KR20170074794A - 멀티 하전 입자빔 장치 - Google Patents

멀티 하전 입자빔 장치 Download PDF

Info

Publication number
KR20170074794A
KR20170074794A KR1020160174629A KR20160174629A KR20170074794A KR 20170074794 A KR20170074794 A KR 20170074794A KR 1020160174629 A KR1020160174629 A KR 1020160174629A KR 20160174629 A KR20160174629 A KR 20160174629A KR 20170074794 A KR20170074794 A KR 20170074794A
Authority
KR
South Korea
Prior art keywords
lens
aperture array
array substrate
aperture
substrate
Prior art date
Application number
KR1020160174629A
Other languages
English (en)
Other versions
KR101900050B1 (ko
Inventor
무네히로 오가사와라
Original Assignee
가부시키가이샤 뉴플레어 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 뉴플레어 테크놀로지 filed Critical 가부시키가이샤 뉴플레어 테크놀로지
Publication of KR20170074794A publication Critical patent/KR20170074794A/ko
Application granted granted Critical
Publication of KR101900050B1 publication Critical patent/KR101900050B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/045Beam blanking or chopping, i.e. arrangements for momentarily interrupting exposure to the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/043Beam blanking
    • H01J2237/0435Multi-aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3175Lithography
    • H01J2237/31774Multi-beam

Abstract

본 발명의 일 태양의 멀티 하전 입자빔 장치는, 하전 입자빔을 방출하는 방출원과, 하전 입자빔을 조명하는 조명 렌즈와, 복수의 제1 개구부가 형성되고, 복수의 제1 개구부 전체가 포함되는 영역에 조명된 하전 입자빔의 조사를 받아, 복수의 제1 개구부를 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 제1 애퍼처 어레이 기판과, 제1 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제1 격자 렌즈와, 복수의 제2 개구부가 형성되고, 복수의 제2 개구부를 멀티빔 중 대응되는 빔의 적어도 일부가 각각 통과하는 제2 애퍼처 어레이 기판과, 제1 애퍼처 어레이 기판과 제2 애퍼처 어레이 기판의 사이이며 멀티빔의 제1 수렴점 위치에 배치되어, 제1 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제1 제한 애퍼처 기판과, 제2 애퍼처 어레이 기판을 통과한 멀티빔 중 적어도 일부의 빔군의 조사를 받는 시료를 재치하는 연속 이동 가능한 스테이지를 구비하고, 제1 애퍼처 어레이 기판과 제2 애퍼처 어레이 기판의 사이에 발생하는 자계의 부호가 반대이고 또한 동일한 크기의 자계가 계속되는 자계 분포 및 제1 격자 렌즈에 의해 발생하는 전기장 분포에 의해 구성되는 렌즈 작용에 의해, 제1 성형 애퍼처 어레이 기판을 통과한 제1 애퍼처 어레이상이 제2 애퍼처 어레이 기판 상에 형성되는 것을 특징으로 한다.

Description

멀티 하전 입자빔 장치 {MULI-CHARGED PARTICLE BEAM APPARATUS}
본 발명은 멀티 하전 입자빔 장치에 관한 것으로, 예를 들면, 스테이지 상의 시료에 멀티빔을 조사할 때의 구면 수차를 보정하는 방법에 관한 것이다.
반도체 디바이스의 미세화의 진전을 담당하는 리소그래피 기술은 반도체 제조 프로세스 중에서도 유일하게 패턴을 생성하는 매우 중요한 프로세스이다. 최근, LSI의 고집적화에 수반하여, 반도체 디바이스에 요구되는 회로 선폭은 해마다 미세화되고 있다. 여기서, 전자선(전자빔) 묘화 기술은 본질적으로 뛰어난 해상성을 가지고 있어, 웨이퍼 등에 전자선을 사용하여 묘화하는 것이 행해지고 있다.
예를 들면, 멀티빔을 사용한 묘화 장치가 있다. 1 개의 전자빔으로 묘화하는 경우에 비해, 멀티빔을 이용함으로써 한 번에 많은 빔을 조사할 수 있으므로 스루풋을 큰 폭으로 향상시킬 수 있다. 이러한 멀티빔 방식의 묘화 장치에서는 예를 들면, 전자총으로부터 방출된 전자빔을 복수의 홀을 가진 마스크에 통과시켜 멀티빔을 형성하고, 각각 블랭킹 제어되어 차폐되지 않은 각 빔이 시료 상의 원하는 위치로 조사된다. 이러한 멀티빔 방식의 묘화 장치에서는, 종래에 멀티빔을 형성하는 복수의 홀을 가진 마스크(멀티빔 형성 애퍼처)를 전자빔이 통과할 때에 산란된 전자가 블랭킹 제어하는 블랭킹 편향 전극 어레이에 유입되어, 블랭킹 편향 전극 어레이의 절연물 부분을 대전시킨다고 하는 문제가 있었다. 이 때문에, 멀티빔 형성 애퍼처와 블랭킹 편향 전극 어레이의 사이에 더블릿 렌즈를 배치하여, 더블릿 렌즈를 구성하는 전자 렌즈 간에 크로스오버를 형성시키고, 크로스오버 부근에 애퍼처(콘트라스트 애퍼처)를 배치함으로써, 블랭킹 편향 전극 어레이에 침입하는 산란 전자를 배제한다고 하는 방법이 고안되었다(예를 들면, 일본특허공개공보 제2013-93566호 참조).
그러나, 멀티빔 묘화에서는 멀티빔 전체로의 빔 사이즈가 커지므로, 크로스오버 결상계의 광축 상의 수차가 커진다. 특히, 빔 수를 많게 하면 그만큼 빔 사이즈가 커져 수차가 더 커진다. 더블릿 렌즈를 이용함으로써 왜곡 수차를 줄이는 것도 가능해지지만, 멀티빔의 빔 사이즈가 큰 경우 이러한 더블릿 렌즈에 의한 크로스오버상의 구면 수차가 커진다고 하는 새로운 문제가 발생한다. 이 때문에, 크로스오버 위치에서의 멀티빔 직경이 커진다. 따라서, 멀티빔의 왜곡 수차를 억제하고 또한 구면 수차 자체를 줄이는 것이 바람직하다.
본 발명의 실시 형태는, 멀티빔의 왜곡 수차를 억제하고 또한 구면 수차를 보정하는 것이 가능한 멀티 하전 입자빔 장치를 제공한다.
본 발명의 일 태양의 멀티 하전 입자빔 장치는,
하전 입자빔을 방출하는 방출원과,
상기 하전 입자빔을 조명하는 조명 렌즈와,
복수의 제1 개구부가 형성되고, 상기 복수의 제1 개구부 전체가 포함되는 영역에 조명된 상기 하전 입자빔의 조사를 받아, 상기 복수의 제1 개구부를 상기 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 제1 애퍼처 어레이 기판과,
상기 제1 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제1 격자 렌즈와,
복수의 제2 개구부가 형성되고, 상기 복수의 제2 개구부를 상기 멀티빔 중 대응되는 빔의 적어도 일부가 각각 통과하는 제2 애퍼처 어레이 기판과,
상기 제1 애퍼처 어레이 기판과 상기 제2 애퍼처 어레이 기판의 사이이며 상기 멀티빔의 제1 수렴점 위치에 배치되어, 상기 제1 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제1 제한 애퍼처 기판과,
상기 제2 애퍼처 어레이 기판을 통과한 멀티빔 중 적어도 일부의 빔군의 조사를 받는 시료를 재치하는 연속 이동 가능한 스테이지
를 구비하고,
상기 제1 애퍼처 어레이 기판과 상기 제2 애퍼처 어레이 기판의 사이에 발생하는 자계의 부호가 반대이고 또한 동일한 크기의 자계가 계속되는 자계 분포 및 상기 제1 격자 렌즈에 의해 발생하는 전기장 분포에 의해 구성되는 렌즈 작용에 의해, 상기 제1 성형 애퍼처 어레이 기판을 통과한 제1 애퍼처 어레이상이 상기 제2 애퍼처 어레이 기판 상에 형성되는 것을 특징으로 한다.
본 발명의 다른 태양의 멀티 하전 입자빔 장치는,
하전 입자빔을 방출하는 방출원과,
상기 하전 입자빔을 조명하는 조명 렌즈와,
복수의 제1 개구부가 형성되고, 상기 복수의 제1 개구부 전체가 포함되는 영역에 조명된 상기 하전 입자빔의 조사를 받아, 상기 복수의 제1 개구부를 상기 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 제1 성형 애퍼처 어레이 기판과,
상기 제1 성형 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제1 격자 렌즈와,
상기 제1 격자 렌즈에 대하여 상기 방출부측과는 반대측에 배치되며, 자계의 부호가 반대이고 또한 동일한 크기로 자화되는 제1 및 제2 전자 렌즈를 가지는 더블릿 렌즈와,
상기 제1 및 제2 전자 렌즈의 사이이며 상기 멀티빔의 제1 수렴점 위치에 배치되어, 상기 제1 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제1 제한 애퍼처 부재와,
상기 더블릿 렌즈를 통과한 멀티빔 중 적어도 일부의 빔군의 조사를 받는 시료를 재치하는 연속 이동 가능한 스테이지
를 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
도 1은 실시 형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 2(a)와 도 2(b)는 실시 형태 1에서의 성형 애퍼처 어레이 기판의 구성을 나타내는 개념도이다.
도 3은 실시 형태 1에서의 블랭킹 애퍼처 어레이 기구의 구성을 나타내는 단면도이다.
도 4는 실시 형태 1에서의 블랭킹 애퍼처 어레이 기구의 멤브레인 영역 내의 구성의 일부를 나타내는 상면 개념도이다.
도 5는 실시 형태 1에서의 묘화 순서를 설명하기 위한 도면이다.
도 6은 실시 형태 1의 비교예에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다.
도 7은 실시 형태 1에서의 더블릿 렌즈의 상류측의 격자 렌즈의 구성 및 전자 궤도의 일례를 나타내는 도면이다.
도 8은 실시 형태 1에서의 더블릿 렌즈의 하류측의 격자 렌즈의 구성 및 전자 궤도의 일례를 나타내는 도면이다.
도 9는 실시 형태 1에서의 축상 자계 분포와 전위 분포와 근축 궤도의 시뮬레이션 결과의 일례를 나타내는 도면이다.
도 10은 실시 형태 1에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다.
도 11은 실시 형태 2에서의 묘화 장치의 구성을 나타내는 개념도이다.
도 12는 실시 형태 2에서의 블랭킹 애퍼처 어레이 기구의 구성을 나타내는 단면도이다.
도 13은 실시 형태 3에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다.
도 14는 실시 형태 4에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다.
도 15는 실시 형태 5에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다.
이하, 실시 형태에서는 멀티빔의 왜곡 수차를 억제하고 또한 구면 수차를 보정하는 것이 가능한 멀티 하전 입자빔 장치에 대해 설명한다.
또한, 이하, 실시 형태에서는 하전 입자빔의 일례로서 전자빔을 이용한 구성에 대해 설명한다. 단, 하전 입자빔은 전자빔에 한정되지 않으며, 이온빔 등의 하전 입자를 이용한 빔이어도 상관없다.
실시 형태 1.
도 1은 실시 형태 1에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 1에서 묘화 장치(100)는 묘화 기구(150)와 제어계 회로(160)를 구비하고 있다. 묘화 장치(100)는 멀티 하전 입자빔 장치의 일례이고 또한 멀티 하전 입자빔 묘화 장치의 일례이다. 묘화 기구(150)는 전자 경통(102)과 묘화실(103)을 구비하고 있다. 전자 경통(102) 내에는 전자총(201), 조명 렌즈(202), 프리 성형 애퍼처 어레이 기판(224), 정전 렌즈(222), 더블릿 렌즈를 구성하는 전자 렌즈(212, 214), 제한 애퍼처 기판(216), 정전 렌즈(232), 성형 애퍼처 어레이 기판(203), 블랭킹 애퍼처 어레이 기구(204), 축소 렌즈(205), 제한 애퍼처 기판(206)(블랭킹 애퍼처), 대물 렌즈(207), 편향기(208), 검출기(249) 및 얼라인먼트 코일(242, 244, 246, 248)이 배치되어 있다. 묘화실(103) 내에는 XY 스테이지(105)가 배치된다. XY 스테이지(105) 상에는, 묘화 시에는 묘화 대상 기판이 되는 마스크 등의 시료(101)가 배치된다. 시료(101)는 예를 들면, 도시하지 않은 3 점 지지에 의해 XY 스테이지(105) 상에 보지(保持)된다. 시료(101)에는 반도체 장치를 제조할 때의 노광용 마스크, 혹은 반도체 장치가 제조되는 반도체 기판(실리콘 웨이퍼) 등이 포함된다. 또한, 시료(101)에는 레지스트가 도포된 아직 아무것도 묘화되지 않은 마스크 블랭크스가 포함된다.
프리 성형 애퍼처 어레이 기판(224)는 경통의 중심축에 회전축이 평행한 회전 스테이지를 포함하며, 경통 외부로부터의 제어에 의해 애퍼처 어레이의 방향을 바꿀 수 있도록 하는 것이 바람직하다.
정전 렌즈(222)는 프리 성형 애퍼처 어레이 기판(224)(제1 성형 애퍼처 어레이 기판, 혹은 제1 애퍼처 어레이 기판)에 대하여 전자총(201)측과는 반대측의 블랭킹 애퍼처 어레이 기구(204)측 바로 근처에 배치된다. 예를 들면, 프리 성형 애퍼처 어레이 기판(224)과 더블릿 렌즈를 구성하는 광축상 상류측의 전자 렌즈(212)와의 사이에 배치된다. 그리고, 정전 렌즈(222)는 프리 성형 애퍼처 어레이 기판(224)을 격자로서 이용한 격자 렌즈(220)(제1 격자 렌즈)가 된다. 격자 렌즈(220)는 후술하는 바와 같이 오목 렌즈를 구성한다.
전자 렌즈(212)(제1 전자 렌즈)와 전자 렌즈(214)(제2 전자 렌즈)에 의해 구성되는 더블릿 렌즈는, 격자 렌즈(220)에 대하여 전자총(201)측과는 반대측의 격자 렌즈(220)와 블랭킹 애퍼처 어레이 기구(204)의 사이에 배치된다. 전자 렌즈(212)와 전자 렌즈(214)는 축상 자계의 부호가 반대이고 또한 동일한 크기로 자화된다.
여기서, 전자 렌즈(212, 214)는 렌즈 효과를 가지는 자계가 조건을 만족시키는 것이면 되며, 전자 렌즈를 구성하는 강자성체 또는 코일 등의 구조물의 배치는 제1 성형 애퍼처 어레이 기판 또는 후술하는 제2 성형 애퍼처 어레이의 사이에 놓일 필요는 없다.
제한 애퍼처 기판(216)은 전자 렌즈(212)와 전자 렌즈(214)의 사이이며 멀티빔의 수렴점 위치에 배치된다. 또한, 제한 애퍼처 기판(216)은 그라운드 접속되어 있다.
또한, 성형 애퍼처 어레이 기판(203)(제2 성형 애퍼처 어레이 기판, 혹은 제2 애퍼처 어레이 기판)은 더블릿 렌즈에 대하여 XY 스테이지(105)측에 배치된다.
또한, 정전 렌즈(232)는 성형 애퍼처 어레이 기판(203)에 대하여 전자 렌즈(212, 214)에 의해 구성되는 더블릿 렌즈측 바로 근처에 배치된다. 그리고, 정전 렌즈(232)는 성형 애퍼처 어레이 기판(203)을 격자로서 이용한 격자 렌즈(230)(제2 격자 렌즈)가 된다. 격자 렌즈(230)는 후술하는 바와 같이 오목 렌즈를 구성한다.
얼라인먼트 코일(242, 244, 246, 248)은 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)의 사이에 배치된다. 특히, 얼라인먼트 코일(244, 246)은 전자 렌즈(212, 214)의 사이에 배치된다.
제어계 회로(160)는 제어 계산기(110), 메모리(112), 렌즈 제어 회로(120, 122, 124), 편향 제어 회로(130), 편향 제어 회로(132), 디지털 · 아날로그 변환(DAC) 앰프(136) 및 자기 디스크 장치 등의 기억 장치(140)를 가지고 있다. 제어 계산기(110), 메모리(112), 렌즈 제어 회로(120, 122, 124), 편향 제어 회로(130), 편향 제어 회로(132) 및 기억 장치(140)는 도시하지 않은 버스를 개재하여 서로 접속되어 있다. 편향 제어 회로(132)에는 DAC 앰프(136)가 접속되어 있다. 묘화 데이터가 묘화 장치(100)의 외부로부터 입력되어 기억 장치(140)(기억부)에 저장되어 있다. 렌즈 제어 회로(120, 122, 124) 및 편향 제어 회로(130, 132)는 제어 계산기(110)에 의해 제어된다.
전자 렌즈(212, 214)는 렌즈 제어 회로(120)에 접속되어 제어된다. 정전 렌즈(222)는 렌즈 제어 회로(122)에 접속되어 제어된다. 정전 렌즈(232)는 렌즈 제어 회로(124)에 접속되어 제어된다. 블랭킹 애퍼처 어레이 기구(204)는 편향 제어 회로(130)에 접속되어 제어된다. 편향기(208)는 DAC 앰프(136)를 개재하여 편향 제어 회로(132)에 접속되어 제어된다. 또한, 얼라인먼트 코일(242, 244, 246, 248)에도 도시하지 않은 렌즈 제어 회로가 각각 접속된다는 것은 말할 필요도 없다.
전자 렌즈(212, 214) 또는 / 및 정전 렌즈(222, 232)로 이루어지는 렌즈계는 프리 성형 애퍼처 어레이 기판(224) 상의 개구의 상을 성형 애퍼처 어레이 기판(203)의 대응되는 개구 상에 등배로 결상시키는 기능을 가진다.
여기서, 도 1에서는 실시 형태 1을 설명함에 있어서 필요한 구성을 기재하고 있다. 묘화 장치(100)에 있어서 통상적으로 필요한 그 외의 구성을 구비하고 있어도 상관없다.
도 2(a)와 도 2(b)는 실시 형태 1에서의 성형 애퍼처 어레이 기판의 구성을 나타내는 개념도이다. 도 2(a)에서 성형 애퍼처 어레이 기판(203)에는 세로(y 방향) m 열 × 가로(x 방향) n 열(m, n≥2)의 홀(22)(제1 개구부)이 소정의 배열 피치로 매트릭스 형상으로 형성되어 있다. 도 2(a)에서는 예를 들면 512 × 8 열의 홀(22)이 형성된다. 각 홀(22)은 모두 동일한 치수 형상의 직사각형으로 형성된다. 혹은, 동일한 외경의 원형이어도 상관없다. 여기서는, y 방향의 각 열에 대해 x 방향으로 A부터 H까지의 8 개의 홀(22)이 각각 형성되는 예가 나타나 있다. 이들 복수의 홀(22)을 전자빔(200)의 일부가 각각 통과함으로써 멀티빔(20)이 형성되게 된다. 여기서는 가로세로(x, y 방향)가 모두 2 열 이상의 홀(22)이 배치된 예를 나타냈으나, 이에 한정되지 않는다. 그 외에 예를 들면, 가로세로(x, y 방향) 중 어느 일방이 복수 열이고 타방은 1 열 뿐이어도 상관없다. 또한, 홀(22)의 배열 방법은 도 2(a)와 같이 가로세로가 격자 형상으로 배치되는 경우에 한정되지 않는다. 도 2(b)에 나타낸 바와 같이, 예를 들면, 세로 방향(y 방향) 1 단째의 열과 2 단째의 열의 홀끼리가 가로 방향(x 방향)으로 치수(a)만큼 이동하여 배치되어도 된다. 마찬가지로, 세로 방향(y 방향) 2 단째의 열과 3 단째의 열의 홀끼리가 가로 방향(x 방향)으로 치수(b)만큼 이동하여 배치되어도 된다.
또한, 프리 성형 애퍼처 어레이 기판(224)도 성형 애퍼처 어레이 기판(203)과 마찬가지로 구성된다. 프리 성형 애퍼처 어레이 기판(224)에 형성되는 복수의 홀(23)(제2 개구부)은 성형 애퍼처 어레이 기판(203)에 형성되는 복수의 대응되는 홀(22)과 동일한 위치 관계가 되도록 형성된다. 단, 프리 성형 애퍼처 어레이 기판(224)에 형성되는 복수의 홀(23)은 성형 애퍼처 어레이 기판(203)에 형성되는 복수의 홀(22)보다 약간 큰 사이즈로 형성된다. 이에 따라, 멀티빔(20)의 형상은 성형 애퍼처 어레이 기판(203)에 의해 결정된다. 단, 이에 한정되지 않는다. 성형 애퍼처 어레이 기판(203)에 형성되는 복수의 홀(22)을 프리 성형 애퍼처 어레이 기판(224)에 형성되는 복수의 홀(23)보다 약간 큰 사이즈로 형성하고, 프리 성형 애퍼처 어레이 기판(224)에 형성되는 복수의 홀(23)에 의해 멀티빔(20)의 형상을 결정하도록 구성해도 된다.
도 3은 실시 형태 1에서의 블랭킹 애퍼처 어레이 기구의 구성을 나타내는 단면도이다.
도 4는 실시 형태 1에서의 블랭킹 애퍼처 어레이 기구의 멤브레인 영역 내의 구성의 일부를 나타내는 상면 개념도이다. 또한, 도 3과 도 4에서 제어 전극(24)과 대향 전극(26)과 제어 회로(41)와 패드(43)의 위치 관계는 일치시켜 기재하지 않았다. 블랭킹 애퍼처 어레이 기구(204)는 도 3에 나타낸 바와 같이 지지대(33) 상에 실리콘 등으로 이루어지는 반도체 기판(31)이 배치된다. 기판(31)의 중앙부는 예를 들면 이면측으로부터 얇게 깎여 얇은 막 두께(h)의 멤브레인 영역(30)(제1 영역)으로 가공되어 있다. 멤브레인 영역(30)을 둘러싸는 주위는 두꺼운 막 두께(H)의 외주 영역(32)(제2 영역)이 된다. 멤브레인 영역(30)의 상면과 외주 영역(32)의 상면은 동일한 높이 위치, 혹은 실질적으로 동일한 높이 위치가 되도록 형성된다. 기판(31)은 외주 영역(32)의 이면에서 지지대(33) 상에 보지된다. 지지대(33)의 중앙부는 개구되어 있으며, 멤브레인 영역(30)의 위치는 지지대(33)의 개구된 영역에 위치하고 있다.
멤브레인 영역(30)에는, 도 2(a)(혹은 도 2(b))에 나타낸 성형 애퍼처 어레이 기판(203)의 각 홀(22)에 대응되는 위치에 멀티빔 각각의 빔의 통과용의 통과홀(25)(개구부)이 개구된다. 그리고 멤브레인 영역(30) 상에는, 도 3 및 도 4에 나타낸 바와 같이 각 통과홀(25)의 근방 위치에 해당하는 통과홀(25)을 사이에 두고 블랭킹 편향용의 제어 전극(24)과 대향 전극(26)의 조(블랭커 : 블랭킹 편향기)가 각각 배치된다. 또한, 멤브레인 영역(30) 상의 각 통과홀(25)의 근방에는 각 통과홀(25)용의 제어 전극(24)에 편향 전압을 인가하는 제어 회로(41)(로직 회로)가 배치된다. 각 빔용의 대향 전극(26)은 그라운드 접속된다.
또한, 도 4에 나타낸 바와 같이 각 제어 회로(41)는 제어 신호용의 예를 들면 10 비트의 병렬 배선이 접속된다. 각 제어 회로(41)는 제어 신호용의 예를 들면 10 비트의 병렬 배선 외에 클록 신호선 및 전원용의 배선이 접속된다. 클록 신호선 및 전원용의 배선은 병렬 배선의 일부의 배선을 유용해도 상관없다. 멀티빔을 구성하는 각각의 빔마다 제어 전극(24)과 대향 전극(26)과 제어 회로(41)에 의한 개별 블랭킹 기구(47)가 구성된다. 또한, 도 3의 예에서는 제어 전극(24)과 대향 전극(26)과 제어 회로(41)가 기판(31)의 막 두께가 얇은 멤브레인 영역(30)에 배치된다. 단, 이에 한정되지 않는다. 또한, 멤브레인 영역(30)에 어레이 형상으로 형성된 복수의 제어 회로(41)는 예를 들면 동일한 행 혹은 동일한 열에 의해 그룹화되며, 그룹 내의 제어 회로(41)군은 도 4에 나타낸 바와 같이 직렬로 접속된다. 그리고, 그룹마다 배치된 패드(43)로부터의 신호가 그룹 내의 제어 회로(41)에 전달된다.
각 통과홀(25)을 통과하는 전자빔(20)은 각각 독립적으로 이러한 쌍이 되는 2 개의 전극(24, 26)에 인가되는 전압에 의해 편향된다. 이러한 편향에 의해 블랭킹 제어된다. 바꾸어 말하면, 제어 전극(24)과 대향 전극(26)의 조는 성형 애퍼처 어레이 기판(203)의 복수의 홀(22)(개구부)을 통과한 멀티빔 중 대응빔을 각각 블랭킹 편향시킨다.
이어서, 묘화 장치(100)에서의 묘화 기구(150)의 동작에 대해 설명한다. 전자총(201)(방출원)으로부터 방출된 전자빔(200)은 조명 렌즈(202)에 의해 대략 수직으로 프리 성형 애퍼처 어레이 기판(224)(제1 성형 애퍼처 어레이 기판) 전체를 조명한다. 프리 성형 애퍼처 어레이 기판(224)에는 직사각형의 복수의 홀(23)(제1 개구부)이 형성되고, 전자빔(200)은 모든 복수의 홀(23)이 포함되는 영역을 조명한다. 복수의 홀(23)의 위치에 조사된 전자빔(200)의 각 일부가 이러한 프리 성형 애퍼처 어레이 기판(224)의 복수의 홀(23)을 각각 통과함으로써, 예를 들면 직사각형 형상의 복수의 전자빔(임시 멀티빔)(20a ~ e)이 형성된다. 이러한 멀티빔(20)은 전자 렌즈(212)에 의해 수렴되고, 수렴 위치에 배치되는 제한 애퍼처 기판(216)(제1 제한 애퍼처 부재)에 의해 수렴점에서 벗어난 예를 들면 산란 전자(하전 입자)의 통과가 제한된다. 이에 따라, 프리 성형 애퍼처 어레이 기판(224)에 의해 산란된 전자가 차폐된다. 이 때문에, 이보다 하류측으로의 산란 전자의 침입을 방지할 수 있다. 그리고, 제한 애퍼처 기판(216)에 의해 산란 전자가 차단된 멀티빔(20)은 전자 렌즈(214)에 의해 성형 애퍼처 어레이 기판(203)에 대략 수직으로 투영된다.
여기서, 전자 렌즈(212, 214)는 렌즈 제어 회로(120)에 의해 자계가 반대 방향이고 또한 동일한 크기가 되도록 자화된다. 이에 따라, 전자 렌즈(212)를 통과한 멀티빔이 전자 렌즈(214)를 통과할 때에 회전되는 것을 회피할 수 있다. 또한, 이와 같이 배율 1 배의 반대칭 더블릿 렌즈를 구성함으로써, 왜곡 수차를 줄일 수 있다. 배율 1 배이므로, 이상적으로는, 제한 애퍼처 기판(216)은 전자 렌즈(212)와 전자 렌즈(214)의 정확히 중간 위치에 배치되게 된다.
성형 애퍼처 어레이 기판(203)(제2 성형 애퍼처 어레이 기판)에는 직사각형의 복수의 홀(23)(제2 개구부)이 형성되고, 전자 렌즈(214)에 의해 투영된 복수의 전자빔(임시 멀티빔)(20a ~ e)은 성형 애퍼처 어레이 기판(203)의 복수의 홀(22)(제2 개구부) 중 대응되는 홀(22)을 각각 통과함으로써, 원하는 사이즈의 예를 들면 직사각형 형상의 복수의 전자빔(멀티빔)(20a ~ e)으로 성형된다. 바꾸어 말하면, 성형 애퍼처 어레이 기판(203)(제2 성형 애퍼처 어레이 기판)의 복수의 홀(22)을 멀티빔(20a ~ e) 중 대응되는 빔의 적어도 일부가 각각 통과한다. 바꾸어 말하면, 프리 성형 애퍼처 어레이 기판(224)(제1 애퍼처 어레이 기판)과 성형 애퍼처 어레이 기판(203)(제2 애퍼처 어레이 기판)의 사이에 발생하는 자계의 부호가 반대이고 또한 동일한 크기의 자계가 계속되는 자계 분포 및 격자 렌즈(220)에 의해 발생하는 전기장 분포에 의해 구성되는 렌즈 작용에 의해, 프리 성형 애퍼처 어레이 기판(224)(제1 애퍼처 어레이 기판)을 통과한 애퍼처 어레이상(제1 애퍼처 어레이상)이 성형 애퍼처 어레이 기판(203)(제2 애퍼처 어레이 기판) 상에 형성된다.
여기서, 임시 멀티빔(20a ~ e)의 하류측 성형 애퍼처 어레이 기판(203)에 대한 회전 방향의 위치 이탈에 대해서는, 상류측 프리 성형 애퍼처 어레이 기판(224)의 회전 기구를 동작시킴으로써 조정한다. 혹은, 회전 조정용의 자기 렌즈를 설치해 두고 회전 이탈을 조정하는 것도 가능하다. 단, 자기 렌즈를 이용하는 경우에는 자계의 대칭성이 무너져 왜곡 수차가 증가하므로, 실용상 허용되는 범위에서 행한다.
여기서, 상류측의 프리 성형 애퍼처 어레이 기판(224)이 아니라 하류측의 성형 애퍼처 어레이 기판(203)에 의해 빔 형상을 결정함으로써, 멀티빔(20a ~ e)의 수렴점(크로스오버)의 수를 줄일 수 있다. 따라서, 광학계를 복잡화시키지 않도록 할 수 있다. 또한, 프리 성형 애퍼처 어레이 기판(224)측에서 빔 형상을 결정하는 경우에는, 하류측의 성형 애퍼처 어레이 기판(203)에서는 각 빔이 성형 애퍼처 어레이 기판(203)에 닿지 않고 지나가므로, 성형 애퍼처 어레이 기판(203) 통과 시의 산란 전자의 발생을 억제할 수 있다고 하는 메리트가 있다.
성형 애퍼처 어레이 기판(203)을 통과한 멀티빔(20a ~ e)은 블랭킹 애퍼처 어레이 기구(204)(제2 애퍼처 어레이 기판의 다른 예)의 각각 대응되는 블랭커(제1 편향기 : 개별 블랭킹 기구(47)) 내를 통과한다. 이러한 블랭커는 각각 개별적으로 통과하는 전자빔(20)을 편향시킨다(블랭킹 편향을 행함).
블랭킹 애퍼처 어레이 기구(204)를 통과한 멀티빔(20a ~ e)은 축소 렌즈(205)(전자 렌즈)에 의해 수렴된다. 바꾸어 말하면, 축소 렌즈(205)는 성형 애퍼처 어레이 기판(203)을 통과한 멀티빔(20a ~ e)을 수렴한다. 이 때, 멀티빔(20a ~ e)상의 사이즈는 축소 렌즈(205)에 의해 축소된다. 축소 렌즈(205)(전자 렌즈)에 의해 수렴 방향으로 굴절된 멀티빔(20a ~ e)은 제한 애퍼처 기판(206)에 형성된 중심의 홀을 향해 진행된다. 제한 애퍼처 기판(206)(제2 제한 애퍼처 부재)은 축소 렌즈(205)에 의해 수렴된 멀티빔(20a ~ e)의 수렴점 위치에 배치되어, 멀티빔(20a ~ e)의 수렴점에서 벗어난 전자빔(20)의 통과를 제한한다. 여기서, 블랭킹 애퍼처 어레이 기구(204)의 블랭커에 의해 편향된 전자빔(20)은 제한 애퍼처 기판(206)의 중심의 홀에서 위치가 이탈되어 제한 애퍼처 기판(206)에 의해 차폐된다. 한편, 블랭킹 애퍼처 어레이 기구(204)의 블랭커에 의해 편향되지 않은 전자빔(20)은 도 1에 나타낸 바와 같이 제한 애퍼처 기판(206)의 중심의 홀을 통과한다. 개별 블랭킹 기구(47)의 ON / OFF에 의해 블랭킹 제어가 행해져 빔의 ON / OFF가 제어된다. 이와 같이, 제한 애퍼처 기판(206)은 개별 블랭킹 기구(47)에 의해 빔 OFF의 상태가 되도록 편향된 각 빔을 차폐한다. 그리고, 빔마다 빔 ON이 된 후 빔 OFF가 될 때까지 형성된 제한 애퍼처 기판(206)을 통과한 빔에 의해 1 회분의 샷의 빔이 형성된다. 제한 애퍼처 기판(206)을 통과한 멀티빔(20)은 대물 렌즈(207)에 의해 시료(101)면 상에 초점이 맞춰지고 또한 원하는 축소율의 패턴상이 되고, 편향기(208)에 의해 제한 애퍼처 기판(206)을 통과한 각 빔(멀티빔(20) 전체)이 동일 방향으로 일괄적으로 편향되어 각 빔의 시료(101) 상의 각각의 조사 위치에 조사된다. 바꾸어 말하면, 연속 이동 가능한 XY 스테이지(105)에 재치된 시료(101)는 더블릿 렌즈를 통과한 멀티빔(20a ~ e) 중 적어도 일부의 빔군의 조사를 받는다. 또한, 예를 들면 XY 스테이지(105)가 연속 이동하고 있을 때, 빔의 조사 위치가 XY 스테이지(105)의 이동에 추종(트래킹)하도록 편향기(208)에 의해 제어된다. XY 스테이지(105)의 위치는, 도시하지 않은 스테이지 위치 검출기로부터 레이저를 XY 스테이지(105) 상의 도시하지 않은 미러를 향해 조사하고, 그 반사광을 이용하여 측정된다. 한 번에 조사되는 멀티빔(20)은, 이상적으로는 성형 애퍼처 어레이 기판(203)의 복수의 홀(22)의 배열 피치에 전술한 원하는 축소율을 곱한 피치로 나열되게 된다. 묘화 장치(100)는 각 회의 트래킹 동작 중에 XY 스테이지(105)의 이동에 추종하면서 샷 빔이 되는 멀티빔(20)을 편향기(208)에 의한 빔 편향 위치의 이동에 의해 각 빔이 1 화소씩 묘화 시퀀스를 따라 조사해 가는 묘화 동작을 행한다. 원하는 패턴을 묘화 할 때, 패턴에 따라 필요한 빔이 블랭킹 제어에 의해 빔 ON으로 제어된다.
또한, 멀티빔(20)의 광축(z 축)과 직교하는 면(x, y 축)의 위치는 얼라인먼트 코일(242, 244, 246, 248)에 의해 각 z 위치에서 조정되면 된다. 특히, 더블릿 렌즈를 구성하는 전자 렌즈(212, 214)의 사이에 배치되는 얼라인먼트 코일(244, 246)은 제한 애퍼처 기판(216)에 대하여 대칭의 위치에 배치된다. 그리고, 제한 애퍼처 기판(216)에 조사된 멀티빔(20)에 의해 제한 애퍼처 기판(216)으로부터 방출된 반사 전자를 포함하는 2 차 전자를 검출기(249)로 검출하고, 도시하지 않은 검출 회로로 멀티빔(20) 중심의 위치를 검출한다. 그리고, 이러한 검출 결과를 이용하여, 얼라인먼트 코일(244, 246)은 멀티빔(20)의 수렴점의 위치를 제한 애퍼처 기판(216)의 개구부의 위치에 맞추도록 도시하지 않은 렌즈 제어 회로에 의해 제어된다. 제한 애퍼처 기판(216)에 대하여 대칭의 위치에 2 단의 얼라인먼트 코일(244, 246)이 배치됨으로써, 상을 무회전인 채로 위치를 보정할 수 있다.
도 5는 실시 형태 1에서의 묘화 순서를 설명하기 위한 도면이다. 시료(101)의 묘화 영역(10)(혹은 묘화될 칩 영역)은 소정의 폭으로 직사각형 형상의 스트라이프 영역(35)(묘화 영역의 다른 일례)으로 분할된다. 그리고, 각 스트라이프 영역(35)은 복수의 메쉬 형상의 화소 영역(36)(화소)으로 분할된다. 화소 영역(36)(화소)의 사이즈는 예를 들면, 빔 사이즈 혹은 그 이하의 사이즈이면 적합하다. 예를 들면, 10 nm 정도의 사이즈로 하면 적합하다. 화소 영역(36)(화소)은 멀티빔의 1 개의 빔 당의 조사 단위 영역이 된다.
멀티빔(20)으로 시료(101)를 묘화할 때, 멀티빔(20)에 의한 1 회의 조사에 의해 조사 영역(34)을 조사하게 된다. 전술한 바와 같이, 트래킹 동작 중에 XY 스테이지(105)의 이동에 추종하면서 샷 빔이 되는 멀티빔(20) 전체를 일괄적으로 편향기(208)에 의한 빔 편향 위치의 이동에 의해 예를 들면 1 화소씩 차례로 연속으로 조사해 간다. 그리고, 시료(101) 상의 어느 화소를 멀티빔의 어느 빔이 조사할 지는 묘화 시퀀스에 따라 결정된다. 멀티빔의 x, y 방향으로 각각 인접하는 빔 간의 빔 피치를 이용하여, 시료(101)면 상에서의 x, y 방향으로 각각 인접하는 빔 간의 빔 피치(x 방향) × 빔 피치(y 방향)의 영역은 n × n 화소의 영역(서브 피치 영역)으로 구성된다. 예를 들면, 1 회의 트래킹 동작으로 XY 스테이지(105)가 -x 방향으로 빔 피치(x 방향)만큼 이동하는 경우, x 방향 혹은 y 방향(혹은 경사 방향)으로 1 개의 빔에 의해 조사 위치를 시프트하면서 n 화소가 묘화된다. 동일한 n × n 화소의 영역 내의 다른 n 화소가 차회의 트래킹 동작으로 전술한 빔과는 상이한 빔에 의해 동일하게 n 화소가 묘화된다. 이와 같이 n 회의 트래킹 동작으로 각각 상이한 빔에 의해 n 화소씩 묘화됨으로써, 1 개의 n × n 화소의 영역 내의 모든 화소가 묘화된다. 멀티빔의 조사 영역 내의 다른 n × n 화소의 영역에 대해서도 동시기에 동일한 동작이 실시되어, 동일하게 묘화된다. 이러한 동작에 의해 조사 영역(34) 내의 전체 화소가 묘화 가능해진다. 이들 동작을 반복함으로써, 대응되는 스트라이프 영역(35) 전체를 묘화할 수 있다. 그리고, 묘화 장치(100)에서는 필요한 화소에 필요한 조사량의 빔을 조사함으로써 형성되는 화소 패턴(비트 패턴) 의 조합에 의해 원하는 패턴을 묘화할 수 있다.
도 6은 실시 형태 1의 비교예에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다. 도 6에서 비교예는 도 1에 나타내는 전자 경통(102) 내의 구성 중 프리 성형 애퍼처 어레이 기판(224), 정전 렌즈(222) 및 정전 렌즈(232)가 배치되지 않은 점, 프리 성형 애퍼처 어레이 기판(224)의 위치에 성형 애퍼처 어레이 기판(203)이 배치된 점 이외에는 도 1과 동일하다. 편향기(208), 얼라인먼트 코일(242, 244, 246, 248) 등은 도시를 생략하였다. 비교예에서는, 더블릿 렌즈를 구성하는 전자 렌즈(212, 214)를 서로 자계가 반대 방향이고 또한 동일한 크기가 되도록 자화시켜도, 각 전자 렌즈(212, 214)에서의 구면 수차에 의해 수렴점에서의 크로스오버 직경이 설계값보다 커진다. 전자 렌즈(212)의 구면 수차에 의해 제한 애퍼처 기판(216)면에서의 수렴점에서의 크로스오버 직경이 커진다. 전자 렌즈(214)의 구면 수차에 의해 제한 애퍼처 기판(206)면에서의 수렴점에서의 크로스오버 직경이 커진다.
이에 반해, 실시 형태 1에서는 격자 렌즈(220, 230)에 의해 수차 계수가 음인 구면 수차를 발생시킨다. 이에 의해, 전자 렌즈(212, 214)에서의 구면 수차와 상쇄시킨다. 전자 렌즈(212, 214)를 포함하여 조명 렌즈(202), 축소 렌즈(205) 및 대물 렌즈(207)와 같은 전자 렌즈는 모두 멀티빔(20)을 렌즈의 내측(광축 중심측)을 향해 굴절시키는 볼록 렌즈로서 작용한다. 이 때문에, 격자 렌즈(220, 230)는 전자 렌즈(212, 214)에 의해 발생하는 구면 수차 작용을 없애기 위하여, 반대로 멀티빔(20)을 렌즈의 외측을 향해 굴절시키는 오목 렌즈로서 작용시킨다.
도 7은 실시 형태 1에서의 더블릿 렌즈의 상류측의 격자 렌즈의 구성 및 전자 궤도의 일례를 나타내는 도면이다. 더블릿 렌즈의 상류측의 격자 렌즈(220)를 구성하는 정전 렌즈(222)는 도 7에 나타낸 바와 같이 복수 단, 예를 들면 3 단의 환상 전극(250, 252, 254)에 의해 구성된다. 일반의 정전 렌즈에서는 3 단의 환상 전극(250, 252, 254) 중 중단의 환상 전극(252)에 대하여 양의 전위를 인가하고, 상하의 2 단의 환상 전극(250, 254)을 그라운드 전위로 제어한다. 이에 의해 볼록 렌즈를 구성한다.
이에 반해, 실시 형태 1에서의 정전 렌즈(222)는 도 7에 나타낸 바와 같이 프리 성형 애퍼처 어레이 기판(224)에 가장 가까운 상단의 환상 전극(250)에 대하여 양의 전위를 인가하고, 중단 및 하단의 환상 전극(252, 254)을 그라운드 전위로 제어한다. 프리 성형 애퍼처 어레이 기판(224)으로는 예를 들면 실리콘(Si) 기판 등의 도체(혹은 반도체)가 이용된다. 그리고, 프리 성형 애퍼처 어레이 기판(224)에는 복수의 홀(23)이 2 차원 형상으로 형성되어 있는데, 이러한 배열이 격자로서 작용하게 된다. 또한, 프리 성형 애퍼처 어레이 기판(224)을 그라운드 접속하여 그라운드 전위로 유지해 둔다. 이에 따라, 상류측의 조명 렌즈(202) 등에 의해 발생한 전기장을 프리 성형 애퍼처 어레이 기판(224)에 의해 일단 중단되게 할 수 있다. 이 때문에, 프리 성형 애퍼처 어레이 기판(224)의 하류측에 프리 성형 애퍼처 어레이 기판(224)면을 기점(그라운드 전위)으로 하는 새로운 전기장을 형성할 수 있다. 그리고, 도 7에 나타낸 구성의 복수 단, 예를 들면 3 단의 환상 전극(250, 252, 254)에 의해 구성되는 정전 렌즈(222)를 배치함으로써 프리 성형 애퍼처 어레이 기판(224)을 통과한 전자(e)는 환상 전극(250)에 의해 외측으로 끌어당겨지며, 정전 렌즈(222) 전체로는, 전자는 외측으로 굴절된다. 이에 의해, 오목 렌즈를 구성할 수 있다. 격자로서 작용하는 기판 형상의 부재가 없는 경우에는 전기장이 중단되지 않으므로, 오목 렌즈로 하는 것은 곤란해진다.
도 8은 실시 형태 1에서의 더블릿 렌즈의 하류측의 격자 렌즈의 구성 및 전자 궤도의 일례를 나타내는 도면이다. 더블릿 렌즈의 하류측의 격자 렌즈(230)를 구성하는 정전 렌즈(232)는 도 8에 나타낸 바와 같이 복수 단, 예를 들면 3 단의 환상 전극(350, 352, 354)에 의해 구성된다. 전술한 바와 같이, 일반의 정전 렌즈에서는 3 단의 환상 전극(350, 352, 354) 중 중단의 환상 전극(352)에 대하여 양의 전위를 인가하고, 상하의 2 단의 환상 전극(350, 354)을 그라운드 전위로 제어한다. 이에 의해 볼록 렌즈를 구성한다.
이에 반해, 실시 형태 1에서의 정전 렌즈(232)는 도 8에 나타낸 바와 같이 성형 애퍼처 어레이 기판(203)에 가장 가까운 하단의 환상 전극(254)에 대하여 양의 전위를 인가하고, 상단 및 중단의 환상 전극(350, 352)을 그라운드 전위로 제어한다. 성형 애퍼처 어레이 기판(203)으로는 예를 들면 실리콘(Si) 기판 등의 도체(혹은 반도체)가 이용된다. 그리고, 성형 애퍼처 어레이 기판(203)에는 복수의 홀(22)이 2 차원 형상으로 형성되어 있는데, 이러한 배열이 격자로서 작용하게 된다. 또한, 성형 애퍼처 어레이 기판(203)을 그라운드 접속하여 그라운드 전위로 유지해 둔다. 이에 따라, 하류측의 축소 렌즈(205) 등에 의해 발생한 전기장을 성형 애퍼처 어레이 기판(203)에 의해 일단 중단되게 할 수 있다. 이 때문에, 성형 애퍼처 어레이 기판(203)의 상류측에 성형 애퍼처 어레이 기판(203)면을 기점(그라운드 전위)으로 하는 새로운 전기장을 형성할 수 있다. 그리고, 도 8에 나타낸 구성의 복수 단, 예를 들면 3 단의 환상 전극(350, 352, 354)에 의해 구성되는 정전 렌즈(232)를 배치함으로써 더블릿 렌즈를 통과한 전자(e)는 환상 전극(350, 352, 354)과 성형 애퍼처 어레이 기판(203)의 사이에 형성되는 전기장에 의해 외측으로 끌어당겨지며, 정전 렌즈(232) 전체로는, 전자는 외측으로 굴절된다. 이에 의해, 오목 렌즈를 구성할 수 있다. 격자로서 작용하는 기판 형상의 부재가 없는 경우에는 전기장이 중단되지 않으므로, 하류의 전기장의 작용이 영향을 미쳐 오목 렌즈로 하는 것은 곤란해진다.
도 9는 실시 형태 1에서의 축상 자계 분포와 전위 분포와 근축 궤도의 일례를 나타내는 도면이다. 도 9에서는 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)의 사이의 공간에서의 축상 전위(φ(z))와 축상 자계(B(z))와 근축 궤도(s(z), t(z))의 일례를 나타내고 있다. 여기서, 축상 전위(φ(z))와 축상 자계(B(z))와 근축 궤도(s(z), t(z))는 원리 설명용이며, 엄밀한 것은 아니다. z는 광축을 따른 z 축 상의 위치를 나타낸다. 더블릿 렌즈를 구성하는 전자 렌즈(212)와 전자 렌즈(214)에 자계가 반대 방향이고 또한 동일한 크기가 되도록 자화시키는 반대칭 자화를 행함으로써, 도 9에 나타낸 바와 같이 전자 렌즈(212)의 영향을 받은 축상 자계(B(z))와 전자 렌즈(214)의 영향을 받은 축상 자계(B(z))가 반대 방향이고 또한 동일한 크기가 된다. 이러한 자계(B(z))는 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)에서 중단되는 것은 아니다. 이에 반해, 격자 렌즈(220)의 영향을 받은 축상 전위(φ(z))는 프리 성형 애퍼처 어레이 기판(224)면에서 중단된다. 마찬가지로, 격자 렌즈(230)의 영향을 받은 축상 전위(φ(z))는 성형 애퍼처 어레이 기판(203)면에서 중단된다. 또한, 실시 형태 1에서는 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)의 사이의 전위 분포가 제한 애퍼처 기판(216)의 높이 위치(za)에 대하여 대칭이도록 렌즈 제어 회로(122, 124)에 의해 제어된다.
도 10은 실시 형태 1에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다. 도 10에서 편향기(208), 얼라인먼트 코일(242, 244, 246, 248) 등은 도시를 생략하였다. 오목 렌즈에 작용하는 격자 렌즈(220)를 배치함으로써, 더블릿 렌즈를 구성하는 전자 렌즈(212)에 의해 멀티빔의 왜곡 수차를 저감시킨 상태를 유지하면서, 전자 렌즈(212)에 의해 발생한 구면 수차를 저감시킬 수 있다. 그 결과, 전자 렌즈(212)에 의해 발생한 구면 수차에 의해 넓어진 제한 애퍼처 기판(216)면 상에서의 멀티빔(20)의 크로스오버 직경을 줄일 수 있다. 마찬가지로, 오목 렌즈에 작용하는 격자 렌즈(230)를 배치함으로써, 더블릿 렌즈를 구성하는 전자 렌즈(214)에 의해 멀티빔의 왜곡 수차를 저감시킨 상태를 유지하면서, 전자 렌즈(214)에 의해 발생한 구면 수차를 저감시킬 수 있다. 그 결과, 전자 렌즈(214)에 의해 발생한 구면 수차에 의해 넓어진 제한 애퍼처 기판(206)면 상에서의 멀티빔(20)의 크로스오버 직경을 줄일 수 있다.
이상과 같이, 실시 형태 1에 따르면 멀티빔(20)의 왜곡 수차를 줄일 수 있고 또한 보정 후의 왜곡 수차의 증대를 초래하지 않고 구면 수차를 보정할 수 있다. 또한, 실시 형태 1에 따르면 제한 애퍼처(216)에 의해 프리 성형 애퍼처 어레이 기판(224)의 개구부 부근에서 발생한 산란 전자를 차폐할 수 있다. 또한, 하류에 설치된 제한 애퍼처(206)와 합침으로써, 제한 애퍼처(216)가 없이 제한 애퍼처(206)만으로 산란 전자를 차폐하는 경우에 비해 콘트라스트를 더 향상할 수 있어 이점이 있다.
실시 형태 2.
실시 형태 1에서는 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)이라고 하는 2 단계의 성형 애퍼처를 이용하여 멀티빔(20)을 형성하고 또한 이러한 프리 성형 애퍼처 어레이 기판(224)과 성형 애퍼처 어레이 기판(203)을 각각 격자로서 이용하여 격자 렌즈(220, 230)를 배치하였다. 그러나, 격자 렌즈(220, 230)의 구성 방법은 이러한 경우에 한정되지 않는다. 실시 형태 2에서는 블랭킹 애퍼처 어레이 기구(204)를 격자 렌즈(230)의 격자로서 이용하는 경우에 대해 설명한다.
도 11은 실시 형태 2에서의 묘화 장치의 구성을 나타내는 개념도이다. 도 11에서는 프리 성형 애퍼처 어레이 기판(224) 대신에 성형 애퍼처 어레이 기판(203)을 배치한다. 또한, 후술하는 바와 같이 상면을 평면으로 한 블랭킹 애퍼처 어레이 기구(204)를 배치한다. 그리고, 블랭킹 애퍼처 어레이 기구(204)의 하류측(XY 스테이지(105)측)에 보호 애퍼처 어레이 기판(226)을 배치한다. 그 외의 구성은 도 1과 동일하다.
도 11에서 정전 렌즈(222)는 성형 애퍼처 어레이 기판(203)(제1 성형 애퍼처 어레이 기판, 혹은 제1 애퍼처 어레이 기판)에 대하여 전자총(201)측과는 반대측의 블랭킹 애퍼처 어레이 기구(204)측 바로 근처에 배치된다. 예를 들면, 성형 애퍼처 어레이 기판(204)과 더블릿 렌즈를 구성하는 광축상 상류측의 전자 렌즈(212)와의 사이에 배치된다. 그리고, 정전 렌즈(222)는 성형 애퍼처 어레이 기판(203)을 격자로서 이용한 격자 렌즈(220)(제1 격자 렌즈)를 구성한다. 격자 렌즈(220)는 전술한 내용 중 프리 성형 애퍼처 어레이 기판(224)을 성형 애퍼처 어레이 기판(203)으로 바꾸어 읽은 내용과 같이 오목 렌즈를 구성한다.
또한 실시 형태 2에서는, 성형 애퍼처 어레이 기판(203)이 더블릿 렌즈보다 광축 상류측으로 이동한 것에 수반하여, 도 11에서 정전 렌즈(232)는 블랭킹 애퍼처 어레이 기구(204)(제2 애퍼처 어레이 기판)에 대하여 전자 렌즈(212, 214)에 의해 구성되는 더블릿 렌즈측 바로 근처에 배치된다. 그리고, 정전 렌즈(232)는 블랭킹 애퍼처 어레이 기구(204)를 격자로서 이용한 격자 렌즈(230)(제2 격자 렌즈)를 구성한다. 격자 렌즈(230)는 전술한 내용 중 성형 애퍼처 어레이 기판(203)을 블랭킹 애퍼처 어레이 기구(204)으로 바꾸어 읽은 내용과 같이 오목 렌즈를 구성한다. 따라서, 실시 형태 2에서는 성형 애퍼처 어레이 기판(203)과 블랭킹 애퍼처 어레이 기구(204)의 사이의 전위 분포가 제한 애퍼처 기판(216)의 높이 위치(za)에 대하여 대칭이도록 렌즈 제어 회로(122, 124)에 의해 제어된다.
여기서, 블랭킹 애퍼처 어레이 기구(204)의 구성이 도 3에 나타낸 바와 같이 기판(31)의 중앙부의 멤브레인 영역(30) 상에 해당하는 통과홀(25)을 사이에 두고 블랭킹 편향용의 제어 전극(24)과 대향 전극(26)의 조(블랭커 : 블랭킹 편향기)가 각각 배치되면, 블랭킹 애퍼처 어레이 기구(204) 상면(멤브레인 영역(30) 상면)에 전극군이 실려 있으므로 요철이 발생하여 평면이 아니게 된다. 전기장을 중단시키기 위해서는, 격자 렌즈(230)의 중단시키는 면이 평면인 편이 바람직하다.
도 12는 실시 형태 2에서의 블랭킹 애퍼처 어레이 기구의 구성을 나타내는 단면도이다. 실시 형태 2에서의 블랭킹 애퍼처 어레이 기구(204)는 도 12에 나타낸 바와 같이 멤브레인 영역(30) 상이 아니라 멤브레인 영역(30) 하면에 각 통과홀(25)의 근방 위치에 해당하는 통과홀(25)을 사이에 두고 블랭킹 편향용의 제어 전극(24)과 대향 전극(26)의 조(블랭커 : 블랭킹 편향기)가 각각 배치된다. 또한, 멤브레인 영역(30)의 각 통과홀(25)의 근방에는 각 통과홀(25)용의 제어 전극(24)에 편향 전압을 인가하는 제어 회로(41)(로직 회로)가 배치된다. 각 빔용의 대향 전극(26)은 그라운드 접속된다. 그 외의 점은 도 3과 동일하다. 도 12에 나타낸 바와 같이, 제어 전극(24)과 대향 전극(26)의 조를 멤브레인 영역(30) 상이 아니라 멤브레인 영역(30) 하면에 배치함으로써, 기판(31) 상면(멤브레인 영역(30) 상면)을 2 차원 형상으로 복수의 통과홀(25)이 형성된 평면으로 할 수 있다. 제어 전극(24)과 대향 전극(26)의 조를 멤브레인 영역(30) 하면에 배치함으로써 제어 전극(24)과 대향 전극(26)의 조가 전자 경통(102) 내의 전자 광학계 공간에 노출되게 되므로, 보호 애퍼처 어레이 기판(226)에 의해 제어 전극(24)과 대향 전극(26)을 덮음으로써, 어느 전극쌍에서 발생하는 전기장을 그 영향이 다른 전극쌍의 사이를 통과하는 전자의 궤도에 영향을 주지 않도록 차폐할 수 있다.
이상과 같이 구성해도, 실시 형태 2에 따르면 오목 렌즈에 작용하는 격자 렌즈(220)를 배치함으로써, 더블릿 렌즈를 구성하는 전자 렌즈(212)에 의해 멀티빔의 왜곡 수차를 저감시킨 상태를 유지하면서, 전자 렌즈(212)에 의해 발생한 구면 수차를 저감시킬 수 있다. 그 결과, 전자 렌즈(212)에 의해 발생한 구면 수차에 의해 넓어진 제한 애퍼처 기판(216)면 상에서의 멀티빔(20)의 크로스오버 직경을 줄일 수 있다. 마찬가지로, 오목 렌즈에 작용하는 격자 렌즈(230)를 배치함으로써, 더블릿 렌즈를 구성하는 전자 렌즈(214)에 의해 멀티빔의 왜곡 수차를 저감시킨 상태를 유지하면서, 전자 렌즈(214)에 의해 발생한 구면 수차를 저감시킬 수 있다. 그 결과, 전자 렌즈(214)에 의해 발생한 구면 수차에 의해 넓어진 제한 애퍼처 기판(206)면 상에서의 멀티빔(20)의 크로스오버 직경을 줄일 수 있다.
실시 형태 3.
전술한 실시 형태 1, 2에서는 얼라인먼트 코일(242, 244, 246, 248), 특히 얼라인먼트 코일(244, 246)을 이용하여 수렴점의 위치를 조정하는 경우를 설명하였으나, 이에 한정되지 않는다.
도 13은 실시 형태 3에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다. 도 13에서 편향기(208), 검출기(249), 얼라인먼트 코일(242, 248) 및 제어계 회로(160) 등은 도시를 생략하였다. 도 13에서 얼라인먼트 코일(244, 246) 대신에 회전 보정 자기 렌즈(243)에 의한 자계 중심 높이가 제한 애퍼처 기판(216)면과 실질적으로 동일한 높이 위치가 되도록 회전 보정 자기 렌즈(243)를 배치한다. 그 외의 점은 도 1과 동일하다.
검출기(249)에 의한 검출 결과를 이용하여, 회전 보정 자기 렌즈(243)는 멀티빔(20)의 수렴점의 위치를 제한 애퍼처 기판(216)의 개구부의 위치에 맞추도록 도시하지 않은 렌즈 제어 회로에 의해 제어된다. 회전 보정 자기 렌즈(243)에 의해 상을 무회전인 채로 위치를 보정할 수 있다. 그 외의 내용은 실시 형태 1 혹은 실시 형태 2와 동일하다.
실시 형태 4.
전술한 실시 형태 1, 2에서는 얼라인먼트 코일(244, 246)을 이용하여 수렴점의 위치를 조정하는 경우를 설명하였다. 전술한 실시 형태 3에서는 회전 보정 자기 렌즈(243)를 이용하여 수렴점의 위치를 조정하는 경우를 설명하였다. 그러나, 수렴점의 위치를 조정하는 구성은 이에 한정되지 않는다.
도 14는 실시 형태 4에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다. 도 14에서 편향기(208), 검출기(249), 얼라인먼트 코일(242, 248) 및 제어계 회로(160) 등은 도시를 생략하였다. 도 14에서 얼라인먼트 코일(244, 246) 대신에 더블릿 렌즈를 구성하는 전자 렌즈(212, 214)의 사이에 제한 애퍼처 기판(216)에 대하여 대칭의 위치에 2 개의 초점 보정용 아인젤 렌즈(244, 245)를 배치한다. 그 외의 점은 도 1과 동일하다.
검출기(249)에 의한 검출 결과를 이용하여, 초점 보정용 아인젤 렌즈(244, 245)는 멀티빔(20)의 수렴점의 위치를 제한 애퍼처 기판(216)의 개구부의 위치에 맞추도록 도시하지 않은 렌즈 제어 회로에 의해 제어된다. 초점 보정용 아인젤 렌즈(244, 245)에 의해 상을 대략 무회전인 채로 결상 위치를 보정할 수 있다. 그 외의 내용은 실시 형태 1, 실시 형태 2 혹은 실시 형태 3과 동일하다. 아인젤 렌즈(244, 245)에 의한 전기장 분포가 제한 애퍼처에 관해서 대칭이고 자계 분포가 반대칭이 되는 경우에는 무회전이 된다.
또한, 도 14에서 렌즈의 입구와 출구에서 동일한 전위의 정전 렌즈를 구성하는 아인젤 렌즈(244, 245)에 대해 각각 양측의 전극을 그라운드 접속한다. 그리고, 초점 보정용 아인젤 렌즈(244, 245)는 제한 애퍼처 기판(216)을 중심 전극으로 하고 제한 애퍼처 기판(216)에 대하여 상하 대칭인 축상 전위 분포를 가지도록 구성되면 적합하다. 그 외의 내용은 실시 형태 1 혹은 실시 형태 2와 동일하다. 이 경우, 렌즈 전기장은 상하 대칭이고 또한 자계 분포는 반대칭이므로, 상의 회전이 없는 초점 보정이 가능해진다.
실시 형태 5.
전술한 실시 형태 2에서는 더블릿 렌즈보다 상류측의 성형 애퍼처 어레이 기판(203)을 격자 렌즈(220)의 격자로서 이용하는 경우에 정전 렌즈(222)를 더블릿 렌즈측에 배치하였으나, 이에 한정되지 않는다. 마찬가지로, 블랭킹 애퍼처 어레이 기구(204)를 격자 렌즈(230)의 격자로서 이용하는 경우에 정전 렌즈(232)를 더블릿 렌즈측에 배치하였으나, 이에 한정되지 않는다.
도 15는 실시 형태 5에서의 구성과 빔 궤도의 일례를 설명하기 위한 도면이다. 도 15에서 격자 렌즈(220)를 구성하는 정전 렌즈(222)를 성형 애퍼처 어레이 기판(203)보다 광축 상류측(더블릿 렌즈측과는 반대측)에 배치한다. 또한, 블랭킹 애퍼처 어레이 기구(204)는 실시 형태 1과 마찬가지로 하면을 평면으로 한 구성으로 한다. 그리고, 격자 렌즈(230)를 구성하는 정전 렌즈(232)를 블랭킹 애퍼처 어레이 기구(204)의 광축 하류측(더블릿 렌즈측과는 반대측)에 배치한다. 보호 애퍼처 어레이 기판(226)은 없어도 상관없다. 그 외의 구성은 도 11과 동일하다.
도 15에서 정전 렌즈(222)는 성형 애퍼처 어레이 기판(204)을 격자로서 이용한 격자 렌즈(220)(제1 격자 렌즈)를 구성한다. 격자 렌즈(220)는 전술한 바와 같이 오목 렌즈를 구성한다.
또한, 정전 렌즈(232)는 블랭킹 애퍼처 어레이 기구(204)를 격자로서 이용한 격자 렌즈(230)(제2 격자 렌즈)를 구성한다. 격자 렌즈(230)는 전술한 바와 같이 오목 렌즈를 구성한다.
도 15에 나타낸 바와 같이, 격자 렌즈를 구성하는 전극을 성형 애퍼처 플레이트에 대해 전자원측에 배치하는 것도 가능하다. 이 경우, 제2 격자 렌즈의 전극은 제2 성형 애퍼처의 하류측에 설치함으로써, 제1 및 제2 성형 애퍼처 간의 전기장 분포의 대칭성을 확보할 수 있다.
이상과 같이, 각 실시 형태에 따르면 블랭킹 애퍼처 어레이 기구(204)에 형성되는 회로로의 X 선, 전자선의 유입, 애퍼처로의 전자선 유입(열부하)을 억제할 수 있다. 또한, 크로스오버 결상의 수차가 커지는 것을 억제할 수 있다.
이상, 구체예를 참조하여 실시 형태에 대해 설명하였다. 그러나, 본 발명은 이들 구체예에 한정되지 않는다. 전술한 예에서는 격자 렌즈(220, 230)가 성형 애퍼처 어레이 기판(203)(프리 성형 애퍼처 어레이 기판(224)) 혹은 블랭킹 애퍼처 어레이 기판(204) 등을 격자로서 이용하는 경우를 설명하였으나, 이에 한정되지 않는다. 별도로 격자재를 준비해도 된다. 혹은, 전자빔을 투과하는 재료를 포일로서 이용하여 격자 렌즈(220, 230) 대신에 오목 렌즈가 되는 포일 렌즈를 배치해도 된다.
또한, 제1 성형 애퍼처와 제2 애퍼처 사이의 결상은 완전한 것이 아니더라도, 빔 번짐에 의한 손실이 허용 범위인 범위에서 결상의 이탈은 허용된다.
또한, 전술한 예에서는 묘화 장치(100)를 일례로서 설명하였으나, 본 발명은 묘화 장치에 한정되지 않으며, 검사 장치 등을 포함하는 멀티 하전 입자빔 장치 전반에 적용할 수 있다.
또한, 장치 구성 또는 제어 방법 등 본 발명의 설명에 직접 필요하지 않은 부분 등에 대해서는 기재를 생략하였으나, 필요한 장치 구성 또는 제어 방법을 적절히 선택하여 이용할 수 있다. 예를 들면, 묘화 장치(100)를 제어하는 제어부 구성에 대해서는 기재를 생략하였으나, 필요한 제어부 구성을 적절히 선택하여 이용하는 것은 말할 필요도 없다.
그 외에 본 발명의 요소를 구비하며 당업자가 적절히 설계 변경할 수 있는 모든 멀티 하전 입자빔 장치는 본 발명의 범위에 포함된다.
본 발명의 몇 개의 실시 형태를 설명하였으나, 이들 실시 형태는 예로서 제시한 것이며, 발명의 범위를 한정하는 것은 의도하고 있지 않다. 이들 신규 실시 형태는 그 외의 다양한 형태로 실시되는 것이 가능하며, 발명의 요지를 일탈하지 않는 범위에서 다양한 생략, 치환, 변경을 행할 수 있다. 이들 실시 형태 또는 그 변형은 발명의 범위 또는 요지에 포함되고, 또한 특허 청구의 범위에 기재된 발명과 그 균등 범위에 포함된다.

Claims (10)

  1. 하전 입자빔을 방출하는 방출원과,
    상기 하전 입자빔을 조명하는 조명 렌즈와,
    복수의 제1 개구부가 형성되고, 상기 복수의 제1 개구부 전체가 포함되는 영역에 조명된 상기 하전 입자빔의 조사를 받아, 상기 복수의 제1 개구부를 상기 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 제1 애퍼처 어레이 기판과,
    상기 제1 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제1 격자 렌즈와,
    복수의 제2 개구부가 형성되고, 상기 복수의 제2 개구부를 상기 멀티빔 중 대응되는 빔의 적어도 일부가 각각 통과하는 제2 애퍼처 어레이 기판과,
    상기 제1 애퍼처 어레이 기판과 상기 제2 애퍼처 어레이 기판의 사이이며 상기 멀티빔의 제1 수렴점 위치에 배치되어, 상기 제1 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제1 제한 애퍼처 기판과,
    상기 제2 애퍼처 어레이 기판을 통과한 멀티빔 중 적어도 일부의 빔군의 조사를 받는 시료를 재치하는 연속 이동 가능한 스테이지
    를 구비하고,
    상기 제1 애퍼처 어레이 기판과 상기 제2 애퍼처 어레이 기판의 사이에 발생하는 자계의 부호가 반대이고 또한 동일한 크기의 자계가 계속되는 자계 분포 및 상기 제1 격자 렌즈에 의해 발생하는 전기장 분포에 의해 구성되는 렌즈 작용에 의해, 상기 제1 성형 애퍼처 어레이 기판을 통과한 제1 애퍼처 어레이상이 상기 제2 애퍼처 어레이 기판 상에 형성되는 것을 특징으로 하는 멀티 하전 입자빔 장치.
  2. 제1항에 있어서,
    상기 제1 제한 애퍼처 부재는 제3 개구부를 가지며,
    상기 제1 및 제2 전자 렌즈의 사이에 배치되고, 상기 제1 수렴점의 위치를 상기 제1 제한 애퍼처 기판의 상기 제3 개구부의 위치에 맞추는 얼라인먼트 코일을 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
  3. 제1항에 있어서,
    상기 제1 및 제2 애퍼처 어레이 기판 사이의 전위 분포가 상기 제1 제한 애퍼처 기판의 높이 위치에 대하여 대칭이도록 제어되는 것을 특징으로 하는 멀티 하전 입자빔 장치.
  4. 제1항에 있어서,
    상기 제1 및 제2 애퍼처 어레이 기판에 대하여 상기 스테이지측에 배치되며, 상기 멀티빔이 통과하는 복수의 통과홀이 형성되고, 상기 복수의 통과홀을 통과하는 멀티빔의 블랭킹 제어를 행하는 복수의 블랭커가 배치된 기판을 가지는 블랭킹 애퍼처 어레이 기구를 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
  5. 하전 입자빔을 방출하는 방출원과,
    상기 하전 입자빔을 조명하는 조명 렌즈와,
    복수의 제1 개구부가 형성되고, 상기 복수의 제1 개구부 전체가 포함되는 영역에 조명된 상기 하전 입자빔의 조사를 받아, 상기 복수의 제1 개구부를 상기 하전 입자빔의 일부가 각각 통과함으로써 멀티빔을 형성하는 제1 성형 애퍼처 어레이 기판과,
    상기 제1 성형 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제1 격자 렌즈와,
    상기 제1 격자 렌즈에 대하여 상기 방출부측과는 반대측에 배치되며, 자계의 부호가 반대이고 또한 동일한 크기로 자화되는 제1 및 제2 전자 렌즈를 가지는 더블릿 렌즈와,
    상기 제1 및 제2 전자 렌즈의 사이이며 상기 멀티빔의 제1 수렴점 위치에 배치되어, 상기 제1 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제1 제한 애퍼처 부재와,
    상기 더블릿 렌즈를 통과한 멀티빔 중 적어도 일부의 빔군의 조사를 받는 시료를 재치하는 연속 이동 가능한 스테이지
    를 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
  6. 제5항에 있어서,
    상기 더블릿 렌즈에 대하여 상기 스테이지측에 배치되며, 복수의 제2 개구부가 형성되고, 상기 복수의 제2 개구부를 상기 멀티빔 중 대응되는 빔의 적어도 일부가 각각 통과하는 제2 성형 애퍼처 어레이 기판과,
    상기 제2 성형 애퍼처 어레이 기판에 대하여 상기 더블릿 렌즈측에 배치되며, 상기 제2 성형 애퍼처 어레이 기판을 격자로서 이용한 오목 렌즈를 구성하는 제2 격자 렌즈와,
    상기 제2 성형 애퍼처 어레이 기판을 통과한 멀티빔을 수렴하는 전자 렌즈와,
    상기 전자 렌즈에 의해 수렴된 멀티빔의 제2 수렴점 위치에 배치되어, 상기 제2 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제2 제한 애퍼처 부재
    를 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
  7. 제5항에 있어서,
    상기 더블릿 렌즈에 대하여 상기 스테이지측에 배치되며, 상기 멀티빔이 통과하는 복수의 통과홀이 형성되고, 상기 복수의 통과홀을 통과하는 멀티빔의 블랭킹 제어를 행하는 복수의 블랭커가 하면측에 배치된 기판을 가지는 블랭킹 애퍼처 어레이 기구와,
    상기 기판에 대하여 상기 더블릿 렌즈측에 배치되며, 상기 기판을 격자로서 이용한 오목 렌즈를 구성하는 제2 격자 렌즈와,
    상기 블랭킹 애퍼처 어레이 기구를 통과한 멀티빔을 수렴하는 전자 렌즈와,
    상기 전자 렌즈에 의해 수렴된 멀티빔의 제2 수렴점 위치에 배치되어, 상기 제2 수렴점에서 벗어난 하전 입자의 통과를 제한하는 제2 제한 애퍼처 부재
    를 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
  8. 제6항에 있어서,
    상기 제1 및 제2 성형 애퍼처 어레이 기판 사이의 전위 분포가 상기 제1 제한 애퍼처 기판의 높이 위치에 대하여 대칭이도록 제어되는 것을 특징으로 하는 멀티 하전 입자빔 장치.
  9. 제7항에 있어서,
    상기 제1 성형 애퍼처 어레이 기판과 상기 블랭킹 애퍼처 어레이 기구의 사이의 전위 분포가 상기 제1 제한 애퍼처 기판의 높이 위치에 대하여 대칭이도록 제어되는 것을 특징으로 하는 멀티 하전 입자빔 장치.
  10. 제5항에 있어서,
    상기 제1 제한 애퍼처 부재는 제3 개구부를 가지며,
    상기 제1 및 제2 전자 렌즈의 사이에 배치되고, 상기 제1 수렴점의 위치를 상기 제1 제한 애퍼처 기판의 상기 제3 개구부의 위치에 맞추는 얼라인먼트 코일을 더 구비한 것을 특징으로 하는 멀티 하전 입자빔 장치.
KR1020160174629A 2015-12-22 2016-12-20 멀티 하전 입자빔 장치 KR101900050B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249309A JP6684586B2 (ja) 2015-12-22 2015-12-22 マルチ荷電粒子ビーム装置
JPJP-P-2015-249309 2015-12-22

Publications (2)

Publication Number Publication Date
KR20170074794A true KR20170074794A (ko) 2017-06-30
KR101900050B1 KR101900050B1 (ko) 2018-09-18

Family

ID=59066555

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174629A KR101900050B1 (ko) 2015-12-22 2016-12-20 멀티 하전 입자빔 장치

Country Status (4)

Country Link
US (1) US10163604B2 (ko)
JP (1) JP6684586B2 (ko)
KR (1) KR101900050B1 (ko)
TW (1) TWI629571B (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6642092B2 (ja) * 2016-02-22 2020-02-05 株式会社ニューフレアテクノロジー 検査装置及び検査方法
GB201609995D0 (en) * 2016-06-08 2016-07-20 Aquasium Technology Ltd Shaped welding head
JP6851181B2 (ja) * 2016-11-09 2021-03-31 株式会社ニューフレアテクノロジー マルチビーム光学系の調整方法
WO2018122176A1 (en) * 2016-12-30 2018-07-05 Asml Netherlands B.V. An apparatus using multiple charged particle beams
JP7073668B2 (ja) 2017-10-25 2022-05-24 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム描画装置
JP7198092B2 (ja) * 2018-05-18 2022-12-28 株式会社ニューフレアテクノロジー マルチ電子ビーム照射装置、マルチ電子ビーム検査装置及びマルチ電子ビーム照射方法
JP7030663B2 (ja) * 2018-09-12 2022-03-07 株式会社東芝 半導体装置及び荷電粒子線露光装置
JP7016309B2 (ja) * 2018-09-19 2022-02-04 東芝デバイス&ストレージ株式会社 半導体装置
US11145485B2 (en) * 2018-12-26 2021-10-12 Nuflare Technology, Inc. Multiple electron beams irradiation apparatus
CN111863572A (zh) * 2019-04-25 2020-10-30 上海凯世通半导体股份有限公司 电磁透镜组中带电粒子束的控制方法及系统
NL2024065B1 (en) * 2019-10-21 2021-06-22 Univ Delft Tech Multi-beam charged particle source with alignment means
EP3975222A1 (en) * 2020-09-24 2022-03-30 ASML Netherlands B.V. Charged particle assessment tool, inspection method
JP2023509397A (ja) * 2020-01-06 2023-03-08 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子評価ツール、検査方法
JP7455720B2 (ja) * 2020-09-29 2024-03-26 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム照射装置およびマルチ荷電粒子ビーム照射方法
US11094499B1 (en) * 2020-10-04 2021-08-17 Borries Pte. Ltd. Apparatus of charged-particle beam such as electron microscope comprising sliding specimen table within objective lens
CN116435163A (zh) * 2023-06-12 2023-07-14 广东省科学院半导体研究所 多电子束场曲校正模块及电子束光柱体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040076A (ja) * 2002-01-17 2004-02-05 Ims Nanofabrication Gmbh パターンを基板上に露光するマスクレス粒子ビーム装置
JP2006080276A (ja) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp 電子ビーム描画装置
JP2006080304A (ja) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp 荷電粒子ビーム露光装置
KR20140083887A (ko) * 2012-12-26 2014-07-04 가부시키가이샤 뉴플레어 테크놀로지 멀티 하전 입자빔 묘화 장치
KR20150104042A (ko) * 2014-03-04 2015-09-14 가부시키가이샤 뉴플레어 테크놀로지 멀티 하전 입자빔 묘화 장치

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985634A (en) * 1988-06-02 1991-01-15 Oesterreichische Investitionskredit Aktiengesellschaft And Ionen Mikrofabrications Ion beam lithography
US6723997B2 (en) * 2001-10-26 2004-04-20 Jeol Ltd. Aberration corrector for instrument utilizing charged-particle beam
DE60236302D1 (de) * 2002-12-17 2010-06-17 Integrated Circuit Testing Mehrachsige Verbundlinse, Strahlvorrichtung und Verfahren zur Anwendung dieser kombinierten Linse
JP2005294754A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 電子ビーム描画装置、電子ビーム描画方法、電子ビーム描画プログラム及び直接描画方式を用いた半導体装置の製造方法
JP4841878B2 (ja) * 2005-07-07 2011-12-21 株式会社ニューフレアテクノロジー 電子ビーム装置及び電子ビームの照射方法
DE102008035297B4 (de) * 2007-07-31 2017-08-17 Hitachi High-Technologies Corporation Aberrationskorrektureinrichtung für Ladungsteilchenstrahlen in einem optischen System einer Ladungsteilchenstrahlvorrichtung und Ladungsteilchenstrahlvorrichtung mit der Aberrationskorrektureinrichtung
JP5743886B2 (ja) * 2008-06-04 2015-07-01 マッパー・リソグラフィー・アイピー・ビー.ブイ. ターゲットを露光するための方法およびシステム
JP5123754B2 (ja) * 2008-06-24 2013-01-23 株式会社ニューフレアテクノロジー 描画装置及び荷電粒子ビームの焦点合わせ方法
JP2011077180A (ja) * 2009-09-29 2011-04-14 Nuflare Technology Inc 荷電粒子ビーム描画装置及び荷電粒子ビームのアライメント方法
TWI477925B (zh) 2011-10-04 2015-03-21 Nuflare Technology Inc Multi - beam charged particle beam mapping device and multi - beam charged particle beam rendering method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004040076A (ja) * 2002-01-17 2004-02-05 Ims Nanofabrication Gmbh パターンを基板上に露光するマスクレス粒子ビーム装置
JP2006080276A (ja) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp 電子ビーム描画装置
JP2006080304A (ja) * 2004-09-09 2006-03-23 Hitachi High-Technologies Corp 荷電粒子ビーム露光装置
KR20140083887A (ko) * 2012-12-26 2014-07-04 가부시키가이샤 뉴플레어 테크놀로지 멀티 하전 입자빔 묘화 장치
KR20150104042A (ko) * 2014-03-04 2015-09-14 가부시키가이샤 뉴플레어 테크놀로지 멀티 하전 입자빔 묘화 장치

Also Published As

Publication number Publication date
US20170178862A1 (en) 2017-06-22
JP2017117859A (ja) 2017-06-29
KR101900050B1 (ko) 2018-09-18
TWI629571B (zh) 2018-07-11
JP6684586B2 (ja) 2020-04-22
TW201732445A (zh) 2017-09-16
US10163604B2 (en) 2018-12-25

Similar Documents

Publication Publication Date Title
KR101900050B1 (ko) 멀티 하전 입자빔 장치
JP7198092B2 (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置及びマルチ電子ビーム照射方法
TWI474360B (zh) 投影透鏡配置
KR101601128B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
US9466461B2 (en) Rotation angle measuring method of multi-charged particle beam image, rotation angle adjustment method of multi-charged particle beam image, and multi-charged particle beam writing apparatus
US8368015B2 (en) Particle-optical system
TWI476808B (zh) Multi - charged particle beam rendering device and multi - charged particle beam rendering method
KR101934320B1 (ko) 멀티 하전 입자빔의 블랭킹 장치, 멀티 하전 입자빔 묘화 장치, 및 멀티 하전 입자빔의 불량빔 차폐 방법
US9299535B2 (en) Multi charged particle beam writing apparatus
KR20110030466A (ko) 이미징 시스템
KR20130036726A (ko) 멀티 하전 입자빔 묘화 장치 및 멀티 하전 입자빔 묘화 방법
JP2018078187A (ja) マルチビーム光学系の調整方法及びマルチビーム露光装置
KR102410976B1 (ko) 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법
KR102025602B1 (ko) 멀티 빔용 애퍼쳐 세트 및 멀티 하전 입자 빔 묘화 장치
KR102371265B1 (ko) 멀티 전자 빔 조사 장치
KR101958926B1 (ko) 멀티 하전 입자빔의 블랭킹 장치, 멀티 하전 입자빔의 블랭킹 방법 및 멀티 하전 입자빔 묘화 장치
US9991086B2 (en) Multi charged particle beam writing method and multi charged particle beam writing apparatus
JP6951083B2 (ja) マルチ荷電粒子ビーム描画方法およびマルチ荷電粒子ビーム描画装置
JP2018032791A (ja) マルチ荷電粒子ビーム露光装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant