KR20170065660A - 제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템 - Google Patents

제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템 Download PDF

Info

Publication number
KR20170065660A
KR20170065660A KR1020177012876A KR20177012876A KR20170065660A KR 20170065660 A KR20170065660 A KR 20170065660A KR 1020177012876 A KR1020177012876 A KR 1020177012876A KR 20177012876 A KR20177012876 A KR 20177012876A KR 20170065660 A KR20170065660 A KR 20170065660A
Authority
KR
South Korea
Prior art keywords
light
intensity
wafer
optical sensors
assembly
Prior art date
Application number
KR1020177012876A
Other languages
English (en)
Other versions
KR102290939B1 (ko
Inventor
메이 선
얼 젠센
케빈 오브라이언
Original Assignee
케이엘에이-텐코 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 케이엘에이-텐코 코포레이션 filed Critical 케이엘에이-텐코 코포레이션
Publication of KR20170065660A publication Critical patent/KR20170065660A/ko
Application granted granted Critical
Publication of KR102290939B1 publication Critical patent/KR102290939B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/58Photometry, e.g. photographic exposure meter using luminescence generated by light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 디바이스는 하나 이상의 공동들을 포함하는 웨이퍼 어셈블리를 포함한다. 웨이퍼 측정 디바이스는 검출기 어셈블리를 더 포함한다. 검출기 어셈블리는 웨이퍼 어셈블리의 하나 이상의 공동들 내에 배치된다. 검출기 어셈블리는 하나 이상의 광 센서들을 포함한다. 검출기 어셈블리는 또한 웨이퍼 어셈블리의 표면 상에 입사하는 자외선 광의 세기의 직접적 또는 간접적 측정을 수행하도록 구성된다. 검출기 어셈블리는 또한, 하나 이상의 광 센서들의 하나 이상의 특성들에 기초하여 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된다.

