210> 45 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 45 cggcgactaa acgccgccgg ggatttattt tatttcttca gttcagccag ttaatacgac 60 tcactatagg gctc 74 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 46 gcagatttgc gcaacgctgg 20 <210> 47 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 47 ctgccgtatg gatgaggctg g 21 <210> 48 <211> 3348 <212> DNA <213> Escherichia coli MG1655 <400> 48 atgtcgagta agttagtact ggttctgaac tgcggtagtt cttcactgaa atttgccatc 60 atcgatgcag taaatggtga agagtacctt tctggtttag ccgaatgttt ccacctgccc 120 gaagcacgta tcaaatggaa aatggacggc aataaacagg aagcggcttt aggtgcaggc 180 gccgctcaca gcgaagcgct caactttatc gttaatacta ttctggcaca aaaaccagaa 240 ctgtctgcgc agctgactgc tatcggtcac cgtatcgtac acggcggcga aaagtatacc 300 agctccgtag tgatcgatga gtctgttatt cagggtatca aagatgcagc ttcttttgca 360 ccgctgcaca acccggctca cctgatcggt atcgaagaag ctctgaaatc tttcccacag 420 ctgaaagaca aaaacgttgc tgtatttgac accgcgttcc accagactat gccggaagag 480 tcttacctct acgccctgcc ttacaacctg tacaaagagc acggcatccg tcgttacggc 540 gcgcacggca ccagccactt ctatgtaacc caggaagcgg caaaaatgct gaacaaaccg 600 gtagaagaac tgaacatcat cacctgccac ctgggcaacg gtggttccgt ttctgctatc 660 cgcaacggta aatgcgttga cacctctatg ggcctgaccc cgctggaagg tctggtcatg 720 ggtacccgtt ctggtgatat cgatccggcg atcatcttcc acctgcacga caccctgggc 780 atgagcgttg acgcaatcaa caaactgctg accaaagagt ctggcctgct gggtctgacc 840 gaagtgacca gcgactgccg ctatgttgaa gacaactacg cgacgaaaga agacgcgaag 900 cgcgcaatgg acgtttactg ccaccgcctg gcgaaataca tcggtgccta cactgcgctg 960 atggatggtc gtctggacgc tgttgtattc actggtggta tcggtgaaaa tgccgcaatg 1020 gttcgtgaac tgtctctggg caaactgggc gtgctgggct ttgaagttga tcatgaacgc 1080 aacctggctg cacgtttcgg caaatctggt ttcatcaaca aagaaggtac ccgtcctgcg 1140 gtggttatcc caaccaacga agaactggtt atcgcgcaag acgcgagccg cctgactgcc 1200 tgagtgtccc gtattattat gctgatccct accggaacca gcgtcggtct gaccagcgtc 1260 agccttggcg tgatccgtgc aatggaacgc aaaggcgttc gtctgagcgt tttcaaacct 1320 atcgctcagc cgcgtaccgg tggcgatgcg cccgatcaga ctacgactat cgtgcgtgcg 1380 aactcttcca ccacgacggc cgctgaaccg ctgaaaatga gctacgttga aggtctgctt 1440 tccagcaatc agaaagatgt gctgatggaa gagatcgtcg caaactacca cgctaacacc 1500 aaagacgctg aagtcgttct ggttgaaggt ctggtcccga cacgtaagca ccagtttgcc 1560 cagtctctga actacgaaat cgctaaaacg ctgaatgcgg aaatcgtctt cgttatgtct 1620 cagggcactg acaccccgga acagctgaaa gagcgtatcg aactgacccg caacagcttc 1680 ggcggtgcca aaaacaccaa catcaccggc gttatcgtta acaaactgaa cgcaccggtt 1740 gatgaacagg gtcgtactcg cccggatctg tccgagattt tcgacgactc ttccaaagct 1800 aaagtaaaca atgttgatcc ggcgaagctg caagaatcca gcccgctgcc ggttctcggc 1860 gctgtgccgt ggagctttga cctgatcgcg actcgtgcga tcgatatggc tcgccacctg 1920 aatgcgacca tcatcaacga aggcgacatc aatactcgcc gcgttaaatc cgtcactttc 1980 tgcgcacgca gcattccgca catgctggag cacttccgtg ccggttctct gctggtgact 2040 tccgcagacc gtcctgacgt gctggtggcc gcttgcctgg cagccatgaa cggcgtagaa 2100 atcggtgccc tgctgctgac tggcggttac gaaatggacg cgcgcatttc taaactgtgc 2160 gaacgtgctt tcgctaccgg cctgccggta tttatggtga acaccaacac ctggcagacc 2220 tctctgagcc tgcagagctt caacctggaa gttccggttg acgatcacga acgtatcgag 2280 aaagttcagg aatacgttgc taactacatc aacgctgact ggatcgaatc tctgactgcc 2340 acttctgagc gcagccgtcg tctgtctccg cctgcgttcc gttatcagct gactgaactt 2400 gcgcgcaaag cgggcaaacg tatcgtactg ccggaaggtg acgaaccgcg taccgttaaa 2460 gcagccgcta tctgtgctga acgtggtatc gcaacttgcg tactgctggg taatccggca 2520 gagatcaacc gtgttgcagc gtctcagggt gtagaactgg gtgcagggat tgaaatcgtt 2580 gatccagaag tggttcgcga aagctatgtt ggtcgtctgg tcgaactgcg taagaacaaa 2640 ggcatgaccg aaaccgttgc ccgcgaacag ctggaagaca acgtggtgct cggtacgctg 2700 atgctggaac aggatgaagt tgatggtctg gtttccggtg ctgttcacac taccgcaaac 2760 accatccgtc cgccgctgca gctgatcaaa actgcaccgg gcagctccct ggtatcttcc 2820 gtgttcttca tgctgctgcc ggaacaggtt tacgtttacg gtgactgtgc gatcaacccg 2880 gatccgaccg ctgaacagct ggcagaaatc gcgattcagt ccgctgattc cgctgcggcc 2940 ttcggtatcg aaccgcgcgt tgctatgctc tcctactcca ccggtacttc tggtgcaggt 3000 agcgacgtag aaaaagttcg cgaagcaact cgtctggcgc aggaaaaacg tcctgacctg 3060 atgatcgacg gtccgctgca gtacgacgct gcggtaatgg ctgacgttgc gaaatccaaa 3120 gcgccgaact ctccggttgc aggtcgcgct accgtgttca tcttcccgga tctgaacacc 3180 ggtaacacca cctacaaagc ggtacagcgt tctgccgacc tgatctccat cgggccgatg 3240 ctgcagggta tgcgcaagcc ggttaacgac ctgtcccgtg gcgcactggt tgacgatatc 3300 gtctacacca tcgcgctgac tgcgattcag tctgcacagc agcagtaa 3348 <210> 49 <211> 1719 <212> DNA <213> Escherichia coli MG1655 <400> 49 atgaaacaaa cggttgcagc ttatatcgcc aaaacactcg aatcggcagg ggtgaaacgc 60 atctggggag tcacaggcga ctctctgaac ggtcttagtg acagtcttaa tcgcatgggc 120 accatcgagt ggatgtccac ccgccacgaa gaagtggcgg cctttgccgc tggcgctgaa 180 gcacaactta gcggagaact ggcggtctgc gccggatcgt gcggccccgg caacctgcac 240 ttaatcaacg gcctgttcga ttgccaccgc aatcacgttc cggtactggc gattgccgct 300 catattccct ccagcgaaat tggcagcggc tatttccagg aaacccaccc acaagagcta 360 ttccgcgaat gtagtcacta ttgcgagctg gtttccagcc cggagcagat cccacaagta 420 ctggcgattg ccatgcgcaa agcggtgctt aaccgtggcg tttcggttgt cgtgttacca 480 ggcgacgtgg cgttaaaacc tgcgccagaa ggggcaacca tgcactggta tcatgcgcca 540 caaccagtcg tgacgccgga agaagaagag ttacgcaaac tggcgcaact gctgcgttat 600 tccagcaata tcgccctgat gtgtggcagc ggctgcgcgg gggcgcataa agagttagtt 660 gagtttgccg ggaaaattaa agcgcctatt gttcatgccc tgcgcggtaa agaacatgtc 720 gaatacgata atccgtatga tgttggaatg accgggttaa tcggcttctc gtcaggtttc 780 cataccatga tgaacgccga cacgttagtg ctactcggca cgcaatttcc ctaccgcgcc 840 ttctacccga ccgatgccaa aatcattcag attgatatca acccagccag catcggcgct 900 cacagcaagg tggatatggc actggtcggc gatatcaagt cgactctgcg tgcattgctt 960 ccattggtgg aagaaaaagc cgatcgcaag tttctggata aagcgctgga agattaccgc 1020 gacgcccgca aagggctgga cgatttagct aaaccgagcg agaaagccat tcacccgcaa 1080 tatctggcgc agcaaattag tcattttgcc gccgatgacg ctattttcac ctgtgacgtt 1140 ggtacgccaa cggtgtgggc ggcacgttat ctaaaaatga acggcaagcg tcgcctgtta 1200 ggttcgttta accacggttc gatggctaac gccatgccgc aggcgctggg tgcgcaggcg 1260 acagagccag aacgtcaggt ggtcgccatg tgcggcgatg gcggttttag catgttgatg 1320 ggcgatttcc tctcagtagt gcagatgaaa ctgccagtga aaattgtcgt ctttaacaac 1380 agcgtgctgg gctttgtggc gatggagatg aaagctggtg gctatttgac tgacggcacc 1440 gaactacacg acacaaactt tgcccgcatt gccgaagcgt gcggcattac gggtatccgt 1500 gtagaaaaag cgtctgaagt tgatgaagcc ctgcaacgcg ccttctccat cgacggtccg 1560 gtgttggtgg atgtggtggt cgccaaagaa gagttagcca ttccaccgca gatcaaactc 1620 gaacaggcca aaggtttcag cctgtatatg ctgcgcgcaa tcatcagcgg acgcggtgat 1680 gaagtgatcg aactggcgaa aacaaactgg ctaaggtaa 1719 <210> 50 <211> 1812 <212> DNA <213> Escherichia coli MG1655 <400> 50 atggctgtta ctaatgtcgc tgaacttaac gcactcgtag agcgtgtaaa aaaagcccag 60 cgtgaatatg ccagtttcac tcaagagcaa gtagacaaaa tcttccgcgc cgccgctctg 120 gctgctgcag atgctcgaat cccactcgcg aaaatggccg ttgccgaatc cggcatgggt 180 atcgtcgaag ataaagtgat caaaaaccac tttgcttctg aatatatcta caacgcctat 240 aaagatgaaa aaacctgtgg tgttctgtct gaagacgaca cttttggtac catcactatc 300 gctgaaccaa tcggtattat ttgcggtatc gttccgacca ctaacccgac ttcaactgct 360 atcttcaaat cgctgatcag tctgaagacc cgtaacgcca ttatcttctc cccgcacccg 420 cgtgcaaaag atgccaccaa caaagcggct gatatcgttc tgcaggctgc tatcgctgcc 480 ggtgctccga aagatctgat cggctggatc gatcaacctt ctgttgaact gtctaacgca 540 ctgatgcacc acccagacat caacctgatc ctcgcgactg gtggtccggg catggttaaa 600 gccgcataca gctccggtaa accagctatc ggtgtaggcg cgggcaacac tccagttgtt 660 atcgatgaaa ctgctgatat caaacgtgca gttgcatctg tactgatgtc caaaaccttc 720 gacaacggcg taatctgtgc ttctgaacag tctgttgttg ttgttgactc tgtttatgac 780 gctgtacgtg aacgttttgc aacccacggc ggctatctgt tgcagggtaa agagctgaaa 840 gctgttcagg atgttatcct gaaaaacggt gcgctgaacg cggctatcgt tggtcagcca 900 gcctataaaa ttgctgaact ggcaggcttc tctgtaccag aaaacaccaa gattctgatc 960 ggtgaagtga ccgttgttga tgaaagcgaa ccgttcgcac atgaaaaact gtccccgact 1020 ctggcaatgt accgcgctaa agatttcgaa gacgcggtag aaaaagcaga gaaactggtt 1080 gctatgggcg gtatcggtca tacctcttgc ctgtacactg accaggataa ccaaccggct 1140 cgcgtttctt acttcggtca gaaaatgaaa acggcgcgta tcctgattaa caccccagcg 1200 tctcagggtg gtatcggtga cctgtataac ttcaaactcg caccttccct gactctgggt 1260 tgtggttctt ggggtggtaa ctccatctct gaaaacgttg gtccgaaaca cctgatcaac 1320 aagaaaaccg ttgctaagcg agctgaaaac atgttgtggc acaaacttcc gaaatctatc 1380 tacttccgcc gtggctccct gccaatcgcg ctggatgaag tgattactga tggccacaaa 1440 cgtgcgctca tcgtgactga ccgcttcctg ttcaacaatg gttatgctga tcagatcact 1500 tccgtactga aagcagcagg cgttgaaact gaagtcttct tcgaagtaga agcggacccg 1560 accctgagca tcgttcgtaa aggtgcagaa ctggcaaact ccttcaaacc agacgtgatt 1620 atcgcgctgg gtggtggttc cccgatggac gccgcgaaga tcatgtgggt tatgtacgaa 1680 catccggaaa ctcacttcga agagctggcg ctgcgcttta tggatatccg taaacgtatc 1740 tacaagttcc cgaaaatggg cgtgaaagcg aaaatgatcg ctgtcaccac cacttctggt 1800 acaggttctg aa 1812 <210> 51 <211> 990 <212> DNA <213> Escherichia coli MG1655 <400> 51 atgaaactcg ccgtttatag cacaaaacag tacgacaaga agtacctgca acaggtgaac 60 gagtcctttg gctttgagct ggaatttttt gactttctgc tgacggaaaa aaccgctaaa 120 actgccaatg gctgcgaagc ggtatgtatt ttcgtaaacg atgacggcag ccgcccggtg 180 ctggaagagc tgaaaaagca cggcgttaaa tatatcgccc tgcgctgtgc cggtttcaat 240 aacgtcgacc ttgacgcggc aaaagaactg gggctgaaag tagtccgtgt tccagcctat 300 gatccagagg ccgttgctga acacgccatc ggtatgatga tgacgctgaa ccgccgtatt 360 caccgcgcgt atcagcgtac ccgtgatgct aacttctctc tggaaggtct gaccggcttt 420 actatgtatg gcaaaacggc aggcgttatc ggtaccggta aaatcggtgt ggcgatgctg 480 cgcattctga aaggttttgg tatgcgtctg ctggcgttcg atccgtatcc aagtgcagcg 540 gcgctggaac tcggtgtgga gtatgtcgat ctgccaaccc tgttctctga atcagacgtt 600 atctctctgc actgcccgct gacaccggaa aactatcatc tgttgaacga agccgccttc 660 gaacagatga aaaatggcgt gatgatcgtc aataccagtc gcggtgcatt gattgattct 720 caggcagcaa ttgaagcgct gaaaaatcag aaaattggtt cgttgggtat ggacgtgtat 780 gagaacgaac gcgatctatt ctttgaagat aaatccaacg acgtgatcca ggatgacgta 840 ttccgtcgcc tgtctgcctg ccacaacgtg ctgtttaccg ggcaccaggc attcctgaca 900 gcagaagctc tgaccagtat ttctcagact acgctgcaaa acttaagcaa tctggaaaaa 960 ggcgaaacct gcccgaacga actggtttaa 990 <210> 52 <211> 1716 <212> DNA <213> Escherichia coli MG1655 <400> 52 atgtcttcca tgacaacaac tgataataaa gcctttttga atgaacttgc tcgtctggtg 60 ggttcttcac acctgctcac cgatcccgca aaaacggccc gctatcgcaa gggcttccgt 120 tctggtcagg gcgacgcgct ggctgtcgtt ttccctggct cactactaga attgtggcgg 180 gtgctgaaag cctgcgtcac cgccgacaaa attattctga tgcaggccgc caatacaggc 240 ctgaccgaag gatcgacgcc aaacggtaac gattatgatc gcgatgtcgt tatcatcagc 300 accctgcgtc tcgacaagct gcacgttctt ggcaagggcg aacaggtgct ggcctatccg 360 ggcaccacgc tctattcgct ggaaaaagcc ctcaaaccgc tgggacgcga accgcactca 420 gtgattggat catcgtgtat aggcgcatcg gtcatcggcg gtatttgtaa caactccggc 480 ggctcgctgg tgcaacgtgg cccggcgtat accgaaatgt cgttattcgc gcgtataaat 540 gaagacggca aactgacgct ggtgaaccat ctggggattg atctgggcga aacgccggag 600 cagatcctta gcaagctgga tgatgatcgc atcaaagatg acgatgtgcg tcacgatggt 660 cgtcacgccc acgattatga ctatgtccac cgcgttcgtg atattgaagc cgacacgccc 720 gcacgttata acgccgatcc tgatcggtta tttgaatctt ctggttgcgc cgggaagctg 780 gcggtctttg cagtacgtct tgataccttc gaagcggaaa aaaatcagca ggtgttttat 840 atcggcacca accagccgga agtgctgacc gaaatccgcc gtcatattct ggctaacttc 900 gaaaatctgc cggttgccgg ggaatatatg caccgggata tctacgatat tgcggaaaaa 960 tacggcaaag acaccttcct gatgattgat aagttaggca ccgacaagat gccgttcttc 1020 tttaatctca agggacgcac cgatgcgatg ctggagaaag tgaaattctt ccgtccgcat 1080 tttactgacc gtgcgatgca aaaattcggt cacctgttcc ccagccattt accgccgcgc 1140 atgaaaaact ggcgcgataa atacgagcat catctgctgt taaaaatggc gggcgatggc 1200 gtgggcgaag ccaaatcgtg gctggtggat tatttcaaac aggccgaagg cgatttcttt 1260 gtctgtacgc cggaggaagg cagcaaagcg tttttacacc gtttcgccgc tgcgggcgca 1320 gcaattcgtt atcaggcggt gcattccgat gaagtcgaag acattctggc gttggatatc 1380 gctctgcggc gtaacgacac cgagtggtat gagcatttac cgccggagat cgacagccag 1440 ctggtgcaca agctctatta cggccatttt atgtgctatg tcttccatca ggattacata 1500 gtgaaaaaag gcgtggatgt gcatgcgtta aaagaacaga tgctggaact gctacagcag 1560 cgcggcgcgc agtaccctgc cgagcataac gtcggtcatt tgtataaagc accggagacg 1620 ttgcagaagt tctatcgcga gaacgatccg accaacagca tgaatccggg gatcggtaaa 1680 accagtaaac ggaaaaactg gcaggaagtg gagtaa 1716 <210> 53 <211> 1313 <212> DNA <213> Escherichia coli MG1655 <400> 53 atgaaaacaa aattgatgac attacaagac gccaccggct tctttcgtga cggcatgacc 60 atcatggtgg gcggatttat ggggattggc actccatccc gcctggttga agcattactg 120 gaatctggtg ttcgcgacct gacattgata gccaatgata ccgcgtttgt tgataccggc 180 atcggtccgc tcatcgtcaa tggtcgagtc cgcaaagtga ttgcttcaca tatcggcacc 240 aacccggaaa caggtcggcg catgatatct ggtgagatgg acgtcgttct ggtgccgcaa 300 ggtacgctaa tcgagcaaat tcgctgtggt ggagctggac ttggtggttt tctcacccca 360 acgggtgtcg gcaccgtcgt agaggaaggc aaacagacac tgacactcga cggtaaaacc 420 tggctgctcg aacgcccact gcgcgccgac ctggcgctaa ttcgcgctca tcgttgcgac 480 acacttggca acctgaccta tcaacttagc gcccgcaact ttaaccccct gatagccctt 540 gcggctgata tcacgctggt agagccagat gaactggtcg aaaccggcga gctgcaacct 600 gaccatattg tcacccctgg tgccgttatc gaccacatca tcgtttcaca ggagagcaaa 660 taatggatgc gaaacaacgt attgcgcgcc gtgtggcgca agagcttcgt gatggtgaca 720 tcgttaactt agggatcggt ttacccacaa tggtcgccaa ttatttaccg gagggtattc 780 atatcactct gcaatcggaa aacggcttcc tcggtttagg cccggtcacg acagcgcatc 840 cagatctggt gaacgctggc gggcaaccgt gcggtgtttt acccggtgca gccatgtttg 900 atagcgccat gtcatttgcg ctaatccgtg gcggtcatat tgatgcctgc gtgctcggcg 960 gtttgcaagt agacgaagaa gcaaacctcg cgaactgggt agtgcctggg aaaatggtgc 1020 ccggtatggg tggcgcgatg gatctggtga ccgggtcgcg caaagtgatc atcgccatgg 1080 aacattgcgc caaagatggt tcagcaaaaa ttttgcgccg ctgcaccatg ccactcactg 1140 cgcaacatgc ggtgcatatg ctggttactg aactggctgt ctttcgtttt attgacggca 1200 aaatgtggct caccgaaatt gccgacgggt gtgatttagc caccgtgcgt gccaaaacag 1260 aagctcggtt tgaagtcgcc gccgatctga atacgcaacg gggtgattta tga 1313 <210> 54 <211> 2379 <212> DNA <213> Escherichia coli MG1655 <400> 54 atgtccaaca atggctcgtc accgctggtg ctttggtata accaactcgg catgaatgat 60 gtagacaggg ttgggggcaa aaatgcctcc ctgggtgaaa tgattactaa tctttccgga 120 atgggtgttt ccgttccgaa tggtttcgcc acaaccgccg acgcgtttaa ccagtttctg 180 gaccaaagcg gcgtaaacca gcgcatttat gaactgctgg ataaaacgga tattgacgat 240 gttactcagc ttgcgaaagc gggcgcgcaa atccgccagt ggattatcga cactcccttc 300 cagcctgagc tggaaaacgc catccgcgaa gcctatgcac agctttccgc cgatgacgaa 360 aacgcctctt ttgcggtgcg ctcctccgcc accgcagaag atatgccgga cgcttctttt 420 gccggtcagc aggaaacctt cctcaacgtt cagggttttg acgccgttct cgtggcagtg 480 aaacatgtat ttgcttctct gtttaacgat cgcgccatct cttatcgtgt gcaccagggt 540 tacgatcacc gtggtgtggc gctctccgcc ggtgttcaac ggatggtgcg ctctgacctc 600 gcatcatctg gcgtgatgtt ctccattgat accgaatccg gctttgacca ggtggtgttt 660 atcacttccg catggggcct tggtgagatg gtcgtgcagg gtgcggttaa cccggatgag 720 ttttacgtgc ataaaccgac actggcggcg aatcgcccgg ctatcgtgcg ccgcaccatg 780 gggtcgaaaa aaatccgcat ggtttacgcg ccgacccagg agcacggcaa gcaggttaaa 840 atcgaagacg taccgcagga acagcgtgac atcttctcgc tgaccaacga agaagtgcag 900 gaactggcaa aacaggccgt acaaattgag aaacactacg gtcgcccgat ggatattgag 960 tgggcgaaag atggccacac cggtaaactg ttcattgtgc aggcgcgtcc ggaaaccgtg 1020 cgctcacgcg gtcaggtcat ggagcgttat acgctgcatt cacagggtaa gattatcgcc 1080 gaaggccgtg ctatcggtca tcgcatcggt gcgggtccgg tgaaagtcat ccatgacatc 1140 agcgaaatga accgcatcga acctggcgac gtgctggtta ctgacatgac cgacccggac 1200 tgggaaccga tcatgaagaa agcatctgcc atcgtcacca accgtggcgg tcgtacctgt 1260 cacgcggcga tcatcgctcg tgaactgggc attccggcgg tagtgggctg tggagatgca 1320 acagaacgga tgaaagacgg tgagaacgtc actgtttctt gtgccgaagg tgataccggt 1380 tacgtctatg cggagttgct ggaatttagc gtgaaaagct ccagcgtaga aacgatgccg 1440 gatctgccgt tgaaagtgat gatgaacgtc ggtaacccgg accgtgcttt cgacttcgcc 1500 tgcctaccga acgaaggcgt gggccttgcg cgtctggaat ttatcatcaa ccgtatgatt 1560 ggcgtccacc cacgcgcact gcttgagttt gacgatcagg aaccgcagtt gcaaaacgaa 1620 atccgcgaga tgatgaaagg ttttgattct ccgcgtgaat tttacgttgg tcgtctgact 1680 gaagggatcg cgacgctggg tgccgcgttt tatccgaagc gcgtcattgt ccgtctctct 1740 gattttaaat cgaacgaata tgccaacctg gtcggtggtg agcgttacga gccagatgaa 1800 gagaacccga tgctcggctt ccgtggcgcg ggccgctatg tttccgacag cttccgcgac 1860 tgtttcgcgc tggagtgtga agcagtgaaa cgtgtgcgca acgacatggg actgaccaac 1920 gttgagatca tgatcccgtt cgtgcgtacc gtagatcagg cgaaagcggt ggttgaagaa 1980 ctggcgcgtc aggggctgaa acgtggcgag aacgggctga aaatcatcat gatgtgtgaa 2040 atcccgtcca acgccttgct ggccgagcag ttcctcgaat atttcgacgg cttctcaatt 2100 ggctcaaacg atatgacgca gctggcgctc ggtctggacc gtgactccgg cgtggtgtct 2160 gaattgttcg atgagcgcaa cgatgcggtg aaagcactgc tgtcgatggc tatccgtgcc 2220 gcgaagaaac agggcaaata tgtcgggatt tgcggtcagg gtccgtccga ccacgaagac 2280 tttgccgcat ggttgatgga agaggggatc gatagcctgt ctctgaaccc ggacaccgtg 2340 gtgcaaacct ggttaagcct ggctgaactg aagaaataa 2379 <210> 55 <211> 3368 <212> DNA <213> Artificial Sequence <220> <223> promoter, marker, FRT site, terminator <400> 55 cgaggcagca gatcaattcg cgcgcgaagg cgaagcggca tgcatttacg ttgacaccat 60 cgaatggtgc aaaacctttc gcggtatggc atgatagcgc ccggaagaga gtcaattcag 120 ggtggtgaat gtgaaaccag taacgttata cgatgtcgca gagtatgccg gtgtctctta 180 tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt tctgcgaaaa cgcgggaaaa 240 agtggaagcg gcgatggcgg agctgaatta cattcccaac cgcgtggcac aacaactggc 300 gggcaaacag tcgttgctga ttggcgttgc cacctccagt ctggccctgc acgcgccgtc 360 gcaaattgtc gcggcgatta aatctcgcgc cgatcaactg ggtgccagcg tggtggtgtc 420 gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg gtgcacaatc ttctcgcgca 480 acgcgtcagt gggctgatca ttaactatcc gctggatgac caggatgcca ttgctgtgga 540 agctgcctgc actaatgttc cggcgttatt tcttgatgtc tctgaccaga cacccatcaa 600 cagtattatt ttctcccatg aagacggtac gcgactgggc gtggagcatc tggtcgcatt 660 gggtcaccag caaatcgcgc tgttagcggg cccattaagt tctgtctcgg cgcgtctgcg 720 tctggctggc tggcataaat atctcactcg caatcaaatt cagccgatag cggaacggga 780 aggcgactgg agtgccatgt ccggttttca acaaaccatg caaatgctga atgagggcat 840 cgttcccact gcgatgctgg ttgccaacga tcagatggcg ctgggcgcaa tgcgcgccat 900 taccgagtcc gggctgcgcg ttggtgcgga tatctcggta gtgggatacg acgataccga 960 agacagctca tgttatatcc cgccgttaac caccatcaaa caggattttc gcctgctggg 1020 gcaaaccagc gtggaccgct tgctgcaact ctctcagggc caggcggtga agggcaatca 1080 gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg gcgcccaata cgcaaaccgc 1140 ctctccccgc gcgttggccg attcattaat gcagctggca cgacaggttt cccgactgga 1200 aagcgggcag tgagcgcaac gcaattaatg tgagttagcg cgaattgatc tggtttgaca 1260 gcttatcatc gactgcacgg tgcaccaatg cttctggcgt caggcagcca tcggaagctg 1320 tggtatggct gtgcaggtcg taaatcactg cataattcgt gtcgctcaag gcgcactccc 1380 gttctggata atgttttttg cgccgacatc ataacggttc tggcaaatat tctgaaatga 1440 gctgttgaca attaatcatc cggctcgtat aatgtgtgga attgtgagcg gataacaatt 1500 tcacacagga aacagaccat ggaattcgag ctcggtaccc ggggatcctc tagagtcgac 1560 ctgcaggcat gcaagcttgg ctgttttggc ggatgagaga agattttcag cctgatacag 1620 attaaatcag aacgcagaag cggtctgata aaacagaatt tgcctggcgg cagtagcgcg 1680 gtggtcccac ctgaccccat gccgaactca gaagtgaaac gccgtagcgc cgatggtagt 1740 gtggggtctc cccatgcgag agtagggaac tgccaggcat caaataaaac gaaaggctca 1800 gtcgaaagac tgggcctttc gttttatctg ttgtttgtcg gtgaacgctc tcctgagtag 1860 gacaaatccg ccgggagcgg atttgaacgt tgcgaagcaa cggcccggag ggtggcgggc 1920 aggacgcccg ccataaactg ccaggcatca aattaagcag aaggccatcc tgacggatgg 1980 cctttttgcg tttctacaaa ctctttttgt ttatttttct aaatacattc aaatatgtat 2040 ccgctcatga gacaataacc ccaattcgat ggggatccgt cgacctgcag ttcgaagttc 2100 ctattctcta gaaagtatag gaacttcaga gcgcttttga agctcacgct gccgcaagca 2160 ctcagggcgc aagggctgct aaaggaagcg gaacacgtag aaagccagtc cgcagaaacg 2220 gtgctgaccc cggatgaatg tcagctactg ggctatctgg acaagggaaa acgcaagcgc 2280 aaagagaaag caggtagctt gcagtgggct tacatggcga tagctagact gggcggtttt 2340 atggacagca agcgaaccgg aattgccagc tggggcgccc tctggtaagg ttgggaagcc 2400 ctgcaaagta aactggatgg ctttcttgcc gccaaggatc tgatggcgca ggggatcaag 2460 atctgatcaa gagacaggat gaggatcgtt tcgcatgatt gaacaagatg gattgcacgc 2520 aggttctccg gccgcttggg tggagaggct attcggctat gactgggcac aacagacaat 2580 cggctgctct gatgccgccg tgttccggct gtcagcgcag gggcgcccgg ttctttttgt 2640 caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc ggctatcgtg 2700 gctggccacg acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg aagcgggaag 2760 ggactggctg ctattgggcg aagtgccggg gcaggatctc ctgtcatctc accttgctcc 2820 tgccgagaaa gtatccatca tggctgatgc aatgcggcgg ctgcatacgc ttgatccggc 2880 tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta ctcggatgga 2940 agccggtctt gtcgatcagg atgatctgga cgaagagcat caggggctcg cgccagccga 3000 actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag gatctcgtcg tgacccatgg 3060 cgatgcctgc ttgccgaata tcatggtgga aaatggccgc ttttctggat tcatcgactg 3120 tggccggctg ggtgtggcgg accgctatca ggacatagcg ttggctaccc gtgatattgc 3180 tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg ctttacggta tcgccgctcc 3240 cgattcgcag cgcatcgcct tctatcgcct tcttgacgag ttcttctaat aaggggatct 3300 tgaagttcct attccgaagt tcctattctc tagaaagtat aggaacttcg aagcagctcc 3360 agcctaca 3368 <210> 56 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 56 cgaattcagg aggagaaatt atgcaaacgg aacacgtc 38 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 57 cctgcaggtc gaaattctta tttaagctgg gtaaa 35 <210> 58 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 58 ggaattcagg aggtaataaa atatgcttcg ttcgttgctc ag 42 <210> 59 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 59 caagcttgat cactagttac gcttcgttga tgtg 34 <210> 60 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 60 ggaattcagg aggattcact gatggatagc accccccac 39 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 61 cctgcaggtc gactctagtt aaggtttagt taacc 35 <210> 62 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 62 tctagaggag gataggacat gacgacaaat cgtaag 36 <210> 63 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 63 gtcgactcta gttacgcctt tttcatctga tc 32 <210> 64 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 64 gaattcgagc tcaggaggta ataaatatgg cttgctctgt atcc 44 <210> 65 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 65 ggatccgccg ccacccgagc caccgccacc gcgttcgaac ggcagaattg 50 <210> 66 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 66 ggatccatgg cttgctctgt atccactgag 30 <210> 67 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 67 ctgcaggtcg acttagcgtt cgaacggcag 30 <210> 68 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 68 gaattcgagc tcaggaggta ataaatatgc aaacggaaca cgtc 44 <210> 69 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 69 ggatccgccg ccacccgagc caccgccacc tttaagctgg gtaaatgc 48 <210> 70 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 70 ggatccatgc aaacggaaca cgtcatttta ttg 33 <210> 71 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 71 ctgcaggtcg acttatttaa gctgggtaaa tg 32 <210> 72 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 72 gaattcgagc tcaggaggta ataaatatgg atagcacccc ccaccg 46 <210> 73 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 73 ggatccgccg ccacccgagc caccgccacc aggtttagtt aacctttgtc 50 <210> 74 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 74 ggatccatgg atagcacccc ccaccgtaag 30 <210> 75 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 75 ctgcaggtcg acttaaggtt tagttaacct ttg 33 <210> 76 <211> 1062 <212> DNA <213> Escherichia coli MG1655 <400> 76 atggctatcg acgaaaacaa acagaaagcg ttggcggcag cactgggcca gattgagaaa 60 caatttggta aaggctccat catgcgcctg ggtgaagacc gttccatgga tgtggaaacc 120 atctctaccg gttcgctttc actggatatc gcgcttgggg caggtggtct gccgatgggc 180 cgtatcgtcg aaatctacgg accggaatct tccggtaaaa ccacgctgac gctgcaggtg 240 atcgccgcag cgcagcgtga aggtaaaacc tgtgcgttta tcgatgctga acacgcgctg 300 gacccaatct acgcacgtaa actgggcgtc gatatcgaca acctgctgtg ctcccagccg 360 gacaccggcg agcaggcact ggaaatctgt gacgccctgg cgcgttctgg cgcagtagac 420 gttatcgtcg ttgactccgt ggcggcactg acgccgaaag cggaaatcga aggcgaaatc 480 ggcgactctc acatgggcct tgcggcacgt atgatgagcc aggcgatgcg taagctggcg 540 ggtaacctga agcagtccaa cacgctgctg atcttcatca accagatccg tatgaaaatt 600 ggtgtgatgt tcggtaaccc ggaaaccact accggtggta acgcgctgaa attctacgcc 660 tctgttcgtc tcgacatccg tcgtatcggc gcggtgaaag agggcgaaaa cgtggtgggt 720 agcgaaaccc gcgtgaaagt ggtgaagaac aaaatcgctg cgccgtttaa acaggctgaa 780 ttccagatcc tctacggcga aggtatcaac ttctacggcg aactggttga cctgggcgta 840 aaagagaagc tgatcgagaa agcaggcgcg tggtacagct acaaaggtga gaagatcggt 900 cagggtaaag cgaatgcgac tgcctggctg aaagataacc cggaaaccgc gaaagagatc 960 gagaagaaag tacgtgagtt gctgctgagc aacccgaact caacgccgga tttctctgta 1020 gatgatagcg aaggcgtagc agaaactaac gaagattttt aa 1062 <210> 77 <211> 453 <212> DNA <213> Escherichia coli <400> 77 gtgaaggata aagtgtataa gcgtcccgtt tcgatcttag tggtcatcta cgcacaagat 60 acgaaacggg tgctgatgtt gcagcggcgt gacgatcccg atttctggca gtcggtaacc 120 ggcagcgtgg aagagggtga aaccgcgccg caagctgcca tgcgcgaagt aaaggaagag 180 gtcaccattg atgttgtcgc tgaacaactg accttaattg actgtcagcg cacggtagag 240 tttgaaattt tttcacattt acgtcatcgc tatgcgccgg gcgtgacgcg taatacggaa 300 tcatggttct gtcttgcgct tccgcacgag cggcagatcg ttttcactga acatctggct 360 tacaagtggc ttgatgcgcc tgctgcggcg gcgctcacta agtcctggag caaccggcag 420 gcgattgaac agtttgtaat taacgctgcc tga 453 <210> 78 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> nudB-F primer <400> 78 ataactatgt gaatgggatg agcgaaggca gtcaacgaag aggcagcgtg catatttatt 60 acctccttgt aggc 74 <210> 79 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> nudB-R primer <400> 79 taaaaatatc tccagatagc cctgcctgtt caggcagcgt taattacaaa catatgaata 60 tcctccttag ttcc 74 <210> 80 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> nudB-CF-F1 primer <400> 80 caggaccgta accttcgtag atg 23 <210> 81 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nudB-CF-F2 <400> 81 caaactctac cgtgcgctga c 21 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> nudB-CF-R primer <400> 82 gaccgtctga ccatgctgct g 21 <210> 83 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> flagella-F primer <400> 83 ttccactttg ccaataacgc cgtccataat cagccacgag gtgcgcgatg ggggatccgt 60 cgacctgcag 70 <210> 84 <211> 80 <212> DNA <213> Artificial Sequence <220> <223> flagella-R primer <400> 84 agacgcggat tacggtgcta cctctgacgt taggcgaaaa tatcaacgcc catatttatt 60 acctccttgt aggctggagc 80 <210> 85 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> FlaCF-F primer <400> 85 gagtgaattt ttctgcctgc g 21 <210> 86 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> FlaCF-R primer <400> 86 gcttgctttt cttgcttatc gc 22 <210> 87 <211> 1659 <212> DNA <213> Escherichia coli <400> 87 atgaatgcga ctgcagccca gacaaaatct cttgagtggc ttaatcgcct gcgtgcgaat 60 ccgaaaattc cattgattgt tgccggttcc gcggcagtgg cggtcatggt cgcactgatc 120 ctgtgggcga aagcccccga ctaccgcaca ttattcagca atctttccga tcaggatggt 180 ggcgcaattg tcagccaact gacgcaaatg aatattcctt accgcttcag cgaagccagc 240 ggcgctattg aagttccggc agataaagtt cacgaactgc gtctgcgcct ggcacaacaa 300 ggtttgccaa aaggcggcgc ggtcggtttc gaactgcttg atcaggaaaa gtttggtatc 360 agccagttca gcgaacaggt gaattatcag cgggcgctgg aaggcgagct ttctcgtacc 420 atcgaaacta tcggcccggt aaaaggggcg cgcgtacatc tggcaatgcc gaaaccgtct 480 ttattcgtcc gtgaacaaaa atccccttct gcatcggtga cggtaaatct gttacccggc 540 cgcgcactcg atgaagggca aattagcgcc attgtgcatc tggtttccag cgccgttgct 600 ggtctgccgc cgggaaacgt cacgctggtg gatcagggcg gacatctgtt aacccagtcc 660 aataccagcg ggcgcgatct taatgacgct cagttgaaat atgccagcga tgtcgaaggc 720 cgtattcagc ggcgtattga agcgatcctg tcgcctattg ttggtaacgg taatattcac 780 gcccaggtta cggcgcagct ggacttcgcc agtaaagaac aaacggaaga acagtatcgc 840 cctaacggtg atgaatctca tgcggcgctt cgttcacgcc agcttaatga gagcgagcaa 900 agcggttccg gttatccggg cggcgtaccg ggggcgttgt cgaatcaacc ggcacctgcg 960 aataacgcgc caatcagcac gcctccggca aatcaaaata accgccagca gcaggcgagc 1020 accaccagca atagtgggcc gcgtagcaca cagcggaatg aaaccagtaa ctacgaagtc 1080 gatcgcacca ttcgtcatac caaaatgaac gtgggcgatg tgcaacgtct gtcagtcgcg 1140 gtcgtggtga attacaaaac cttgccagat ggcaaaccgt tgcctctcag caacgaacag 1200 atgaagcaaa ttgaagatct gacccgcgag gcgatgggct tttctgaaaa acgcggtgac 1260 tcgctcaatg tcgttaactc gccgttcaat agcagtgacg aaagcggcgg agaactgcca 1320 ttctggcaac agcaagcgtt tatcgatcag ttacttgctg ccggtcgctg gttgctggta 1380 ctgctggtgg cgtggctgct gtggcggaaa gcggtacgtc cgcagctaac acgtcgcgct 1440 gaggcgatga aagctgtaca gcaacaggcg caggcccgcg aggaagtgga agatgcggtg 1500 gaagtccgcc tgagcaaaga cgaacaacta caacaacggc gcgctaacca acgtctgggg 1560 gcagaagtca tgagccagcg tatccgtgaa atgtctgata acgatccgcg cgtggtggcg 1620 ctggtcattc gccagtggat aaataacgat catgagtaa 1659 <210> 88 <211> 996 <212> DNA <213> Escherichia coli <400> 88 atgagtaacc tgacaggcac cgataaaagc gtcatcctgc tgatgaccat tggcgaagac 60 cgggcggcag aggtgttcaa gcacctctcc cagcgtgaag tacaaaccct gagcgctgca 120 atggcgaacg tcacgcagat ctccaacaag cagctaaccg atgtgctggc ggagtttgag 180 caagaagctg aacagtttgc cgcactgaat atcaacgcca acgattatct gcgctcggta 240 ttggtcaaag ctctgggtga agaacgtgcc gccagcctgc tggaagatat tctcgaaact 300 cgcgataccg ccagcggtat tgaaacgctc aactttatgg agccacagag cgccgccgat 360 ctgattcgcg atgagcatcc gcaaattatc gccaccattc tggtgcatct gaagcgcgcc 420 caagccgccg atattctggc gttgttcgat gaacgtctgc gccacgacgt gatgttgcgt 480 atcgccacct ttggcggcgt gcagccagcc gcgctggcgg agctgaccga agtactgaat 540 ggcttgctcg acggtcagaa tctcaagcgc agcaaaatgg gcggcgtgag aacggcagcc 600 gaaattatca acctgatgaa aactcagcag gaagaagccg ttattaccgc cgtgcgtgaa 660 ttcgacggcg agctggcgca gaaaatcatc gacgagatgt tcctgttcga gaatctggtg 720 gatgtcgacg atcgcagcat tcagcgtctg ttgcaggaag tggattccga atcgctgttg 780 atcgcgctga aaggagccga gcagccactg cgcgagaaat tcttgcgcaa tatgtcgcag 840 cgtgccgccg atattctgcg cgacgatctc gccaaccgtg gtccggtgcg tctgtcgcag 900 gtggaaaacg aacagaaagc gattctgctg attgtgcgcc gccttgccga aactggcgag 960 atggtaattg gcagcggcga ggatacctat gtctga 996 <210> 89 <211> 687 <212> DNA <213> Escherichia coli <400> 89 atgtctgata atctgccgtg gaaaacctgg acgccggacg atctcgcgcc accacaggca 60 gagtttgtgc ccatagtcga gccggaagaa accatcattg aagaggctga acccagcctt 120 gagcagcaac tggcgcaact gcaaatgcag gcccatgagc aaggttatca ggcgggtatt 180 gccgaaggtc gccagcaagg tcataagcag ggctatcagg aaggactggc ccaggggctg 240 gagcaaggtc tggcagaggc gaagtctcaa caagcgccaa ttcatgcccg gatgcagcaa 300 ctggtcagcg aatttcaaac tacccttgat gcacttgata gtgtgatagc gtcgcgcctg 360 atgcagatgg cgctggaggc ggcacgtcag gtcatcggtc agacgccaac ggtggataac 420 tcggcactga tcaaacagat ccaacagttg ttgcagcaag aaccgttatt cagcggtaaa 480 ccacagctgc gcgtgcaccc ggatgatctg caacgtgtgg atgatatgct cggcgctacc 540 ttaagtttgc atggctggcg cttgcggggc gatcccaccc tccatcctgg cggctgtaaa 600 gtctccgccg atgaaggcga tctcgacgcc agtgtcgcca ctcgctggca agaactctgc 660 cgtctggcag caccaggagt ggtgtaa 687 <210> 90 <211> 1374 <212> DNA <213> Escherichia coli <400> 90 atgaccacgc gcctgactcg ctggctaacc acgctggata actttgaagc caaaatggcg 60 cagttgcctg cggtacgtcg ctacgggcga ttaacccgcg ctaccgggct ggtgctggaa 120 gccaccggat tacaattgcc gctcggcgca acctgtgtca ttgagcgcca gaacggcagc 180 gaaacgcacg aagtagaaag cgaagtcgtt ggctttaacg gtcaacggct gtttttaatg 240 ccgctggagg aagtcgaagg tgtcctgccc ggcgcgcgtg tttatgccaa aaacatttcg 300 gcagaagggc tgcaaagcgg caagcagttg ccgctcggtc cggcgttatt aggtcgcgtt 360 ctggacggca gcggtaaacc gctcgatggc ctgccctccc ccgatacgac ggaaaccggt 420 gcgctgatta ccccgccatt taacccgttg caacgtacac cgattgaaca tgtgctggac 480 accggcgtgc gcccaatcaa tgccctgctt accgttgggc gtgggcagcg tatggggctg 540 tttgccgggt ccggcgttgg taaaagtgtg ctgctgggga tgatggcacg ttacacccgc 600 gccgatgtca ttgtcgtggg tttgattggt gaacgtgggc gcgaagtaaa agattttatt 660 gagaacatcc tcggtgccga agggcgtgca cgctcagtgg tgattgccgc tccggcggat 720 gtttctccgc tcctgcgaat gcagggtgcc gcctatgcca cgcgcattgc cgaagatttt 780 cgcgatcgtg gtcagcatgt gttgctgatt atggactccc tcacccgcta cgcgatggcc 840 cagcgtgaaa ttgcgctggc gattggcgaa ccccccgcca ccaaaggtta tccaccgtcg 900 gtgtttgcca aattaccggc actggtcgag cgtgccggaa atggcattag cggcggcggc 960 tcgattaccg cgttttatac cgtgctcact gaaggcgatg accagcagga tccgattgcc 1020 gactccgcgc gggcgatcct cgacggtcac attgtgctgt ctcgccgact ggcggaagcc 1080 gggcactatc cggctatcga tattgaagcg tcgatcagcc gcgcaatgac ggcgttgatc 1140 agtgagcaac attacgcgcg agtgcgcacc ttcaaacagc tgttgtcgag ttttcagcgt 1200 aaccgcgatc tggttagcgt cggcgcgtat gccaaaggca gcgatccgat gctcgataaa 1260 gccatcgccc tgtggccgca gctggagggc tatttgcaac aaggcatttt tgaacgcgcg 1320 gactgggaag cgtctctcca ggggctggag cgtattttcc cgacagtgtc ataa 1374 <210> 91 <211> 444 <212> DNA <213> Escherichia coli <400> 91 atggcagaac atggtgcgct ggcgaccctg aaagatctgg cagaaaaaga ggtagaggat 60 gccgcgcgcc tgctgggtga aatgcgtcgc ggatgtcagc aggcggaaga acagctcaaa 120 atgctgattg attatcagaa tgaatatcgc aataacctca acagcgatat gagtgccggg 180 ataaccagca accgctggat caactatcag cagtttatcc agacgctgga aaaagccatt 240 actcagcatc gccagcaact taatcagtgg acgcagaaag ttgacattgc cctgaacagt 300 tggcgagaaa aaaaacaacg tttgcaggcc tggcagacac tgcaggaacg gcaatccacg 360 gcggcactgc ttgcagaaaa ccgcctcgat cagaaaaaga tggatgagtt cgcccagcgc 420 gccgccatga ggaaacctga atga 444 <210> 92 <211> 1128 <212> DNA <213> Escherichia coli <400> 92 atgattcgct tagcgccctt gattaccgcc gacgttgaca ccaccacatt gcctggcggc 60 aaagccagcg atgctgcaca agattttctc gcgttgttga gcgaagcatt agcaggcgag 120 acaactaccg acaaagcggc cccccagttg ctggtggcaa cagataagcc cacgacaaaa 180 ggcgagccgc tgatcagcga tattgtttcc gacgcgcaac aagctaattt actgatccct 240 gtggatgaaa caccgcctgt catcaacgac gaacaatcca catcaacacc gttaaccacc 300 gctcagacga tggcgttggc tgcggtggct gacaaaaata cgacaaaaga cgaaaaagcg 360 gatgatctga atgaagacgt caccgcaagc ctgagcgccc tttttgcgat gttgccgggt 420 tttgacaata cgcccaaagt gactgatgcg ccgtcaaccg tgttaccgac agagaaacca 480 acgctcttca caaaactgac ttctgagcaa ctcacaacag cacagcctga tgacgccccc 540 ggcacaccag ctcagccatt aacaccgctg gtagcagaag cccagagtaa agcggaagtc 600 atcagcacac cttcaccggt gaccgctgcc gccagcccgc taatcactcc acaccagaca 660 cagccactgc ccaccgtcgc cgcacctgtt ttgagtgcac cgctgggttc tcacgaatgg 720 caacaatcat taagccagca tatttcgctg ttcacccgcc aggggcaaca aagtgcagag 780 ttgcgtctgc acccgcagga tttaggtgaa gtgcaaatct ccctcaaagt ggatgataac 840 caggcgcaaa tccagatggt ttcaccgcat cagcatgtac gcgccgccct ggaagcagcg 900 ctgccggtac tgcgcacgca gctggccgaa agtggcattc agttagggca aagcaacatc 960 agtggcgaaa gctttagtgg tcagcagcag gccgcttccc agcaacagca aagccaacgc 1020 acagcaaacc atgaacctct ggcgggggaa gacgacgata cgcttccggt tcccgtctct 1080 ttacaagggc gtgtaacagg caacagcggc gttgatattt tcgcctaa 1128 <210> 93 <211> 10979 <212> DNA <213> Escherichia coli <400> 93 ctacacctgc atgctcatca cttcctgata cgccgccacc agcttattac gcacctgaat 60 ccccatttgc atagaaactg aggctttttg catatcggtc atcacatcgt ttaacgccac 120 gccgggttca ccgagagtga atttttctgc ctgcgtgcgg gcagctgttt gtgtatcact 180 aatgcgatcg agcgcggcgt gcagctgccc ggcaaaacta atggtcggtt gcggcagtga 240 ttcctgcgca cgcgcactca tcgccgtagc ctgtaactgg ctgataaccc cttcaatccc 300 ctgtatcgct gacattctcg tctcccggat aatttctggt agcaaagcct accagtaagt 360 caataagaca aaggcgctaa atagcaacaa aaaaacgggt ttattggcgg atagaaaaaa 420 acgaaagcac aaataatggg agcgtcaatt tttcgagttt gctgacccgg gagtgagtct 480 tgttccactt tgccaataac gccgtccata atcagccacg aggtgcgcga tgaatgcgac 540 tgcagcccag acaaaatctc ttgagtggct taatcgcctg cgtgcgaatc cgaaaattcc 600 attgattgtt gccggttccg cggcagtggc ggtcatggtc gcactgatcc tgtgggcgaa 660 agcccccgac taccgcacat tattcagcaa tctttccgat caggatggtg gcgcaattgt 720 cagccaactg acgcaaatga atattcctta ccgcttcagc gaagccagcg gcgctattga 780 agttccggca gataaagttc acgaactgcg tctgcgcctg gcacaacaag gtttgccaaa 840 aggcggcgcg gtcggtttcg aactgcttga tcaggaaaag tttggtatca gccagttcag 900 cgaacaggtg aattatcagc gggcgctgga aggcgagctt tctcgtacca tcgaaactat 960 cggcccggta aaaggggcgc gcgtacatct ggcaatgccg aaaccgtctt tattcgtccg 1020 tgaacaaaaa tccccttctg catcggtgac ggtaaatctg ttacccggcc gcgcactcga 1080 tgaagggcaa attagcgcca ttgtgcatct ggtttccagc gccgttgctg gtctgccgcc 1140 gggaaacgtc acgctggtgg atcagggcgg acatctgtta acccagtcca ataccagcgg 1200 gcgcgatctt aatgacgctc agttgaaata tgccagcgat gtcgaaggcc gtattcagcg 1260 gcgtattgaa gcgatcctgt cgcctattgt tggtaacggt aatattcacg cccaggttac 1320 ggcgcagctg gacttcgcca gtaaagaaca aacggaagaa cagtatcgcc ctaacggtga 1380 tgaatctcat gcggcgcttc gttcacgcca gcttaatgag agcgagcaaa gcggttccgg 1440 ttatccgggc ggcgtaccgg gggcgttgtc gaatcaaccg gcacctgcga ataacgcgcc 1500 aatcagcacg cctccggcaa atcaaaataa ccgccagcag caggcgagca ccaccagcaa 1560 tagtgggccg cgtagcacac agcggaatga aaccagtaac tacgaagtcg atcgcaccat 1620 tcgtcatacc aaaatgaacg tgggcgatgt gcaacgtctg tcagtcgcgg tcgtggtgaa 1680 ttacaaaacc ttgccagatg gcaaaccgtt gcctctcagc aacgaacaga tgaagcaaat 1740 tgaagatctg acccgcgagg cgatgggctt ttctgaaaaa cgcggtgact cgctcaatgt 1800 cgttaactcg ccgttcaata gcagtgacga aagcggcgga gaactgccat tctggcaaca 1860 gcaagcgttt atcgatcagt tacttgctgc cggtcgctgg ttgctggtac tgctggtggc 1920 gtggctgctg tggcggaaag cggtacgtcc gcagctaaca cgtcgcgctg aggcgatgaa 1980 agctgtacag caacaggcgc aggcccgcga ggaagtggaa gatgcggtgg aagtccgcct 2040 gagcaaagac gaacaactac aacaacggcg cgctaaccaa cgtctggggg cagaagtcat 2100 gagccagcgt atccgtgaaa tgtctgataa cgatccgcgc gtggtggcgc tggtcattcg 2160 ccagtggata aataacgatc atgagtaacc tgacaggcac cgataaaagc gtcatcctgc 2220 tgatgaccat tggcgaagac cgggcggcag aggtgttcaa gcacctctcc cagcgtgaag 2280 tacaaaccct gagcgctgca atggcgaacg tcacgcagat ctccaacaag cagctaaccg 2340 atgtgctggc ggagtttgag caagaagctg aacagtttgc cgcactgaat atcaacgcca 2400 acgattatct gcgctcggta ttggtcaaag ctctgggtga agaacgtgcc gccagcctgc 2460 tggaagatat tctcgaaact cgcgataccg ccagcggtat tgaaacgctc aactttatgg 2520 agccacagag cgccgccgat ctgattcgcg atgagcatcc gcaaattatc gccaccattc 2580 tggtgcatct gaagcgcgcc caagccgccg atattctggc gttgttcgat gaacgtctgc 2640 gccacgacgt gatgttgcgt atcgccacct ttggcggcgt gcagccagcc gcgctggcgg 2700 agctgaccga agtactgaat ggcttgctcg acggtcagaa tctcaagcgc agcaaaatgg 2760 gcggcgtgag aacggcagcc gaaattatca acctgatgaa aactcagcag gaagaagccg 2820 ttattaccgc cgtgcgtgaa ttcgacggcg agctggcgca gaaaatcatc gacgagatgt 2880 tcctgttcga gaatctggtg gatgtcgacg atcgcagcat tcagcgtctg ttgcaggaag 2940 tggattccga atcgctgttg atcgcgctga aaggagccga gcagccactg cgcgagaaat 3000 tcttgcgcaa tatgtcgcag cgtgccgccg atattctgcg cgacgatctc gccaaccgtg 3060 gtccggtgcg tctgtcgcag gtggaaaacg aacagaaagc gattctgctg attgtgcgcc 3120 gccttgccga aactggcgag atggtaattg gcagcggcga ggatacctat gtctgataat 3180 ctgccgtgga aaacctggac gccggacgat ctcgcgccac cacaggcaga gtttgtgccc 3240 atagtcgagc cggaagaaac catcattgaa gaggctgaac ccagccttga gcagcaactg 3300 gcgcaactgc aaatgcaggc ccatgagcaa ggttatcagg cgggtattgc cgaaggtcgc 3360 cagcaaggtc ataagcaggg ctatcaggaa ggactggccc aggggctgga gcaaggtctg 3420 gcagaggcga agtctcaaca agcgccaatt catgcccgga tgcagcaact ggtcagcgaa 3480 tttcaaacta cccttgatgc acttgatagt gtgatagcgt cgcgcctgat gcagatggcg 3540 ctggaggcgg cacgtcaggt catcggtcag acgccaacgg tggataactc ggcactgatc 3600 aaacagatcc aacagttgtt gcagcaagaa ccgttattca gcggtaaacc acagctgcgc 3660 gtgcacccgg atgatctgca acgtgtggat gatatgctcg gcgctacctt aagtttgcat 3720 ggctggcgct tgcggggcga tcccaccctc catcctggcg gctgtaaagt ctccgccgat 3780 gaaggcgatc tcgacgccag tgtcgccact cgctggcaag aactctgccg tctggcagca 3840 ccaggagtgg tgtaatgacc acgcgcctga ctcgctggct aaccacgctg gataactttg 3900 aagccaaaat ggcgcagttg cctgcggtac gtcgctacgg gcgattaacc cgcgctaccg 3960 ggctggtgct ggaagccacc ggattacaat tgccgctcgg cgcaacctgt gtcattgagc 4020 gccagaacgg cagcgaaacg cacgaagtag aaagcgaagt cgttggcttt aacggtcaac 4080 ggctgttttt aatgccgctg gaggaagtcg aaggtgtcct gcccggcgcg cgtgtttatg 4140 ccaaaaacat ttcggcagaa gggctgcaaa gcggcaagca gttgccgctc ggtccggcgt 4200 tattaggtcg cgttctggac ggcagcggta aaccgctcga tggcctgccc tcccccgata 4260 cgacggaaac cggtgcgctg attaccccgc catttaaccc gttgcaacgt acaccgattg 4320 aacatgtgct ggacaccggc gtgcgcccaa tcaatgccct gcttaccgtt gggcgtgggc 4380 agcgtatggg gctgtttgcc gggtccggcg ttggtaaaag tgtgctgctg gggatgatgg 4440 cacgttacac ccgcgccgat gtcattgtcg tgggtttgat tggtgaacgt gggcgcgaag 4500 taaaagattt tattgagaac atcctcggtg ccgaagggcg tgcacgctca gtggtgattg 4560 ccgctccggc ggatgtttct ccgctcctgc gaatgcaggg tgccgcctat gccacgcgca 4620 ttgccgaaga ttttcgcgat cgtggtcagc atgtgttgct gattatggac tccctcaccc 4680 gctacgcgat ggcccagcgt gaaattgcgc tggcgattgg cgaacccccc gccaccaaag 4740 gttatccacc gtcggtgttt gccaaattac cggcactggt cgagcgtgcc ggaaatggca 4800 ttagcggcgg cggctcgatt accgcgtttt ataccgtgct cactgaaggc gatgaccagc 4860 aggatccgat tgccgactcc gcgcgggcga tcctcgacgg tcacattgtg ctgtctcgcc 4920 gactggcgga agccgggcac tatccggcta tcgatattga agcgtcgatc agccgcgcaa 4980 tgacggcgtt gatcagtgag caacattacg cgcgagtgcg caccttcaaa cagctgttgt 5040 cgagttttca gcgtaaccgc gatctggtta gcgtcggcgc gtatgccaaa ggcagcgatc 5100 cgatgctcga taaagccatc gccctgtggc cgcagctgga gggctatttg caacaaggca 5160 tttttgaacg cgcggactgg gaagcgtctc tccaggggct ggagcgtatt ttcccgacag 5220 tgtcataacc caggagataa cggcagatgg cagaacatgg tgcgctggcg accctgaaag 5280 atctggcaga aaaagaggta gaggatgccg cgcgcctgct gggtgaaatg cgtcgcggat 5340 gtcagcaggc ggaagaacag ctcaaaatgc tgattgatta tcagaatgaa tatcgcaata 5400 acctcaacag cgatatgagt gccgggataa ccagcaaccg ctggatcaac tatcagcagt 5460 ttatccagac gctggaaaaa gccattactc agcatcgcca gcaacttaat cagtggacgc 5520 agaaagttga cattgccctg aacagttggc gagaaaaaaa acaacgtttg caggcctggc 5580 agacactgca ggaacggcaa tccacggcgg cactgcttgc agaaaaccgc ctcgatcaga 5640 aaaagatgga tgagttcgcc cagcgcgccg ccatgaggaa acctgaatga ttcgcttagc 5700 gcccttgatt accgccgacg ttgacaccac cacattgcct ggcggcaaag ccagcgatgc 5760 tgcacaagat tttctcgcgt tgttgagcga agcattagca ggcgagacaa ctaccgacaa 5820 agcggccccc cagttgctgg tggcaacaga taagcccacg acaaaaggcg agccgctgat 5880 cagcgatatt gtttccgacg cgcaacaagc taatttactg atccctgtgg atgaaacacc 5940 gcctgtcatc aacgacgaac aatccacatc aacaccgtta accaccgctc agacgatggc 6000 gttggctgcg gtggctgaca aaaatacgac aaaagacgaa aaagcggatg atctgaatga 6060 agacgtcacc gcaagcctga gcgccctttt tgcgatgttg ccgggttttg acaatacgcc 6120 caaagtgact gatgcgccgt caaccgtgtt accgacagag aaaccaacgc tcttcacaaa 6180 actgacttct gagcaactca caacagcaca gcctgatgac gcccccggca caccagctca 6240 gccattaaca ccgctggtag cagaagccca gagtaaagcg gaagtcatca gcacaccttc 6300 accggtgacc gctgccgcca gcccgctaat cactccacac cagacacagc cactgcccac 6360 cgtcgccgca cctgttttga gtgcaccgct gggttctcac gaatggcaac aatcattaag 6420 ccagcatatt tcgctgttca cccgccaggg gcaacaaagt gcagagttgc gtctgcaccc 6480 gcaggattta ggtgaagtgc aaatctccct caaagtggat gataaccagg cgcaaatcca 6540 gatggtttca ccgcatcagc atgtacgcgc cgccctggaa gcagcgctgc cggtactgcg 6600 cacgcagctg gccgaaagtg gcattcagtt agggcaaagc aacatcagtg gcgaaagctt 6660 tagtggtcag cagcaggccg cttcccagca acagcaaagc caacgcacag caaaccatga 6720 acctctggcg ggggaagacg acgatacgct tccggttccc gtctctttac aagggcgtgt 6780 aacaggcaac agcggcgttg atattttcgc ctaacgtcag aggtagcacc gtaatccgcg 6840 tcttttcccc gctttgttgc gctcaagacg caggataatt agccgataag cagtagcgac 6900 acaggaagac cgcaacacat gactgattac gcgataagca agaaaagcaa gcgatcgctt 6960 tggatcccga ttctggtatt cattaccctc gcggcctgtg ccagcgcagg ttacagctac 7020 tggcattcgc atcaggttgc cgctgacgac aaagcgcagc aacgcgtcgt gccctcaccg 7080 gtcttctacg cgctggatac cttcacggtc aatttgggcg atgcggatcg cgtactttat 7140 atcggcataa ccctgcgcct gaaagatgaa gctacccgct cgcggctgag tgagtatttg 7200 ccggaagtcc gtagtcgctt gctgttactg ttttcgcgtc aggatgctgc cgtactggcg 7260 acagaagaag gcaagaaaaa cctgattgcc gagattaaaa ccacactttc caccccgctt 7320 gttgccgggc aaccgaaaca ggatgtcacc gacgtgctgt ataccgcttt tattctgcga 7380 taacgacatg ggcgatagta ttctttctca agctgaaatt gatgcgctgt tgaatggtga 7440 cagcgaagtc aaagacgaac cgacagccag tgttagcggc gaaagtgaca ttcgtccgta 7500 cgatccgaat acccaacgac gggttgtgcg cgaacgtttg caggcgctgg aaatcattaa 7560 tgagcgcttt gcccgccatt ttcgtatggg gctgttcaac ctgctgcgtc gtagcccgga 7620 tataaccgtc ggggccatcc gcattcagcc gtaccatgaa tttgcccgca acctgccggt 7680 gccgaccaac ctgaacctta tccatctgaa accgctgcgc ggcactgggc tggtggtgtt 7740 ctcaccgagt ctggtgttta tcgccgtgga taacctgttt ggcggcgatg gacgcttccc 7800 gaccaaagtg gaaggtcgcg agtttaccca taccgaacag cgcgtcatca accgcatgtt 7860 gaaactggcg cttgaaggct atagcgacgc ctggaaggcg attaatccgc tggaagttga 7920 gtacgtgcgt tcggaaatgc aggtgaaatt taccaatatc accacctcgc cgaacgacat 7980 tgtggttaac acgccgttcc atgtggagat tggcaacctg accggcgaat ttaatatctg 8040 cctgccattc agcatgatcg agccgctacg ggaattgttg gttaacccgc cgctggaaaa 8100 ctcgcgtaat gaagatcaga actggcgcga taacctggtg cgccaggtgc agcattcaca 8160 gctggagctg gtcgccaact ttgccgatat ctcgctacgc ctgtcgcaga ttttaaaact 8220 gaaccccggc gacgtcctgc cgatagaaaa acccgatcgc atcatcgccc atgttgacgg 8280 cgtcccggtg ctgaccagtc agtatggcac cctcaacggt cagtatgcgt tacggataga 8340 acatttgatt aacccgattt taaattctct gaacgaggaa cagcccaaat gagtgacatg 8400 aataatccgg ccgatgacaa caacggcgca atggacgatc tgtgggctga agcgttgagc 8460 gaacaaaaat caaccagcag caaaagcgct gccgagacgg tgttccagca atttggcggt 8520 ggtgatgtca gcggaacgtt gcaggatatc gacctgatta tggatattcc ggtcaagctg 8580 accgtcgagc tgggccgtac gcggatgacc atcaaagagc tgttgcgtct gacgcaaggg 8640 tccgtcgtgg cgctggacgg tctggcgggc gaaccactgg atattctgat caacggttat 8700 ttaatcgccc agggcgaagt ggtggtcgtt gccgataaat atggcgtgcg gatcaccgat 8760 atcattactc cgtctgagcg aatgcgccgc ctgagccgtt agtgatgaat aaccacgcta 8820 ctgtgcaatc ttccgcgccg gtttctgctg cgccactgct gcaggtgagc ggcgcactca 8880 tcgccattat tgccctgatc ctcgctgctg cctggctggt aaaacggttg ggatttgccc 8940 ctaaacgcac tggcgttaac ggtctgaaaa ttagcgccag tgcttcactg ggcgcgcgtg 9000 aaagggttgt ggtggtcgat gtggaagatg cacggctggt gctcggcgtt accgcaggtc 9060 aaatcaatct gctgcataaa cttccccctt ctgcaccaac ggaagagata ccgcagaccg 9120 attttcagtc ggtcatgaaa aatttgctta agcgtagcgg gagatcctga tgcgtcgttt 9180 attgtctgtc gcacctgtcc ttctctggct gattacgccc ctcgccttcg cgcaactgcc 9240 gggtatcacc agccagccgc tgcctggcgg tggacaaagc tggtcgctcc cggtgcagac 9300 gctggtgttc atcacctcgt tgacgtttat tccggcaatt ttactgatga tgaccagttt 9360 cacccgcatc atcattgttt ttggtttatt gcgtaacgcg ctgggaacac cctccgcgcc 9420 acctaaccag gtattgctgg ggctggcact gtttttgacc ttttttatta tgtcaccggt 9480 gatcgacaaa atttatgtag atgcgtacca gccattcagc gaagagaaaa tatcaatgca 9540 ggaggcgctg gaaaaagggg cgcagccgct gcgtgagttt atgctgcgtc agacccgtga 9600 ggcagattta gggttgtttg ccagactggc gaataccggc ccgttgcagg gacctgaagc 9660 cgtgccgatg cgcattttgc tcccggccta cgtgaccagc gagttgaaaa ccgcatttca 9720 gataggcttc acgattttca tccctttttt gattatcgac ctggtgatag ccagcgtgtt 9780 gatggcattg gggatgatga tggttccccc agccaccatt gctctgccct ttaaactgat 9840 gctgtttgta ctggtggatg gctggcaatt gctggtcggt tcgctggcgc agagctttta 9900 cagctagaga ggcaaaatga cacctgaatc ggtcatgatg atggggactg aagcgatgaa 9960 agtcgcgctg gcactggctg ccccgctatt gttggtagcg ttggtcacgg gccttatcat 10020 cagtattttg caggccgcca cgcagattaa cgaaatgacg ctgtcgttta ttccgaaaat 10080 catcgccgta tttatcgcca ttattattgc cggaccgtgg atgctcaatc tgttgctgga 10140 ttacgtccgc accttgttca ctaacctgcc gtatatcatc gggtagccgt actatgttgc 10200 aggtgacaag cgaacaatgg ctatcctggt taaacctgta cttctggccg ttactgcgcg 10260 tgctggcgct gatctccacc gcgccgattc tgagcgaacg cagcgtaccg aaacgggtaa 10320 aactgggtct ggcaatgatg atcacgttcg ccattgcccc atcattacct gccaacgatg 10380 ttcctgtttt ttcgttcttt gctctgtggc tggccgtgca gcagatcctg atcggcattg 10440 cgcttggttt taccatgcaa tttgcctttg ccgctgtgcg aaccgctggc gaaattatcg 10500 gtctgcaaat ggggctgtca tttgcgacgt ttgtcgatcc ggccagccat cttaatatgc 10560 ccgttttagc gcgtatcatg gatatgctgg cgttactgct gttcctgaca tttaacggtc 10620 atttatggtt gatttcactg ctggtcgata cctttcacac cctgccgatt ggtggcgaac 10680 cgttgaacag caatgcgttt ctggcactca ccaaagcagg gagtttgatt ttccttaacg 10740 ggctgatgct ggcgttaccg ctcattactc tgctgctgac actgaatctg gcattaggtt 10800 tacttaatcg tatggccccg caattatcca tttttgttat tggatttcca ttaactctga 10860 ctgtcggcat ctctttaatg gcggcattaa tgccgttaat tgcacctttt tgcgaacatt 10920 tattcagtga aatttttaat ttgctggctg atattattag tgaattgcca ttaatataa 10979

Claims (29)

  1. 이소프렌 생산능을 가지며 recA 단백질을 코딩하는 유전자가 감쇄 또는 결실된 대장균을 탄소원을 포함하는 배지 중에서 배양하는 단계를 포함하는 이소프렌의 생산 방법.
  2. 청구항 1에 있어서, 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합인 이소프렌의 생산 방법.
  3. 청구항 1에 있어서, 상기 대장균은 MG1655인 이소프렌의 생산 방법.
  4. 청구항 1에 있어서, 상기 recA 단백질을 코딩하는 유전자는 서열번호 76의 뉴클레오티드 서열을 갖는 이소프렌의 생산 방법.
  5. 청구항 1에 있어서, 상기 대장균은 이소프렌 신타제, 및 엔테로코커스 속 (Enterococcus) 또는 스트렙토코커스 속 (Streptococcus) 메발로네이트 경로의 효소를 발현하는 것인 이소프렌의 생산 방법.
  6. 청구항 1에 있어서, 상기 대장균은 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제(isoprene synthase)를 코딩하는 유전자를 내재적으로 또는 도입에 의해 갖는 것인 이소프렌의 생산 방법.
  7. 청구항 6에 있어서, 상기 유전자는 그에 대응되는 리보솜 결합 부위 서열의 전사시작비율 값이 3,000au 이상인 플라스미드에 도입된 것인 이소프렌의 생산 방법.
  8. 청구항 1에 있어서, 상기 대장균은 서열번호 2의 엔테로코커스 페칼리스 (Enterococcus faecalis) 유래의 acetoacetyl-CoA 신타제와 HMG-CoA 리덕타제의 기능을 동시에 갖는 효소를 코딩하는 유전자, 서열번호 3의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 HMG-CoA 신타제를 코딩하는 유전자, 서열번호 4의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 카인아제를 코딩하는 유전자, 서열번호 5의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 다이포스페이트 카복실아제를 코딩하는 유전자 및 서열번호 6의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 포스포메발로네이트 카인아제를 코딩하는 유전자, 및 서열번호 7의 대장균 MG1655 (Escherichia coli MG1655) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자를 내재적으로 또는 도입에 의해 갖는 것인 이소프렌의 생산 방법.
  9. 청구항 8에 있어서, 상기 대장균은 서열번호 8의 사이네코 시스티스 (Synechocystis sp. PCC6803) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자, 서열번호 9의 스트렙토코쿠스 뉴모니아 (Streptococcus pneumoniae) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자 및 서열번호 10의 헤마토코쿠스 플라비아리스 (Haematococcus plavialis) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자 중 선택된 유전자를 내재적으로 또는 도입에 의해 더 갖는 것인 이소프렌의 생산 방법.
  10. 청구항 1에 있어서, 상기 대장균은 서열번호 11의 포플러 트리코카파 유래의 이소프렌 신타제와 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제의 융합 단백질을 코딩하는 유전자, 서열번호 12의 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제 와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 단백질을 코딩하는 유전자, 서열번호 13의 포플러 트리코카파 유래의 이소프렌 신타제 와 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제의 융합 단백질을 코딩하는 유전자 또는 서열번호 14의 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 단백질을 코딩하는 유전자를 갖는 것인 이소프렌의 생산 방법.
  11. 청구항 1에 있어서, 상기 대장균은 dld, atoD, atoA 및 pps로 이루어진 군에서 선택된 1종 이상의 유전자가 감쇄 또는 결실된 것인 이소프렌의 생산 방법.
  12. 청구항 11에 있어서, 상기 대장균은 ackA -pta, poxB, adhEldhA로 이루어진 군에서 선택된 1종 이상의 유전자가 감쇄 또는 결실된 것인 이소프렌의 생산 방법.
  13. 청구항 1에 있어서, 상기 대장균은 NudB 단백질을 코딩하는 유전자가 감쇄 또는 결실된 것인 이소프렌의 생산 방법.
  14. 청구항 13에 있어서, 상기 유전자는 서열번호 77의 뉴클레오티드 서열을 갖는 것인 이소프렌의 생산 방법.
  15. 청구항 1에 있어서, 상기 대장균은 편모가 불활성화 또는 제거된 것인 이소프렌의 생산 방법.
  16. 청구항 15에 있어서, 상기 대장균은 fliF, fliG, fliH, fliI, fliJ 및 fliK로 이루어진 군에서 선택된 1개 이상의 유전자가 결실 또는 불활성화된 것인 이소프렌의 생산 방법.
  17. 청구항 1에 있어서, 상기 배지는 락토스를 포함하는 것인 이소프렌의 생산 방법.
  18. 청구항 1에 있어서, 상기 배지는 Mg2 +를 포함하는 것인 이소프렌의 생산 방법.
  19. 이소프렌 생산능을 가지며 recA 단백질을 코딩하는 유전자가 감쇄 또는 결실된 이소프렌 생산용 대장균.
  20. 청구항 19에 있어서, 상기 대장균은 DH5α, MG1655, BL21(DE), S17-1, XL1-Blue, BW25113 또는 이들의 조합인 이소프렌 생산용 대장균.
  21. 청구항 19에 있어서, 상기 대장균은 MG1655인 이소프렌 생산용 대장균.
  22. 청구항 19에 있어서, 상기 recA 단백질을 코딩하는 유전자는 서열번호 76의 뉴클레오티드 서열을 갖는 이소프렌 생산용 대장균.
  23. 청구항 19에 있어서, 상기 대장균은 서열번호 1의 포플러 트리코카파 (Populus trichocarpa) 유래의 이소프렌 신타제(isoprene synthase)를 코딩하는 유전자, 서열번호 2의 엔테로코커스 페칼리스 (Enterococcus faecalis) 유래의 acetoacetyl-CoA 신타제와 HMG-CoA 리덕타제의 기능을 동시에 갖는 효소를 코딩하는 유전자, 서열번호 3의 엔테로코커스 패칼리스 (Enterococcus faecalis) 유래의 HMG-CoA 신타제를 코딩하는 유전자, 서열번호 4의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 카인아제를 코딩하는 유전자, 서열번호 5의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 메발로네이트 다이포스페이트 카복실아제를 코딩하는 유전자 및 서열번호 6의 스트렙토코커스 뉴모니아 (Streptococcus pneumoniae) 유래의 포스포메발로네이트 카인아제를 코딩하는 유전자, 및 서열번호 7의 대장균 MG1655 (Escherichia coli MG1655) 유래의 이소프레닐 파이로포스페이트 이소머라제를 코딩하는 유전자를 내재적으로 또는 도입에 의해 갖는 것인 이소프렌 생산용 대장균.
  24. 청구항 19에 있어서, 상기 대장균은 서열번호 11의 포플러 트리코카파 유래의 이소프렌 신타제와 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제의 융합 단백질을 코딩하는 유전자, 서열번호 12의 대장균 MG1655 유래의 이소프레닐 파이로포스페이트 이소머라제 와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 단백질을 코딩하는 유전자, 서열번호 13의 포플러 트리코카파 유래의 이소프렌 신타제 와 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제의 융합 단백질을 코딩하는 유전자 또는 서열번호 14의 사이네코 시스티스 이소프레닐 파이로포스페이트 이소머라제와 포플러 트리코카파 유래의 이소프렌 신타제의 융합 단백질을 코딩하는 유전자를 갖는 것인 이소프렌 생산용 대장균.
  25. 청구항 19에 있어서, 상기 대장균은 dld, atoD, atoA 및 pps로 이루어진 군에서 선택된 1종 이상의 유전자가 감쇄 또는 결실된 것인 이소프렌 생산용 대장균.
  26. 청구항 19에 있어서, 상기 대장균은 NudB 단백질을 코딩하는 유전자가 감쇄 또는 결실된 것인 이소프렌 생산용 대장균.
  27. 청구항 19에 있어서, 상기 유전자는 서열번호 77의 뉴클레오티드 서열을 갖는 것인 이소프렌 생산용 대장균.
  28. 청구항 19에 있어서, 상기 대장균은 편모가 불활성화 또는 제거된 것인 이소프렌 생산용 대장균.
  29. 청구항 19에 있어서, 상기 대장균은 fliF, fliG, fliH, fliI, fliJ 및 fliK로 이루어진 군에서 선택된 1개 이상의 유전자가 결실 또는 불활성화된 것인 이소프렌 생산용 대장균.
KR1020170012696A 2016-01-26 2017-01-26 이소프렌의 생산 방법 KR101936825B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2017/000990 WO2017131488A1 (ko) 2016-01-26 2017-01-26 이소프렌의 생산 방법
US16/073,073 US11746344B2 (en) 2016-01-26 2017-01-26 Method for producing isoprene using transformed E. coli

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20160009568 2016-01-26
KR1020160009568 2016-01-26

Publications (2)

Publication Number Publication Date
KR20170089426A true KR20170089426A (ko) 2017-08-03
KR101936825B1 KR101936825B1 (ko) 2019-01-11

Family

ID=59655484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170012696A KR101936825B1 (ko) 2016-01-26 2017-01-26 이소프렌의 생산 방법

Country Status (2)

Country Link
US (1) US11746344B2 (ko)
KR (1) KR101936825B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085688A1 (ko) 2021-11-09 2023-05-19 경상국립대학교산학협력단 레티노이드 제조용 조성물 및 이를 이용한 레티노이드의 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563432B2 (ja) * 1994-03-16 2004-09-08 日出男 池田 大腸菌宿主を用いてベクターを増殖させる方法
JP4839144B2 (ja) * 2005-07-22 2011-12-21 花王株式会社 宿主微生物
SG194691A1 (en) 2011-04-29 2013-12-30 Danisco Us Inc Production of mevalonate, isoprene, and isoprenoids using genes encodingpolypeptides having thiolase, hmg-coa synthase and hmg-coa reductase enzymatic activities
BR112014002661A2 (pt) * 2011-08-04 2019-09-24 Danisco Us Inc produção de isopreno, precursores de isoprenoide, e isoprenoides com o uso de acetoacetil-coa sintase
US9695447B2 (en) 2012-12-27 2017-07-04 Sekisui Chemical Co., Ltd. Recombinant cell and method for producing isoprene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085688A1 (ko) 2021-11-09 2023-05-19 경상국립대학교산학협력단 레티노이드 제조용 조성물 및 이를 이용한 레티노이드의 제조 방법

Also Published As

Publication number Publication date
US20210324362A1 (en) 2021-10-21
US11746344B2 (en) 2023-09-05
KR101936825B1 (ko) 2019-01-11

Similar Documents

Publication Publication Date Title
AU2019202844B2 (en) Inducible coexpression system
TWI324181B (en) Product and process for transformation of thraustochytriales microorganisms
DK2640740T3 (en) MUTEINS OF HUMAN LIPOCALIN 2 WITH AFFINITY FOR GLYPICAN-3 (GPC3)
CN109486737B (zh) 一种高产l-色氨酸的重组大肠杆菌及其构建方法
AU636537B2 (en) Improvement of the yield when disulfide-bonded proteins are secreted
US5159062A (en) Signal peptide for the secretion of peptides in escherichia coli
KR20130110226A (ko) 테르펜 합성효소 변이체들을 개발하는 방법들
CN109890970B (zh) 生产目标物质的方法
CN108026548A (zh) 生物制备甲基丙烯酸及其衍生物的方法
KR20130132416A (ko) 열안정성 트리코데르마 셀룰라아제
CN110923183A (zh) 产羊毛甾醇大肠杆菌菌株的构建方法
CN114457100B (zh) 一种基于CRISPR/Cpf1的大肠杆菌基因编辑系统及其应用
KR101936825B1 (ko) 이소프렌의 생산 방법
CN112011471B (zh) 酿制柠檬风味啤酒的酵母菌株、其制备方法及啤酒酿制方法
KR102194740B1 (ko) 7-adca 제조를 위한 데아세트옥시세팔로스포린 c의 고농도 생산 재조합 아크레모니움 크리소제눔 균주의 제조방법 및 이 방법으로 제조된 균주
CN112226451A (zh) 枯草芽孢杆菌表达系统及其生产α-L-AFs的方法
CN112553176A (zh) 一种热稳定性提高的谷氨酰胺转氨酶
KR102143644B1 (ko) 웅성불임유발 방법
KR101495276B1 (ko) 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템
CN114934060A (zh) 一种利用四氢嘧啶生产羟基四氢嘧啶的基因工程菌及其构建方法和应用
CN113215265B (zh) 奶牛bta-miRNA29d-3p在奶牛乳腺上皮细胞脂质积累调节过程中的应用
CN110964702B (zh) 一种Diels-Alder反应酶的应用及其突变体的制备方法与应用
CN108118047A (zh) 一种双功能酶的制备方法及其在海藻糖生产中的应用
CN114891649B (zh) 复合菌及其在降解长链烷烃中的应用
CN109666689B (zh) 一种重组高温镍铁氢化酶的异源表达纯化方法及其应用

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)