KR101495276B1 - 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템 - Google Patents

광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템 Download PDF

Info

Publication number
KR101495276B1
KR101495276B1 KR1020120149832A KR20120149832A KR101495276B1 KR 101495276 B1 KR101495276 B1 KR 101495276B1 KR 1020120149832 A KR1020120149832 A KR 1020120149832A KR 20120149832 A KR20120149832 A KR 20120149832A KR 101495276 B1 KR101495276 B1 KR 101495276B1
Authority
KR
South Korea
Prior art keywords
promoter
seq
nucleotide sequence
tpsad
luc
Prior art date
Application number
KR1020120149832A
Other languages
English (en)
Other versions
KR20130135722A (ko
Inventor
진언선
이재혁
박승혜
백광열
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to PCT/KR2013/004762 priority Critical patent/WO2013180488A1/ko
Priority to US14/404,946 priority patent/US9540653B2/en
Publication of KR20130135722A publication Critical patent/KR20130135722A/ko
Application granted granted Critical
Publication of KR101495276B1 publication Critical patent/KR101495276B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템에 관한 것으로서, 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터 및 이를 이용한 외래 단백질의 생산 방법을 제공한다. 본 발명의 광 유도성 프로모터는 광의 조사에 의하여 유전자의 발현을 유도하고 광의 광도에 따라 유전자의 발현량을 조절하므로, 생물체의 생장이나 대사과정에 무리를 주지 않고 간편하게 유전자의 발현을 조절할 수 있는 효과가 있고, 다양한 종류의 생물체에 적용가능하여 활용 범위가 넓은 장점이 있다.

Description

광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템{Light Inducible Promoter and Gene Expression System Comprising The Same}
본 발명은 신규한 프로모터에 관한 것으로, 보다 구체적으로는 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템에 관한 것이다.
최근 바이오 연료 개발, 이산화탄소 발생 저감, 고부가가치 물질 생산 등 최신 생명공학 기술에 미세조류를 이용하고자 하는 시도와 함께 유전자의 염기서열을 분석하려는 노력들이 진행되고 있다. 이러한 노력의 일환으로서, 기존의 미세조류에 유용한 유전자를 도입하여 원하는 형질을 나타내도록 하려는 시도가 계속되고 있다. 그러나 미세조류는 형질전환 효율이 낮고, 도입된 유전자의 발현 효율이 낮은 등의 형질전환 기술 상에 문제가 있다.(Lumbreras et al., Plnat J. 1998; 14: 441-447).
이러한 문제를 해결하기 위한 중요한 수단 중의 하나로 미세조류를 위한 각종 프로모터들이 개발되고 있고, 미세조류에서 유래한 프로모터를 사용함으로써 기존에 알려진 고등식물용 프로모터를 사용하는 경우보다 효과적인 형질전환 및 유전자 발현을 유도할 수 있었다(Walker et al., J. Applied Phycol. 2005; 17: 363-368). 최근에 연구 및 발표되고 있는 클라미도모나스 속 조류(Schroda et al., The Plant Journal 2000; 21(2): 121-131)와 두날리엘라 속 조류(Li et al., Mol Biol. Rep. 2010; 37: 1143-1154)를 위한 프로모터에 대한 연구도 이러한 연구의 한 결과이다.
상기 Schroda et al.에서 발표된 클라미도모나스 속 조류 유래의 프로모터는 두 가지 서로 다른 프로모터를 융합시킨 것으로 주로 열 충격에 의해 유전자의 발현을 유도하는 프로모터이다. 상기 프로모터를 이용하는 경우, 유전자의 발현 유도를 위해 열을 가하게 되면, 조류의 생장이나 대사과정에 무리를 줄 수 있는 문제가 있다.
상기 Li et al.에서 발표된 두날리엘라 속 조류 유래의 프로모터는 염농도가 높은 조건(2M NaCl)에서 유전자의 발현을 유도하는 프로모터이다. 상기 프로모터는 호염성의 생물종에만 적용될 수 있을 뿐이어서, 활용 범위가 좁은 문제가 있다.
이에, 다양한 종류의 생물체에 적용가능하여 활용 범위가 넓으면서도, 생물체의 생장이나 대사과정에 무리를 주지 않고, 간편하게 유전자의 발현을 조절할 수 있는 프로모터의 개발이 절실한 실정이다.
본 발명의 목적은 다양한 종류의 생물체에 적용가능하면서도, 광의 조사에 의하여 간편하게 유전자의 발현을 조절할 수 있는 프로모터 및 이를 포함하는 유전자 발현 시스템을 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터를 제공한다.
또한, 상기 목적을 달성하기 위하여 본 발명은 다른 측면은 상기 광 유도성 프로모터를 포함하는 발현벡터, 및 상기 발현벡터로 형질전환된 형질전환체를 제공한다.
또한, 상기 목적을 달성하기 위하여 본 발명의 또 다른 측면은 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터에 외래 단백질을 코딩하는 유전자가 작동가능하게 연결된 유전자 컨스트럭트, 상기 유전자 컨스트럭트를 포함하는 발현벡터, 및 상기 발현벡터로 형질전환된 형질전환체를 제공한다.
아울러, 상기 목적을 달성하기 위하여 본 발명의 또 다른 측면은 상기 형질전환체를 배양하는 단계; 및 상기 배양된 형질전환체에 광을 조사하는 단계를 포함하는 외래 단백질의 생산 방법을 제공한다.
본 발명의 광 유도성 프로모터는 광의 조사에 의하여 유전자의 발현을 유도하고 광의 광도에 따라 유전자의 발현량을 조절하므로, 생물체의 생장이나 대사과정에 무리를 주지 않고 간편하게 유전자의 발현을 조절할 수 있는 효과가 있고, 다양한 종류의 생물체에 적용가능하여 활용 범위가 넓은 장점이 있다.
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 실시예 <1-2>에서 LSIP_P가 클로닝된 pGEM(R)-T easy 벡터를 염기서열 분석한 결과를 나타낸 그림으로서,
회색 음영으로 표시한 부분은 첫 번째 엑손을 나타낸 것이고;
회색 음영으로 표시된 부분을 제외한 나머지 부분의 염기서열이 LSIP_P의 염기서열이다.
도 2는 두날리엘라 에스피.(Dunaliella sp.)의 LSIP_P와 두날리엘라 바다빌(Dunaliella bardawil)의 cbr 프로모터의 염기서열을 비교한 그림으로서,
bar는 두날리엘라 바다빌(Dunaliella bardawil)의 cbr 프로모터의 염기서열을 나타낸 것이고;
sp는 두날리엘라 에스피.의 LSIP_P의 염기서열을 나타낸 것이다.
도 3은 클라미도모나스용 발현벡터인 pN7-AR_P-LUC-TPsaD의 벡터 맵으로서,
nic7 유전자는 형질전환시 선별 마커로 작용하는 quinolinate synthetase 유전자를 나타낸 것이고;
AR-P는 클라미도모나스 유래의 재조합 프로모터를 나타낸 것이며;
Renilla luciferase CDS는 기질(Coelenterazine)을 분해하면서 빛을 내도록 하는 효소를 암호화하는 유전자를 나타낸 것이고;
PsaD-T는 클라미도모나스 유래의 PsaD 유전자의 터미네이터 부분을 나타낸 것이다.
도 4는 상기 도 3의 pN7-AR_P-LUC-TPsaD에서 AR_P가 제거된 부위에 1LSIP_P, 4LSIP_P, 8LSIP_P, 17LSIP_P 또는 Bar-CBR_P를 삽입한 발현벡터의 벡터 맵이다.
도 5는 pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD, pN7-17LSIP_P-LUC-TPsaD 및 pN7-Bar-CBR_P-LUC-TPsaD가 도입된 형질전환체에서 분리한 genomic DNA에서 PCR을 수행하여 936 bp 길이의 루시퍼라제 유전자에 해당하는 밴드가 각각 검출됨을 확인함으로써 상기 벡터들이 정상적으로 도입되었는지 여부를 확인한 젤 사진으로서,
+와 -는 각각 형질전환에 이용한 플라스미드 벡터, 그리고 형질전환시키지 않은 원래의 클라미도모나스를 나타낸 것을 의미하고;
1 내지 6은 1LSIP_P, 7 내지 12는 4LSIP_P, 13 내지 18은 8LSIP_P, 19 내지 24는 17LSIP_P 및 25 내지 30은 Bar-CBR_P를 각각 리포터 유전자 앞에 넣은 형질전환체를 의미한다.
도 6은 1LSIP_P. 4LSIP_P, 8LSIP_P, 17LSIP_P 및 Bar-CBR_P의 조절을 받는 루시퍼라제(luciferase)의 조사되는 광의 세기(light intensity)에 따른 발현 정도를 측정한 그래프이다.
도 7은 1LSIP_P. 4LSIP_P, 8LSIP_P, 17LSIP_P 및 Bar-CBR_P의 조절을 받는 루시퍼라제(luciferase)의 조사되는 광의 세기(light intensity)에 따른 발현 비율을 측정한 그래프로서, Luminescence ratio는 (빛에 노출된 세포에서의 발광량) / (암처리 세포에서의 발광량)를 의미한다.
먼저, 본 발명의 명세서에서 이용된 용어를 설명한다.
본 발명에서 일컫는 '두날리엘라 에스피.(Dunaliella sp.)'는 종래 Kim et al.(Phycological Research 2010; 58: 17-28) 문헌에서 전형적인 두날리엘라 살리나(Dunaliella salina)와는 서로 구분되는 것으로 분류하여 새롭게 재명명한 두날리엘라 속의 조류를 의미하는 것으로서, 종래의 두날리엘라 살리나(Dunaliella salina)와는 동속이종의 조류이다.
본 발명에서 일컫는 'LSIP(Lignt and Salt Inducible Protein)'는 상기 Dunaliella sp.에서 유래한, 서열번호 3의 아미노산 서열을 갖는 단백질로서, 상기 Kim et al.(Phycological Research 2010; 58: 17-28) 문헌에서 cbr 단백질(carotenoid biosynthesis related protein)이라고 알려져 있다. 상기 Kim et al. 문헌에서는 상기 서열번호 3의 아미노산 서열을 갖는 단백질이 다른 두날리엘라 속의 조류인 두날리엘라 살리나(Dunaliella salina) 및 두날리엘라 바다빌(Dunaliella bardawil) 등의 cbr 단백질과 80% 정도의 높은 상동성을 나타낸다 하여, 이를 cbr 단백질이라고 명명하고 있다. 그러나 상기 D. salinaD. bardawil 종과는 달리, 상기 두날리엘라 에스피.(Dunaliella sp.)는 카로테노이드(carotenoid)를 축적하지 않는 종으로서, 특히 두날리엘라 에스피.(Dunaliella sp.)에서 상기 서열번호 3의 단백질이 수행하는 기능이나 상기 서열번호 3의 단백질과 카로테노이드(carotenoid) 간의 연관성에 관해서는 전혀 밝혀진 바가 없다는 측면에서, 두날리엘라 에스피.(Dunaliella sp.)에서 유래한 상기 서열번호 3의 단백질은 상기 D. salinaD. bardawil의 cbr 단백질과 구분될 필요가 있다. 따라서, 본 발명에서는 상기 서열번호 3의 단백질을 LSIP(Lignt and Salt Inducible Protein)이라고 재명명하고, 이를 D. salinaD. bardawil의 cbr 단백질과 구분되는 것으로 정의한다.
본 발명에서 일컫는 '프로모터'는 특정한 숙주세포에서 작동 가능하게 연결된 외래 단백질을 코딩하는 유전자의 발현을 조절하는 DNA 서열을 의미한다.
본 발명에서 일컫는 '발현벡터'는 숙주세포에서 목적으로 하는 외래 단백질을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 벡터를 의미한다. 적합한 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서와 같은 발현 조절 서열 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다.
이하, 본 발명을 상세히 설명한다.
1. 두날리엘라 에스피. 유래 프로모터
본 발명의 일 측면은 서열번호 18로 기재되는 염기서열을 포함하는 두날리엘라 에스피. 유래 프로모터를 제공한다.
본 발명의 상기 날리엘라 에스피. 유래 프로모터는 서열번호 18로 기재되는 염기서열을 포함한다.
상기 프로모터는 100 bp 길이의 서열번호 18로 기재되는 염기서열로 구성될 수 있다. 상기 서열번호 18로 기재되는 염기서열은 그 하류(downstream) 즉 상기 염기서열의 3' 말단 쪽에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자의 '발현'을 유도 및 향상시킨다. 그러나, 상기 서열번호 18로 기재되는 염기서열은 상기와 같은 유전자의 발현을 유도 및 향상시키는 성질을 갖는 프로모터의 최소 단위일 뿐, 상기 프로모터의 서열이 상기 서열번호 18의 염기서열에 한정되지 아니한다. 따라서, 상기 프로모터는 서열번호 4로 기재되는 염기서열에서, 상기 서열번호 18의 염기서열이 포함되도록 선택되는 100 bp 내지 2084 bp 길이의 염기서열일 수 있다. 일 예로서, 상기 프로모터는 439 bp 길이를 갖는 서열번호 12로 기재되는 염기서열, 845 bp 길이를 갖는 서열번호 1로 기재되는 염기서열 또는 1702 bp의 길이를 갖는 서열번호 2로 기재되는 염기서열로 구성될 수 있다.
상기 프로모터는 두날리엘라 에스피.(Dunaliella sp.)에서 유래한 것으로서, 상기 두날리엘라 에스피.의 LSIP 단백질을 코딩하는 유전자의 상류(upstream)에서 존재하는 것이 바람직하나, 이에 한정되지 아니한다. 따라서, 자연 유래 또는 인위적으로 합성한 염기서열이 모두 상기 프로모터로서 이용될 수 있다.
본 발명의 구체적인 실시예에서는 상기 서열번호 18의 염기서열로 구성되는 프로모터인 1LSIP_P에 루시퍼라제(luciferase) 유전자를 작동가능하게 연결하여, 도 4와 같은 맵을 갖는 발현벡터 pN7-1LSIP_P-LUC-TPsaD를 제조하였고, 상기 1LSIP_P가 유래한 두날리엘라 에스피.와는 이속이종인 클라미도모나스 레인하드티 JL173(Chlamydomonas reinhardtii JL173) 세포에 상기 발현벡터를 도입하여 형질전환체를 제조하였다. 그런 다음, 상기 형질전환체를 암처리하거나 또는 상기 형질전환체에 광도 30, 300 또는 600 μmol photon/m2/s의 광을 각각 조사하여, 리포터 유전자인 루시퍼라제의 발현 여부 및 루미네선스 비(luminescence ratio)를 측정하였다. 그 결과, 리포터 유전자인 루시퍼라제는 본 발명의 1SLIP_P 하에서 광의 조사 여부 및 조사된 광의 세기(light intensity)에 관계없이, 광이 조사된 형질전환체에서만 발현되었다(표 3 및 도 6 참조).
상기와 같은 결과로부터, 본 발명의 서열번호 18로 기재되는 염기서열은 프로모터 활성을 갖는 기본 단위로서, 상기 서열번호 18로 기재되는 염기서열의 하류에 작동가능하게 연결되는 외래 유전자를 안정적이면서도 매우 효율적으로 발현시킬 수 있음을 알 수 있다.
2. 광 유도성 프로모터
본 발명의 다른 측면은 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터를 제공한다.
또한, 본 발명의 다른 측면은 상기 광 유도성 프로모터를 포함하는 발현벡터, 및 상기 발현벡터로 형질전환된 형질전환체를 제공한다.
본 발명의 상기 광 유도성 프로모터는 서열번호 12로 기재되는 염기서열을 포함한다.
상기 프로모터는 439 bp 길이의 서열번호 12로 기재되는 염기서열로 구성될 수 있다. 상기 서열번호 12의 염기서열은 프로모터 활성을 갖는 서열번호 18의 염기서열을 기본 단위로 하여, 상기 서열번호 18로 기재되는 염기서열의 5' 부분에 상기 서열번호 18의 염기서열이 나타내는 프로모터 활성을 조사되는 광의 세기에 따라 조절할 수 있는 339 bp 길이의 염기서열이 추가적으로 포함된 것이다.
상기 서열번호 12로 기재되는 염기서열은 광의 조사에 의해 그 하류(downstream) 즉 상기 염기서열의 3' 말단 쪽에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자의 발현을 유도하고, 특히 조사되는 광의 세기에 따라 상기 외래 단백질을 코딩하는 유전자의 발현량을 조절한다. 그러나, 상기 서열번호 12로 기재되는 염기서열은 상기와 같은 광의 세기(light intensity)에 따라 그 하류에 연결된 유전자 발현의 정도를 조절하는 성질을 갖는 프로모터의 최소 단위일 뿐, 상기 프로모터의 서열이 상기 서열번호 12의 염기서열에 한정되지 아니한다. 따라서, 상기 프로모터는 서열번호 4로 기재되는 염기서열에서, 상기 서열번호 12의 염기서열이 포함되도록 선택되는 439 bp 내지 2084 bp 길이의 염기서열일 수 있다. 일 예로서, 상기 프로모터는 845 bp 길이를 갖는 서열번호 1로 기재되는 염기서열 또는 1702 bp의 길이를 갖는 서열번호 2로 기재되는 염기서열로 구성될 수 있다.
상기 프로모터는 두날리엘라 에스피.(Dunaliella sp.)에서 유래한 것으로서, 상기 두날리엘라 에스피.의 LSIP 단백질을 코딩하는 유전자의 상류(upstream)에서 존재하는 것이 바람직하나, 이에 한정되지 아니한다. 따라서, 자연 유래 또는 인위적으로 합성한 염기서열이 모두 상기 프로모터로서 이용될 수 있다.
상기 광 유도성 프로모터는 발현벡터에 포함되어, 상기 프로모터의 하류에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자의 발현을 광 의존적으로 조절할 수 있다.
상기 발현벡터는 외래 단백질을 코딩하는 유전자가 상기 프로모터에 작동가능하게 삽입될 수 있는 다중클로닝부위(multiple cloning site, MCS)를 더 포함할 수 있다. 상기 다중클로닝부위를 이용하여, 외래 단백질을 코딩하는 유전자를 상기 발현벡터 내로 손쉽게 삽입할 수 있다.
상기 발현벡터에는 벡터를 함유하는 숙주세포를 선별하기 위한 선별 마커를 더 포함할 수 있다. 상기 선별 마커는 종래 공지된 모든 종류의 선별 마커일 수 있으며, 항생제 내성 유전자 또는 발광 유전자 등이 이용될 수 있으나, 이에 한정되지 아니한다.
상기 발현벡터는 종래의 모든 발현벡터에 상기 광 유도성 프로모터를 도입한 것일 수 있고, 공지의 방법에 의하여 인위적으로 디자인된 재조합 발현벡터일 수 있다. 상기 광 유도성 프로모터를 도입하여 발현벡터를 제조하는 것은 본 발명이 속하는 기술분야의 당업자라면 공지의 방법에 따라 용이하게 실시가능하다.
상기 발현벡터의 제조를 위한 벡터는 상기 광 유도성 프로모터를 도입할 수 있는 것이라면 무엇이든 사용가능하고, 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등 일 수 있다. 특히, 미세조류 또는 고등식물과 같은 숙주세포 내에서 안정하게 존재하고 카피수가 많은 벡터를 사용하는 것이 바람직하다.
상기 발현벡터는 숙주세포에 도입되어, 상기 숙주세포를 상기 발현벡터로 형질전환할 수 있다.
상기 형질전환은 종래 공지된 형질전환 기술에 의해 당업자가 용이하게 수행할 수 있고, 상기 형질전환 기술은 Kindle(1990)에 의해 공지된 글라스 비드를 이용한 형질전환법, 칼슘/폴리에틸렌 글리콜법을 이용한 원형질체의 형질전환법, 전기천공법, 미량주사법, 입자 충격 투입법(particle bombardment), 전기충격법(electrophration), 아그로박테리움을 매개로 한 방법, 유전자 총 또는 물리적 도입법 등이 있다. 상기 형질전환 기술은 숙주세포의 종류 및 특성에 맞게 당업자가 적절히 선택하여 수행할 수 있다.
상기 발현벡터를 형질전환시키기 위한 숙주세포는 미세조류 또는 고등식물인 것이 바람직하고, 클라미도모나스 또는 두날리엘라인 것이 더욱 바람직하나 이에 한정되지 않으며, 본 발명의 프로모터를 인식할 수 있는 RNA 중합효소를 가진 세포는 모두 사용가능하다.
본 발명의 구체적인 실시예에서는 상기 서열번호 12의 염기서열로 구성되는 프로모터인 4LSIP_P, 상기 서열번호 1의 염기서열로 구성되는 프로모터인 8LSIP_P 및 상기 서열번호 2의 염기서열로 구성되는 프로모터인 17LSIP_P에 각각 루시퍼라제(luciferase) 유전자를 작동가능하게 연결하여, 도 4와 같은 맵을 갖는 발현벡터 pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD를 제조하였고, 상기 LSIP_P가 유래한 두날리엘라 에스피.와는 이속이종인 클라미도모나스 레인하드티 JL173(Chlamydomonas reinhardtii JL173) 세포에 상기 세 발현벡터 pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD를 각각 도입하여 형질전환체를 제조하였다. 그런 다음, 상기 형질전환체를 암처리하거나 또는 상기 형질전환체에 광도 30, 300 또는 600 μmol photon/m2/s의 광을 각각 조사하여, 리포터 유전자인 luciferase의 발현 여부 및 luminescence ratio를 측정하였다. 그 결과, 리포터 유전자인 luciferase는 광이 조사된 형질전환체에서만 발현되었고, 조사된 광의 광도가 증가할수록 높은 luminescence ratio를 나타냄을 확인하였다(도 6 및 표 2 참조).
상기와 같은 결과로부터, 서열번호 12로 기재되는 염기서열, 및 상기 서열번호 12로 기재되는 염기서열을 포함하는 서열번호 1 또는 서열번호 2로 기재되는 염기서열이 광 유도성 프로모터의 활성을 나타냄을 알 수 있다. 즉, 상기 서열번호 12로 기재되는 염기서열이 상기와 같은 광 유도성 프로모터 활성의 최소 단위로서 역할을 하고, 서열번호 4로 기재되는 염기서열에서, 상기 서열번호 12의 염기서열이 포함되도록 선택되는 다양한 길이의 염기서열 또한 상기와 같은 광 유도성 프로모터의 활성을 갖는 다는 것을 알 수 있다. 또한, 상기 LSIP_P는 상기 LSIP_P가 유래한 두날리엘라 속의 조류가 아닌 이속이종의 생물체에서도 외래 단백질을 코딩하는 유전자의 발현을 광 의존적으로 조절할 수 있음이 확인된 바, 다양한 종의 생물체에 폭 넓게 적용될 수 있음을 알 수 있다.
3. 광 유도성 프로모터를 이용한 외래 단백질의 생산
본 발명의 또 다른 측면은 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터에 외래 단백질을 코딩하는 유전자가 작동가능하게 연결된 유전자 컨스트럭트, 상기 유전자 컨스트럭트를 포함하는 발현벡터, 및 상기 발현벡터로 형질전환된 형질전환체를 제공한다.
또한, 본 발명의 또 다른 측면은 상기 형질전환체를 배양하는 단계; 및 상기 배양된 형질전환체에 광을 조사하는 단계를 포함하는 외래 단백질의 생산 방법을 제공한다.
본 발명의 상기 유전자 컨스트럭트는 서열번호 1로 기재되는 염기서열을 포함하는 광 유도성 프로모터 및 상기 광 유도성 프로모터에 작동가능하게 연결된 외래 단백질을 코딩하는 유전자를 포함한다.
상기 광 유도성 프로모터에 관해서는 상기 "2. 광 유도성 프로모터 " 항목에서 설명한 바와 동일하다. 따라서 이에 관해서는 상기 "2. 광 유도성 프로모터 " 항목의 설명을 원용하여 상세한 설명은 생략하도록 하고, 이하에서는 상기 유전자 컨스트럭트에 특이적인 구성에 대해서만 설명한다.
상기 외래 단백질은 생산하고자 하는 단백질을 의미하는 것으로서, 유전자의 염기서열이 알려진 모든 종류의 단백질일 수 있다. 특히, 상기 외래 단백질은 호르몬, 호르몬 유사체, 효소, 효소 저해제, 항체 및 이의 단편 등일 수 있다.
상기 외래 단백질을 코딩하는 유전자는 상기 광 유도성 프로모터에 작동가능하게 연결된다. 상기 작동가능하게 연결된다는 것은 상기 외래 단백질의 발현이 상기 광 유도성 프로모터의 활성에 의해 조절될 수 있도록 연결되는 것을 의미한다. 따라서, 상기 광 유도성 프로모터에 외래 단백질을 코딩하는 유전자가 작동가능하게 연결되어 형성되는 상기 유전자 컨스트럭트는 상기 외래 단백질을 코딩하는 유전자를 발현하기 위한 단위로서 기능하는 발현 카세트가 된다.
상기 유전자 컨스트럭트는 발현벡터에 포함되어, 상기 외래 단백질을 코딩하는 유전자의 발현을 광 의존적으로 조절할 수 있다.
또한, 상기 유전자 컨스트럭트를 포함하는 상기 발현벡터는 숙주세포에 도입되어, 상기 숙주세포를 상기 발현벡터로 형질전환할 수 있다. 상기와 같이 형성된 형질전환체는 상기 외래 단백질의 생산에 이용될 수 있다.
본 발명의 상기 외래 단백질의 생산 방법은 1) 상기 형질전환체를 배양하는 단계; 및 2) 상기 배양된 형질전환체에 광을 조사하는 단계를 포함한다.
상기 단계 1)의 배양은 상기 형질전환체의 종류 및 특성에 따라 배양 방법, 배양 배지, 배양 조건 등을 달리하여 당업자가 적절히 수행할 수 있다.
상기 단계 2)의 광 조사는 상기 단계 1)에서 배양된 형질전환체에서 외래 단백질을 코딩하는 유전자의 발현을 유도하는 단계로서, 상기 유전자는 광 유도성 프로모터의 활성에 의하여 그 발현이 조절된다.
상기 단계 2)의 광은 외래 단백질의 목표 생산량에 따라 그 광도를 당업자가 적절히 선택될 수 있고, 상기 조사 광의 광도는 10 내지 1000 μmol photon/㎡/s일 수 있으나, 이에 한정되지 아니한다. 또한 상기 단계 2)의 광은 외래 단백질의 목표 생산량에 따라 그 조사 시간을 당업자가 적절히 선택될 수 있고, 상기 광의 조사 시간은 1 내지 5 시간일 수 있으나, 이에 한정되지 아니한다.
상기 외래 단백질의 생산 방법은 3) 상기 형질전환체로부터 발현된 외래 단백질을 분리하는 단계를 더 포함할 수 있다.
상기와 같은 유전자 컨스트럭트, 이를 포함하는 발현벡터 및 상기 발현벡터가 포함된 형질전환체를 이용하여 외래 단백질을 용이하게 생산할 수 있다.
이하, 본 발명을 실시예에 의하여 상세히 설명한다.
단, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.
광 유도성 프로모터 LSIP_P의 클로닝 및 염기서열 분석
종래 Park et al.(Marine Biotechnology, 2006; 8: 120-128) 및 Kim et al.(Phycological Research 2010; 58: 17-28) 문헌을 참조하여, 두날리엘라 에스피.(Dunaliella sp.)에서 광의 광도에 따라 발현량이 변하는 것으로 알려진 단백질인 LSIP의 업스트림(upstream) 부분을 클로닝하여 그 염기서열을 분석하였고, 이를 LSIP_P라고 명명하였다.
<1-1> 광 유도성 프로모터 LSIP_P의 클로닝
종래 Park et al.(Marine Biotechnology, 2006; 8: 120-128) 및 Kim et al.(Phycological Research 2010; 58: 17-28) 문헌에서 확립한 두날리엘라 에스피.(Dunaliella sp.)의 genomic DNA에서, GenomeWalkerTM Universal Kit(Cat. #638904)(Clontech, USA)를 이용하여 제조사에서 제공하는 프로토콜에 따라 광 유도성 프로모터인 LSIP_P를 pGEM(R)-T easy 벡터(Promega, USA)에 클로닝하여 pGEM(R)-T-LSIP_P를 제조하였다. 상기 Kit를 이용하여 상기 LSIP_P의 클로닝 과정에서, 서열번호 6으로 기재되는 염기서열 및 서열번호 7로 기재되는 염기서열을 각각 GSP1(gene specific primer 1) 및 GSP2(gene specific primer 2)로 이용하였다.
<1-2> 광 유도성 프로모터 LSIP_P의 염기서열 분석
상기 실시예 <1-1>에서 클로닝된 LSIP_P를 (주)마크로젠(한국)에 의뢰하여 염기서열을 분석하였다. 염기서열 분석에는 서열번호 6의 GSP1과 서열번호 7의 GSP2, 및 상기 GenomeWalkerTM Universal Kit에서 제공되는 어댑터 프라이머를 이용하였다.
그 결과, 상기 pGEM(R)-T easy 벡터에는 서열번호 5로 기재되는 염기서열이 클로닝되어 있음을 확인하였다(도 1). 상기와 같은 염기서열 분석 결과로부터, 상기 서열번호 5로 기재되는 염기서열에서 LSIP의 첫 번째 엑손 서열의 상류(upstream)에 존재하는 서열이 LSIP_P의 염기서열이 되고, 결국 LSIP_P는 서열번호 4로 기재되는 염기서열을 가지는 것으로 확인되었다.
<1-3> 광 유도성 프로모터 LSIP_P의 상동성 분석
상기 실시예 <1-2>에서 수득한 LSIP_P의 염기서열을, 종래 Lers et al.(The Journal of Biological Chemistry 1991; 266(21): 13598-13705) 문헌에서 밝혀진 두날리엘라 바다빌(Dunaliella bardawil) 유래의 cbr 프로모터의 염기서열(서열번호 14)과 비교하여 상동성을 분석하였다.
그 결과, 본 발명의 LSIP_P와 D. bardawil의 cbr 프로모터는 상동성이 32 %로 매우 낮음을 확인하였다(도 2).
LSIP_P를 포함하는 발현벡터의 제조
상기 실시예 1에서 클로닝된 LSIP_P의 효과 및 이속이종의 생물체에 대한 상기 LSIP_P의 적용가능성을 확인하기 위하여, 두날리엘라 속의 조류가 아닌 다른 속의 생물체인 클라미도모나스 레인하드티(Chlamydomonas reinhardtii)의 발현 시스템을 이용하였다.
상기 C. reinhardtii의 발현 시스템을 이용하기 위하여, 본 발명자들이 자체적으로 개발한 클라미도모나스용 발현벡터인 pN7-AR_P-LUC-TPsaD를 이용하였다. 상기 pN7-AR_P-LUC-TPsaD는 서열번호 8의 염기서열을 가지고, 도 3에 도시된 바와 같은 맵으로 구성되어 있다.
<2-1> pN7-1LSIP_P-LUC-TPsaD의 클로닝
상기 실시예 1에서 제조한 pGEM(R)-T-LSIP_P를 주형으로 하여, XbaI 제한효소 부위를 갖는 서열번호 19 및 EcoRI의 제한효소 부위를 갖는 서열번호 11의 프라이머 쌍으로 PCR(Polymerase Chain Reaction)을 수행함으로써, 서열번호 18의 염기서열을 갖는 1LSIP_P를 수득하였다.
그런 다음, 상기 pN7-AR_P-LUC-TPsaD에서 XbaI 및 EcoRI의 제한효소를 이용하여 AR_P를 제거하고, AR_P가 제거된 부위에 상기 수득된 1LSIP_P를 삽입함으로써, 도 4와 같은 맵을 갖는 pN7-1LSIP_P-LUC-TPsaD 발현벡터를 제조하였다.
<2-2> pN7-4LSIP_P-LUC-TPsaD의 클로닝
상기 실시예 1에서 제조한 pGEM(R)-T-LSIP_P를 주형으로 하여, XbaI 제한효소 부위를 갖는 서열번호 13 및 EcoRI의 제한효소 부위를 갖는 서열번호 11의 프라이머 쌍으로 PCR(Polymerase Chain Reaction)을 수행함으로써, 서열번호 12의 염기서열을 갖는 4LSIP_P를 수득하였다.
그런 다음, 상기 pN7-AR_P-LUC-TPsaD에서 XbaI 및 EcoRI의 제한효소를 이용하여 AR_P를 제거하고, AR_P가 제거된 부위에 상기 수득된 4LSIP_P를 삽입함으로써, 도 4와 같은 맵을 갖는 pN7-4LSIP_P-LUC-TPsaD 발현벡터를 제조하였다.
<2-3> pN7-8LSIP_P-LUC-TPsaD의 클로닝
상기 실시예 1에서 제조한 pGEM(R)-T-LSIP_P를 주형으로 하여, XbaI 제한효소 부위를 갖는 서열번호 9 및 EcoRI의 제한효소 부위를 갖는 서열번호 11의 프라이머 쌍으로 PCR(Polymerase Chain Reaction)을 수행함으로써, 서열번호 1의 염기서열을 갖는 8LSIP_P를 수득하였다.
그런 다음, 상기 pN7-AR_P-LUC-TPsaD에서 XbaI 및 EcoRI의 제한효소를 이용하여 AR_P를 제거하고, AR_P가 제거된 부위에 상기 수득된 8LSIP_P를 삽입함으로써, 도 4와 같은 맵을 갖는 pN7-8LSIP_P-LUC-TPsaD 발현벡터를 제조하였다.
<2-4> pN7-17LSIP_P-LUC-TPsaD의 클로닝
상기 실시예 1에서 제조한 pGEM(R)-T-LSIP_P를 주형으로 하여, XbaI 제한효소 부위를 갖는 서열번호 10 및 EcoRI의 제한효소 부위를 갖는 서열번호 11의 프라이머 쌍으로 PCR(Polymerase Chain Reaction)을 수행함으로써, 서열번호 2의 염기서열을 갖는 17LSIP_P를 수득하였다.
그런 다음, 상기 pN7-AR_P-LUC-TPsaD에서 XbaI 및 EcoRI의 제한효소를 이용하여 AR_P를 제거하고, AR_P가 제거된 부위에 상기 수득된 17LSIP_P를 삽입함으로써, 도 4와 같은 맵을 갖는 pN7-17LSIP_P-LUC-TPsaD 발현벡터를 제조하였다.
클라미도모나스 레인하드티( Chlamydomonas reinhardtii )로의 형질전환
<3-1> gamete autolysine의 제조
상기 실시예 2에서 제조한 발현벡터 pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD를 C. reinhardtii로 형질전환하는 과정에서, 상기 C. reinhardtii의 세포벽 제거를 위해 이용되는 gamete autolysine을 종래의 Harris et al.(Chlamydomonas Handbook(Academic, New York), 00.47, 593-594) 문헌에서 확립된 방법으로 제조하였다. 상기 gamete autolysine의 제조를 위하여, 교배(mating) 효율이 좋은 야생형인 클라미도모나스 레인하드티 CC620(Chlamydomonas reinhardtii CC620) 및 클라미도모나스 레인하드티 CC621(Chlamydomonas reinhardtii CC621을 이용하였다. 구체적으로, 하기 표 1의 조성을 갖는 TAP 액체 배지에서 배양된 각각의 C. reinhardtii CC620 및 C. reinhardtii CC621 세포들을 약 1×106 cell/plate의 농도로 TAP 고체배지 상에 플레이팅하고, 1주일 동안 배양한 다음, 배양된 세포들을 질소원이 없는 TAP 액체배지에 풀어 5시간 동안 배양하였다. 그런 다음, 상기 각각의 C. reinhardtii CC620 및 C. reinhardtii CC621 세포수를 계수하여, 두 세포를 1:1의 세포수 비율이 되도록 섞어 15분 동안 배양하였다. 상기와 같이 혼합되어 배양된 C. reinhardtii CC620 및 C. reinhardtii CC621 세포들을 원심분리하여 상층액을 수득하였고, 상기 수득된 상층액을 0.45 ㎛의 주사기 필터로 여과함으로써 gamete autolysine를 제조하였다. 상기와 같이 제조된 gamete autolysine-80 내지 -70 ℃에 보관하였다.
성분 농도
TRIS 2.42 g/L
NH4Cl 0.4 g/L
CaCl2·2H2O 0.05 g/L
MgSO4·7H2O 0.1 g/L
K2HPO4 54 mg/L
KH2PO4 27 mg/L
Na2EDTA·2H2O 50 mg/L
FeSO4·7H2O 5 mg/L
ZnSO4·7H2O 22 mg/L
H3BO3 11.4 mg/L
MnCl2·4H2O 5.2 mg/L
CuCl2·2H2O 1.1 mg/L
Na2MoO4·2H2O 2.6 mg/L
CoCl2·6H2O 1.6 mg/L
acetic acid 1 mL/L
pH 7.2
<3-2> pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD의 도입 및 형질전환체의 선별
종래의 Kindle et al.(Proc. Natl Acad. Sci. USA 1990; 87: 1228-1232) 문헌에서 확립된 방법에 따라, 상기 실시예 2에서 제조한 발현벡터 pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD를 클라미도모나스 레인하드티 JL173(Chlamydomonas reinhardtii JL173) 세포에 도입하였다. 구체적으로, 대수 성장기까지 배양된 C. reinhardtii JL173 세포를 원심분리하여 수득하고, 상기 실시예 <3-1>에서 준비한 gamete autolysine에 재현탁한 후, 상온에서 60분 정도 반응시켰다. 상기와 같이 gamete autolysine과 반응시킨 C. reinhardtii JL173 세포를 다시 원심분리하여 수득한 후, TAP 액체배지에 재현탁시켜 세포 농도를 1×108 내지 3×108 cell/㎖로 맞추었다. 직경 425 내지 600 ㎛의 글라스 비드(glass bead)(G8772)(Sigma, USA)가 0.3 g씩 담긴 시험관에 상기 세포현탁액을 0.3 ㎖ 씩 분주하였다. 상기 각각의 시험관에 1 ㎍의 KpnI으로 절단하여 선형화(linearization)시킨 상기 실시예 2의 벡터 5 ㎕와 100 ㎕의 20 % PEG(polyethylene glycol) 8000을 넣고 25초 동안 볼텍싱(voltexing)한 다음, TAP 액체배지를 더 첨가하고 원심분리하여 세포를 수득하였다. 상기와 같이 수득한 세포를 다시 10 ㎖의 TAP 액체배지에 재현탁하고 원심분리하여 세포를 재수득한다. 상기와 같이 재수득된 세포를 0.3 ㎖의 TAP 액체배지에 재현탁하였다. 그런 다음, 0.5 %의 아가로즈를 첨가하고 가열하여 45 ℃까지 식힌 TAP 배지에, 상기 재현탁된 세포를 첨가하여 잘 섞는다. 그런 다음, 1 ppm의 3-아세틸피리딘(3-acetylpyridine)(Sigma, USA)이 첨가된 TAP 고체 배지 상에 상기 세포를 플레이팅하여 굳히고, 5 내지 7일 동안 배양하였다.
상기 5 내지 7일 동안 배양한 세포가 녹색의 콜로니를 형성하기 시작하면, 상기 콜로니를 이쑤시개로 찍어 새로운 TAP 고제배지 상에 옮김으로써 발현벡터 pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD가 정상적으로 형질전환된 C. reinhardtii JL173 형질전환체를 선별하였다.
<3-3> pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD의 도입여부 확인
상기 실시예 <3-2>에서 선별된 pN7-1LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체, pN7-4LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체, pN7-8LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체 및 pN7-17LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체를 TAP 액체배지에서 대수 성장기 정도까지 배양하여 각각 수득한 다음, DNeasy plant mini kit(69104)(QIAGEN, USA)를 이용하여 제조사에서 제공하는 프로토콜에 따라 genomic DNA를 각각 분리하였다.
상기 pN7-1LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체, pN7-4LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체, pN7-8LSIP_P-LUC-TPsaD가 정상적으로 도입된 형질전환체 및 pN7-17LSIP_P-LUC-TPsaD에서 분리한 genomic DNA를 주형으로, 서열번호 20 및 서열번호 21의 프라이머 쌍으로 각각 PCR을 수행하여 936 bp 길이의 루시퍼라제(luciferase)의 유전자가 도입되었는지 여부를 확인하였다.
그 결과, 각각의 genomic DNA에서 약 936 bp의 루시퍼라제 유전자에 해당하는 밴드가 검출되었고(도 5, 레인 1 내지 레인 24), 상기와 같은 결과로부터 상기 4 종류의 벡터 pN7-1LSIP_P-LUC-TPsaD, pN7-4LSIP_P-LUC-TPsaD, pN7-8LSIP_P-LUC-TPsaD 및 pN7-17LSIP_P-LUC-TPsaD가 C. reinhardtii JL173 세포에 정상적으로 도입되었음을 확인하였다.
LSIP_P의 활성 측정
상기 실시예 <3-2>에서 선별된 pN7-1LSIP_P-LUC-TPsaD 형질전환체, pN7-4LSIP_P-LUC-TPsaD 형질전환체, pN7-8LSIP_P-LUC-TPsaD 형질전환체 및 pN7-17LSIP_P-LUC-TPsaD 형질전환체를 각각 TAP 액체배지가 포함된 여러 개의 시험관에 나누어 배양하면서, 상기 시험관을 암처리하거나 또는 30, 300 또는 600 μmol photon/m2/s의 광을 3 시간 정도 조사하였다. 그런 다음, 상기 형질전환체를 수득하고, Renilla Luciferase assay kit(E2810)(Promega, USA)를 이용하여 제조사에서 제공하는 프로토콜에 따라 Luminometer(GloMax™ 20/20)(Promega, USA)로 루시퍼라제(luciferase)의 발광량을 측정하였다. 각각의 세기에서의 루시퍼라제 발현 정도를 분석하기 위하여, 0, 30, 300 또는 600 μmol photon/m2/s의 광을 조사한 형질전환체의 루미네선스(luminescence)를 암처리한 형질전환체의 루미네선스(luminescence)로 나누어, 루미네선스 비(luminescence ratio)를 비교하였다.
그 결과, 리포터 유전자인 루시퍼라제는 1LSIP_P의 하류에서 조사된 광의 세기(light intensity)에 관계없이 높은 루미네선스를 나타내었다. 또한, 리포터 유전자인 루시퍼라제는 4LSIP_P, 8LSIP_P 및 17LSIP_P의 하류에서 조사된 광의 세기가 증가할수록 높은 루미네선스를 나타내었고, 약한 세기의 광(0 또는 30 μmol photon/m2/s)과 강한 세기의 광(300 또는 600 μmol photon/m2/s)에서 발광된 루미네선스 비의 차이가 크게 나타났다(표 2, 도 6 및 도 7). 상기와 같은 결과로부터, 서열번호 18의 염기서열을 갖는 1LSIP_P이 본 발명의 LSIP_P가 프로모터 활성을 갖도록 하는 기본 단위임을 알 수 있다. 따라서, 상기 1LSIP_P의 5' 말단에 일부 염기서열이 추가된 4LSIP_P, 8LSIP_P 또는 17LSIP_P 등과 같은 본 발명의 LSIP_P는 조사되는 광의 세기(light intensity)에 의존적으로 그 하류(downstream)에 연결된 유전자의 발현을 조절함을 알 수 있다.
Figure 112012106090294-pat00001
두날리엘라 바다빌 유래 cbr 프로모터와의 활성 비교
종래 Lers et al.(The Journal of Biological Chemistry 1991; 266(21): 13598-13705) 문헌에서 밝혀진 두날리엘라 바다빌(Dunaliella bardawil) 유래의 cbr 프로모터와 본 발명의 두날리엘라 에스피. 유래 LSIP 프로모터에 있어서, 광에 의한 프로모터 활성 유도능을 비교하였다.
상기 Lers et al. 문헌에서 확립한 두날리엘라 바다빌의 genomic DNA를 주형으로 하여, XbaI 제한효소 부위를 갖는 서열번호 16 및 EcoRI의 제한효소 부위를 갖는 서열번호 17의 프라이머 쌍으로 PCR(Polymerase Chain Reaction)을 수행함으로써, 서열번호 14의 염기서열을 갖는 Bar-CBR_P를 수득하였다.
그런 다음, 실시예 2와 동일한 방법으로 pN7-AR_P-LUC-TPsaD에서 XbaI 및 EcoRI의 제한효소를 이용하여 AR_P를 제거하고, AR_P가 제거된 부위에 상기 수득된 Bar-CBR_P를 삽입함으로써, 도 4와 같은 맵을 갖는 pN7-Bar-CBR_P-LUC-TPsaD 발현벡터를 제조하였다.
상기와 같이 제조된 pN7-Bar-CBR_P-LUC-TPsaD 발현벡터를 실시예 3과 동일한 방법으로 C. reinhardtii로 형질전환하고, 제대로 형질전환된 형질전환체를 선별한 다음, 상기 형질전환체에서 분리한 pN7-Bar-CBR_P-LUC-TPsaD genomic DNA를 주형으로, 서열번호 20 및 서열번호 21의 프라이머 쌍으로 각각 PCR을 수행하여 936 bp의 루시퍼라제 유전자에 해당하는 밴드를 확인함으로써(도 5, 레인 25 내지 레인 30), 상기 pN7-Bar-CBR_P-LUC-TPsaD가 C. reinhardtii JL173 세포에 정상적으로 도입되었음을 확인하였다.
상기와 같이 선별된 pN7-Bar-CBR_P-LUC-TPsaD 형질전환체와 상기 실시예 <3-2>에서 선별된 pN7-1LSIP_P-LUC-TPsaD 형질전환체, pN7-4LSIP_P-LUC-TPsaD 형질전환체, pN7-8LSIP_P-LUC-TPsaD 형질전환체 및 pN7-17LSIP_P-LUC-TPsaD 형질전환체를 각각 TAP 액체배지가 포함된 여러 개의 시험관에 나누어 배양하면서, 상기 시험관을 암처리하거나 또는 30 또는 300 μmol photon/m2/s의 광을 3 시간 정도 조사하였다. 그런 다음, 상기 형질전환체를 수득하고, Renilla Luciferase assay kit(E2810)(Promega, USA)를 이용하여 제조사에서 제공하는 프로토콜에 따라 Luminometer(GloMax™ 20/20)(Promega, USA)로 루시퍼라제(luciferase)의 발광량을 측정하였다. 각각의 세기에서의 루시퍼라제 발현 정도를 분석하기 위하여, 300 μmol photon/m2/s의 광을 조사한 형질전환체의 루미네선스를 30 μmol photon/m2/s의 광을 조사한 형질전환체의 루미네선스로 나누어, 루미네선스 비(luminescence ratio)를 비교하였다.
그 결과, 리포터 유전자인 루시퍼라제는 두날리엘라 바다빌 유래 cbr 프로모터 하에서 보다 본 발명의 1LSIP_P 하에서 더욱 안정적이고, 일정한 발현 패턴을 보였다(표 3 및 도 6). 즉, 두날리엘라 바다빌 유래 cbr 프로모터는 클론마다 프로모터 활성이 큰 편차를 나타냈으나, 본 발명의 1LSIP_P 프로모터는 클론마다 일정한 수준의 프로모터 활성을 나타냄을 확인하였다. 또한, 상기 리포터 유전자인 루시퍼라제는 두날리엘라 바다빌 유래 cbr 프로모터 하에서 보다 두날리엘리 에스피. 유래 LSIP_P(4LSIP_P, 8LSIP_P 및 17LSIIP_P) 하에서 더욱 높은 루미네선스 비를 나타내었다(표 3 및 도 7). 이는 두날리엘라 에스피. 유래의 LSIP_P가 두날리엘라 바다빌 유래 cbr 프로모터 보다, 조사되는 광의 세기(light intensity)에 더욱 민감하게 반응하여 루시퍼라제의 발현을 조절함을 의미한다.
상기와 같은 결과로부터, 본 발명의 LSIP_P는 기본적으로 두날리엘라 바다빌 유래 cbr 프로모터보다 안정적인 프로모터 활성을 나타내는 서열번호 18의 염기서열을 갖는 1LSIP_P를 기본 단위로 하여, 상기 두날리엘라 바다빌 유래 cbr 프로모터보다 광의 세기에 더욱 민감하게 의존적이며, 더욱 민감하게 그 하류(downstream)에 연결된 유전자의 발현을 조절함을 알 수 있다.
Figure 112012106090294-pat00002
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.
<110> Industry-University Cooperation Foundation Hanyang University <120> Light Inducible Promoter and Gene Expression System Comprising The Same <130> HY120035NR <150> KR 10-2012-0059411 <151> 2012-06-01 <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 845 <212> DNA <213> Dunaliella sp. <400> 1 tgcagcatta ccgctgactc agctcgacat atggtgttgg taattcagca caattgggct 60 caacaaagtt tttgctgtca gtgagagggc cgtagacgtc tacactcata catacacacg 120 tcgacaggag tgtagatggg agtgtgtgtg tgtaagtgtg tgcgtgcacg cgcgtatatg 180 catgtgtata tacgtgtttg cgtatatatg tgtgtgtgtg tatgtgtgtg tgttcatatg 240 tatgttgtgt tcatgcgtgc tgagaacgcg tgttcatgca cacctgtagc ctgtgcaccg 300 ttagcattct ggaaatgtct tttccagcct ctgagcacac ctcttggatc ctgttgtgtc 360 tgtgccccct ggatccttta ttaccctcga gggtagagct ctggatccca gtgtaggtgt 420 ctttgctagt gtactcctac acgtcctcaa tgcacgagcg tgcacactaa acacttgtgc 480 atgcactgtc accaggcttt ggcagcgcca ggaggttctt aaagtgacat ccgtgtcccg 540 cagcaactta cattgaccaa cagtcaacac cctccaaccc tcacaggttc aagacacata 600 caacactgtt cactcactcg tgatttgcaa aatgtaaagc cttggccctc ttggcttttt 660 ttttctcacg ggcagctcac ccaccgactc actcacgcac tcaccaacag agcgtggcct 720 cggagcgtga gggctccggg ccacacattt gccagcctga aaacttgcca aaaaccactc 780 atcatcaaaa caacaaaagc ttcaatcaaa actcgttcct acacccacac gaaccgaccc 840 gaaca 845 <210> 2 <211> 1702 <212> DNA <213> Dunaliella sp. <400> 2 atggggccaa tcttgtgcag ttggatgcgg gcaacacaga ccgtttggcc cagcacaacc 60 tgcaagtccc tgagcaagtc tctaatcgtg ctgtaccttc caacctcttc aaacccacgg 120 tttcggtgca atccagacga aactccagcc gccctgatgc aatcttggtc actcctcacc 180 caactaaccc aaacagacca cccacttcac cctcataccg agtactgcgc agtatgggga 240 gtaccacaac tccagcccgt catattcact tgatagaaat caaatactgc aaagatacga 300 ggcctggtgc ccagctagaa gcctcacagc aacaacacag tgaactttgc aaacaactcc 360 aaggtgcaga gatcactatc cacccaatcc tcctgggtgt gggtgggact atctacactg 420 cccataccct tgatcaatta aaaaaaatag ggattgactc acagagatct gaaacacttg 480 caagaaaaat ccatgcccat tctgtacaat ttgcgcacaa acctacctct accagacgtg 540 ccattgaaaa taaaaacact catcatgaca ctggtgccct ggagcagcgt gctgccagaa 600 acccacctga tccacattca ctcccctctc atcttctggt gggggagact cacggctctt 660 tgagccaatg tgtctctctt tccttaattg atgtagggag agttttctct gcccacatag 720 ttttttctct tctttttctt ttctagctcc ttacctattt ggtggaaaga gctgagacct 780 ttcgaagcaa tgagtgtacg taatatggaa tcatacctta caaagggagc tagaggaacc 840 agtcgcctat tgccccatgc agcattaccg ctgactcagc tcgacatatg gtgttggtaa 900 ttcagcacaa ttgggctcaa caaagttttt gctgtcagtg agagggccgt agacgtctac 960 actcatacat acacacgtcg acaggagtgt agatgggagt gtgtgtgtgt aagtgtgtgc 1020 gtgcacgcgc gtatatgcat gtgtatatac gtgtttgcgt atatatgtgt gtgtgtgtat 1080 gtgtgtgtgt tcatatgtat gttgtgttca tgcgtgctga gaacgcgtgt tcatgcacac 1140 ctgtagcctg tgcaccgtta gcattctgga aatgtctttt ccagcctctg agcacacctc 1200 ttggatcctg ttgtgtctgt gccccctgga tcctttatta ccctcgaggg tagagctctg 1260 gatcccagtg taggtgtctt tgctagtgta ctcctacacg tcctcaatgc acgagcgtgc 1320 acactaaaca cttgtgcatg cactgtcacc aggctttggc agcgccagga ggttcttaaa 1380 gtgacatccg tgtcccgcag caacttacat tgaccaacag tcaacaccct ccaaccctca 1440 caggttcaag acacatacaa cactgttcac tcactcgtga tttgcaaaat gtaaagcctt 1500 ggccctcttg gctttttttt tctcacgggc agctcaccca ccgactcact cacgcactca 1560 ccaacagagc gtggcctcgg agcgtgaggg ctccgggcca cacatttgcc agcctgaaaa 1620 cttgccaaaa accactcatc atcaaaacaa caaaagcttc aatcaaaact cgttcctaca 1680 cccacacgaa ccgacccgaa ca 1702 <210> 3 <211> 183 <212> PRT <213> Dunaliella sp. <400> 3 Met Gln Leu His Met Asn Leu Ser Ala Ser Arg Ile Ala Ala Gly Ala 1 5 10 15 Ile Asn Val Arg Pro Ala Pro Phe Val Arg Gly Ala Ala Ala Pro Lys 20 25 30 Arg Thr Ser Arg His Ile Val Arg Ala Glu Asn Asp Pro Ser Thr Pro 35 40 45 Pro Pro Pro Gln Gly Ser Gln Glu Ser Pro Ser Ser Ser Pro Ser Pro 50 55 60 Pro Pro Pro Pro Pro Gln Pro Thr Ala Ala Ala Pro Thr Val Thr Glu 65 70 75 80 Val Met Gly Phe Ser Gly Ala Pro Glu Ile Ile Asn Gly Arg Leu Ala 85 90 95 Met Leu Gly Phe Val Ala Ala Leu Gly Ala Glu Leu Ser Thr Gly Glu 100 105 110 Ser Val Leu Thr Gln Leu Ala Asp Glu Pro Thr Leu Ile Ala Leu Thr 115 120 125 Phe Val Leu Phe Ser Ala Ala Ser Leu Val Pro Ala Phe Ala Arg Arg 130 135 140 Lys Ser Asp Pro Val Gly Pro Phe Thr Pro Gln Ala Glu Met Thr Asn 145 150 155 160 Gly Arg Ala Ala Met Ile Gly Phe Ala Ala Met Leu Val Tyr Glu Gly 165 170 175 Val Gln Gly Ile Ala Leu Phe 180 <210> 4 <211> 2084 <212> DNA <213> Dunaliella sp. <400> 4 cccgggctgg taaaatccca tatgcatgct aaacacaagc tgggctatgc tgacaggaag 60 acaggctact atacttacta ccagagcttg ctacctcacg taaacaagaa aattagcaat 120 gccttttgga acatgcccgg tctctcaact cgaatgaaac gcactgtctt ccaatacagc 180 acaggcaccc tctacaatca gaaacatgcg gtccgatata aaagatccac tagcctgaca 240 tgccccctac ctgattgcca tcacatgggt agcgctctcc acatcctatc tggctgccaa 300 tgtcctgtca tgcgtaacat ggtaactgaa cgtcacaata tcgcttgcag gatgattttg 360 aaactggtca gtgaaggctc atatggggcc aatcttgtgc agttggatgc gggcaacaca 420 gaccgtttgg cccagcacaa cctgcaagtc cctgagcaag tctctaatcg tgctgtacct 480 tccaacctct tcaaacccac ggtttcggtg caatccagac gaaactccag ccgccctgat 540 gcaatcttgg tcactcctca cccaactaac ccaaacagac cacccacttc accctcatac 600 cgagtactgc gcagtatggg gagtaccaca actccagccc gtcatattca cttgatagaa 660 atcaaatact gcaaagatac gaggcctggt gcccagctag aagcctcaca gcaacaacac 720 agtgaacttt gcaaacaact ccaaggtgca gagatcacta tccacccaat cctcctgggt 780 gtgggtggga ctatctacac tgcccatacc cttgatcaat taaaaaaaat agggattgac 840 tcacagagat ctgaaacact tgcaagaaaa atccatgccc attctgtaca atttgcgcac 900 aaacctacct ctaccagacg tgccattgaa aataaaaaca ctcatcatga cactggtgcc 960 ctggagcagc gtgctgccag aaacccacct gatccacatt cactcccctc tcatcttctg 1020 gtgggggaga ctcacggctc tttgagccaa tgtgtctctc tttccttaat tgatgtaggg 1080 agagttttct ctgcccacat agttttttct cttctttttc ttttctagct ccttacctat 1140 ttggtggaaa gagctgagac ctttcgaagc aatgagtgta cgtaatatgg aatcatacct 1200 tacaaaggga gctagaggaa ccagtcgcct attgccccat gcagcattac cgctgactca 1260 gctcgacata tggtgttggt aattcagcac aattgggctc aacaaagttt ttgctgtcag 1320 tgagagggcc gtagacgtct acactcatac atacacacgt cgacaggagt gtagatggga 1380 gtgtgtgtgt gtaagtgtgt gcgtgcacgc gcgtatatgc atgtgtatat acgtgtttgc 1440 gtatatatgt gtgtgtgtgt atgtgtgtgt gttcatatgt atgttgtgtt catgcgtgct 1500 gagaacgcgt gttcatgcac acctgtagcc tgtgcaccgt tagcattctg gaaatgtctt 1560 ttccagcctc tgagcacacc tcttggatcc tgttgtgtct gtgccccctg gatcctttat 1620 taccctcgag ggtagagctc tggatcccag tgtaggtgtc tttgctagtg tactcctaca 1680 cgtcctcaat gcacgagcgt gcacactaaa cacttgtgca tgcactgtca ccaggctttg 1740 gcagcgccag gaggttctta aagtgacatc cgtgtcccgc agcaacttac attgaccaac 1800 agtcaacacc ctccaaccct cacaggttca agacacatac aacactgttc actcactcgt 1860 gatttgcaaa atgtaaagcc ttggccctct tggctttttt tttctcacgg gcagctcacc 1920 caccgactca ctcacgcact caccaacaga gcgtggcctc ggagcgtgag ggctccgggc 1980 cacacatttg ccagcctgaa aacttgccaa aaaccactca tcatcaaaac aacaaaagct 2040 tcaatcaaaa ctcgttccta cacccacacg aaccgacccg aaca 2084 <210> 5 <211> 2418 <212> DNA <213> Dunaliella sp. <400> 5 cccgggctgg taaaatccca tatgcatgct aaacacaagc tgggctatgc tgacaggaag 60 acaggctact atacttacta ccagagcttg ctacctcacg taaacaagaa aattagcaat 120 gccttttgga acatgcccgg tctctcaact cgaatgaaac gcactgtctt ccaatacagc 180 acaggcaccc tctacaatca gaaacatgcg gtccgatata aaagatccac tagcctgaca 240 tgccccctac ctgattgcca tcacatgggt agcgctctcc acatcctatc tggctgccaa 300 tgtcctgtca tgcgtaacat ggtaactgaa cgtcacaata tcgcttgcag gatgattttg 360 aaactggtca gtgaaggctc atatggggcc aatcttgtgc agttggatgc gggcaacaca 420 gaccgtttgg cccagcacaa cctgcaagtc cctgagcaag tctctaatcg tgctgtacct 480 tccaacctct tcaaacccac ggtttcggtg caatccagac gaaactccag ccgccctgat 540 gcaatcttgg tcactcctca cccaactaac ccaaacagac cacccacttc accctcatac 600 cgagtactgc gcagtatggg gagtaccaca actccagccc gtcatattca cttgatagaa 660 atcaaatact gcaaagatac gaggcctggt gcccagctag aagcctcaca gcaacaacac 720 agtgaacttt gcaaacaact ccaaggtgca gagatcacta tccacccaat cctcctgggt 780 gtgggtggga ctatctacac tgcccatacc cttgatcaat taaaaaaaat agggattgac 840 tcacagagat ctgaaacact tgcaagaaaa atccatgccc attctgtaca atttgcgcac 900 aaacctacct ctaccagacg tgccattgaa aataaaaaca ctcatcatga cactggtgcc 960 ctggagcagc gtgctgccag aaacccacct gatccacatt cactcccctc tcatcttctg 1020 gtgggggaga ctcacggctc tttgagccaa tgtgtctctc tttccttaat tgatgtaggg 1080 agagttttct ctgcccacat agttttttct cttctttttc ttttctagct ccttacctat 1140 ttggtggaaa gagctgagac ctttcgaagc aatgagtgta cgtaatatgg aatcatacct 1200 tacaaaggga gctagaggaa ccagtcgcct attgccccat gcagcattac cgctgactca 1260 gctcgacata tggtgttggt aattcagcac aattgggctc aacaaagttt ttgctgtcag 1320 tgagagggcc gtagacgtct acactcatac atacacacgt cgacaggagt gtagatggga 1380 gtgtgtgtgt gtaagtgtgt gcgtgcacgc gcgtatatgc atgtgtatat acgtgtttgc 1440 gtatatatgt gtgtgtgtgt atgtgtgtgt gttcatatgt atgttgtgtt catgcgtgct 1500 gagaacgcgt gttcatgcac acctgtagcc tgtgcaccgt tagcattctg gaaatgtctt 1560 ttccagcctc tgagcacacc tcttggatcc tgttgtgtct gtgccccctg gatcctttat 1620 taccctcgag ggtagagctc tggatcccag tgtaggtgtc tttgctagtg tactcctaca 1680 cgtcctcaat gcacgagcgt gcacactaaa cacttgtgca tgcactgtca ccaggctttg 1740 gcagcgccag gaggttctta aagtgacatc cgtgtcccgc agcaacttac attgaccaac 1800 agtcaacacc ctccaaccct cacaggttca agacacatac aacactgttc actcactcgt 1860 gatttgcaaa atgtaaagcc ttggccctct tggctttttt tttctcacgg gcagctcacc 1920 caccgactca ctcacgcact caccaacaga gcgtggcctc ggagcgtgag ggctccgggc 1980 cacacatttg ccagcctgaa aacttgccaa aaaccactca tcatcaaaac aacaaaagct 2040 tcaatcaaaa ctcgttccta cacccacacg aaccgacccg aacaatgcag ctgcacatga 2100 acctgtccgc ctcccggatc gcggccggtg ccatcaacgt gcgtcccgcg cccttcgtac 2160 gtggggctgc tacacccaag cgcacgagca ggcacatcgt gcgcgccgag aacgacccct 2220 ccactccccc tcccccacaa ggatcgcaag agtcccccag ctccagccct tccccacctc 2280 ctcctcctcc tcagccaaca gccgcagctc ctaccgtgac aggtgtgtaa aagctggccc 2340 caggaagttc cccctctgcc aggctggctg gttcttggga gtagtgtctg ctgaacttct 2400 gcatgcaatg tggtgcaa 2418 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Gene Specific Primer 1 <400> 6 ttgcaccaca ttgcatgcag aagttca 27 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Gene Specific Primer 2 <400> 7 tgtaagttgc tgcgggacac 20 <210> 8 <211> 9680 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide Sequence of pN7-AR_P-LUC-PsaD <400> 8 gtggcacttt tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt 60 caaatatgta tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa 120 ggaagagtat gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt 180 gccttcctgt ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt 240 tgggtgcacg agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt 300 ttcgccccga agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg 360 tattatcccg tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga 420 atgacttggt tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa 480 gagaattatg cagtgctgcc ataaccatga gtgataacac tgcggccaac ttacttctga 540 caacgatcgg aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa 600 ctcgccttga tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca 660 ccacgatgcc tgtagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta 720 ctctagcttc ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac 780 ttctgcgctc ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc 840 gtgggtctcg cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag 900 ttatctacac gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga 960 taggtgcctc actgattaag cattggtaac tgtcagacca agtttactca tatatacttt 1020 agattgattt aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata 1080 atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag 1140 aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa 1200 caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt 1260 ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc 1320 cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa 1380 tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa 1440 gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc 1500 ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa 1560 gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa 1620 caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg 1680 ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc 1740 tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg 1800 ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg 1860 agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg 1920 aagcggaaga gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat 1980 gcagctggca cgacaggttt cccgactgga aagcgggcag tgagcgcaac gcaattaatg 2040 tgagttagct cactcattag gcaccccagg ctttacactt tatgcttccg gctcgtatgt 2100 tgtgtggaat tgtgagcgga taacaatttc acacaggaaa cagctatgac catgattacg 2160 ccaagcgcgc aattaaccct cactaaaggg aacaaaagct ggagctcgcc cggggatcga 2220 tcctctaggc cttctgctag tcagctgtga aacagtaagt ttactcaaca acacggaaat 2280 gttagaaata aggtaattat gggaaattcg ccgaggaaga aaccgcggac catgcatgaa 2340 tacagactgc acaacgtctt tgtgttcatt actgcagggc gcatacacaa ttgccgctca 2400 cgcttgattt attgctggtt cttaaaacgc atgcgcttca agcgcaacag ctctacaaac 2460 cattgctgcg gtccctgtcg attctgcgct gttggcctga aggaatgcgc ctattcgcaa 2520 acacgcgtgg atgcgcaagc gcgacacatg aacggagccg atgcattctt gtcggctcga 2580 cgcggtttat tggtggtggc gctcctcgcg ttgcgcacca atcgtcactg gagcagtcga 2640 agccttgctt aatttcgcgg cgcggcaggc caggctttca actggtatgt tattaagcat 2700 gaacggccgt gcgggactgg accggctaac gtccctagag ccggccgctg aacatccaga 2760 atgtttggga gctggctggg agcaccactc gcagtgacat aatgcttgtc aattaagaag 2820 cggtgtcctg caggctgcgg tccaagcgag cgctgcgggc gacacggcac aggttgccac 2880 gcccagcact ggtgcgccag gcgccgagtg gctgcctgcc tccctggagg cgcagctggc 2940 gcccatcacg tcggcgcctg acgccaagga ggccctcagg caagtgtgaa gtgcggctgg 3000 cggcgtggcg cgttgccgcc cgcacaccag cggagcaggg cgcgcgcggt gtgcatgagg 3060 ggtgcagcgg ggtcgctgtt tggccgctac gtctgttgct gcggggatgc ggggcggtgc 3120 cgccggagcc tagggtgccc ctgcggcagg tgacacagac agggggggta gctgtcgcgg 3180 cagctcaggg gtgtgtgtgg cgagacctgc ccgcccgcag ttggcccgcc ctcatcaccc 3240 tggtgccgcc tgccccccgg cctgactgcc cccccgctgc cctcctgctg cccaccccac 3300 cccaccccct gcacgccctc gcacacgccc ctcccaggcg gctgctggac gcgggcagtg 3360 gcctggcccc gctgccggcc gccgcccgca ccgcctccaa ccgggtcatg ggctgcacgg 3420 cgcaggtgtg gctggcggct gagacggacg cggccggccg catggccttc caggtgggcc 3480 gggcgggcgg gcgggaggcg gccgtgggcg ctgtgggcag acggaggggg gaggcggggg 3540 gaggaggcgg ggagttgcat ggtgggtctg tgtgcaagtg accagagctg aaccggagat 3600 gtgataccgg ggggtggggt gtgttgtggg ggtcgccggg ctggctgtcc cggcccgggt 3660 gcaggtgggg gcgggtgagg ccggaggcga ggtggagggc aacacggagc ggctgcagac 3720 ctgtgggcgg ctggtgggcg gcagcggacc gctcgctgac cgccctcggg ccgaacccac 3780 ccagctcgga aggggcgagc ctgcacgaca ccgcacgggc gctgcgtgcg gctggtccgg 3840 acaggggact ggacggagga cgcacgggcg catgtgcacg tgtgtcagtg acgcagcacg 3900 tgcaagggca ccgcacacac caggcgctgc cggctggggc gcgtaccata caccccaacg 3960 cgtcggttct gggtcctatt ccattgggct cgggcatgtg accccaacgc gccactccgc 4020 acgtccacac gcgcagggct ggagcgacag tgaggtcagt cgcgggctgg tggcgctgct 4080 ggtgcgcggg ctgagcggct gcacgcccga ggaggtcatg caggtgtgtg tgcgtgcgca 4140 gagagcacaa gaaggaagga aacaggaatg actgtgcgtg tgcatagatc cggattcgtg 4200 ccttgcgttt gggcgtgtga gggatagggc tcaagggctg acaggtgttg gggggcggct 4260 gagggctgcg ctacccctgc agctgtgcag cgacacacgc cgcgacccgc acccctcccc 4320 ccctcccccc caggtgtcgg cgagccaggt gcagcagcgg ctgtcgcggg tgctggggcg 4380 ctccgtgctg ccgccgggcc gcgccaacgg actgggcaac atgctggaga gcgcgcgcaa 4440 gcgggcggcg ctggcggcgg cggcggcggc cgggcggcgg ctggacgtgt tcccctcgct 4500 gctcatcacc gcagacgccc tcacgccgca ggtactcggg cgcgggtgca ctggggctag 4560 gaactgggcg cctggggggg tagccatcca tgggatggtg tgtatcctgg ggggggaggg 4620 aaagggtgat tgtccatgaa agaccgaagg accaaagccc atcccgagtt actcgaggcc 4680 ggggggtatg tggggggtgg gcggactggg ggtgtgttgg tgggcgacca cgacacacgc 4740 gccggacccg caccccgccg ccctgactgg cgctggcgcc tgcggggccg ctgtgcaggg 4800 cgccttcgcg gaggcccagg cgcgctacct ggcgccggat gcggccgccc gcgacaagca 4860 catcggcgtg gtggcgcact tctacatgga cccgcaggtg cagggcgtgt tgtcggctgc 4920 tgcggaggag tggccgcaca tcgccatcag tgactcgctg gtgatggcgg acacggccgt 4980 gcgcatggcg gaggcgggat gcaccaccat ctgtgtgctg ggtgtggact tcatgagtga 5040 gaacgtgcgc gccatcctgg atgaggcggg gcacagcgca gtgcaggtgt accggctggc 5100 tgagtcggac attggctgct cgctggccga ggcggcggag agcgactcct acagccgcta 5160 cctgcagcag gccgcacaca cacccaacag cgtgcacgtg gtgtacatca acacctcgct 5220 gcgcaccaag gcccgtgcgc acgcgcttgt gcccaccatc acctgcacct cctccaacgt 5280 ggtgcagacg gtgctggcgg cctttgcgga cgtgccgggc gccacggtgt ggtacggccc 5340 cgacacctac atgggcgcca acctggcgca gctgttcgcc gacctggcct cgggcgccgc 5400 cagcgacgac gacgtgcgcg cgctgcaccc cgcacacacg gtggacagca tcaggtctct 5460 gttgccgcgc ctgcgctact tcactgacgg cacgtgcatc gtgcaccaca tctttggcgg 5520 cgaggtgacg gagctggtgg ctgcgggcta cggcgacgcc tacctggccg cgcactttga 5580 ggtgccgggc gagatgttcc ggctggccat gcaggccaag cgctcccggg gcatgggtgt 5640 ggtgggctcc acctccaaca tcctggactt catcgcggac aagctgcgcg aggctctgtc 5700 cgcgccgcac ccggagcggc tgcagttcgt gctgggcacg gaggcgggca tgatcacgtc 5760 catagtgcgc aaggtgcagg ggctgctgcg ccagtcgggt cgtactgacg tggaggtgga 5820 ggtggtgttc ccggtggcgc cctccgccgt ggccacgccg cagcagaggc cgcaggaggg 5880 cgcggcgccg ctcacactgc ccaccgggct ggcgctggtg ccgggtcccg cctccggcga 5940 gggctgcagc ctggagggcg gctgcgcggc ctgcccctac atgaagatga acaccctggc 6000 cgcactggtg tccgtgtgcg agcgcgtggg cagcccagca ggcgaggcca gcctggagcg 6060 ctaccggccg cgcacctatg gcggcgagac agtgggcggc cgcagcctgg ccgccgccgg 6120 ctgtgtgccc atcctgcaca tgcgcaactt ccagcgcagc cagggccgcc gcctggggcc 6180 ggacctgctg caggacatcg ccagccgcca caccgcccgg tagggggcag gcggcggacc 6240 ggcggagccc aggggagggg ggcggcgcaa ggcgtggtgg ccatgcgctc gagtgggctg 6300 gatgcgcagg atgagagcgg tgggtgggga ggagcaccgc gtagttagcg agtgagcggg 6360 cgagtgagtg ggagagtgcg gaggattgga ggacatctgg tgtttgaagg tcaagagggc 6420 gcaaccgtac aatgctgcga ggggtaggga caatgtgact ggcgcccaag aggcggcgtg 6480 cgggcgcgcc ttgcctagcg ttgctcatta ttagcgggtc ctgggaggcg attgtgccca 6540 cattggtgac ggtagcggta gcggtggcat tggcaatggc ggtagcggtg gcaatggtgg 6600 tggcggtggt gcgtgttcac ccgcttgccc cgggacgcgc agtcccttgc gtgcaggctg 6660 cgtcggtagg gctggctggc aggttgggat ggtctaatgc gacaggttca gcgcgtggga 6720 gcaactggtt aagaagagaa caattgcaag acgtccgcca acatgggcgg gatgggtaac 6780 gcatggcaga ccatggagta ccgtgcgcca gccggcacag gtcaggaggg cagggggcgc 6840 ggggcttaac cggcgtgtaa ttgttggtca agcacataca taacacaccc acgcgcacgt 6900 cgtgtccact tgacacacct gaggtcaaag caaaaggaag atgctggcac agtgaagcca 6960 gccaacaacc agccatgtcc gagctccacc gcggtggcgg ccgcgctcta gaagcttgga 7020 agctctggaa gggccgcgat ggggcgcgcg gcgtccagaa ggcgccatac ggcccgctgg 7080 cggcacccat ccggtataaa agcccgcgac cccgaacggt gacctccact ttcagcgaca 7140 aacgagcact tatacatacg cgactattct gccgctatac ataaccactc agctagctta 7200 agatcccatc aagcttgcat gccgggcgcg ccagaaggag cgcagccaaa ccaggatgat 7260 gtttgatggg gtatttgagc acttgcaacc cttatccgga agccccctgg cccacaaagg 7320 ctaggcgcca atgcaagcag ttcgcatgca gcccctggag cggtgccctc ctgataaacc 7380 ggccaggggg cctatgttct ttactttttt acaagagaag tcactcaacg gatcccccgg 7440 gctgcaggaa ttcactagtg attcgatggc cagcaaggtg tacgaccccg agcagcgcaa 7500 gcgcatgatc accggccctc agtggtgggc tcgctgcaag cagatgaacg tgctggacag 7560 cttcatcaac tactacgaca gcgagaagca cgccgagaac gccgtgatct tcctgcacgg 7620 caacgccgcc agcagctacc tgtggcgcca cgtggtgccc cacatcgagc ccgtggcccg 7680 ctgcatcatc cccgacctga tcggcatggg caagagcggc aagagcggca acggcagcta 7740 ccgcctgctg gaccactaca agtacctgac cgcctggttc gagctgctga acctgcccaa 7800 gaagatcatc ttcgtgggcc acgactgggg cgcctgcctg gccttccact acagctacga 7860 gcaccaggac aagatcaagg ccatcgtgca cgccgagagc gtggtggacg tgatcgagag 7920 ctgggacgag tggcccgaca tcgaggagga catcgccctg atcaagagcg aggagggcga 7980 gaagatggtg ctggagaaca acttcttcgt ggagaccatg ctgcccagca agatcatgcg 8040 caagctggag cccgaggagt tcgccgccta cctggagccc ttcaaggaga agggcgaggt 8100 gcgccgtccc accctgagct ggcctcgcga gatccccctg gtgaagggcg gcaagcccga 8160 cgtggtgcag atcgtgcgca actacaacgc ctacctgcgc gccagcgacg acctgcccaa 8220 gatgttcatc gagagcgacc ccggcttctt cagcaacgcc atcgtggagg gcgccaagaa 8280 gttccccaac accgagttcg tgaaggtgaa gggcctgcac ttcagccagg aggacgctcc 8340 cgacgagatg ggcaagtaca tcaagagctt cgtggagcgc gtgctgaaga acgatacgta 8400 atcctggcag cagctggacc gcctgtacca tggagaagag ctttacttgc cgggatggcc 8460 gatttcgctg attgatacgg gatcggagct cggaggcttt cgcgctaggg gctaggcgaa 8520 gggcagtggt gaccagggtc ggtgtggggt cggcccacgg tcaattagcc acaggaggat 8580 cagggggagg taggcacgtc gacttggttt gcgaccccgc agttttggcg gacgtgctgt 8640 tgtagatgtt agcgtgtgcg tgagccagtg gccaacgtgc cacacccatt gagaagacca 8700 accaacttac tggcaatatc tgccaatgcc atactgcatg taatggccag gccatgtgag 8760 agtttgccgt gcctgcgcgc gccccggggg cgggggggga cgggtggggg gtagggggtc 8820 tcacgggaac agcacgctag gggtcagggg gggggggggg cgcagtttag ctgaccagcc 8880 gtgggatgat gcacgcattt gcaaggacag ggtaatcaca gcagcaacat ggtgggctta 8940 ggacagctgt gggtcagtgg acggacggca ggggagggac ggcgcggctc gggagacagg 9000 gggagacggc gtgactgtgc acatcggtca attcgcccta tagtgagtcg tattacgcgc 9060 gctcactggc cgtcgtttta caacgtcgtg actgggaaaa ccctggcgtt acccaactta 9120 atcgccttgc agcacatccc cctttcgcca gctggcgtaa tagcgaagag gcccgcaccg 9180 atcgcccttc ccaacagttg cgcagcctga atggcgaatg ggacgcgccc tgtagcggcg 9240 cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 9300 tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 9360 gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 9420 accccaaaaa acttgattag ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 9480 tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 9540 gaacaacact caaccctatc tcggtctatt cttttgattt ataagggatt ttgccgattt 9600 cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 9660 tattaacgct tacaatttag 9680 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for 8LSIP_P <400> 9 tctagatgca gcattaccgc tga 23 <210> 10 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Forward Primer for 17LSIP_P <400> 10 tctagaatgg ggccaatctt gtgc 24 <210> 11 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer for all LSIP_Ps <400> 11 gaattctgtt cgggtcggtt cgtg 24 <210> 12 <211> 439 <212> DNA <213> Dunaliella sp. <400> 12 cccagtgtag gtgtctttgc tagtgtactc ctacacgtcc tcaatgcacg agcgtgcaca 60 ctaaacactt gtgcatgcac tgtcaccagg ctttggcagc gccaggaggt tcttaaagtg 120 acatccgtgt cccgcagcaa cttacattga ccaacagtca acaccctcca accctcacag 180 gttcaagaca catacaacac tgttcactca ctcgtgattt gcaaaatgta aagctttggc 240 cctcttggct ttttttttct cacgggcagc tcacccaccg actcactcac gcactcacca 300 acagagcgtg gcctcggagc gtgagggctc cgggccacac atttgccagc ctgaaaactt 360 gccaaaaacc actcatcatc aaaacaacaa aagcttcaat caaaactcgt tcctacaccc 420 acacgaaccg acccgaaca 439 <210> 13 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for 1LSIP_P <400> 13 cccagtgtag gtgtctt 17 <210> 14 <211> 1198 <212> DNA <213> Dunaliela bardawil <220> <221> promoter <222> (25)..(1198) <400> 14 ggcggcggag aaagggagaa gaagagtccg agtgtcccgg ggcatggcga gcaaccctcc 60 agatccccat tcgtcctgtt tctggctctc ttctaggcta gctacgtcta gtgtaggttc 120 tgaggcctcc tggtgaggcc tctagctctc caattaaaga accttccctt aatgcacgcg 180 gccttggctt gcgtaaactt ttggttttct tttctttgca agcaaaggga ggcattataa 240 tcattttttt cttaatcaga cattcatgta gcacagacca acttggtgtt atccttccaa 300 ctccaaggat atgcttcagt aaacacacat gcacaatctg cgatttagcc atctcagctg 360 agatggcctg cagctcctcg caccccacag ttgcagctcc tcgcacccca cagctgcagc 420 tccttgtacc ccacattcgg ctagcatgca tgcatgcagg aagaacatgt gccttagtca 480 gccttggcac ggtgtgaggc ctatccgcca gctgcctctg ctactgcgca cacatgtgaa 540 tgcaaacacc tgataatgga cagccttggc tcactaaacc tacttaaaaa gcaaatgttg 600 tattcaggca ataggcttcg gctcggggag tcctcaccca tgttagccgc ccagagaaaa 660 gctggtacac cctgtgtatg tgcgtgttgg catgcgccta tgccggcagt tcctgagcac 720 aaatgtgtgc tcgcatgaga ctgcgcagcc gcatgcagcc gcatgccttc cctcaattga 780 gtctcctcaa tccaccgaca cacacaatta cacatgtgac tcttacaggc ttgagtatct 840 gaatttccaa gcctactggt tctagggccc ctgcttgctt gctggtcaac tggcggtcaa 900 caccctccaa caacgccagt gtggcaacac cgtcatggag gccgtcgtgt tcacgtaagt 960 tgcaaaacaa acctgtgcaa attttgtggt actccttttc acagcaacgc actggttcac 1020 atttcgcact caaagctcca acaaagcgca aggttctcgg aatttgaggg ttctcggcca 1080 caagtttgcc accctcaaag gtggaaattc accaatgtag gatgaaaact aaatactatc 1140 caaacacttg tgcaccctta ttccggcgta ggacgcttaa tcgatccgac caactacg 1198 <210> 15 <211> 1626 <212> DNA <213> Dunaliella bardawil <220> <221> promoter <222> (25)..(1198) <400> 15 tgggagggga tttgctggac gcacggcggc ggagaaaggg agaagaagag tccgagtgtc 60 ccggggcatg gcgagcaacc ctccagatcc ccattcgtcc tgtttctggc tctcttctag 120 gctagctacg tctagtgtag gttctgaggc ctcctggtga ggcctctagc tctccaatta 180 aagaaccttc ccttaatgca cgcggccttg gcttgcgtaa acttttggtt ttcttttctt 240 tgcaagcaaa gggaggcatt ataatcattt ttttcttaat cagacattca tgtagcacag 300 accaacttgg tgttatcctt ccaactccaa ggatatgctt cagtaaacac acatgcacaa 360 tctgcgattt agccatctca gctgagatgg cctgcagctc ctcgcacccc acagttgcag 420 ctcctcgcac cccacagctg cagctccttg taccccacat tcggctagca tgcatgcatg 480 caggaagaac atgtgcctta gtcagccttg gcacggtgtg aggcctatcc gccagctgcc 540 tctgctactg cgcacacatg tgaatgcaaa cacctgataa tggacagcct tggctcacta 600 aacctactta aaaagcaaat gttgtattca ggcaataggc ttcggctcgg ggagtcctca 660 cccatgttag ccgcccagag aaaagctggt acaccctgtg tatgtgcgtg ttggcatgcg 720 cctatgccgg cagttcctga gcacaaatgt gtgctcgcat gagactgcgc agccgcatgc 780 agccgcatgc cttccctcaa ttgagtctcc tcaatccacc gacacacaca attacacatg 840 tgactcttac aggcttgagt atctgaattt ccaagcctac tggttctagg gcccctgctt 900 gcttgctggt caactggcgg tcaacaccct ccaacaacgc cagtgtggca acaccgtcat 960 ggaggccgtc gtgttcacgt aagttgcaaa acaaacctgt gcaaattttg tggtactcct 1020 tttcacagca acgcactggt tcacatttcg cactcaaagc tccaacaaag cgcaaggttc 1080 tcggaatttg agggttctcg gccacaagtt tgccaccctc aaaggtggaa attcaccaat 1140 gtaggatgaa aactaaatac tatccaaaca cttgtgcacc cttattccgg cgtaggacgc 1200 ttaatcgatc cgaccaacta cgatgcagct gcacatgaac ctgcccacct cccgcatcgc 1260 ggccggtgct tccatcaatg ttcgtcccgc acctctcttg cgtactgctg cacccaagcg 1320 cgtgtgcaag catatcgtgc gggcggagaa caacccctcc actccccctc catctagccc 1380 ttcccctccc cctccccctc ccactcctgc tgccccgact gtgacaggtg tgagaaagct 1440 gtagccatcc tgaagcacct cccatgctgg ctcatgtgaa cttcatcttt gtgaacctcc 1500 ctgagtgttt taaactgttg aagctaacac acactcgcac acatacacac acacacacac 1560 acacacacac acacacacac acacacacac acacacacac acacacacac acacacacac 1620 acacac 1626 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Bar-CBR_P <400> 16 tctagaggcg gcggagaaag ggagaa 26 <210> 17 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Bar-CBR_P <400> 17 gaattccgta gttggtcgga tcgattaagc 30 <210> 18 <211> 100 <212> DNA <213> Dunaliella sp. <400> 18 catttgccag cctgaaaact tgccaaaaac cactcatcat caaaacaaca aaagcttcaa 60 tcaaaactcg ttcctacacc cacacgaacc gacccgaaca 100 <210> 19 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for 1LSIP_P <400> 19 catttgccag cctgaaa 17 <210> 20 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Luciferase <400> 20 atggccagca aggtg 15 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Luciferase <400> 21 ttacgtatcg ttcttcagc 19

Claims (10)

  1. 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터.
  2. 제1항에 있어서, 상기 프로모터는 서열번호 1로 기재되는 염기서열로 구성되는 것을 특징으로 하는 광 유도성 프로모터.
  3. 제1항에 있어서, 상기 프로모터는 서열번호 2로 기재되는 염기서열로 구성되는 것을 특징으로 하는 광 유도성 프로모터.
  4. 제1항의 광 유도성 프로모터를 포함하는 발현벡터.
  5. 제4항에 있어서, 외래 단백질을 코딩하는 유전자가 상기 프로모터에 작동가능하게 삽입될 수 있는 다중클로닝부위(multiple cloning site, MCS)를 더 포함하는 것을 특징으로 하는 발현벡터.
  6. 제4항의 발현벡터로 형질전환된 조류(algae) 형질전환체.
  7. 서열번호 12로 기재되는 염기서열을 포함하는 광 유도성 프로모터에 외래 단백질을 코딩하는 유전자가 작동가능하게 연결된 유전자 컨스트럭트.
  8. 제7항의 유전자 컨스트럭트를 포함하는 발현벡터.
  9. 제8항의 발현벡터로 형질전환된 조류(algae) 형질전환체.
  10. 제6항 또는 제9항의 형질전환체를 배양하는 단계; 및
    상기 배양된 형질전환체에 광을 조사하는 단계를 포함하는 외래 단백질의 생산 방법.
KR1020120149832A 2012-06-01 2012-12-20 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템 KR101495276B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2013/004762 WO2013180488A1 (ko) 2012-06-01 2013-05-30 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템
US14/404,946 US9540653B2 (en) 2012-06-01 2013-05-30 Light-inducible promoter and gene expression system containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120059411 2012-06-01
KR1020120059411 2012-06-01

Publications (2)

Publication Number Publication Date
KR20130135722A KR20130135722A (ko) 2013-12-11
KR101495276B1 true KR101495276B1 (ko) 2015-03-09

Family

ID=49982887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120149832A KR101495276B1 (ko) 2012-06-01 2012-12-20 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템

Country Status (2)

Country Link
US (1) US9540653B2 (ko)
KR (1) KR101495276B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6438280B2 (ja) * 2014-11-28 2018-12-12 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置及びマルチ荷電粒子ビーム描画方法
KR101726214B1 (ko) * 2015-11-25 2017-04-12 한양대학교 산학협력단 광유도 활성이 증진된 광유도성 프로모터 및 이를 포함하는 유전자 발현 시스템
WO2020130772A1 (es) 2018-12-17 2020-06-25 Centro De Investigación Científica De Yucatán, A.C. Promotor inducible del gen crgpdh3 de chlamydomonas reinhardtii y su uso para la expresión de proteínas recombinantes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8615263D0 (en) 1986-06-23 1986-07-30 Warwick University Of Light inducible promoter
US6723896B1 (en) 1999-11-12 2004-04-20 The Rockefeller University Inducible site-specific recombination for the activation and removal of transgenes in transgenic plants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Phycological Research, Vol. 58, pages 17-28 (2010) *

Also Published As

Publication number Publication date
US20150147782A1 (en) 2015-05-28
KR20130135722A (ko) 2013-12-11
US9540653B2 (en) 2017-01-10

Similar Documents

Publication Publication Date Title
CN111705006B (zh) 表达新型冠状病毒s蛋白的口服重组酵母及其制备与应用
US5159062A (en) Signal peptide for the secretion of peptides in escherichia coli
CN111893104B (zh) 一种基于结构的crispr蛋白的优化设计方法
KR101495276B1 (ko) 광 유도성 프로모터 및 이를 포함하는 유전자 발현 시스템
CN102719471B (zh) 整合质粒pOPHI及无抗性筛选标记的自主发光分枝杆菌
CN113073102B (zh) 自噬基因atg9在水稻育种和/或水稻粒型机制研究中的应用
KR20140094757A (ko) 표적 유전자의 프로모터를 포함하는 카세트 및 상기 카세트를 이용한 유전자 조작 방법
CN112501139B (zh) 一株重组新城疫病毒毒株及其制备方法和应用
CN108118047A (zh) 一种双功能酶的制备方法及其在海藻糖生产中的应用
CN113736676A (zh) 一种表达猪流行性腹泻病毒s蛋白的口服重组酿酒酵母的制备与应用
CN111748034B (zh) 一种滑液囊支原体单克隆抗体的制备方法
CN108949690B (zh) 一种制备可实时检测间充质干细胞骨分化的细胞模型的方法
CN113755512B (zh) 一种制备串联重复蛋白质的方法与应用
CN109628487A (zh) 一种利用转基因猪唾液腺制备人神经生长因子的方法
CN109666689B (zh) 一种重组高温镍铁氢化酶的异源表达纯化方法及其应用
CN113862207B (zh) 一种改造菌株、其在制备促肠动力制剂中的应用及产品
CN113817621B (zh) 同时表达IFNa14蛋白和人乙肝病毒S蛋白的重组酿酒酵母菌株及制备方法和应用
CN112553177B (zh) 一种热稳定性提高的谷氨酰胺转氨酶变体
KR100959696B1 (ko) 헬리코박터 파이로리의 단백질 항원결정기 분석을 위한융합단백질 발현용 벡터 및 그의 제조방법
KR20220080101A (ko) 향상된 비천연 아미노산 혼입을 위한 키메라 열안정성 아미노아실-tRNA 합성효소
CN114317473B (zh) 一种催化活性和热稳定性提高的谷氨酰胺转氨酶变体
RU2774333C1 (ru) Рекомбинантная плазмида pET-GST-3CL-GPG, обеспечивающая синтез протеазы 3CL SARS-CoV-2 в клетках E.coli в растворимой форме
KR100902634B1 (ko) 재조합 hmgb1 펩티드를 포함하는 핵산 전달 복합체
CN107354172B (zh) 重组表达载体及其构建方法和应用
CN112322658A (zh) 一种共表达小反刍兽疫病毒h和f蛋白的重组山羊痘病毒

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180118

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 6