Description

제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템{METHOD AND SYSTEM FOR MEASURING RADIATION AND TEMPERATURE EXPOSURE OF WAFERS ALONG A FABRICATION PROCESS LINE}
관련 출원에 대한 상호-참조
본 출원은 다음의 나열된 출원(들)("관련 출원들")과 관련이 있고, 이로부터 이용가능한 유효한 최우선 출원일(들)의 이익을 청구한다(예컨대, 관련 출원(들)의 임의의 그리고 모든 부모, 조부모, 조조부모 출원들 등에 대하여, 가특허 출원들 이외의 것에 대한 이용가능한 최우선일을 청구하거나, 또는 가특허 출원들에 대하여 35 USC § 119(e)에 따른 이익을 청구한다).
관련 출원들:
USPTO 특별법 요건의 목적상, 본 출원은 "WIRELESS UV AND TEMPERATURE SENSING DEVICE FOR HIGH TEMPERATURE PROCESS"이라는 발명의 명칭으로 메이 순(Mei Sun), 얼 젠센(Earl Jensen) 및 케빈 오 브라이언(Kevin O' Brien)에 의해 2014년 10월 14일에 출원된 미국 임시특허 출원, 출원번호 62/063,657의 정규(비임시) 특허출원을 구성한다.
본 발명은 일반적으로 반도체 공정 라인을 따른 웨이퍼들의 방사선 및 온도 모니터링에 관한 것이며, 특히, 자외선(UV)광 노출을 포함하는 공정 설정에서 웨이퍼들의 UV 광 및 온도 노출을 모니터링하는 것에 관한 것이다.
반도체 디바이스 처리 환경에서 공정 조건에 대한 허용오차가 계속 좁아짐에 따라, 개선된 공정 모니터링 시스템에 대한 요구가 계속 증가하고 있다. 처리 시스템(예를 들어, 로우 K 박막 경화 시스템) 내에서의 자외선(UV) 방사선 균일성이 그러한 조건 중 하나이다. 현재의 방법은 현재 처리 기술들에서 필요로 하는 극한 조건(예를 들어, 고온 및 단파장) 하에서 UV 방사선 세기와 온도 둘 다를 동시에 모니터링할 수 없다.
따라서, 주어진 반도체 디바이스 처리 라인의 조건들을 모니터링하는데 사용되는 테스트 웨이퍼에 걸친 방사선 및 온도의 측정 감도를 향상시키는 시스템 및 방법을 제공하는 것이 바람직할 것이다.
본 발명개시의 예시적인 실시예에 따른, 방사선 세기 및/또는 온도를 측정하기 위한 웨이퍼 측정 장치가 개시된다. 하나의 실시예에서, 웨이퍼 측정 장치는 하나 이상의 공동(cavity)들을 포함하는 웨이퍼 어셈블리를 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 검출기 어셈블리를 포함한다. 하나의 실시예에서, 검출기 어셈블리의 적어도 일부분은 웨이퍼 어셈블리의 하나 이상의 공동들 내에 배치된다. 다른 실시예에서, 검출기 어셈블리는 하나 이상의 광 센서들을 포함한다. 다른 실시예에서, 검출기 어셈블리는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정 또는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정 중 적어도 하나를 수행하도록 구성된다. 다른 실시예에서, 검출기 어셈블리는 또한, 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기를 측정 할 때 하나 이상의 광 센서들의 하나 이상의 특성들에 기초하여 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된다.
본 발명개시의 예시적인 실시예에 따른, 방사선 세기 및/또는 온도를 측정하기 위한 웨이퍼 측정 장치가 개시된다. 하나의 실시예에서, 웨이퍼 측정 장치는 하나 이상의 공동들을 포함하는 웨이퍼 어셈블리를 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 검출기 어셈블리를 포함한다. 다른 실시예에서, 검출기 어셈블리의 적어도 일부분은 웨이퍼 어셈블리의 하나 이상의 공동들 내에 배치된다. 다른 실시예에서, 검출기 어셈블리는 하나 이상의 광 센서들을 포함한다. 다른 실시예에서, 검출기 어셈블리는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정 또는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정 중 적어도 하나를 수행하도록 구성된다. 다른 실시예에서, 검출기 어셈블리는 또한, 하나 이상의 광 센서들의 하나 이상의 특성들 또는 하나 이상의 광 센서들에 적어도 근접하게 배치된 하나 이상의 온도 센서들로부터의 하나 이상의 온도 측정치들 중 적어도 하나에 기초하여 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된다.
본 발명개시의 다른 예시적인 실시예에 따른, 방사선 세기 및/또는 온도를 측정하기 위한 웨이퍼 측정 장치가 개시된다. 하나의 실시예에서, 웨이퍼 측정 장치는 기판 및 기판의 일부분에 동작가능하게 결합된 커버를 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 기판과 커버 사이에 형성된 하나 이상의 공동들을 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 공동들 내에 배치된 하나 이상의 광 센서들을 포함한다. 다른 실시예에서, 커버는 커버의 최상면으로부터 하나 이상의 광 센서들로 광을 전달하기 위한 하나 이상의 윈도우들을 포함한다. 다른 실시예에서, 하나 이상의 광 센서들은 하나 이상의 윈도우들을 통과하는 광의 세기를 측정하도록 구성된다. 다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 광 센서들에 통신가능하게 결합된 하나 이상의 로컬 제어기들을 포함한다. 다른 실시예에서, 하나 이상의 로컬 제어기들은 하나 이상의 광 센서들에 의해 측정된 광의 세기를 나타내는 하나 이상의 신호들을 수신하도록 구성된다. 다른 실시예에서, 웨이퍼 측정 장치는, 하나 이상의 로컬 제어기들에 통신가능하게 결합되고 하나 이상의 광 센서들에 의해 측정된 광 세기의 감쇠 특징에 기초하여 하나 이상의 광 센서들의 온도를 결정하도록 구성된 하나 이상의 중앙 제어기들을 포함한다.
본 발명개시의 예시적인 실시예에 따른, 방사선 세기 및/또는 온도를 측정하기 위한 웨이퍼 측정 장치가 개시된다. 하나의 실시예에서, 웨이퍼 측정 장치는 기판 및 기판의 일부분에 동작가능하게 결합된 커버를 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 기판과 커버 사이에 형성된 하나 이상의 공동들 내에 배치된 하나 이상의 광 센서들을 포함한다. 다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 공동들 내에 배치된 하나 이상의 광발광(photoluminescent) 엘리먼트들을 포함한다. 다른 실시예에서, 커버는 커버의 최상면으로부터 하나 이상의 광발광 엘리먼트들로 광을 전달하기 위한 하나 이상의 윈도우들을 포함한다. 다른 실시예에서, 하나 이상의 광발광 엘리먼트들은 하나 이상의 윈도우들을 통과하는 제1 파장 범위의 광의 적어도 일부분을 흡수하고, 제1 파장 범위와는 상이한 적어도 제2 파장 범위의 광을 방출하도록 구성된다. 다른 실시예에서, 하나 이상의 광 센서들은 하나 이상의 광발광 엘리먼트들에 의해 방출된 적어도 제2 파장 범위의 광의 세기를 측정하도록 구성된다. 다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 공동들 내에 배치된 하나 이상의 광 가이드 엘리먼트들을 포함하며, 하나 이상의 광 가이드 엘리먼트들은 하나 이상의 광발광 엘리먼트들로부터 하나 이상의 광 센서들로 적어도 제2 파장 범위의 광을 전달하도록 구성된다.
다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 광 센서들에 통신가능하게 결합된 하나 이상의 로컬 제어기들을 포함하며, 하나 이상의 로컬 제어기들은 하나 이상의 광 센서들에 의해 측정된 적어도 제2 파장 범위의 광의 세기를 나타내는 하나 이상의 신호들을 수신하도록 구성된다. 다른 실시예에서, 웨이퍼 측정 장치는 하나 이상의 로컬 제어기들에 통신가능하게 결합된 하나 이상의 중앙 제어기들을 포함하며, 하나 이상의 중앙 제어기들은 하나 이상의 광 센서들에 의해 측정된 적어도 제2 파장 범위의 광의 세기의 세기 특징에 기초하여 하나 이상의 광발광 엘리먼트들의 온도를 결정하도록 구성된다.
전술한 대략적인 설명과 후술하는 상세한 설명 모두는 일례일 뿐으로서 예시적인 것에 불과하며, 청구된 본 발명을 반드시 제한시키지는 않는다는 것을 이해해야 한다. 본 명세서에서 병합되어 있고 본 명세서의 일부를 구성하는 첨부 도면들은 본 발명의 실시예들을 도시하며, 상기 개략적인 설명과 함께, 본 발명의 원리들을 설명하는 역할을 한다.
본 발명개시의 수많은 장점들은 첨부 도면들을 참조함으로써 본 발명분야의 당업자에 의해 보다 잘 이해될 수 있다:
도 1a는 본 발명개시의 하나의 실시예에 따른, 광 세기 및 온도를 측정하기 위한 측정 웨이퍼를 나타내는 개념도이다.
도 1b는 본 발명개시의 하나의 실시예에 따른, 광 세기의 직접적 측정을 위한 측정 웨이퍼를 나타내는 간략화된 단면도이다.
도 1c는 본 발명개시의 하나의 실시예에 따른, 광 세기의 직접적 측정을 위한 측정 웨이퍼를 나타내는 어셈블리도이다.
도 1d는 본 발명개시의 하나의 실시예에 따른, 센서들 및 로컬 제어기들을 포함하는 측정 웨이퍼(명확성을 위해 커버는 도시되지 않는다)의 기판을 나타내는 단순화된 평면도이다.
도 1e는 본 발명개시의 하나의 실시예에 따른, 광발광 엘리먼트들을 포함하는, 광 세기의 간접적 측정을 위한 측정 웨이퍼를 나타내는 간략화된 단면도이다.
도 1f는 본 발명개시의 하나의 실시예에 따른, 광발광 엘리먼트 및 센서 스택을 나타내는 간략화된 단면도이다.
도 1g는 본 발명개시의 하나의 실시예에 따른, 광발광 엘리먼트들과 광 가이드 엘리먼트를 포함하는, 광 세기의 간접적 측정을 위한 측정 웨이퍼 및 기판으로부터의 센서 모듈의 열 격리를 나타내는 간략화된 단면도이다.
도 1h는 본 발명개시의 하나의 실시예에 따른, 광발광 엘리먼트들과 광 가이드 엘리먼트를 포함하는, 광 세기의 간접적 측정을 위한 측정 웨이퍼 및 기판으로부터의 센서 모듈의 열 격리를 나타내는 간략화된 단면도이다.
도 1i는 본 발명개시의 하나의 실시예에 따른, 광발광 엘리먼트들, 광 가이드들 및 센서 모듈들을 포함하는, 광 세기의 간접적 측정을 위한 측정 웨이퍼(명료성을 위해 커버는 도시되지 않는다)의 기판을 나타내는 간략화된 평면도이다.
도 2는 본 발명개시의 하나의 실시예에 따른, 측정 웨이퍼에 걸친 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 장치의 동작을 도시하는 흐름도이다.
이제부터, 첨부된 도면들에서 도시되고 개시된 본 발명내용을 자세하게 설명할 것이다.
도 1a 내지 도 2를 일반적으로 참조하면, 방사선 세기 및/또는 온도를 측정하기 위한 시스템 및 방법이 본 발명에 따라 설명된다.
도 1a는 본 발명개시의 하나 이상의 실시예들에 따른, 웨이퍼 측정 디바이스에 걸친 하나 이상의 위치들에서 방사선 및/또는 온도를 측정하기 위한 웨이퍼 측정 디바이스(100)의 단면의 개념도를 도시한다.
하나의 실시예에서, 웨이퍼 측정 디바이스(100)는 웨이퍼 어셈블리(102)를 포함한다. 다른 실시예에서, 웨이퍼 어셈블리(102)는 하나 이상의 공동들(104)을 포함한다. 하나 이상의 공동들(104)은 반도체 제조 분야에서 알려진 임의의 공정(예를 들어, 연삭, 화학적 에칭, 레이저 에칭 등)에 의해 형성될 수 있다. 다른 실시예에서, 웨이퍼 측정 디바이스(100)는 웨이퍼 어셈블리(102)의 공동(104) 내에 배치된 검출기 어셈블리(103)를 포함한다. 여기서, 본 발명개시는 하나 이상의 공동들(104)을 포함하는 웨이퍼 어셈블리(102)에 한정되지 않는다는 것을 유의해야 한다. 예를 들어, 검출기 어셈블리(103)(또는 그의 일부분들)는 공동(104) 내에 배치될 필요가 없으며, 웨이퍼 어셈블리(102)의 임의의 표면(예를 들어, 최상면, 바닥면 또는 가장자리) 상에 배치될 수 있다.
하나의 실시예에서, 검출기 어셈블리(103)는 하나 이상의 광 센서들(106)을 포함한다. 하나 이상의 광 센서들(106)은 당 업계에서 알려진 임의의 광 센서를 포함할 수 있다. 예를 들어, 하나 이상의 광 센서들(106)은 비제한적인 예시로서, UV 및/또는 가시광을 감지할 수 있는 광 센서를 포함할 수 있다.
하나의 실시예에서, 검출기 어셈블리(103)는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정을 수행하도록 구성된다. 측정 디바이스(100) 위의 공정 환경으로부터의 UV 광의 직접적 검출의 경우, 하나 이상의 광 센서들(106)은 비제한적인 예시로서, 적어도 UV 광에 민감한 하나 이상의 광 센서들(예를 들어, 실리콘 카바이드 기반 센서)을 포함할 수 있다. 예를 들어, 광 센서들은 비제한적인 예시로서, 150㎚ 내지 400㎚의 파장 범위의 UV 광에 민감한 광 센서들을 포함할 수 있다.
다른 실시예에서, 검출기 어셈블리(103)는 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정을 수행하도록 구성된다. 측정 디바이스(100) 위의 공정 환경으로부터의 UV 광의 간접적 검출(예컨대, 광발광 엘리먼트로부터의 중간 광발광 방출을 통한 검출)의 경우, 하나 이상의 광 센서들(106)은 비제한적인 예시로서, 적어도 가시광에 민감한 하나 이상의 광 센서들(예를 들어, 실리콘 기반 센서)을 포함할 수 있다. 예를 들어, 광 센서들은 비제한적인 예시로서, 450㎚ 내지 750㎚의 파장 범위의 가시광에 민감한 광 센서들을 포함할 수 있다.
본 발명개시의 목적상, "간접적 측정"은 제1 파장/파장 범위로부터 제2 파장/파장 범위로의 광 신호의 중간 변환, 예를 들어, 비제한적인 예시로서, UV 광으로부터 가시광으로의 광발광 변환(photoluminescence conversion)을 수반하는 광 세기의 측정으로서 해석된다. 또한, "직접적 측정"의 용어는 광 신호의 중간 변환을 수반하지 않는 광 세기의 측정으로서 해석된다. 직접적 세기 측정(도 1b 내지 도 1d)과 관련된 실시예들 및 간접적 세기 측정(도 1e 내지 도 1i)과 관련된 실시예들이 본 명세서에서 추가로 상세히 설명됨을 유념해 둔다.
하나의 실시예에서, 하나 이상의 광 센서들(106)은 하나 이상의 다이오드 검출기들을 포함한다. 예를 들어, 하나 이상의 광 센서들(106)은 비제한적인 예시로서, 하나 이상의 실리콘 카바이드(SiC) 다이오드 검출기, 하나 이상의 갈륨 질화물(GaN) 다이오드 검출기, 하나 이상의 알루미늄 갈륨 질화물(AlGaN) 검출기 또는 하나 이상의 실리콘 다이오드 검출기를 포함할 수 있다.
다른 실시예에서, 웨이퍼 어셈블리(102)는 하나 이상의 개구들(108)을 포함한다. 하나의 실시예에서, 웨이퍼 어셈블리(102)의 최상면에 입사하는 자외선 광(101)이 하나 이상의 광 센서들(106)에 도달할 수 있도록 하나 이상의 개구들(108)은 웨이퍼 어셈블리(102)의 최상면에 형성된다. 이와 관련하여, 웨이퍼 어셈블리(102)의 표면에 걸친 세기 및/또는 온도의 선택된 측정을 허용하도록 하나 이상의 개구들(108)은 웨이퍼 어셈블리의 최상면에 걸쳐 분포될 수 있다.
다른 실시예에서, 웨이퍼 측정 디바이스(100)의 검출기 어셈블리(103)는 로컬 제어기(110)를 포함한다. 하나의 실시예에서, 로컬 제어기(110)는 하나 이상의 광 센서들(106)에 통신가능하게 결합된다. 예를 들어, 로컬 제어기(110)는 하나 이상의 광 센서들(106)에 의해 측정된 광의 세기 또는 하나 이상의 광 센서들(106)의 하나 이상의 추가적인 특성들을 나타내는 하나 이상의 신호들을 하나 이상의 센서들(106)로부터 수신할 수 있다. 예를 들어, 로컬 제어기(110)는 하나 이상의 광 센서들(106)에 의해 측정된 광의 세기(예를 들어, UV 또는 가시광)를 나타내는 하나 이상의 신호들을 하나 이상의 광 센서들(106)로부터 수신할 수 있다. 또한, 로컬 제어기(110)는 하나 이상의 광 센서들(106)의 하나 이상의 전기적 특성들(예를 들어, 전압 출력)을 나타내는 하나 이상의 신호들을 하나 이상의 광 센서들(106)로부터 수신할 수 있다. 다른 실시예에서, 디바이스(100)는, 비제한적인 예시로서, 하나 이상의 센서들(106)의 하나 이상의 전기적 특성들(예를 들어, 순방향 전압)을 측정함으로써 하나 이상의 광 센서들(106)에서 웨이퍼 어셈블리(102)의 온도를 모니터링할 수 있다. 다른 실시예에서, 검출기 어셈블리(103)는 하나 이상의 온도 센서들(예를 들어, 열 프로브(thermal probe))을 포함한다. 열 프로브는 하나 이상의 광 센서들(106)에 근접하게 배치될 수 있으며, 열 프로브의 출력은 하나 이상의 로컬 제어기들(110)에 결합된다. 이러한 의미에서, 웨이퍼 어셈블리(102)에 걸친 온도는 광 센서들(106)에 의해 측정된 PL 방출 세기의 감쇠를 통해(간접적 측정 경우), 광 센서들(106)의 하나 이상의 전기적 특성들을 통해(직접적 측정 경우), 또는 전용 온도 프로브를 통해(직접적 측정 또는 간접적 측정 경우들) 측정될 수 있다.
다른 실시예에서, 웨이퍼 측정 디바이스(100)의 검출기 어셈블리(103)는 중앙 제어기(111)를 포함한다. 하나의 실시예에서, 중앙 제어기(111)는 하나 이상의 센서들(106)의 하나 이상의 특성들(예를 들어, 입사하는 PL 방출의 세기의 특성 또는 하나 이상의 센서들(106)의 전기적 특성)에 기초하여 웨이퍼 어셈블리(102)의 하나 이상의 일부분들의 온도를 결정하도록 구성된다.
예를 들어, 중앙 제어기(111)는 하나 이상의 광 센서들(106)에서 측정된 전기적 특성(예를 들어, 알려진 전류에서 주어진 센서(106)에 걸친 순방향 전압)에 기초하여 웨이퍼 어셈블리(102)의 하나 이상의 일부분들의 온도를 결정할 수 있다. 다른 예로서, 중앙 제어기(111)는 하나 이상의 센서들(106)로부터의 측정된 세기 특성(예를 들어, 상이한 여기 파장에서의 광 세기 값들 또는 중간 PL 엘리먼트의 경우에서 세기 감쇠 시간)에 기초하여 웨이퍼 어셈블리(102)의 하나 이상의 일부분들의 온도를 결정할 수 있다. 그 후, 하나 이상의 광 센서들(106)로부터의 측정된 전기적 특성 또는 세기 특성 또는 전용 온도 센서들로부터의 온도 측정치에 기초하여 하나 이상의 온도 값들이 결정될 수 있다. 이와 관련하여, UV 세기 및/또는 계산된 온도는 광 센서(106)의 위치(또는 간접적 변환의 경우, PL 엘리먼트의 위치)에 기초하여 웨이퍼 디바이스 위치에 매핑될 수 있다. 웨이퍼 어셈블리(102)에 걸쳐 분포된 각각의 광 센서들(106)에 대해 이러한 프로시저를 적용하면, 2D 세기 및/또는 온도 맵이 검출기 어셈블리(103)에 의해 생성될 수 있다(예를 들어, 중앙 제어기(111)에 의해 생성될 수 있다).
여기서 디바이스(100)는 세기와 온도 둘 다를 포함하는 측정 환경으로 제한되지 않는다는 것을 유의해야 한다. 예를 들어, 디바이스(100)는 광의 세기만, 온도 노출만 또는 세기와 온도를 측정하도록 구성될 수 있다.
하나의 실시예에서, 로컬 제어기(110) 및/또는 중앙 제어기(111)는 하나 이상의 프로세서들(미도시됨)을 포함한다. 다른 실시예에서, 하나 이상의 프로세서들은 하나 이상의 프로세서들로 하여금 본 발명개시 전반에 걸쳐 설명된 하나 이상의 다양한 단계들을 수행하게 하도록 구성된 프로그램 명령어들의 세트를 실행하도록 구성된다. 다른 실시예에서, 제어기(110)는 프로그램 명령어들 및 하나 이상의 센서들(106)로부터 수신된 세기 측정 결과들을 저장하기 위한 비 일시적 매체(예를 들어, 메모리 매체)를 포함할 수 있다. 본 발명개시의 목적상, '프로세서'의 용어는 메모리 매체로부터의 명령어들을 실행하는 하나 이상의 프로세서들(예컨대, CPU) 또는 논리 엘리먼트들(예컨대, ASIC)을 갖는 임의의 디바이스를 망라하도록 광범위하게 정의될 수 있다. 이러한 의미에서, 로컬 제어기(110) 및/또는 중앙 제어기(111)의 하나 이상의 프로세서들은 알고리즘 및/또는 명령어를 실행하도록 구성된 임의의 마이크로프로세서 유형 또는 논리 디바이스를 포함할 수 있다. 본 발명개시 전반에 걸쳐 설명된 단계들은 단일 프로세서에 의해 수행될 수 있거나, 또는 이와 달리, 다중 프로세서들에 의해 수행될 수 있다는 것을 알아야 한다. 메모리 매체는 판독 전용 메모리, 랜덤 액세스 메모리, 자기 또는 광학 디스크, 솔리드 스테이트 드라이브, 플래시, EPROM, EEPROM, 자기 테이프 등을 포함할 수 있다.
도 1b 내지 도 1e는 본 발명개시의 하나 이상의 실시예들에 따른, 직접적 광 세기 측정을 통해 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 디바이스(100)의 간략화 단면도, 어셈블리도 및 평면도를 도시한다. 여기서 도 1a에서 도시된 컴포넌트들 및 실시예들의 설명은 달리 언급되지 않는 한 도 1b 내지 도 1e까지 확장되어 해석되어야 한다는 것을 유의해 둔다.
하나의 실시예에서, 웨이퍼 측정 디바이스(100)의 웨이퍼 어셈블리(102)는 하나 이상의 구조물들을 포함한다. 하나의 실시예에서, 하나 이상의 광 센서들(106)은 웨이퍼 측정 디바이스(100)의 하나 이상의 구조물들 내에 배치된다. 예를 들어, 웨이퍼 측정 디바이스(100)의 구조물들은 하나 이상의 공동들(104)을 형성하도록 배열되고/배열되거나 형성될 수 있다. 다른 실시예에서, 웨이퍼 어셈블리(102)는 얇은 폼 팩터 패키지 내에 끼워질 수 있다. 여기서 주어진 처리 환경에서의 조건 하에 있는 웨이퍼의 UV 광의 세기 및 온도 노출에 대한 통찰을 제공하기 위해 센서 웨이퍼(102)는 반도체 산업(예를 들어, 플라즈마 처리 디바이스) 내의 처리 환경에서 일반적으로 사용되는 웨이퍼를 모방하도록 설계된다는 점을 유념해 둔다.
하나의 실시예에서, 웨이퍼 어셈블리(102)는 기판(107)(예를 들어, 기판 웨이퍼)을 포함한다. 기판은 반도체 디바이스 처리 단계들과 호환가능한 당 업계에 공지된 임의의 물질로 형성될 수 있다. 예를 들어, 기판(107)은 비제한적인 예시로서, 반도체 기판, 유리 기판 등을 포함할 수 있다. 다른 실시예에서, 웨이퍼 측정 디바이스(100)는 커버(103)(예를 들어, 커버 웨이퍼)를 포함한다. 예를 들어, 도 1b 및 도 1c에서 도시된 바와 같이, 커버(103)는 기판(105)의 최상면에 부착가능할 수 있다.
다른 실시예에서, 웨이퍼 어셈블리(102)의 하나 이상의 공동들(104)은 기판(105)과 커버(103) 사이에 형성된다. 예를 들어, 도 1b 및 도 1c에서 도시된 바와 같이, 기판(105)은 오목부를 포함할 수 있다. 이와 관련하여, 기판(105)의 최상면으로의 커버(103)의 부착시, 기판(105)의 오목부 및 커버(103)는 웨이퍼 어셈블리(102) 내에서 하나 이상의 공동들(104)을 형성할 수 있다.
웨이퍼 어셈블리(102)의 하나 이상의 공동들(104)은 당 업계에서 공지된 임의의 처리 프로시저에 의해 형성될 수 있다. 예를 들어, 공동(104)을 형성하는데 사용되는 공정은, 비제한적인 예시로서, 기판(105)에 하나 이상의 오목부들을 형성하기 위해 기판 상에서 수행되는 기계적 연삭 공정, 에칭 공정 또는 레이저 머시닝 공정을 포함할 수 있다.
하나의 실시예에서, 공동(104)은 도 1b 및 도 1c에서 도시된 바와 같이, 실질적으로 절두 원추형상을 가질 수 있다. 여기서 도 1b 및 도 1c에서 도시된 형상은 제한적 사항은 아니며 단지 예시적인 목적을 위해 제공되었다는 것을 유의해야 한다. 여기서 도 1b 및 도 1c에서 도시된 공동(104)은 본 발명개시에 대한 제한이 아니며 단지 예시적인 목적을 위해 제공되었다는 것을 유의해야 한다. 공동(104)은 당 업계에서 공지된 임의의 형상을 취할 수 있다. 예를 들어, 공동(104)은 비제한적인 예시로서, 원뿔대 단면, 직육면체, 원통(예를 들어, 얕은 원통), 프리즘(예를 들어, 삼각 프리즘, 육각 프리즘 등)을 포함하는 형상 및 이와 유사한 형상들을 가질 수 있다. 또한, 웨이퍼 어셈블리(102)는 웨이퍼 어셈블리(102) 내의 다양한 컴포넌트들(예를 들어, 광 센서(들)(106), 제어기(110) 등)을 수용하기에 적합한 임의의 공동 배열 또는 복수의 공동들을 포함할 수 있다.
다른 실시예에서, 하나 이상의 개구들(108)이 커버(105)에서 형성된다. 이와 관련하여, 하나 이상의 개구들(108)은 커버(105)의 최상면으로부터 커버(105)의 최상면 아래에 위치한 하나 이상의 센서들(106)로 광(예를 들어, UV 광)이 투과되도록 배열된다. 하나의 실시예에서, 웨이퍼 어셈블리(102)의 표면에 걸친 세기, 온도의 선택된 측정을 허용하도록 하나 이상의 개구들(108)은 웨이퍼 어셈블리의 최상면에 걸쳐 분포될 수 있다. 마찬가지로, 직접적 세기 측정의 경우, 광 센서(106)가 각각의 개구들(108)에 근접하여 위치되어, 웨이퍼 어셈블리(102)에 걸쳐 분포된 광 센서들(106)의 네트워크를 생성함으로써, 웨이퍼 어셈블리(102)에 걸쳐 세기, 온도 균일성의 분석을 가능하게 하도록 광 센서들(106)이 배열될 수 있다.
다른 실시예에서, 웨이퍼 어셈블리(102)는 하나 이상의 윈도우들(116)을 포함한다. 하나 이상의 윈도우들(116)은 하나 이상의 개구들(108)의 위, 아래 또는 내부에 위치된다. 다른 실시예에서, 웨이퍼 어셈블리(102)는 하나 이상의 입구 필터들(117)을 포함한다. 하나의 실시예에서, 하나 이상의 입구 필터들(117)은 하나 이상의 윈도우들(116)에 근접하여 배치되고, 웨이퍼 어셈블리(102)의 표면 상에 입사하는 광(101)의 일부분을 차단하도록 구성된다. 예를 들어, 관심대상의 광이 UV 광을 포함하는 경우들에서, 하나 이상의 광 센서들(106)에서 긍정 오류(false positive)를 피하기 위해 가시광 또는 IR 광을 차단하도록 하나 이상의 입구 필터들(117)이 선택될 수 있다.
개구들(108)에서의 하나 이상의 윈도우들(116)의 사용은 웨이퍼 어셈블리(102) 위의 처리 환경과 관련된 혹독한 조건들로부터 웨이퍼 어셈블리(102) 내의 하나 이상의 센서들(106)(및 다른 전자장치들)을 보호하는 역할을 한다는 점을 유념해 둔다. 또한, 하나 이상의 윈도우들(116)은 박막 필터들(예를 들어, 유전체 필터)를 지지하기 위한 지지 구조물로서 역할을 할 수 있다.
전술한 바와 같이, 하나 이상의 광 센서들(106)은 하나 이상의 다이오드 검출기들을 포함할 수 있다. UV 광 세기의 직접적 측정의 경우, UV에 민감한 다이오드 검출기들이 특히 유용하다는 것을 더 유념해 둔다. 이 실시예의 다이오드 검출기들은 임의의 특정 유형의 다이오드 검출기들로 제한되지 않지만, 비제한적인 예시로서, SiC 및 GaN과 같은 다이오드 검출기들은 UV 광의 직접적 측정에 사용하기에 적합한 UV 광 및 디스플레이 감도 특징들을 디스플레이한다.
하나의 실시예에서, 로컬 제어기(110)는 하나 이상의 광 센서들(106)에 의해 측정된 UV 광의 세기를 나타내는 하나 이상의 신호들을 하나 이상의 광 센서들(106)로부터 수신한다. 또한, 로컬 제어기(110)는 하나 이상의 광 센서들(106)의 하나 이상의 전기적 특성들을 나타내는 하나 이상의 신호들을 하나 이상의 광 센서들(106)로부터 수신한다. 이어서, 중앙 제어기(111)는 하나 이상의 광 센서들(106)에 의해 측정된 자외선 광(101)의 세기 및/또는 하나 이상의 광 센서들(106)의 하나 이상의 전기적 특성들에 기초하여 하나 이상의 센서들(106)의 온도를 결정할 수 있다. 비제한적인 예시로서, 순방향 전압(예를 들어, 알려진 전류에서 측정된 순방향 전압)과 같은, 다이오드 검출기의 다양한 전기적 특성들은 온도의 함수로서 변할 수 있음을 알아야 한다. 이와 관련하여, 중앙 제어기(111)는 측정된 전기적 특성을 하나 이상의 다이오드 기반 광 센서들(106)의 온도와 상관시킬 수 있다.
다른 실시예에서, 검출기 어셈블리(103)는 하나 이상의 전용 온도 센서들을 포함한다. 명료화를 위해 도 1b 및 도 1c에서는 하나 이상의 온도 센서들이 도시되지 않았지만, 하나 이상의 온도 센서들은 하나 이상의 광 센서들(106) 상에 또는 그 근처에 위치될 수 있다. 예를 들어, 도 1b에서, 하나 이상의 온도 센서들은 하나 이상의 광 센서들(106)의 최상면 상에, 또는 그 아래에, 또는 이에 인접하여 위치될 수 있다. 또한, 하나 이상의 온도 센서들의 출력은 하나 이상의 로컬 제어기들(110)에 결합될 수 있다. 여기서, 하나 이상의 전용 온도 센서들이 본 발명개시의 직접적 측정 접근법 또는 간접적 측정 접근법 중 어느 하나의 환경에서 사용될 수 있음을 알아야 한다. 하나 이상의 온도 센서들은 당 업계에서 공지된 임의의 온도 센서를 포함할 수 있다. 예를 들어, 하나 이상의 온도 센서들은, 비제한적인 예시로서, RTD, 열전쌍(thermocouple) 장치 등을 포함할 수 있다.
하나의 실시예에서, 도 1b 및 도 1c에서 도시된 바와 같이, 주어진 로컬 제어기(110)는 주어진 로컬 제어기(110)에 결합된 하나 이상의 광 센서들(106)에 근접하여 위치된다. 이러한 구성은 저온 응용예(예를 들어, 150℃ 미만의 응용예)에서 사용하기에 적합할 수 있다. 다른 실시예에서, 도 1d에서 도시된 바와 같이, 주어진 로컬 제어기(110)는 주어진 로컬 제어기(110)에 결합된 하나 이상의 광 센서들(106)로부터 원격적으로 위치된다. 이 실시예에서, 주어진 로컬 제어기(110)는 기판으로부터 열 격리될 수 있다. 이러한 구성은 고온 응용예(예를 들어, 150℃ 이상)에서 사용하기에 적합할 수 있고, 고온으로부터 로컬 제어기(110) 내의 민감한 전자장치들을 보호하는 역할을 한다. 또한, 하나 이상의 로컬 제어기들(110)은 데이터 처리 및 통신 분야에서 알려진 임의의 필요한 전자 컴포넌트들을 포함할 수 있음을 유념해 둔다. 또한, 하나 이상의 배터리들을 고온으로부터 보호하기 위해 하나 이상의 배터리들(도시되지 않음)이 하나 이상의 로컬 제어기(110) 내에 하우징될 수 있다.
다른 실시예에서, 도 1c 및 도 1d에서 도시된 바와 같이, 복수의 광 센서들(106)이 단일 로컬 제어기(110)에 결합된다. 다른 실시예에서, 도 1d에서 도시된 바와 같이, 웨이퍼 측정 디바이스(100)는 복수의 검출기 어셈블리들(103)을 포함한다. 이와 관련하여, 웨이퍼 측정 디바이스(100)는 복수의 로컬 제어기들(110)을 포함할 수 있으며, 각각의 로컬 제어기(110)는 복수의 광 센서들(106)에 결합된다. 이러한 배열은 웨이퍼 어셈블리(102)에 걸친 광 세기 및 온도의 공간적 및 시간적 의존성을 모니터링할 수 있는 광 센서들(106)의 분산형 네트워크를 형성한다.
다른 실시예에서, 하나 이상의 로컬 제어기들(110)은 중앙 제어기(111)에 무선 통신가능하게 결합된다. 하나 이상의 로컬 제어기들(110)은 임의의 적절한 방식으로 중앙 제어기(111)에 무선 통신가능하게 결합될 수 있다. 예를 들어, 도 1d에서 도시된 바와 같이, 웨이퍼 측정 디바이스(100)는 통신 코일(120)을 포함한다. 이와 관련하여, 하나 이상의 로컬 제어기들(110)은 (예를 들어, 전기적 상호접속부(118)를 통해 결합된) 통신 코일에 통신가능하게 결합된다. 이어서, 통신 코일(120)은 하나 이상의 로컬 제어기들(110)과 중앙 제어기(111) 사이에 무선 통신 링크를 구축한다. 예를 들어, 통신 코일(120)은 중앙 제어기(111)의 통신 회로(122)와의 무선 통신 링크를 구축할 수 있다. 이와 관련하여, 통신 코일(120)은 하나 이상의 광 센서들(106)로부터의 세기 측정치 및/또는 전기적 특성 측정치(및/또는 전용 온도 센서로부터의 온도 측정치)를 나타내는 하나 이상의 신호들(예를 들어, RF 신호)을 전달하는데 사용될 수 있다. 이어서, 전술한 바와 같이, 중앙 제어기(111)는 하나 이상의 광 센서들(106)의 하나 이상의 전기적 특성들(및/또는 전용 온도 센서로부터의 온도 측정치)의 하나 이상의 특성 또는 특징에 기초하여 (웨이퍼 어셈블리(102)의 표면 상의 대응 위치와 상관될 수 있는) 하나 이상의 광 센서들(106)의 온도를 결정할 수 있다.
도 1e 내지 도 1i는 본 발명개시의 하나 이상의 실시예들에 따른, 간접적 광 세기 측정을 통해 UV 광 세기 및 온도를 측정하기 위한 웨이퍼 측정 디바이스(100)의 다양한 모습들을 도시한다. 여기서 도 1a 내지 도 1d에서 도시된 컴포넌트들 및 실시예들의 설명은 달리 언급되지 않는 한 도 1e 내지 도 1i까지 확장되어 해석되어야 한다는 것을 유의해 둔다.
하나의 실시예에서, 검출기 어셈블리(103)는 하나 이상의 광발광(photoluminescent; PL) 엘리먼트들(112)을 포함한다. 하나 이상의 PL 엘리먼트들(112)은 적어도 UV 광을 흡수하고, UV 흡수에 응답하여, 적어도 가시광을 방출하는데 적절하다는 것을 유념해 둔다. 이러한 구성은 일반적으로 UV 광에 대한 원하는 바에 못미치는 감도를 갖는 광 센서들의 사용을 허용한다. 이와 관련하여, 검출기 어셈블리(103)의 하나 이상의 PL 엘리먼트들(112)은 PL 엘리먼트들(112)에 입사하는 UV 광 중의 적어도 일부를 가시광으로 변환하는데 사용될 수 있으며, 이것은, 어떤 경우들에서는, 특정 센서 유형들(예를 들어, 실리콘 다이오드 검출기)에 의해 보다 쉽게 검출된다. 예를 들어, 실리콘 다이오드 검출기들은 통상적으로 350㎚ 아래의 파장을 갖는 광에 대해 약하게 민감하다.
다른 실시예에서, 검출기 어셈블리(103)는 하나 이상의 광 센서들(106)에 의해 측정된 PL 광의 세기의 세기 특징에 기초하여 하나 이상의 PL 엘리먼트들(112)의 온도를 결정한다. 예를 들어, 세기 특징은, 비제한적인 예시로서, 하나 이상의 광 센서들(106)에 의해 측정된 PL 광의 세기의 감쇠 특징(예를 들어, 감쇠 시간)을 포함할 수 있다. 예를 들어, 하나 이상의 로컬 제어기들(110)로부터의 PL 방출 세기 데이터의 수신시, 중앙 제어기(111)는 주어진 PL 엘리먼트(112)로부터 측정된 PL 광의 세기의 감퇴 시간에 기초하여 주어진 PL 엘리먼트(112)에 대응하는 온도를 계산할 수 있다. 이러한 감쇠 기반 측정은 불연속적 여기 광(예를 들어, UV 광)을 필요로 할 수 있어서, 방출 감쇠의 적절한 특성을 가능케 한다는 것을 유념해 둔다. 여기서, 형광체(phosphor)로부터의 방출 세기의 기하급수적 감쇠는 종종 강한 온도 의존성을 나타낸다는 것을 유의해야 한다. 이 효과는 "형광체 온도계"로서 알려져 있다. 이와 관련하여, PL 엘리먼트(112)의 주어진 PL 방출 이벤트의 감쇠 거동의 하나 이상의 특징/특성이 주어진 PL 엘리먼트(112)의 온도를 계산하는데 사용될 수 있다. 예를 들어, PL 엘리먼트(112)의 주어진 PL 방출 이벤트의 방출 세기의 감쇠 시간이 주어진 PL 엘리먼트(112)의 온도를 계산하는데 사용될 수 있다.
다른 예시로서, 세기 특징은, 비제한적인 예시로서, 알려진 온도에서 측정된 PL의 세기에 대한 하나 이상의 센서들에 의해 측정된 PL 광의 세기의 비율을 포함할 수 있다. 예를 들어, PL 엘리먼트(112)의 온도에 대한 계산은,
Figure pct00001
의 형태를 취할 수 있고, 여기서, T m 은 측정 세기 I m 의 획득을 통해 측정되는 온도를 나타내고, I 0 는 알려진 온도에서 획득 된 측정된 PL 세기를 나타내며, T 0 는 알려진 온도를 나타낸다.
예를 들어, 하나 이상의 로컬 제어기들(110)로부터 PL 방출 세기 데이터를 수신하면, 중앙 제어기(111)는 주어진 PL 엘리먼트(112)로부터 측정된 PL 광의 세기의 감쇠 시간 또는 주어진 PL 엘리먼트(112)에 대해 알려진 온도에서 측정된 PL 광 세기에 대한 측정된 PL 광 세기의 계산된 비율에 기초하여 주어진 PL 엘리먼트(112)에 대응하는 온도를 계산할 수 있다.
형광체 온도계에 대한 일반적인 설명은 "Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications" 센서, 8권, 페이지 5673~5744(2008)에서 제공되며, 이 문헌은 전체가 본원에 참고로 인용된다. 또한, 온도를 결정하기 위한 세기 감쇠의 분석은 2015년 11월 28일에 등록된 젠센(Jensen)의 미국 특허 제5,470,155호, 및 2015년 5월 9일에 등록된 선(Sun)의 미국 특허 제5,414,266호에서 설명되어 있으며, 이들 문헌은 각각 전체가 본원에 참고로 인용된다.
하나 이상의 PL 엘리먼트들은 본 업계에 공지된 임의의 PL 엘리먼트를 포함한다. 예를 들어, 하나 이상의 PL 엘리먼트들은, 비제한적인 예시로서, 형광체 물질 또는 형광체 물질의 혼합물로 형성될 수 있다. 다른 실시예에서, 하나 이상의 PL 엘리먼트들은 기판의 표면 상에 형광체 및/또는 형광체 혼합물의 층을 형성함으로써 형성된다. 다른 실시예에서, 하나 이상의 PL 엘리먼트들은 웨이퍼 어셈블리(103)의 기판(107)의 일부분의 표면 상에 형광체 및/또는 형광체 혼합물의 층을 형성함으로써 형성된다.
여기서, 본 명세서에서 설명된 간접적 광 세기/온도 측정은 저온 및 고온 영역들 둘 다에서 구현될 수 있다는 것을 유념해 둔다. 이제 도 1e를 참조하면, 하나의 실시예에서, 저온(예컨대, 150℃ 미만) 응용예의 경우, 하나 이상의 광 센서들(106) 및 다른 추가적인 전자 컴포넌트들(예를 들어, 로컬 제어기)이 웨이퍼 어셈블리(102)의 공동(104) 내에 위치된다. 이와 관련하여, 하나 이상의 광 센서들(106) 및 추가적인 전자 컴포넌트들은 기판(107) 상에(또는 적어도 그 근처에) 배치될 수 있다.
하나의 실시예에서, 하나 이상의 PL 엘리먼트들(112)은 하나 이상의 광 센서들(106)에 부착되거나 또는 이에 근접하게 배치된다. 하나 이상의 PL 엘리먼트들은 하나 이상의 광 센서들(106)의 최상면에 배치될 수 있다. 이제 도 1f를 참조하면, 센서 스택(119)이 도시되어 있다. 예를 들어, 센서 스택(119)은 광 센서(106)의 최상면 상에 배치된 PL 엘리먼트(112)를 포함한다. 또한, 센서 스택(119)은 전기적 상호접속부(118)를 통해 하나 이상의 로컬 제어기들(도 1f에서 도시되지 않음)에 결합된다. 이 구성에서, 하나 이상의 센서 스택들(119)은 도 1a 내지 도 1d와 관련하여 설명된 센서 장치들과 유사한 방식으로 배열될 수 있지만, 이 실시예에서, 하나 이상의 센서들은 PL 엘리먼트들(112)로부터 방출된 광을 검출할 것이다. 그 후, 하나 이상의 로컬 제어기들(110)(또는 중앙 제어기(111))은 PL 엘리먼트들(112)로부터의 PL 광의 세기를 PL 엘리먼트들(112) 상에 부딪히는 UV 광의 세기와 상관시킬 수 있다. 이어서, 중앙 제어기(111)는 그 후 하나 이상의 광 센서들(106)에 의해 측정된 PL 광의 세기 특징에 기초하여 하나 이상의 PL 엘리먼트들(112)의 온도를 계산할 수 있다.
하나의 실시예에서, 하나 이상의 PL 엘리먼트들(112)의 방출은 자유 공간 커플링(도시되지 않음)을 통해 하나 이상의 센서들(106)에 결합될 수 있다. 이와 관련하여, 하나 이상의 PL 엘리먼트들에 의해 방출된 광은, 자유 공간(또는 선택된 분위기)에서, 하나 이상의 센서들(106)로 이동한다.
이제 도 1g를 참조하면, 하나의 실시예에서, 고온(예를 들어, 150℃ 이상) 응용예의 경우, 하나 이상의 광 센서들(106), 로컬 제어기(110) 및/또는 다른 추가적인 전자 컴포넌트들(예를 들어, 배터리)이 센서 모듈(114)에 하우징된다. 하나의 실시예에서, 센서 모듈(114)은 웨이퍼 어셈블리(102)의 기판(107)으로부터 열 격리된다.
하나의 실시예에서, 검출기 어셈블리(103)는 하나 이상의 공동들(104) 내에 배치된 하나 이상의 광 가이드 엘리먼트들(113)을 포함한다. 하나 이상의 광 가이드 엘리먼트들(113)은 하나 이상의 PL 엘리먼트들(112)에 의해 방출된 광을 하나 이상의 광 센서들(106)로 전달하도록 배열된다. 이와 관련하여, 하나 이상의 PL 엘리먼트들(112)의 방출은 하나 이상의 광 가이드 엘리먼트들(113)을 통해 하나 이상의 센서들(106)에 결합된다. 예를 들어, 고온 응용예의 경우, 하나 이상의 PL 엘리먼트들(112)에 의해 방출된 가시광은 하나 이상의 광 가이드 엘리먼트들(113)을 따라 센서 모듈(114)에 하우징된 하나 이상의 센서들(106)로 전달될 수 있다. 하나 이상의 PL 엘리먼트들(112)에 의해 방출된 가시광의 측정시, 하나 이상의 로컬 제어기들(110)(또는 중앙 제어기(111))은 가시 PL 광의 세기를 (개구(들)(108)을 통해) PL 엘리먼트들(112)에 부딛치는 UV 광의 세기와 상관시킬 수 있다. 그 후, 중앙 제어기(111)는 하나 이상의 광 센서들(106)에 의해 측정된 가시 PL 광의 세기의 세기 특징에 기초하여 하나 이상의 PL 엘리먼트들(112)의 온도를 계산할 수 있다.
하나 이상의 광 가이드 엘리먼트들(113)은 당 업계에 공지된 임의의 광 가이드 엘리먼트를 포함할 수 있다. 하나의 실시예에서, 하나 이상의 광 가이드 엘리먼트들(113)은 광학 광 가이드를 포함한다. 예를 들어, 하나 이상의 광 가이드 엘리먼트들(113)은, 비제한적인 예시로서, 유리, 석영, 사파이어, 아크릴 등으로 형성된 광학 광 가이드를 포함할 수 있다. 다른 예로서, 하나 이상의 광 가이드 엘리먼트들(113)은, 비제한적인 예시로서, 광섬유 또는 광섬유 다발을 포함할 수 있다.
다른 실시예에서, 웨이퍼 어셈블리(102)는, 하나 이상의 공동들(104)이 하나 이상의 광 가이드 엘리먼트들(113)과 일치하는 하나 이상의 채널들로 구성되도록 구축된다. 다른 실시예에서, 도 1g에서 도시된 바와 같이, 하나 이상의 광 가이드 엘리먼트들(113)은, 웨이퍼 어셈블리(102)의 최상면 위에 센서 모듈(114)을 고정시키는 것을 돕기 위해 센서 모듈(114)에 대한 기계적 지지를 제공할 수 있다. 강체 광 가이드(예를 들어, 유리, 아크릴, 석영, 사파이어 로드)의 경우, 광 가이드 엘리먼트(113)는 광 가이드의 강성 및 낮은 열전도율로 인해 센서 모듈(114)에 대한 기계적 지지를 제공하는데 특히 유용하다는 것을 유념해 둔다.
다른 실시예에서, 검출기 어셈블리(103)는 하나 이상의 센서 필터들(도시되지 않음)을 포함한다. 예를 들어, 센서 필터는 하나 이상의 광 센서들(106)의 입구에 위치될 수 있다. 예를 들어, 센서 필터는 주어진 광 가이드 엘리먼트(113)의 출력과, 대응하는 광 센서(106)의 입구 사이에 위치될 수 있다. 하나 이상의 광 센서들(106)에 의한 검출로부터 원치않는 광을 걸러내기 위해 하나 이상의 센서 필터들이 선택될 수 있다. 예를 들어, 하나 이상의 센서 필터들은, 비제한적인 예시로서, 개구들(108)을 통해 웨이퍼 어셈블리 공동(102)에 진입하는 여기 광(예를 들어, UV 광)을 차단할 수 있는 필터를 포함할 수 있다. 이와 관련하여, 하나 이상의 센서 필터들은, 비제한적인 예시로서, 하나 이상의 PL 엘리먼트들(112)로부터 하나 이상의 광 센서들(106)로의 PL 방출(또는 PL 방출의 일부)을 선택적으로 통과시키는 하나 이상의 필터들을 포함할 수 있다.
이제 도 1h 및 도 1i를 참조하면, 검출기 어셈블리(103)는 복수의 광 가이드 엘리먼트들(113)을 포함한다. 예를 들어, 복수의 광 가이드 엘리먼트들(113)은 복수의 PL 엘리먼트들(112)로부터의 PL 방출을 단일 센서 모듈(114) 내에 하우징된 복수의 광 센서들(106)에 결합시키는 역할을 할 수 있다.
도 1h는 하나 이상의 PL 엘리먼트들(112)의 출력을 복수의 센서들(106)에 결합시키는 복수의 광 가이드 엘리먼트들(113)을 갖는 웨이퍼 측정 디바이스(100)의 단면도를 도시한다. 이 실시예에서, 각각의 PL 엘리먼트(112)는 단일 광 센서(106)에 결합된다. 다른 실시예에서, 복수의 PL 엘리먼트들(112)은 단일 광 센서(106)에 결합된다.
또한, 복수의 광 가이드 엘리먼트들(113)은 웨이퍼 어셈블리(102)로부터 센서 모듈(114)을 상승시키는 역할을 한다.
도 1i는 본 발명개시의 하나의 실시예에 따른, 하나 이상의 PL 엘리먼트들(112)의 출력을 복수의 센서들(106)에 결합시키는 복수의 광 가이드 엘리먼트들(113)을 갖는 웨이퍼 측정 디바이스(100)의 웨이퍼 어셈블리(102)의 기판(107)의 평면도를 도시한다. 커버(105)는 명료함을 위해 도 1i에서 도시되지 않았음을 유념해 둔다. 하나의 실시예에서, 복수의 PL 엘리먼트들(112)(예를 들어, 형광체 도트들)이 웨이퍼 어셈블리(102)의 기판(107)에 걸쳐 분포된다. 또한, 디바이스(100)는 복수의 센서 모듈들(114)을 포함한다. 복수의 센서 모듈들(114) 각각은 하나 이상의 광 센서들(106)(도 1i에서는 도시되지 않음) 및 하나 이상의 로컬 제어기들(110)(및/또는 다른 전자 컴포넌트들(예를 들어, 프로세서(들), 메모리, 배터리 등))을 포함한다. 이와 관련하여, 광 가이드 엘리먼트들(113)의 세트는 PL 엘리먼트들(112)의 그룹 각각으로부터 관련 센서 모듈(114)로 광(예를 들어, 가시광)을 전달하는 역할을 한다.
커버(105)는 명료함을 위해 도 1i에서 도시되지 않았지만, 기판(107)에 걸쳐 분포된 PL 엘리먼트들(112)이 기판 위에 위치하는 커버(105) 상에/내에 배치된 윈도우들(116)에 의해 덮혀질 수 있다. 이와 관련하여, 커버(105)는 기판(107)에 걸쳐 분포된 PL 엘리먼트들(112)의 패턴에 대응하는 윈도우 패턴을 가질 수 있다.
전술한 바와 같이, 웨이퍼 측정 디바이스는 또한 센서 모듈들(114)과 중앙 제어기(111)(예를 들어, 중앙 제어기(111)의 통신 회로(122)) 사이의 통신 링크를 구축하기에 적합한 하나 이상의 통신 코일들(120)을 포함한다.
본 발명개시는 중앙 제어기(111)에 의해 수행되는 온도 결정에 초점을 두지만, 이는 본 발명개시에 대한 제한이 아니라는 것을 유의해야 한다. 본 발명개시의 온도 계산은 하나 이상의 로컬 제어기들(110)(또는 임의의 추가적인 제어기 또는 처리 엘리먼트) 상에서 수행될 수 있다는 것을 알 것이다. 일반적으로, 본 발명개시의 다양한 데이터 처리 단계들(또는 다양한 데이터 처리 단계들의 부분들)은 하나 이상의 로컬 제어기들(110) 또는 중앙 제어기(111) 중 하나에서 수행될 수 있다는 것을 유념해 둔다.
도 2는 본 발명개시의 하나의 실시예에 따른, 측정 웨이퍼(100)에 걸친 방사선 세기 및 온도를 측정하기 위한 방법(200)을 도시하는 흐름도이다. 본 명세서에서, 흐름도(200)의 단계들은 제한적으로 해석되어서는 안되며 단지 예시적인 목적을 위해 제공되었을 뿐임을 유의해야 한다.
하나의 실시예에서, 공정은 단계(202)에서 시작한다. 단계(204)에서, 공정은 하나 이상의 센서들(106) 중 i번째 센서에서 UV 광의 세기를 측정하는 단계를 포함한다. 예를 들어, UV 광 세기는 직접적으로(예를 들어, 개구들(108)을 통과한 UV 광이 센서들(106)에 의해 측정됨) 또는 간접적으로(예를 들어, UV 광 흡수에 응답하여 방출된 가시 PL 광이 센서들(106)에 의해 측정됨) 측정될 수 있다. 그 후, 단계(206)에서, i번째 센서에 대해 광 세기가 측정된 후, 그 결과값이 메모리(예를 들어, 로컬 제어기(110)의 메모리)에 저장된다. 단계(208)에서, i번째 센서가 하나 이상의 센서들(106) 중 최종 센서가 아니면, '아니오' 분기가 취해지고, 단계들(204, 206)이 반복된다. i번째 센서가 하나 이상의 광 센서들(106) 중 최종 센서인 경우, '예' 분기가 취해지고, 공정은 단계(210)로 이동한다.
단계(210)에서, (예를 들어, 하나 이상의 로컬 제어기들(110)에 저장된) N개 센서들로부터 획득되어 저장된 측정 데이터가 중앙 제어기(111)에 전달된다.
단계(212)에서, 하나 이상의 센서들(106) 중 i번째 센서에 대한 온도가 계산된다. 예를 들어, i번째 센서와 관련된 온도는 측정된 세기의 세기 특징(예를 들어, 간접적 측정의 경우 가시적 세기의 감쇠 시간)에 기초하여 계산될 수 있다. 다른 예로서, i번째 센서와 관련된 온도는 하나 이상의 센서들(106)의 하나 이상의 측정된 전기적 특성들(예를 들어, 하나 이상의 센서들의 순방향 전압)에 기초하여 계산될 수 있다. 다른 예로서, i번째 센서와 관련된 온도는 전용 i번째 온도 센서를 사용하여 측정될 수 있다.
단계(214)에서, i번째 센서가 하나 이상의 센서들(106) 중 최종 센서가 아니면, '아니오' 분기가 취해지고, 단계(212)가 반복된다. i번째 센서가 하나 이상의 광 센서들(106) 중 최종 센서인 경우, '예' 분기가 취해지고, 공정은 단계(216)로 이동한다.
단계(216)에서, N개의 센서들 각각에 대한 세기 및/또는 온도 결과가 웨이퍼 어셈블리(102)의 표면에 매핑된다. 예를 들어, 중앙 제어기(111)(또는 다른 제어기)는 하나 이상의 센서들(106)의 각각의 센서에 대해 측정된 세기 및/또는 온도를 상관시킬 수 있다. 그 후, 각각의 광 센서들(106)의 알려진 위치(또는 간접적 측정 접근법의 경우 PL 엘리먼트들(112) 각각의 위치)에 기초하여, 중앙 제어기(111)는 웨이퍼 어셈블리(102)의 최상면(예를 들어, XY 위치)의 평면 내의 위치의 함수로서 웨이퍼 어셈블리(102)의 최상면에서 세기 및/또는 온도의 데이터베이스 및/또는 맵을 형성할 수 있다. 다른 실시예에서, 세기 및/또는 온도의 데이터베이스 및/또는 맵은 사용자 인터페이스(도시되지 않음)의 디스플레이 상에 제공된다.
본 명세서에 기재된 발명내용은 때때로 다른 컴포넌트들 내에 포함되거나 또는 다른 컴포넌트들과 연결된 상이한 컴포넌트들을 나타낸다. 이러한 도시된 아키텍처는 단지 예시일 뿐이며, 동일한 기능을 달성하는 사실상 많은 다른 아키텍처들이 구현될 수 있다는 것을 이해해야 한다. 개념적인 의미에서, 원하는 기능이 달성되도록, 동일한 기능을 달성하기 위한 컴포넌트들의 임의의 배열은 효과적으로 "연관"된다. 그러므로, 아키텍처 또는 중간 컴포넌트에 관계없이, 원하는 기능이 달성되도록, 특정 기능을 달성하기 위해 조합된 본 명세서에서의 임의의 2 개의 컴포넌트들은 서로 "연관"된 것으로 보여질 수도 있다. 마찬가지로, 그렇게 연관된 임의의 두 개의 컴포넌트들은 또한 원하는 기능을 달성하기 위해 서로 "연결되거나" 또는 "결합되는" 것으로서 보여질 수도 있고, 그렇게 연관될 수 있는 임의의 두 개의 컴포넌트들은 원하는 기능을 달성하기 위해 서로 "결합가능한" 것으로서 보여질 수도 있다. 결합가능한 구체적인 예는, 물리적으로 상호작용가능할 수 있고/있거나 물리적으로 상호작용하는 컴포넌트들 및/또는 무선적으로 상호작용가능할 수 있고/있거나 무선적으로 상호작용하는 컴포넌트들 및/또는 논리적으로 상호작용가능할 수 있고/있거나 논리적으로 상호작용하는 컴포넌트들을 포함하지만 이것으로 한정되지 않는다.
본 발명개시 및 본 발명개시의 수 많은 부수적인 장점들이 전술한 설명에 의해 이해될 것으로 믿어지며, 다양한 변경들이 개시된 발명내용으로부터 벗어나지 않거나 또는 발명내용의 모든 물질 장점들을 희생시키지 않는 컴포넌트들의 형태, 구성, 및 배열로 행해질 수 있다는 것은 자명할 것이다. 설명된 형태는 단지 예시에 불과하며, 아래의 청구항들은 이와 같은 변경들을 망라하고 포함하는 것으로 의도되었다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 것으로 이해되어야 한다.

Claims (52)

  1. 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 장치에 있어서,
    하나 이상의 공동(cavity)들을 포함하는 웨이퍼 어셈블리; 및
    검출기 어셈블리
    를 포함하고, 상기 검출기 어셈블리의 적어도 일부분은 상기 웨이퍼 어셈블리의 상기 하나 이상의 공동들 내에 배치되고, 상기 검출기 어셈블리는 하나 이상의 광 센서들을 포함하고, 상기 검출기 어셈블리는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정 또는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정 중 적어도 하나를 수행하도록 구성되며, 상기 검출기 어셈블리는 또한, 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 상기 자외선 광의 세기를 측정 할 때 상기 하나 이상의 광 센서들의 하나 이상의 특성들에 기초하여 상기 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된 것인, 웨이퍼 측정 장치.
  2. 제1항에 있어서,
    상기 웨이퍼 어셈블리는,
    기판; 및
    상기 기판의 일부분에 동작가능하게 결합된 커버(cover)
    를 포함한 것인, 웨이퍼 측정 장치.
  3. 제1항에 있어서,
    상기 검출기 어셈블리는 자외선 광을 가시광으로 변환시키도록 구성된 하나 이상의 광발광(photoluminescent) 엘리먼트들을 포함하고, 상기 하나 이상의 광 센서들은 상기 하나 이상의 광발광 엘리먼트들에 의해 방출된 가시광의 세기를 측정함으로써 상기 하나 이상의 광발광 엘리먼트들에 입사하는 자외선 광의 세기의 간접적 측정을 수행하도록 구성된 것인, 웨이퍼 측정 장치.
  4. 제3항에 있어서,
    상기 검출기 어셈블리는 상기 하나 이상의 공동들 내에 배치된 하나 이상의 광 가이드 엘리먼트들을 포함하며, 상기 하나 이상의 광 가이드 엘리먼트들은 상기 하나 이상의 광발광 엘리먼트들에 의해 방출된 가시광을 상기 하나 이상의 광 센서들에 전달하도록 구성된 것인, 웨이퍼 측정 장치.
  5. 제1항에 있어서,
    상기 하나 이상의 광 센서들은 상기 하나 이상의 광 센서들에 입사하는 자외선 광의 세기의 직접적 측정을 수행하도록 구성된 것인, 웨이퍼 측정 장치.
  6. 제1항에 있어서,
    상기 하나 이상의 광 센서들의 상기 하나 이상의 특성들은 상기 하나 이상의 광 센서들의 전기적 특성 또는 세기 특성 중 적어도 하나를 포함한 것인, 웨이퍼 측정 장치.
  7. 제6항에 있어서,
    상기 전기적 특성은, 알려진 전류에서 측정된, 상기 하나 이상의 광 센서들에 걸친 순방향 전압을 포함한 것인, 웨이퍼 측정 장치.
  8. 제6항에 있어서,
    상기 세기 특성은, 상기 자외선 광에 의한 하나 이상의 광발광 엘리먼트들의 여기에 응답하여 상기 하나 이상의 광 센서들에 입사하는 가시광의 세기 특성을 포함한 것인, 웨이퍼 측정 장치.
  9. 제1항에 있어서,
    상기 검출기 어셈블리는,
    상기 하나 이상의 광 센서들 또는 하나 이상의 광발광 엘리먼트들 중 적어도 하나에 입사하는 자외선 광의 세기 또는 상기 하나 이상의 광 센서들의 전기적 특성들 중 적어도 하나를 나타내는 하나 이상의 신호들을 상기 하나 이상의 광 센서들로부터 수신하도록 구성된 로컬 제어기; 및
    상기 로컬 제어기에 통신가능하게 결합되어 있고, 상기 하나 이상의 광 센서들 또는 하나 이상의 광발광 엘리먼트들 중 적어도 하나에 입사하는 자외선 광의 세기 또는 상기 하나 이상의 광 센서들의 전기적 특성들 중 적어도 하나에 기초하여 상기 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된 중앙 제어기
    를 포함한 것인, 웨이퍼 측정 장치.
  10. 제1항에 있어서,
    상기 웨이퍼 어셈블리는 상기 웨이퍼 어셈블리의 상기 적어도 하나의 표면에 입사하는 자외선 광을 상기 검출기 어셈블리의 상기 하나 이상의 광 센서들로 전달하도록 구성된 하나 이상의 개구들을 상기 웨이퍼 어셈블리의 상기 적어도 하나의 표면에서 포함하는 것인, 웨이퍼 측정 장치.
  11. 제10항에 있어서,
    상기 웨이퍼 어셈블리는, 상기 웨이퍼 어셈블리의 상기 적어도 하나의 표면에서의 상기 하나 이상의 개구들에 위치해 있고 상기 웨이퍼 어셈블리의 상기 적어도 하나의 표면에 입사하는 자외선 광을 상기 검출기 어셈블리의 상기 하나 이상의 광 센서들로 전달하도록 구성된 하나 이상의 윈도우들을 포함하는 것인, 웨이퍼 측정 장치.
  12. 제11항에 있어서,
    상기 웨이퍼 어셈블리는 상기 하나 이상의 윈도우들에 적어도 근접하게 배치되고 상기 웨이퍼 어셈블리의 상기 적어도 하나의 표면에 입사되는 광의 선택된 부분을 차단하도록 구성된 하나 이상의 입구 필터들을 포함한 것인, 웨이퍼 측정 장치.
  13. 제1항에 있어서,
    상기 하나 이상의 광 센서들은 하나 이상의 다이오드 검출기들을 포함한 것인, 웨이퍼 측정 장치.
  14. 제13항에 있어서,
    상기 하나 이상의 다이오드 검출기들은 실리콘 카바이드 검출기, 갈륨 질화물 다이오드 검출기, 알루미늄 갈륨 질화물 검출기 또는 실리콘 검출기 중 적어도 하나를 포함한 것인, 웨이퍼 측정 장치.
  15. 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 장치에 있어서,
    하나 이상의 공동들을 포함하는 웨이퍼 어셈블리; 및
    검출기 어셈블리
    를 포함하고, 상기 검출기 어셈블리의 적어도 일부분은 상기 웨이퍼 어셈블리의 상기 하나 이상의 공동들 내에 배치되고, 상기 검출기 어셈블리는 하나 이상의 광 센서들을 포함하고, 상기 검출기 어셈블리는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정 또는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정 중 적어도 하나를 수행하도록 구성되며, 상기 검출기 어셈블리는 또한, 상기 하나 이상의 광 센서들의 하나 이상의 특성들 또는 상기 하나 이상의 광 센서들에 적어도 근접하게 배치된 하나 이상의 온도 센서들로부터의 하나 이상의 온도 측정치들 중 적어도 하나에 기초하여 상기 웨이퍼 어셈블리의 하나 이상의 부분들의 온도를 결정하도록 구성된 것인, 웨이퍼 측정 장치.
  16. 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 장치에 있어서,
    기판;
    상기 기판의 일부분에 동작가능하게 결합된 커버;
    상기 기판과 상기 커버 사이에 형성된 하나 이상의 공동들;
    상기 하나 이상의 공동들 내에 배치된 하나 이상의 광 센서들을 포함한 검출기 어셈블리 - 상기 커버는 상기 커버의 최상면으로부터 상기 하나 이상의 광 센서들로 광을 전달하기 위한 하나 이상의 개구들을 포함하고, 상기 하나 이상의 광 센서들은 상기 하나 이상의 개구들을 통과하는 광의 세기를 측정하도록 구성됨 -; 및
    상기 하나 이상의 광 센서들에 통신가능하게 결합된 하나 이상의 로컬 제어기들
    을 포함하고, 상기 하나 이상의 로컬 제어기들은 상기 하나 이상의 광 센서들에 의해 측정된 광의 세기 또는 상기 하나 이상의 광 센서들의 하나 이상의 추가적인 특성들 중 적어도 하나를 나타내는 하나 이상의 신호들을 수신하도록 구성된 것인, 웨이퍼 측정 장치.
  17. 제16항에 있어서,
    상기 하나 이상의 광 센서들은 상기 하나 이상의 개구들을 통과하는 광의 세기를 직접적으로 측정하도록 구성된 것인, 웨이퍼 측정 장치.
  18. 제16항에 있어서,
    상기 하나 이상의 로컬 제어기들에 통신가능하게 결합되고, 상기 하나 이상의 광 센서들의 상기 하나 이상의 추가적인 특성들에 기초하여 상기 하나 이상의 광 센서들의 온도를 결정하도록 구성된 하나 이상의 중앙 제어기들
    을 더 포함하는 웨이퍼 측정 장치.
  19. 제18항에 있어서,
    상기 하나 이상의 추가적인 특성들은 상기 하나 이상의 광 센서들의 하나 이상의 전기적 특성들을 포함한 것인, 웨이퍼 측정 장치.
  20. 제19항에 있어서,
    상기 하나 이상의 전기적 특성들은 알려진 전류에서 측정된 순방향 전압을 포함한 것인, 웨이퍼 측정 장치.
  21. 제16항에 있어서,
    상기 하나 이상의 중앙 제어기들은 상기 하나 이상의 로컬 제어기들에 통신가능하게 무선결합된 것인, 웨이퍼 측정 장치.
  22. 제16항에 있어서,
    상기 검출기 어셈블리는, 상기 하나 이상의 개구들에 적어도 근접하게 배치되고 상기 커버의 최상면으로부터 상기 하나 이상의 광 센서들에 광을 전달하도록 구성된 하나 이상의 윈도우 필터들을 포함한 것인, 웨이퍼 측정 장치.
  23. 제22항에 있어서,
    상기 검출기 어셈블리는, 상기 하나 이상의 윈도우들에 적어도 근접하게 배치되고 상기 하나 이상의 윈도우들에 입사되는 광의 일부분을 차단하도록 구성된 하나 이상의 입구 필터들을 포함한 것인, 웨이퍼 측정 장치.
  24. 제14항에 있어서,
    상기 하나 이상의 광 센서들과 상기 하나 이상의 로컬 제어기들은 상기 기판과 상기 커버 사이의 상기 공동 내에 배치된 것인, 웨이퍼 측정 장치.
  25. 제16항에 있어서,
    상기 하나 이상의 광 센서들은 상기 하나 이상의 로컬 제어기들에 근접하게 배치된 것인, 웨이퍼 측정 장치.
  26. 제16항에 있어서,
    상기 하나 이상의 광 센서들은 상기 하나 이상의 로컬 제어기들로부터 원격적으로 배치되고, 상기 하나 이상의 로컬 제어기들은 상기 기판으로부터 실질적으로 열 격리되어 있는 것인, 웨이퍼 측정 장치.
  27. 제16항에 있어서,
    상기 하나 이상의 광 센서들은 하나 이상의 다이오드 검출기들을 포함한 것인, 웨이퍼 측정 장치.
  28. 제27항에 있어서,
    상기 하나 이상의 다이오드 검출기들은, 실리콘 카바이드 검출기, 갈륨 질화물 다이오드 검출기, 알루미늄 갈륨 질화물 검출기 또는 실리콘 검출기 중 적어도 하나를 포함한 것인, 웨이퍼 측정 장치.
  29. 방사선 세기 및 온도를 측정하기 위한 웨이퍼 측정 장치에 있어서,
    기판 및 상기 기판의 일부분에 동작가능하게 결합된 커버를 포함한 웨이퍼 어셈블리; 및
    검출기 어셈블리
    를 포함하고, 상기 검출기 어셈블리는,
    상기 기판과 상기 커버 사이에 형성된 하나 이상의 공동들 내에 배치된 하나 이상의 광 센서들;
    상기 하나 이상의 공동들 내에 배치된 하나 이상의 광발광 엘리먼트들 - 상기 커버는 상기 커버의 최상면으로부터 상기 하나 이상의 광발광 엘리먼트들로 광을 전달하기 위한 하나 이상의 개구들을 포함하고, 상기 하나 이상의 광발광 엘리먼트들은 상기 하나 이상의 개구들을 통과하는 제1 파장 범위의 광의 적어도 일부분을 흡수하고, 상기 제1 파장 범위와는 상이한 적어도 제2 파장 범위의 광을 방출하도록 구성되며, 상기 하나 이상의 광 센서들은 상기 하나 이상의 광발광 엘리먼트들에 의해 방출된 상기 적어도 제2 파장 범위의 광의 세기를 측정하도록 구성됨 -;
    상기 하나 이상의 광 센서들에 통신가능하게 결합된 하나 이상의 로컬 제어기들 - 상기 하나 이상의 로컬 제어기들은 상기 하나 이상의 광 센서들에 의해 측정된 상기 적어도 제2 파장 범위의 광의 세기를 나타내는 하나 이상의 신호들을 수신하도록 구성됨 -; 및
    상기 하나 이상의 로컬 제어기들에 통신가능하게 결합된 하나 이상의 중앙 제어기들
    을 포함하며, 상기 하나 이상의 중앙 제어기들은 상기 하나 이상의 광 센서들에 의해 측정된 상기 적어도 제2 파장 범위의 광의 세기의 세기 특징에 기초하여 상기 하나 이상의 광발광 엘리먼트들의 온도를 결정하도록 구성된 것인, 웨이퍼 측정 장치.
  30. 제29항에 있어서,
    상기 하나 이상의 광 센서들은 상기 하나 이상의 개구들을 통과하는 광의 세기를 간접적으로 측정하도록 구성된 것인, 웨이퍼 측정 장치.
  31. 제29항에 있어서,
    상기 적어도 제2 파장의 광의 세기의 세기 특징은 상기 적어도 제2 파장 범위의 광의 세기의 감쇠 시간을 포함한 것인, 웨이퍼 측정 장치.
  32. 제29항에 있어서,
    상기 적어도 제2 파장 범위의 광의 세기의 세기 특징은 상기 적어도 제2 파장의 광의 제2 세기값에 대한 상기 적어도 제2 파장의 광의 제1 세기값의 비율을 포함하며, 상기 제2 세기값은 알려진 온도에서 측정된 것인, 웨이퍼 측정 장치.
  33. 제29항에 있어서,
    상기 하나 이상의 중앙 제어기들은 상기 하나 이상의 로컬 제어기들에 통신가능하게 무선결합된 것인, 웨이퍼 측정 장치.
  34. 제29항에 있어서,
    상기 하나 이상의 로컬 제어기들은 프로그램 명령어들의 세트를 실행하도록 구성된 하나 이상의 프로세서들을 포함하며,
    상기 프로그램 명령어들의 세트는, 상기 하나 이상의 프로세서들로 하여금, 상기 하나 이상의 광 센서들에 의해 측정된 상기 적어도 제2 파장의 광의 세기를 나타내는 하나 이상의 신호들을 수신하게 하도록 구성된 것인, 웨이퍼 측정 장치.
  35. 제29항에 있어서,
    상기 하나 이상의 중앙 제어기들은 프로그램 명령어들의 세트를 실행하도록 구성된 하나 이상의 프로세서들을 포함하며,
    상기 프로그램 명령어들의 세트는, 상기 하나 이상의 프로세서들로 하여금, 상기 하나 이상의 광 센서들에 의해 측정된 상기 적어도 제2 파장 범위의 광의 세기의 세기 특징에 기초하여 상기 하나 이상의 광발광 엘리먼트들의 온도를 결정하게 하도록 구성된 것인, 웨이퍼 측정 장치.
  36. 제29항에 있어서,
    상기 검출기 어셈블리는 상기 하나 이상의 공동들 내에 배치된 하나 이상의 광 가이드 엘리먼트들을 포함하며,
    상기 하나 이상의 광 가이드 엘리먼트들은 상기 하나 이상의 광발광 엘리먼트들로부터 상기 하나 이상의 광 센서들로 상기 적어도 제2 파장 범위의 광을 전달하도록 구성된 것인, 웨이퍼 측정 장치.
  37. 제36항에 있어서,
    상기 하나 이상의 광 가이드 엘리먼트들은 하나 이상의 광 가이드들을 포함한 것인, 웨이퍼 측정 장치.
  38. 제36항에 있어서,
    상기 하나 이상의 광 가이드 엘리먼트들은 하나 이상의 광 섬유들을 포함한 것인, 웨이퍼 측정 장치.
  39. 제36항에 있어서,
    상기 하나 이상의 광 가이드 엘리먼트들은 두 개 이상의 광 가이드 엘리먼트들을 포함한 것인, 웨이퍼 측정 장치.
  40. 제39항에 있어서,
    상기 두 개 이상의 광 가이드 엘리먼트들은,
    제1 광 가이드 엘리먼트; 및
    적어도 제2 광 가이드 엘리먼트
    를 포함하고,
    상기 제1 광 가이드 엘리먼트는 제1 광발광 엘리먼트로부터 제1 광 센서로 상기 적어도 제2 파장 범위의 광을 전달하도록 구성되며, 상기 적어도 제2 광 가이드 엘리먼트는 적어도 제2 광발광 엘리먼트로부터 적어도 제2 광 센서로 상기 적어도 제2 파장 범위의 광을 전달하도록 구성된 것인, 웨이퍼 측정 장치.
  41. 제39항에 있어서,
    상기 두 개 이상의 광 가이드 엘리먼트들은,
    제1 광 가이드 엘리먼트; 및
    적어도 제2 광 가이드 엘리먼트
    를 포함하고,
    상기 제1 광 가이드 엘리먼트는 제1 광발광 엘리먼트로부터 제1 광 센서로 상기 적어도 제2 파장 범위의 광을 전달하도록 구성되며, 상기 적어도 제2 광 가이드 엘리먼트는 적어도 제2 광발광 엘리먼트로부터 제1 광 센서로 상기 적어도 제2 파장 범위의 광을 전달하도록 구성되며, 각각의 광 가이드는 광을 복수의 PL 스팟들로부터 주어진 센서로 전달하는 것인, 웨이퍼 측정 장치.
  42. 제29항에 있어서,
    상기 하나 이상의 광발광 엘리먼트는, 적어도 자외선 광을 흡수하도록 구성되고 자외선 광을 흡수한 것에 응답하여 적어도 가시광을 방출하도록 또한 구성된 하나 이상의 광발광 엘리먼트들을 포함한 것인, 웨이퍼 측정 장치.
  43. 제29항에 있어서,
    상기 하나 이상의 광발광 엘리먼트는 형광체(phosphor) 또는 형광체 혼합물 중 적어도 하나를 포함하는 하나 이상의 광발광 층들을 포함한 것인, 웨이퍼 측정 장치.
  44. 제29항에 있어서,
    상기 검출기 어셈블리는, 상기 하나 이상의 개구들에 적어도 근접하게 배치되고 상기 커버의 최상면으로부터 상기 하나 이상의 광 센서들에 광을 전달하도록 구성된 하나 이상의 윈도우 필터들을 포함한 것인, 웨이퍼 측정 장치.
  45. 제44항에 있어서,
    상기 검출기 어셈블리는, 상기 하나 이상의 윈도우들에 적어도 근접하게 배치되고 상기 제1 파장 범위 밖에 있는 파장을 갖는 광의 일부분을 차단하도록 구성된 하나 이상의 입구 필터들을 포함한 것인, 웨이퍼 측정 장치.
  46. 제29항에 있어서,
    상기 검출기 어셈블리는,
    상기 하나 이상의 센서들에 적어도 근접하게 배치되고, 상기 제1 파장 밖에 있는 파장을 갖는 광의 일부분을 차단하도록 구성되며, 또한 상기 적어도 제2 파장 범위의 광의 적어도 일부분을 전달하도록 구성된 하나 이상의 센서 필터들
    을 포함한 것인, 웨이퍼 측정 장치.
  47. 제29항에 있어서,
    상기 하나 이상의 광 센서들과 상기 하나 이상의 로컬 제어기들은 상기 기판과 상기 커버 사이의 상기 공동 내에 배치된 것인, 웨이퍼 측정 장치.
  48. 제29항에 있어서,
    상기 하나 이상의 광 센서들과 상기 하나 이상의 로컬 제어기들은 센서 모듈 내에 배치된 것인, 웨이퍼 측정 장치.
  49. 제48항에 있어서,
    상기 센서 모듈은 상기 기판으로부터 실질적으로 열 격리되어 있는 것인, 웨이퍼 측정 장치.
  50. 제29항에 있어서,
    상기 하나 이상의 광 센서들은 상기 웨이퍼 기판에 걸쳐 분포된 두 개 이상의 광 센서들을 포함한 것인, 웨이퍼 측정 장치.
  51. 제50항에 있어서,
    상기 하나 이상의 개구들은 상기 커버에 걸쳐 분포된 두 개 이상의 개구들을 포함하며, 상기 두 개 이상의 윈도우들은 상기 두 개 이상의 광 센서들과 실질적으로 정렬된 것인, 웨이퍼 측정 장치.
  52. 방사선 세기를 측정하기 위한 웨이퍼 측정 장치에 있어서,
    웨이퍼 어셈블리; 및
    검출기 어셈블리
    를 포함하고,
    상기 검출기 어셈블리의 적어도 일부분은 상기 웨이퍼 어셈블리의 표면 상에 배치되고, 상기 검출기 어셈블리는 하나 이상의 광 센서들을 포함하고, 상기 검출기 어셈블리는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 직접적 측정 또는 상기 웨이퍼 어셈블리의 적어도 하나의 표면 상에 입사하는 자외선 광의 세기의 간접적 측정 중 적어도 하나를 수행하도록 구성된 것인, 웨이퍼 측정 장치.
KR1020177012876A 2014-10-14 2015-10-13 제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템 KR102290939B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462063657P 2014-10-14 2014-10-14
US62/063,657 2014-10-14
US14/880,899 2015-10-12
US14/880,899 US9823121B2 (en) 2014-10-14 2015-10-12 Method and system for measuring radiation and temperature exposure of wafers along a fabrication process line
PCT/US2015/055307 WO2016061089A1 (en) 2014-10-14 2015-10-13 Method and system for measuring radiation and temperature exposure of wafers along a fabrication process line

Publications (2)

Publication Number Publication Date
KR20170065660A true KR20170065660A (ko) 2017-06-13
KR102290939B1 KR102290939B1 (ko) 2021-08-17

Family

ID=55747214

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177012876A KR102290939B1 (ko) 2014-10-14 2015-10-13 제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템

Country Status (7)

Country Link
US (2) US9823121B2 (ko)
EP (1) EP3201942B1 (ko)
JP (3) JP6738327B2 (ko)
KR (1) KR102290939B1 (ko)
CN (2) CN106796903B (ko)
TW (1) TWI685907B (ko)
WO (1) WO2016061089A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210094954A (ko) 2020-01-22 2021-07-30 한국원자력연구원 표면오염물질 채취 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690598B (zh) * 2015-04-15 2020-03-27 雷蛇(亚太)私人有限公司 滤波装置及滤波方法
WO2018054471A1 (en) * 2016-09-22 2018-03-29 Applied Materials, Inc. Carrier for supporting a substrate, apparatus for processing a substrate and method therefore
US10512704B2 (en) * 2017-06-27 2019-12-24 The Boeing Company Cleanliness indication systems and methods
US11655992B2 (en) * 2018-02-13 2023-05-23 Advanced Semiconductor Engineering, Inc. Measuring system
US10916411B2 (en) 2018-08-13 2021-02-09 Tokyo Electron Limited Sensor-to-sensor matching methods for chamber matching
US11315811B2 (en) * 2018-09-06 2022-04-26 Kla Corporation Process temperature measurement device fabrication techniques and methods of calibration and data interpolation of the same
JP7108562B2 (ja) * 2019-02-22 2022-07-28 株式会社日立製作所 処理の制御パラメータの決定方法、及び計測システム
KR20220032101A (ko) * 2019-08-14 2022-03-15 에이에스엠엘 홀딩 엔.브이. 리소그래피 장치 및 자외 방사선 제어 방법
US11668601B2 (en) 2020-02-24 2023-06-06 Kla Corporation Instrumented substrate apparatus
US11688614B2 (en) 2021-04-28 2023-06-27 Kla Corporation Mitigating thermal expansion mismatch in temperature probe construction apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134069A (ja) * 1993-11-10 1995-05-23 Hitachi Ltd 基板温度のモニタ方法
JP2001330513A (ja) * 2000-05-19 2001-11-30 Tokyo Electron Tohoku Ltd 温度測定方法および温度測定装置および半導体製造装置
JP2006505940A (ja) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド 集積回路の製造を監視する方法及び装置
KR100699211B1 (ko) * 2004-01-22 2007-03-27 울트라테크 인크. 저농도로 도핑된 실리콘 기판의 레이저 열 어닐링
JP2007514162A (ja) * 2003-12-12 2007-05-31 ハネウェル・インターナショナル・インコーポレーテッド プレーナ型紫外線光検出器
KR20140073449A (ko) * 2012-12-06 2014-06-16 울트라테크 인크. 반도체 웨이퍼를 레이저 어닐링하는 듀얼-루프 제어 시스템

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215275A (en) 1977-12-07 1980-07-29 Luxtron Corporation Optical temperature measurement technique utilizing phosphors
US4459044A (en) 1981-02-09 1984-07-10 Luxtron Corporation Optical system for an instrument to detect the temperature of an optical fiber phosphor probe
JPS58143542A (ja) * 1982-02-22 1983-08-26 Toshiba Corp 半導体単結晶の評価方法
JPH0456145A (ja) * 1990-06-22 1992-02-24 Hitachi Ltd プラズマ中の基板温度の測定装置
US5414266A (en) 1993-06-11 1995-05-09 Luxtron Corporation Measuring system employing a luminescent sensor and methods of designing the system
US5470155A (en) 1993-06-11 1995-11-28 Luxtron Corporation Apparatus and method for measuring temperatures at a plurality of locations using luminescent-type temperature sensors which are excited in a time sequence
JP3868056B2 (ja) * 1997-05-07 2007-01-17 株式会社ディスコ ウェーハのチッピング検出方法
JP3890131B2 (ja) * 1997-12-17 2007-03-07 キヤノン株式会社 露光装置およびデバイス製造方法
US6183130B1 (en) * 1998-02-20 2001-02-06 Applied Materials, Inc. Apparatus for substrate temperature measurement using a reflecting cavity and detector
JP2001215153A (ja) * 2000-02-01 2001-08-10 Omron Corp 透明体検出装置
US7080940B2 (en) * 2001-04-20 2006-07-25 Luxtron Corporation In situ optical surface temperature measuring techniques and devices
JP2002344001A (ja) 2001-05-18 2002-11-29 Fuji Xerox Co Ltd 波長分離型紫外線受光器
US7757574B2 (en) 2002-01-24 2010-07-20 Kla-Tencor Corporation Process condition sensing wafer and data analysis system
US7217588B2 (en) 2005-01-05 2007-05-15 Sharp Laboratories Of America, Inc. Integrated MEMS packaging
US6828542B2 (en) * 2002-06-07 2004-12-07 Brion Technologies, Inc. System and method for lithography process monitoring and control
FR2844635B1 (fr) * 2002-09-16 2005-08-19 Commissariat Energie Atomique Dispositif detecteur de rayonnement electromagnetique avec boitier integre comportant deux detecteurs superposes
JP4206278B2 (ja) * 2003-01-28 2009-01-07 エスアイアイ・ナノテクノロジー株式会社 放射線計測装置
JP2008008848A (ja) * 2006-06-30 2008-01-17 Kobe Steel Ltd 紫外線モニタリングシステム及び紫外線照射装置
EP1930476A1 (de) * 2006-12-07 2008-06-11 Siemens Aktiengesellschaft Schichtsystem
JP2010519768A (ja) * 2007-02-23 2010-06-03 ケーエルエー−テンカー・コーポレーション プロセス条件測定デバイス
CN101468344A (zh) * 2007-12-24 2009-07-01 鸿富锦精密工业(深圳)有限公司 具有光强检测功能的光固化机
US20100187441A1 (en) * 2009-01-28 2010-07-29 Bio-Rad Laboratories, Inc. Transilluminator adaptor for conversion of ultraviolet radiation to visible light
JP5736845B2 (ja) * 2011-03-02 2015-06-17 東レ株式会社 白色積層ポリエステルフィルム
CN202133819U (zh) * 2011-04-25 2012-02-01 光驰科技(上海)有限公司 光学薄膜成膜的直接式光学监控系统
CN103512595B (zh) * 2011-07-19 2016-08-10 赫普塔冈微光有限公司 光电模块及其制造方法与包含光电模块的电器及装置
US20130026381A1 (en) * 2011-07-25 2013-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. Dynamic, real time ultraviolet radiation intensity monitor
US9360302B2 (en) * 2011-12-15 2016-06-07 Kla-Tencor Corporation Film thickness monitor
CN102645274B (zh) * 2012-04-23 2015-02-11 南京中电熊猫液晶显示科技有限公司 液晶显示器背光自动调节系统用光强检测器
US8753903B1 (en) * 2012-05-22 2014-06-17 Western Digital (Fremont), Llc Methods and apparatuses for performing wafer level characterization of a plasmon element
US9322901B2 (en) * 2013-02-20 2016-04-26 Maxim Integrated Products, Inc. Multichip wafer level package (WLP) optical device
JP6329790B2 (ja) * 2014-03-25 2018-05-23 株式会社日立ハイテクノロジーズ プラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134069A (ja) * 1993-11-10 1995-05-23 Hitachi Ltd 基板温度のモニタ方法
JP2001330513A (ja) * 2000-05-19 2001-11-30 Tokyo Electron Tohoku Ltd 温度測定方法および温度測定装置および半導体製造装置
JP2006505940A (ja) * 2002-11-04 2006-02-16 ブリオン テクノロジーズ,インコーポレーテッド 集積回路の製造を監視する方法及び装置
JP2007514162A (ja) * 2003-12-12 2007-05-31 ハネウェル・インターナショナル・インコーポレーテッド プレーナ型紫外線光検出器
KR100699211B1 (ko) * 2004-01-22 2007-03-27 울트라테크 인크. 저농도로 도핑된 실리콘 기판의 레이저 열 어닐링
KR20140073449A (ko) * 2012-12-06 2014-06-16 울트라테크 인크. 반도체 웨이퍼를 레이저 어닐링하는 듀얼-루프 제어 시스템

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210094954A (ko) 2020-01-22 2021-07-30 한국원자력연구원 표면오염물질 채취 장치

Also Published As

Publication number Publication date
EP3201942A4 (en) 2018-06-20
JP2017539078A (ja) 2017-12-28
CN106796903B (zh) 2021-01-08
US20180052045A1 (en) 2018-02-22
CN106796903A (zh) 2017-05-31
EP3201942A1 (en) 2017-08-09
CN112635365A (zh) 2021-04-09
TWI685907B (zh) 2020-02-21
US10215626B2 (en) 2019-02-26
US20160138969A1 (en) 2016-05-19
KR102290939B1 (ko) 2021-08-17
CN112635365B (zh) 2022-04-01
TW201614752A (en) 2016-04-16
JP2020191458A (ja) 2020-11-26
JP6738327B2 (ja) 2020-08-12
EP3201942B1 (en) 2021-09-22
US9823121B2 (en) 2017-11-21
WO2016061089A1 (en) 2016-04-21
JP2022113724A (ja) 2022-08-04
JP7378538B2 (ja) 2023-11-13

Similar Documents

Publication Publication Date Title
KR102290939B1 (ko) 제조 공정 라인을 따른 웨이퍼들의 방사선 및 온도 노출을 측정하는 방법 및 시스템
US11901165B2 (en) Processing chamber with optical fiber with bragg grating sensors
US7228016B2 (en) Evanescent nanosensor using an optical resonator
KR101909319B1 (ko) 웨이퍼 레벨 분광기
CA2786919C (en) Photoluminescent temperature sensor utilizing a singular element for excitation and photodetection
US9022649B2 (en) Fluorescence based thermometry
CN112534224A (zh) 光谱仪和用于校准光谱仪的方法
US20230395408A1 (en) Optical sensor for remote temperature measurements
JP7496504B2 (ja) 温度測定システム
US20240186124A1 (en) Processing chamber with optical fiber with bragg grating sensors
RU2589525C1 (ru) Способ дистанционного измерения температуры

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant