KR20170042361A - 렌즈 및 렌즈 몰드의 광학적 평가 방법 - Google Patents

렌즈 및 렌즈 몰드의 광학적 평가 방법 Download PDF

Info

Publication number
KR20170042361A
KR20170042361A KR1020177007212A KR20177007212A KR20170042361A KR 20170042361 A KR20170042361 A KR 20170042361A KR 1020177007212 A KR1020177007212 A KR 1020177007212A KR 20177007212 A KR20177007212 A KR 20177007212A KR 20170042361 A KR20170042361 A KR 20170042361A
Authority
KR
South Korea
Prior art keywords
vertex
information
optical
lens
feature
Prior art date
Application number
KR1020177007212A
Other languages
English (en)
Other versions
KR102332215B1 (ko
Inventor
마틴 에프. 페이
드 레가 하비에르 꼴로나
그루트 피터 제이. 드
Original Assignee
지고 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지고 코포레이션 filed Critical 지고 코포레이션
Publication of KR20170042361A publication Critical patent/KR20170042361A/ko
Application granted granted Critical
Publication of KR102332215B1 publication Critical patent/KR102332215B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00951Measuring, controlling or regulating
    • B29D11/0098Inspecting lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/025Testing optical properties by measuring geometrical properties or aberrations by determining the shape of the object to be tested
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Lens Barrels (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

만곡부 및 평면부를 포함하는 물체에 대한 정보를 결정하는 방법에 있어서, 상기 만곡부는 꼭지점을 가지고 상기 물체의 축을 규정하는 제 1 만곡면을 포함하는, 방법은: 측정광을 물체로 지향시키는 단계; 상기 만곡부의 제 1 만곡면으로부터 반사된 측정광을 검출하는 단계; 상기 물체의 적어도 하나의 다른 표면으로부터 반사된 측정광을 검출하는 단계; 및 검출된 광에 기초하여, 상기 만곡부의 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계를 포함한다.

Description

렌즈 및 렌즈 몰드의 광학적 평가 방법{OPTICAL EVALUATION OF LENSES AND LENS MOLDS}
관련 출원에 대한 상호 참조
본 출원은 발명의 명칭이 "OPTICAL EVALUATION OF THE DIMENSIONAL AND OPTICAL PROPERTIES OF LENSES HAVING MECHANICAL LOCATING FEATURES"이고 2014 년 8 월 15 일에 출원된 가출원 번호 제 62/037,966 호 및 발명의 명칭이 "OPTICAL EVALUATION OF FEATURE LOCATIONS ON LENSES"이고 2014 년 8 월 19 일에 출원된 가출원 번호 제 62/039,398 호에 대한 우선권을 주장한다. 두 가출원들 모두의 내용은 그 전체가 원용에 의해 본 명세서에 포함된다.
특정 양태에서, 본 발명은 소비자 제품에서 사용되는 몰딩된 렌즈, 및 이들을 제조하기 위해 사용되는 다이아몬드 선삭 몰드의 기하학적 구조 및 광학적 특성을 특징짓기 위한 방법 및 툴에 관한 것이다. 또한, 본 발명은 이러한 몰딩된 렌즈를 포함하는 광학 어셈블리를 제조하는 것, 및 이러한 광학 어셈블리를 포함하는 소비자 제품을 제조하는 것에 관한 것이다.
스마트 폰 및 셀폰, 태블릿, 휴대용 컴퓨터, 차량 및 트럭에서 사용되는 소형화된 카메라에 대한 시장이 급속도로 확장되고 있다. 최신식 카메라에 대한 이미지 품질 요구 수준이 높기 때문에, 제조사들은 많은 비구면 몰딩된 렌즈로 구성되는 복잡한 광학 어셈블리를 개발할 수밖에 없다.
도 1 은 4 개의 몰딩된 플라스틱 렌즈로 구성되는 예시적인 광학 어셈블리를 도시한다. 특히, 미국 특허 번호 7,777,972 에서 기술되는 이러한 어셈블리는 어셈블리의 이미지 표면(170)에 위치된 센서 상에 이미지를 형성하도록 배치되는 4 개의 렌즈를 포함한다. 렌즈 요소들은, 비구면 볼록 물체-측 표면(101) 및 비구면 볼록 이미지-측 표면(102)을 가지는, 양의 굴절력의 제 1 렌즈 요소(100)로 구성되는 제 1 렌즈 그룹에 배치된다. 어셈블리는 제 2 렌즈 요소(110), 제 3 렌즈 요소(120), 및 제 4 렌즈 요소(130)로 구성되는 제 2 렌즈 그룹을 더 포함한다.
제 2 렌즈 요소(110)는 비구면 볼록 물체-측 표면(111) 및 비구면 오목 이미지-측 표면(112)을 가지는 음의 굴절력을 가진다. 제 3 렌즈 요소(120)는 비구면 오목 물체-측 표면(121) 및 비구면 볼록 이미지-측 표면(122)을 가진다. 제 4 렌즈 요소(130)는 비구면 볼록 물체-측 표면(131) 및 비구면 오목 이미지-측 표면(132)을 가진다. 제 1 렌즈 요소(100)와 이미징된 물체 사이에 조리개 스톱(140)이 위치된다. IR 필터(150)는 제 4 렌즈 요소(130)의 이미지-측 표면(132)과 이미지 표면(170) 사이에 배치되고, IR 필터(150)는 이미징 광학 렌즈 어셈블리의 초점 길이에 영향을 주지 않는다. 센서 커버 유리(160)가 IR 필터(150)와 이미지 표면(170) 사이에 배치되는데, 센서 커버 유리(160)도 역시 이미징 광학 렌즈 어셈블리의 초점 길이에 아무런 영향도 주지 않는다.
일반적으로, 만곡형 렌즈면은 축 중심으로 회전 대칭성을 가지고, 각각의 표면의 축은 공칭적으로 어셈블리의 공통 축 - 광축 -에 놓여 있다. 렌즈면 축들의 중심을 맞추는 것은 전체 어셈블리의 광학 성능을 위하여 매우 중요하다. 또 중요한 것은 각각의 렌즈면의 곡률과 각각의 렌즈면들 사이의 간격 - 즉, 렌즈 두께 및 인접한 렌즈들 사이의 간격 모두이다.
따라서, 각각의 개별 렌즈는 통상적으로 다수의 중심일치(centration) 및 간격 데이터를 포함하고, 충분히 엄격한 공차로 제조되어, 도 1 에서 묘사되는 만곡형 기능성 광학면에 추가하여 서로 적층될 경우에 최종 렌즈 어셈블리가 적절하게 정렬되게 한다. 이러한 데이터는 각각의 렌즈의 추가적인 광학적으로 비활성 부분에 의해 공통적으로 제공되는데, 이러한 부분은 활성 렌즈부의 에지 주위에 링을 형성한다. 조립되면, 렌즈의 비-광학적 부분들은, 전체 렌즈 어셈블리 디자인에 의해 요구되는 바와 같이 렌즈부를 서로에 대해 정렬하고 간격을 조절하면서 함께 적층된다.
제조 공차 버짓(tolerance budget)이 점점 엄격해지고 있기 때문에, 종래의 계측 장비(예를 들어, 콘택 프루브 및 게이지, 촉각 프로파일러, 검사 현미경)는 많은 경우에 더 이상 원하는 재현가능성 또는 정확도를 얻을 수 없다. 또한, 생산 사업장에서의 렌즈의 굴절률 또는 복굴절과 같은 특정한 특성을 측정하기 위한 계측 장비는 상업적으로 구입가능하지 않다. 따라서, 현재는 계측 갭이 존재한다.
본 발명은 특히, 만곡되는 활성 표면 영역을 포함하고, 예를 들어 어셈블리 내에 이러한 렌즈를 기계적으로 위치결정하기 위한 공칭적으로 평평하고 평행한 상면과 하면 영역을 역시 포함하는 렌즈를 포함하는, 투명 샘플의 치수 특성 및 광학적 특성을 평가하기 위한 방법 및 장치를 특징으로 한다.
실시예들에서, 이러한 장치는 샘플의 공칭적으로 평행한 상면과 하면 영역을 측정하기 위한 광계측 시스템, 및 샘플의 공칭적으로 평행한 상면과 하면 영역의 두 개 이상의 포지션에서 계산된 광학적 및 물리적 두께로부터 유도된 정보를 사용하여 샘플의 광학적 및 치수 특성을 평가하기 위한 데이터 처리 시스템을 포함한다.
그 대신에 또는 추가하여, 본 발명은 샘플의 상면과 하면 양자 모두에 대한 3D 표면 토포그래피 정보(예를 들어, 높이 프로파일)를 2D 이미지(예를 들어, 세기 프로파일)와 결합함으로써 투명 샘플(예를 들어, 렌즈)의 치수 특성을 평가하기 위한 방법 및 장치를 특징으로 한다. 토포그래피 정보 및 두 개의 이미지는 샘플의 같은 면으로부터 획득될 수 있다.
이러한 방법 및 장치는 생산 환경에서 사용될 수 있다.
일반적으로, 샘플은, 만곡되는(예를 들어, 광력(optical power)을 가지는) 상부 및 하부 활성 표면 영역과 함께, 광을 지향시키기 위해 사용되는 것이 아니라 이러한 렌즈들을 어셈블리 내에 기계적으로 위치결정하기 위해 사용되는 추가적인 상부 및 하부면 영역을 포함하는 렌즈일 수 있다. 이러한 부분들은 평행 평면 표들을 가질 수 있다. 만곡부는 활성부이라고 불릴 수 있고, 다른 부분(예를 들어, 평면 평행)은 비활성부라고 불릴 수 있다. 샘플은 볼록 또는 오목이고, 구형 또는 비구면인 활성부의 표면 영역을 가질 수 있다.
비활성부의 상면과 하면은 공칭적으로 평평하거나 원추형일 수 있고, 공칭적으로 활성 표면의 꼭지점과 동심일 수 있는 공칭적으로 원형인 피쳐 또는 경계를 포함할 수 있다.
샘플은 휴대용 전자 디바이스 카메라 어셈블리에서 사용되기 위한 렌즈일 수 있다.
일반적으로, 치수 특성은 추가적 표면 영역의 자료 피쳐(예를 들어, 공칭적으로 원형 자료 피쳐)에 대한 활성 표면 영역의 꼭지점의 위치를 포함할 수 있다. 일부 실시예에서, 렌즈 꼭지점은 3D 영역면(areal surface) 토포그래피 맵을 평가함으로써 발견되는 반면에, 자료 피쳐는 해당 부분의 2D 이미지 내에 위치된다. 2D 이미지는 3D 맵과 동일한 데이터 획득으로부터 추출될 수 있으며, 또는 별개 단계의 일부일 수도 있다.
치수 특성은 샘플의 상부 및 하부 꼭지점 피쳐의 상대적인 높이를 포함할 수 있다. 이러한 측정은 샘플의 공칭적으로 평행한 상면과 하면 영역의 두 개 이상의 위치에서의 계산된 광학적 및 물리적 두께로부터 유도된 추가적 정보에 의존할 수도 있다.
어떤 실시예들에서는, 이러한 방법론은 그들의 측방향 포지션을 결정하기 위해서 샘플을 통해 피쳐들을 바라볼 때에 렌즈의 굴절 특성을 보상하는 것을 포함한다.
일부 실시예에서, 이러한 장치는 보조 레퍼런스면을 포함하는 부품 고정대(part fixture)를 포함한다. 이러한 보조 레퍼런스면은 공칭적으로 평평하고, 광학 컴포넌트를 통과해서 전파된 광을 다시 광학 컴포넌트를 통과하게 그리고 계측-디바이스 검출기 채널을 향해 반사하는 방식으로, 테스트 대상 광학적 컴포넌트 아래의 소정 거리에 위치될 수 있다.
일부 실시예에서, 이러한 장치는 보조 레퍼런스면 및 적어도 부분적으로-투명한 샘플용 홀더 양자 모두를 가지는 부품 고정대, 보조 레퍼런스면의 위치와 함께 샘플의 공칭적으로 평행한 상면과 하면 영역을 측정하기 위한 광계측 시스템, 및 샘플의 공칭적으로 평행한 상면과 하면 영역의 두 개 이상의 포지션에서 계산된 광학적 및 물리적 두께로부터 유도된 정보를 사용하여 샘플의 광학적 및 치수 특성을 평가하기 위한 데이터 처리 시스템을 포함한다.
일부 실시예에서, 완전한 측정 사이클은 보조 레퍼런스면의 토포그래피의 별개의 측정을 포함한다.
일부 실시예에서, 이러한 장치는 광계측 시스템에 의해 채용된 광의 편광 상태를 변경하여, 샘플의 재료 복굴절 특성을 평가 및/또는 보상하기 위한 요소(들)(예를 들어, 편광자 및/또는 파 플레이트(wave plate))를 포함한다.
일부 실시예에서, 광계측 디바이스의 가시 범위는 테스트 대상 광학 컴포넌트의 측방향 거리를 넘어서 연장된다. 정확도를 향상시키고 드리프트에 대한 민감도를 감소시키기 위하여, 시스템은, 레퍼런스면이 광학 컴포넌트로 커버되지 않는 영역에서, 그 내부 자료에 대한 레퍼런스면의 위치의 추가적 측정을 수행한다.
일부 실시예에서, 광계측 디바이스는 코히어런스 스캐닝 간섭측정계이다. 예를 들어, 광계측 디바이스는 테스트 대상 광학 컴포넌트의 광축에 공칭적으로 평행하게 스캐닝되는 코히어런스 스캐닝 간섭측정계일 수 있다. 광원의 코히어런스 특성이 컴포넌트에 걸친 스캔 중에 조우되는 각각의 투명 인터페이스에 대해 수집된 간섭 신호의 신호 대 잡음비를 향상(예를 들어, 최대화)하기 위해서 선택될 수 있다.
일부 실시예에서, 코히어런스 스캐닝 간섭측정계는 부품 두께 및 광 특성에 대해 측정된 정보 또는 공칭 정보에 따라서, 광원 코히어런스 특성을 자동적으로 조절하여 신호 대 잡음비를 향상(예를 들어, 최대화)한다.
일부 실시예에서, 기기에 대한 다수의 방위각의 배향에서 해당 샘플과 함께 수행된 측정들은 결합되어 시스템적인 오류가 감소된 최종 결과를 생성한다.
일부 실시예에서, 스캐닝에 의해서 샘플의 투명 인터페이스의 위치를 검출하기 위해 공초점 현미경 구성이 사용된다.
어떤 실시예들에서는, 초점 감지 또는 구조화된 조명 계측 디바이스가 스캐닝에 의하여 샘플의 투명 인터페이스의 위치를 검출하기 위해 사용된다.
어떤 실시예들에서는, 초점-감지 또는 구조화된-조명 계측 디바이스는 스캐닝에 의해 투명 인터페이스의 위치를 검출하기 위해 사용된다.
일부 실시예에서, 계측을 위해 사용되는 광학적 방사선은 자외선, 가시광선 또는 적외선 스펙트럼들에서 선택된다. 바람직하게는, 측정들은 광학 컴포넌트가 설계된 것에 가까운 스펙트럼 도메인 내에서 수행된다.
어떤 구현예에서, 장치 및 방법은 몰딩된 렌즈의 두께 및 굴절률을 특징짓기 위해서 사용될 수 있다. 그 대신에 또는 추가하여, 방법 및 장치는 두께 및 몰딩된 렌즈들의 피쳐들(예를 들어, 임계 피쳐) 사이의 측방향 거리를 특징짓기 위해서 사용될 수 있다.
일반적으로, 통상적 렌즈 몰딩 공정은 서로 마주보는 두 개의 몰드를 정확하게 정렬하는 것에 달려 있다. 몰드들 사이의 거리가 몰딩된 컴포넌트의 두께를 규정한다. 렌즈 두께는 최종 렌즈 어셈블리의 성능에 대한 중요한 파라미터이다. 개시된 방법 및 장치는 꼭지점-꼭지점 두께에 대한 공정 제어 정보를, 예를 들어 서브-마이크로미터 정확도로 제공할 수 있다.
렌즈에 걸친 두께 변동은 렌즈의 두 개의 이분체들(halves)의 상대적인 틸트에 대한 정량적 정보를 제공하는데, 이것은 최종 렌즈 이미징 능력에 대해 중요한 다른 파라미터이다. 따라서, 틸트 또는 평행성(parallelism) 에러는 개시된 장치 및 방법에 의해 측정될 수 있는 다른 공정 제어 파라미터이다.
굴절률 및 렌즈 내에서의 그 변동도 공정 제어와 관련된 정보를 제공한다. 공차를 벗어난 굴절률 변동 또는 스트레스 복굴절은, 사출 성형 공정에 문제점이 있다는 것을 나타낸다. 양자 모두의 파라미터는 광학 컴포넌트의 이미징 성능에 영향을 준다. 양자 모두의 파라미터는 공정 제어를 위해, 개시된 장치 및 방법에 의해 정량적으로 평가될 수 있다.
몰드들 사이의 측방향 센터링(centering)은 렌즈의 꼭지점-꼭지점 센터링을 규정하고, 이것은 최종 렌즈 성능에 대해 다른 중요한 파라미터이다. 개시된 방법 및 장치는, 예를 들어 0.1 마이크로미터 이하의 정밀도로 꼭지점-꼭지점 센터링에 대한 공정 제어 정보를 제공할 수 있다.
몰딩 공정 파라미터는 몰드 내의 충진 인자에, 그리고 따라서 꼭지점 높이 및 위치결정 피쳐에 상대적인 센터링에도 영향을 준다. 공차를 벗어난 꼭지점-피쳐 높이 및 꼭지점-피쳐 센터링이 있으면, 사출 성형 공정에 문제가 있다는 것을 나타낼 수 있다. 양자 모두의 파라미터는 광학 컴포넌트의 이미징 성능에 영향을 준다. 양자 모두의 파라미터는 공정 제어를 위한 개시된 방법 및 장치에 의해 정량적으로 평가된다.
본 발명의 다양한 양태들은 다음과 같이 요약된다.
일반적으로, 제 1 양태에서, 본 발명은 활성부(예를 들어, 렌즈부) 및 비활성부(예를 들어, 평행 평면부)로 구성된 투명 광요소에 대한 정보를 결정하기 위한 방법에 있어서, 활성부는 적어도 하나의 만곡면을 포함하고 비활성부는 마주보는 제 1 및 제 2 면을 포함하는, 방법으로서:
측정광을 투명 광요소로 지향시키는 단계; 비활성부의 제 1 면 상의 적어도 하나의 위치로부터 반사된 측정광을 검출하는 단계; 제 1 면 상의 적어도 하나의 위치에 대응하는 위치에서 비활성부의 제 2 면으로부터 반사된 측정광을 검출하는 단계; 검출된 광에 기초하여, 비활성부에 대한 정보를 결정하는 단계; 및 비활성부에 대한 정보에 기초하여 투명 광요소를 평가하는 단계를 포함하는, 방법을 특징으로 한다.
이러한 방법의 구현형태들은 후속하는 피쳐 및/또는 다른 양태의 피쳐 중 하나 이상을 포함할 수 있다. 예를 들어, 비활성부의 제 1 및 제 2 면의 표면 측정은 코히어런스 스캐닝 간섭측정(CSI)을 사용하여 수행될 수 있다. 또는, 비활성부의 제 1 및 제 2 면의 표면 측정은 공초점 현미경을 사용하여 수행된다.
비활성부에 대한 정보는 비활성부의 제 1 면의 높이 프로파일 및 비활성부의 제 2 면의 높이 프로파일을 포함할 수 있다. 비활성부에 대한 정보는 비활성부의 물리적 두께 프로파일 또는 광학적 두께 프로파일을 포함할 수 있다.
비활성부에 대한 정보는 투명 광요소를 형성하는 재료의 굴절률에 대한 정보를 포함할 수 있다. 예를 들어, 굴절률에 대한 정보는 재료의 그룹 인덱스 및/또는 재료의 상 인덱스(phase index)를 포함할 수 있다. 굴절률에 대한 정보는 비활성부의 상이한 위치들 사이에서의 굴절률의 변동에 대한 정보를 포함할 수 있다. 굴절률에 대한 정보는 투명 광요소를 형성하는 재료(예를 들어, 플라스틱)의 복굴절에 대한 정보를 포함할 수 있다.
일부 실시예에서, 이러한 방법은 투명 광요소를 지지하는 고정대 상의 레퍼런스 피쳐로부터 반사된 측정광을 검출하는 단계 및 레퍼런스 피쳐로부터의 검출된 광에 기초하여 레퍼런스 피쳐에 대한 정보를 결정하는 단계를 더 포함한다. 레퍼런스 피쳐로부터 반사된 측정광은 비활성부의 제 1 면 상의 적어도 하나의 위치에 대응하는 위치로부터 반사경(예를 들어, 검출기의 동일한 위치로 이미징될 수 있다). 측정광은 레퍼런스 피쳐에 의해 반사되기 전과 후에 투명 광요소에 의해 투과될 수 있다. 일부 실시예에서, 투명 광요소는 레퍼런스 피쳐로부터 반사된 측정광의 경로에 있지 않다. 일부 경우에는, 이러한 방법은 비활성부의 제 1 면의 적어도 하나의 위치에 대응하는 위치와 상이한 제 2 위치에서 고정대로부터 반사된 측정광을 검출하는 단계를 포함할 수 있다.
측정광은 제 1 편광 및, 그 이후에, 제 1 편광과 상이한 제 2 편광에 대해 검출될 수 있다.
투명 광요소를 평가하는 단계는 비활성부에 대한 정보에 기초하여 활성부의 치수 또는 광학적 특성에 대한 정보를 추론하는 단계를 포함할 수 있다.
일부 실시예에서, 비활성부는 투명 광요소의 틸트 제어 인터록이다. 활성부의 적어도 하나의 만곡면은 구면 또는 비구면일 수 있다. 활성부는 제 1 만곡면의 반대측인 제 2 만곡면을 포함할 수 있다.
활성부에 대한 정보는 렌즈부를 형성하는 재료의 복굴절에 대한 정보를 포함할 수 있다. 활성부에 대한 정보는 렌즈부를 형성하는 재료의 굴절률의 변동에 대한 정보를 포함할 수 있다.
투명 광요소를 평가하는 단계는, 투명 광요소가 특정 요구 사항을 만족하는지 여부를 비활성부에 대한 정보에 기초하여 결정하는 단계를 포함할 수 있다. 비활성부는 활성부의 둘레에 위치될 수 있다.
추가적인 양태에서, 본 발명은 광학 어셈블리를 제조하는 방법으로서:
전술된 방법을 사용하여 투명 광요소에 대한 정보를 결정하는 단계로서, 투명 광요소는 렌즈인 단계; 및 광학 어셈블리를 제조하도록, 렌즈를 경통 내의 하나 이상의 다른 렌즈에 상대적으로 고정하는 단계를 포함하는, 광학 어셈블리 제조 방법을 특징으로 한다. 상기 방법은, 디지털 카메라용 모듈을 제공하도록, 상기 광학 어셈블리를 센서에 상대적으로 고정시키는 단계를 더 포함할 수 있다.
일반적으로, 다른 양태에서, 본 발명은, 활성부(예를 들어, 렌즈부) 및 비활성부(예를 들어, 평행 평면부)를 포함하는 투명 광요소에 대한 정보를 결정하기 위한 시스템에 있어서, 상기 활성부는 적어도 하나의 만곡면을 포함하고 상기 비활성부는 대향하는 제 1 및 제 2 표면을 포함하는, 시스템으로서: 상기 투명 광요소를 지지하기 위한 고정대; 광원, 검출기, 및 상기 투명 광요소가 상기 고정대에 의해 지지되는 경우 상기 광원으로부터의 광을 상기 투명 광요소를 향해 지향시키고 상기 투명 광요소로부터 반사된 광을 상기 검출기로 지향시키도록 구성되는 광요소를 포함하는 광학 기기; 및 상기 검출기와 통신하는 전자 제어기로서, 상기 전자 제어기는 상기 비활성부의 제 1 및 제 2 표면의 대응하는 위치로부터 반사된 광에 기초하여 상기 비활성부에 대한 정보를 결정하도록 프로그램되는, 전자 제어기를 포함하는, 정보 결정 시스템을 특징으로 한다.
이러한 시스템의 실시예들은 후속하는 피쳐 및/또는 다른 양태의 피쳐 중 하나 이상을 포함할 수 있다. 예를 들어, 광학 기기는 광학 영역면 토포그래피 기기, 예컨대 코히어런스 스캐닝 간섭측정계 또는 공초점 현미경일 수 있다.
이러한 고정대는 광학 기기로부터의 광의 경로에 위치된 레퍼런스 피쳐를 포함할 수 있다. 일부 실시예에서, 레퍼런스 피쳐는 평면형 반사체이다. 이러한 고정대는 투명 광요소를 레퍼런스 피쳐로부터의 소정 거리에 위치시키는 스탠드를 포함할 수 있다. 이러한 고정대는 광학 기기의 광축에 상대적으로 투명 광요소를 회전시키기 위한 액츄에이터를 포함할 수 있다.
광원은 가변 스펙트럼 콘텐츠를 가지는 광을 제공할 수 있을 수 있다.
상기 광학 기기는 상기 광원으로부터의 광을 편광시키도록 구성되는 편광 모듈을 포함할 수 있다. 상기 편광 모듈은 직교 편광 상태에 있는 상기 광원으로부터의 광을 선택적으로 편광시키도록 구성될 수 있다.
일반적으로, 추가적인 양태에서, 본 발명은, 렌즈부 및 평행 평면부를 포함하는 투명 광요소에 대한 정보를 결정하는 방법으로서, 광학 기기를 사용하여 상기 투명 광요소의 제 1 면 및 상기 제 1 면의 반대측인 상기 투명 광요소의 제 2 면에 대한 높이 정보(예를 들어, 표면 프로파일)를 획득하는 단계;
상기 광학 기기를 사용하여 상기 제 1 면의 세기 맵 및 상기 제 2 면의 세기 맵(예를 들어, 이미지)을 획득하는 단계; 및
상기 높이 정보 및 세기 맵에 기초하여, 상기 제 1 면 및 제 2 면 중 적어도 하나 상의 상기 투명 광요소의 하나 이상의 피쳐에 대한 치수 정보를 결정하는 단계를 포함하는, 정보 결정 방법을 특징으로 한다.
이러한 방법의 구현형태들은 후속하는 피쳐 및/또는 다른 양태의 피쳐 중 하나 이상을 포함할 수 있다. 예를 들어, 광학 기기는 코히어런스 스캐닝 간섭 현미경 또는 공초점 현미경일 수 있다.
상기 제 1 및 제 2 면에 대한 높이 정보는 각각 상기 제 1 및 제 2 면의 표면 프로파일을 포함할 수 있다. 이러한 방법에서, 상기 세기 맵은 상기 광학 기기의 다원 검출기를 사용하여 수집된 세기 프레임의 시퀀스에 기초하여 결정된다. 상기 세기 맵은 상기 세기 프레임의 시퀀스에 대한 상기 다원 검출기의 각각의 요소에서의 세기를 평균화함으로써 결정된다. 상기 광학 기기를 사용하여 상기 제 1 면의 세기 맵 및 상기 제 2 면의 세기 맵을 획득하는 단계는, 상기 다원 검출기의 각각의 요소에 대한 세기를, 상기 광학 기기에 대한 상기 제 1 및 제 2 면에 대한 최적 초점의 개개의 포지션에서 결정하는 단계를 포함할 수 있다.
치수 정보는 상기 제 1 또는 제 2 면 상의 다른 피쳐에 대한 상기 제 1 또는 제 2 면의 꼭지점의 상대적인 위치를 포함할 수 있다. 일부 경우에는, 치수 정보는 상기 꼭지점과 다른 피쳐 사이의 측방향 거리이고, 상기 측방향 거리는 상기 평행 평면부에 공칭적으로 평행한 평면에서 측정된 거리이다. 상기 다른 피쳐는 상기 제 1 또는 제 2 면의 평행 평면부에 위치되는 피쳐일 수 있다. 다른 피쳐는 공칭적으로 꼭지점에 중심을 가진 환형 피쳐일 수 있다. 상기 다른 피쳐는 상기 평행 평면부의 제 1 및/또는 제 2 면에 있는 단차일 수 있다.
상기 광학 기기는, 상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정을 수행하고, 상기 제 2 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정을 수행하도록 사용될 수 있다. 상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 렌즈부의 꼭지점의 위치를 결정하도록 사용될 수 있다. 상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 평행 평면부 상의 피쳐의 위치에 대한 상기 제 1 면의 렌즈부의 꼭지점의 상대적인 위치를 결정하도록 사용될 수 있다. 상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 2 면의 평행 평면부 상의 피쳐의 위치에 대한 상기 제 1 면의 평행 평면부 상의 피쳐의 상대적인 위치를 결정하도록 사용될 수 있다. 상기 제 2 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 꼭지점의 위치에 대한 상기 제 2 면의 렌즈부 상의 꼭지점의 상대적인 위치를 결정하도록 사용될 수 있다.
상기 치수 정보를 결정하는 단계는, 상기 광학 기기에 대한 상기 투명 광요소의 틸트에 기인한 굴절의 효과를 고려하는 단계를 포함할 수 있다. 상기 굴절의 효과가 고려되는 치수 정보는, 상기 광학 기기의 반대측인 상기 투명 광요소의 표면 상의 피쳐의 위치일 수 있다.
상기 광학 기기는, 상기 광학 기기의 축에 대한 제 1 방위각 배향으로 투명 광학 물체의 측정을 수행하고, 상기 축에 대한, 상기 제 1 방위각 배향과 상이한 제 2 방위각 배향으로 투명 광학 물체의 측정을 수행하도록 사용될 수 있다. 상기 치수 정보를 결정하는 단계는, 하나 이상의 피쳐에 대한 치수 정보를, 상기 제 1 방위각 배향으로 투명 광요소를 사용한 측정으로부터 획득된 데이터로부터 결정하는 단계, 및 상기 하나 이상의 피쳐에 대한 치수 정보를, 상기 제 2 방위각 배향으로 투명 광요소를 사용한 측정으로부터 획득된 데이터로부터 결정하는 단계를 포함할 수 있다. 상기 치수 정보를 결정하는 단계는, 상기 치수 정보의 오차를 상기 제 1 및 제 2 방위각의 배향에 대해 획득된 치수 정보에 기초하여 감소시키는 단계를 포함할 수 있다.
이러한 방법은, 상기 투명 광요소가 요구 사양을 만족시키는지 여부를 상기 치수 정보에 기초하여 결정하는 단계를 더 포함할 수 있다.
다른 양태에서, 본 발명은, 투명 광요소에 대한 정보를 결정하기 위한 시스템으로서, 광학 기기, 및 상기 광학 기기와 통신하고, 상기 시스템이 이전 양태의 방법을 수행하게 하도록 프로그램된 전자 제어기를 포함하는, 투명 광요소 정보 결정 시스템을 특징으로 한다.
조명 시스템의 구현형태들은 다른 양태들의 하나 이상의 피쳐들을 포함할 수 있다.
일반적으로, 다른 양태에서, 본 발명은 만곡부 및 평면부를 포함하는 물체에 대한 정보를 결정하는 방법에 있어서, 상기 만곡부는 꼭지점을 가지고 상기 물체의 축을 규정하는 제 1 만곡면을 포함하는, 방법으로서: 측정광을 물체로 지향시키는 단계; 상기 만곡부의 제 1 만곡면으로부터 반사된 측정광을 검출하는 단계; 상기 물체의 적어도 하나의 다른 표면으로부터 반사된 측정광을 검출하는 단계; 및 검출된 광에 기초하여, 상기 만곡부의 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계를 포함하는, 물체 정보 결정 방법을 특징으로 한다.
이러한 방법의 구현형태들은 후속하는 피쳐 및/또는 다른 양태의 피쳐 중 하나 이상을 포함할 수 있다. 예를 들어, 물체는 투명 광요소, 예컨대 렌즈 요소(예를 들어, 몰딩된 렌즈 요소)일 수 있다. 일부 실시예에서, 물체는 광요소를 위한 몰드의 일부, 예컨대 렌즈 요소의 일측에 대한 몰드이다.
상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함할 수 있고, 상기 제 2 만곡면은 꼭지점을 가지며, 상기 제 1 만곡면의 꼭지점에 대한 정보는, 광축을 따라서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이에서의 상기 렌즈의 두께를 포함한다.
상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함할 수 있고, 상기 제 2 만곡면은 꼭지점을 가지며, 상기 제 1 만곡면의 꼭지점에 대한 정보는, 상기 광축과 직교하는 평면에서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이의 측방향 오프셋을 포함한다.
상기 측정광은 광학 기기에 의해 상기 물체로 지향될 수 있고, 상기 제 1 만곡면은 상기 측정광을 반사시킬 때 상기 광학 기기를 바라본다. 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 꼭지점의 위치를 결정하는 단계를 포함할 수 있다. 상기 적어도 하나의 다른 표면은 상기 광학 기기를 바라보는 다른 표면을 포함할 수 있고, 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 꼭지점과 상기 적어도 하나의 다른 표면 상의 관심 대상 피쳐 사이에서 상기 광축에 직교하는 평면에서 측정된 측방향 오프셋을 결정하는 단계를 더 포함할 수 있다. 상기 적어도 하나의 다른 표면은 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면을 포함할 수 있고, 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 피쳐와 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐 사이에서 상기 광축에 직교하는 평면에서 측정된 측방향 오프셋을 결정하는 단계를 더 포함할 수 있다. 상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함할 수 있고, 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 제 2 만곡면의 꼭지점의 위치를 결정하는 단계를 포함한다. 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 제 1 및 제 2 만곡면의 꼭지점들의 위치에 기초하여 상기 광축을 따라 측정된 상기 만곡부의 두께를 결정하는 단계를 포함할 수 있다. 일부 실시예에서, 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 광축에 직교하는 평면에서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이의 측방향 오프셋을: (i) 상기 제 1 만곡면의 꼭지점과 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋;
(ii) 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐와 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋; 및
(iii) 상기 제 2 만곡면의 꼭지점과 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋에 기초하여 결정하는 단계를 포함한다.
상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 평면부의 적어도 하나의 표면의 틸트에 대한 정보를 결정하는 단계 및 상기 제 1 면의 꼭지점에 대한 정보를 결정할 때 상기 틸트를 고려하는 단계를 포함할 수 있다. 상기 틸트에 대한 정보는, 상기 측정광을 상기 물체로 지향시키는데 사용되는 광학 기기의 광축에 상대적인 틸트각 α tilt 이다.
상기 방법은, 상기 측정광을 검출한 이후에, 상기 측정광을 물체로 지향시키는데 사용되는 광학 기기에 대한 상기 물체의 방위각 배향을 조절하는 단계, 및 방위각 배향 조절 이후에 상기 제 1 만곡면 및 상기 적어도 하나의 다른 표면으로부터의 측정광의 검출을 반복하는 단계를 더 포함할 수 있다. 상기 방법은, 상기 제 1 만곡면의 꼭지점에 대한 추가적 정보를 방위각 배향 조절 이후에 검출된 측정광에 기초하여 결정하는 단계를 더 포함할 수 있다.
일부 실시예에서, 상기 방법은, 상기 측정광을 검출한 이후에 상기 측정광의 편광 상태를 변경하는 단계, 및 편광 상태 변경 이후에 상기 제 1 만곡면 및 상기 적어도 하나의 다른 표면으로부터의 측정광의 검출을 반복하는 단계를 포함한다. 상기 방법은, 상기 편광 상태 변경 이전과 이후에, 검출된 측정광에 기초하여 상기 물체의 복굴절에 대한 정보를 결정하는 단계를 더 포함할 수 있다.
상기 방법은, 상기 제 1 만곡면의 꼭지점에 대한 정보에 기초하여 상기 물체를 평가하는 단계를 더 포함할 수 있다. 상기 물체를 평가하는 단계는, 상기 제 1 만곡면의 꼭지점에 대한 정보에 기초하여, 상기 물체가 요구 사양을 만족시키는지 여부를 결정하는 단계를 포함할 수 있다.
평면부는 물체의 틸트 제어 인터록일 수 있다. 만곡부의 적어도 하나의 만곡면은 비구면일 수 있다. 평면부는 만곡부의 둘레 주위에 위치될 수 있다.
추가적인 양태에서, 본 발명은 광학 어셈블리를 제조하는 방법으로서: 전술된 방법을 사용하여 물체에 대한 정보를 결정하는 단계로서, 상기 물체는 렌즈인, 단계; 및 상기 광학 어셈블리를 제조하도록, 상기 렌즈를 경통 내의 하나 이상의 다른 렌즈에 상대적으로 고정하는 단계를 포함하는, 광학 어셈블리 제조 방법을 특징으로 한다. 상기 방법은, 디지털 카메라용 모듈을 제공하도록, 상기 광학 어셈블리를 센서에 상대적으로 고정시키는 단계를 더 포함할 수 있다.
추가적인 양태에서, 본 발명은 만곡부 및 평면부를 포함하는 물체에 대한 정보를 결정하기 위한 시스템에 있어서, 상기 만곡부는 꼭지점을 가지고 상기 물체의 축을 규정하는 제 1 만곡면을 포함하는, 시스템으로서: 상기 물체를 지지하기 위한 고정대; 광원, 검출기, 및 상기 물체가 상기 고정대에 의해 지지되는 경우 상기 광원으로부터의 광을 상기 물체를 향해 지향시키고, 상기 물체로부터 반사된 광을 상기 검출기로 지향시키도록 구성되는 광요소를 포함하는 광학 기기; 및 상기 검출기와 통신하는 전자 제어기로서, 상기 전자 제어기는 상기 제 1 만곡면 및 상기 물체의 적어도 하나의 다른 표면으로부터 검출된 광에 기초하여 제 1 면의 꼭지점에 대한 정보를 결정하도록 프로그램되는, 전자 제어기를 포함하는, 물체 정보 결정 시스템을 특징으로 한다.
이러한 시스템의 실시예들은 후속하는 피쳐 및/또는 다른 양태의 피쳐 중 하나 이상을 포함할 수 있다. 예를 들어, 광학 기기는 광학 영역면 토포그래피 기기, 예컨대 코히어런스 스캐닝 간섭측정계 또는 공초점 현미경일 수 있다.
상기 고정대는 상기 광학 기기에 대하여 상기 물체를 재배향하도록 구성되는 액츄에이터를 포함할 수 있다. 예를 들어, 상기 액츄에이터는 상기 광학 기기의 광축에 상대적으로 상기 물체를 회전시키도록 구성될 수 있다.
상기 광학 기기는 상기 광원으로부터의 광을 편광시키도록 구성되는 편광 모듈을 포함할 수 있다. 상기 편광 모듈은 직교 편광 상태에 있는 상기 광원으로부터의 광을 선택적으로 편광시키도록 구성될 수 있다(예를 들어, 하나 이상의 편광기 및/또는 파 플레이트를 사용하여).
검출기는 다원 검출기(예를 들어, CMOS 어레이 또는 CCD 어레이)일 수 있고, 광학 기기는 물체의 표면을 다원 검출기 상에 이미징하도록 구성될 수 있다.
광원은 자신의 스펙트럼 출력을 변경할 수 있을 수 있다. 예를 들어, 광원은 상이한 컬러의 두 개 이상의 LED를 포함할 수 있다. 두 개 이상의 LED로부터의 상대적인 광 세기를 변경시키면, 광의 컬러가 변경된다. 광원은 가시광선 및/또는 적외선 광원일 수 있다.
본 발명의 다른 양태들과 장점들은 다음의 상세한 설명으로부터 명백해질 것이다.
도 1 은 이미징 광학 렌즈 어셈블리의 단면도이다.
도 2a 는 테스트 대상 샘플 렌즈의 측면도이다.
도 2b 는 도 2a 에 도시되는 테스트 대상 샘플 렌즈의 평면도이다.
도 3 은 코히어런스 스캐닝 현미경의 개략도이다.
도 4a 는 레퍼런스면을 가지는 고정대에 탑재된 테스트 대상 샘플 렌즈의 측면도이다.
도 4b 및 도 4c 는 도 4a 에 도시된 샘플 렌즈 및 고정대의 측면도이고, 측정 시퀀스에서의 두 단계를 나타낸다.
도 5 는 코히어런스 스캐닝 간섭측정(CSI)을 사용한 구현형태 및 도 4b 및 도 4c 에 도시된 단계들에 대한 공정 흐름을 나타내는 흐름도이다.
도 6a 및 도 6b 는 다른 구현형태에 대한 측정 단계를 나타내는 측면도이다.
도 7 은 CSI를 사용한 구현형태 및 도 6a 및 도 6b 에 도시된 단계들에 대한 공정 흐름을 나타내는 흐름도이다.
도 8 은 렌즈의 상부 및 하부 평행면 사이의 복굴절을 측정하는 구현형태에 대한 공정 흐름을 나타내는 흐름도이다.
도 9 는 다른 테스트 대상 샘플 렌즈의 측면도이다.
도 10 은 도 9 에 도시되는 테스트 대상 샘플 렌즈의 평면도이다.
도 11 은 예시를 위해서 디센터링(decentering)이 과장된 관심 대상인 측방향 위치를 더 상세히 보여주면서, 도 9 에 도시되는 테스트 대상 샘플 렌즈의 다른 평면도를 나타낸다.
도 12 는 샘플을 통해 축정된 관심 대상 피쳐에 대한 피상 및 실제 최적 초점 포지션을 나타내는 개략도이다.
도 13 은 도 9 에 도시되는 테스트 대상 샘플 렌즈의 측면도를, 오목 렌즈면이 광학 기기를 바라보는 형태로 보여준다.
도 14 는 CSI를 사용한 구현형태에 대한 공정 흐름을 나타내는 흐름도이다.
도 15a 는 굴절 효과에 대해 정정된 피상 및 실제 관심 포지션을 나타내는 개략도이다.
도 15b 는 굴절에 기인한 틸트의 방위각 배향 및 측방향 천이를 예시한다.
도 16 은 CSI를 사용한 다른 구현형태에 대한 공정 흐름을 나타내는 흐름도이다.
도 17a 및 도 17b 는 상이한 샘플-고정대 방위각의 배향에 있는 렌즈의 평면도를 도시한다.
도 18 은 CSI를 사용한 다른 구현형태에 대한 공정 흐름을 나타내는 흐름도이다.
도 19 는 테스트 대상 렌즈 몰드의 측면도이다.
도 20a 는 렌즈의 특징을 결정하기 위한 공정 흐름을 나타내는 흐름도이다.
도 20b 는 렌즈의 특징을 결정하기 위한 다른 공정 흐름을 나타내는 흐름도이다.
도 21a 및 도 21b 는 렌즈 몰딩 공정에 대한 공정 흐름을 나타내는 흐름도들이다.
도 2a 및 도 2b 를 참조하면, 렌즈(200)는 비활성인 평행 평면부(210) 및 활성인 렌즈부(220)를 포함한다. 이러한 실례에서, 평행 평면부는 두 개의 공칭적으로 평면이고, 공칭적으로 평행인 면들(211 및 212)을 포함한다. 여기에서, "공칭(nominal)"이란 렌즈의 디자인을 가리킨다. 공칭 평면성 또는 공칭 평행성으로부터, 예를 들어 제작 오차 때문에 검출가능한 편차가 발생할 수 있다. 렌즈부(220)는 볼록 상면(221) 및 오목 하면(222)을 가지는 메니스커스 렌즈이다. 일반적으로, 표면(221 및 222)은 구형 또는 비구면일 수 있다. 평행 평면 표면(211 및 212)은, 예를 들어 최종 어셈블리 내의 하나 이상의 다른 렌즈에 상대적인 렌즈의 정렬 및 고정을 돕기 위해서 샘플 상에 형성된 피쳐들일 수 있다.
광계측 기기(201)는, 특히 굴절률 균일성 및 잔여 응력 복굴절을 포함하는 렌즈(200)의 몇 가지 광학적 특성, 및 도면에서 좌표(x, y)(도 2a 에 도시되는 직교 좌표계 참조)의 함수인 두께 T를 포함하지만 이것으로 한정되는 것은 아닌, 렌즈의 두께를 포함하는 치수 피쳐를 평가하기 위해서 사용된다. 개시된 방법은, 평행 평면 표면(211 및 212) 사이의 영역의 광학적 특성 및 물리적 치수를 측정함으로써, 이러한 평가를 수행한다. 이러한 측정은 렌즈의 전체 광학 특성 및 치수 특성의 표시자로서의 역할을 한다.
일반적으로, 광계측 기기(201)는 렌즈(200)의 영역면 토포그래피 측정을 수행할 수 있는 다양한 그 외의 기기 중 하나일 수 있다. 예시적인 기기는, 코히어런스 스캐닝 간섭측정(CSI) 현미경(예를 들어 P. de Groot, "Coherence Scanning Interferometry", Optical Measurement of Surface Topography, edited by R. Leach, chapt. 9, pp. 187-208, (Springer Verlag, Berlin, 2011)에 개시된 것과 같음), 이미징 공초점 현미경(예를 들어 R. Artigas, "Imaging Confocal Microscopy", Optical Measurement of Surface Topography, edited by R. Leach, chapt.11, pp. 237-286, (Springer Berlin Heidelberg, 2011)에 개시된 것과 같음), 구조화된 조명 현미경(예를 들어 X. M. Colonna de Lega " Non-contact surface characterization using modulated illumination", U.S. Patent (2014)에 개시된 것과 같음), 초점 감지(예를 들어 F. Helmli, "Focus Variation Instruments", in Optical Measurement of Surface Topography, edited by R. Leach, chapt.7, pp. 131-166, (Springer Berlin Heidelberg, 2011)에 개시된 것과 같음) 또는 파장 튜닝된 푸리에 변환 위상 천이 간섭측정(FTPSI) 시스템(예를 들어 L. L. Deck, "Fourier-Transform Phase-Shifting Interferometry", Applied Optics 42(13), 2354-2365 (2003)에 개시된 것과 같음)을 포함한다.
도 3 을 참조하면, 일 예로서, 렌즈(200)의 특징을 결정하기에 적합한 광계측 툴의 하나의 타입은 CSI 현미경(300)이다. 이러한 시스템에서, 광원(302)은 입력 광(304)을 릴레이 광학기(308 및 310) 및 빔 스플리터(312)를 통해 간섭 대물계(objective; 306)로 지향시킨다. 릴레이 광학기(308 및 310)는 공간적으로 연장된 소스(302)로부터의 입력 광(304)을 조리개 스톱(315) 및 간섭 대물계(306)의 대응하는 퓨필 평면(314)으로 이미징한다(점선 경계 광선(316) 및 실선 주 광선(317)으로 도시된 바와 같음).
도 3 의 실시예에서, 간섭 대물계(306)는 미라우(Mirau)-타입이고, 대물 렌즈(318), 빔 스플리터(320), 및 레퍼런스면(322)을 포함한다. 빔 스플리터(320)는 입력 광(304)을, 스테이지(326)에 의해 지지되는 렌즈(200)로 지향되는 테스트광(322) 및 레퍼런스면(322)에서 반사되는 레퍼런스광(228)으로 분리한다. 대물 렌즈(318)는 테스트광과 레퍼런스광을 각각 테스트면 및 레퍼런스면에 집광시킨다. 레퍼런스면(322)을 지지하는 레퍼런스 광학기(330)는 집광된 레퍼런스광에 대해서 반사성만을 보이도록 코팅되어, 다수의 입력 광이빔 스플리터(320)에 의해 분할되기 이전에 레퍼런스 광학기를 통과하게 한다.
테스트면과 레퍼런스면으로부터 반사된 후에, 테스트광과 레퍼런스광은 빔 분할기(320)에 의하여 재결합되어 결합광(332)을 형성하는데, 이것은 빔 스플리터(312) 및 릴레이 렌즈(336)에 의해 투과되어 광학적 간섭 패턴을 전자 검출기(334)(예를 들어, 다원 CCD 또는 CMOS 검출기) 상에 형성한다. 검출기에 걸친 광학적 간섭 패턴의 세기 프로파일은 검출기의 상이한 요소에 의해 측정되고, 분석을 위해 전자 프로세서(301)(예를 들어, 독립형 또는 네트워크형 컴퓨터, 또는 시스템의 다른 컴포넌트와 통합된 프로세서)에 저장된다. 릴레이 렌즈(136)는 대물계(306)의 초점면에 있는 상이한 포인트를 검출기(134) 상의 포인트로 이미징한다.
릴레이 광학기(308 및 310) 사이에 위치된 필드 스톱(338)은 테스트광(122)에 의해 조명되는 테스트면(124)의 영역을 규정한다. 렌즈(200) 및 레퍼런스면으로부터 반사된 후에, 결합광(332)은 소스의 이차 이미지를 대물 렌즈의 퓨필 평면(314)에 형성한다.
또는, 편광 요소(340, 342, 344, 및 346)가 테스트면과 레퍼런스면으로 각각 지향되고 있는 테스트광과 레퍼런스광의 편광 상태, 및 검출기로 지향되고 있는 결합광의 편광 상태를 규정한다. 실시예에 따라서는, 각각의 편광 요소는 편광자(예를 들어, 선형 편광자), 지연 플레이트(예를 들어, 이분 또는 사분파 플레이트), 또는 입사 빔의 편광 상태에 영향을 주는 유사한 광학기일 수 있다. 더욱이, 일부 실시예에서는, 편광 요소 중 하나 이상이 존재하지 않을 수 있다. 더 나아가, 실시예에 따라서는, 빔 스플리터(312)는 편광 빔 스플리터 또는 비-편광 빔 스플리터일 수 있다. 일반적으로, 편광 요소(340, 342 및/또는 346)가 있기 때문에, 테스트면(324)에서의 테스트광(322)의 편광 상태는 퓨필 평면(314)에서의 광의 방위각의 포지션의 함수일 수 있다.
현재 설명되는 실시예에서, 소스(302)는 넓은 대역의 파장에 걸쳐 조명을 제공한다(예를 들어, 20 nm보다 큰, 50 nm보다 큰, 또는 바람직하게는, 100 nm보다 큰 전폭, 이분체-최대치를 가지는 방출 스펙트럼). 예를 들어, 소스(302)는 백색 발광 다이오드(LED), 할로겐 전구의 필라멘트, 제논 아크등과 같은 아크등 또는 매우 넓은 소스 스펙트럼(>(200) nm)을 생성하기 위해 광학 재료에서의 비선형 효과를 사용하는 소위 초연속체(supercontinuum) 소스 일 수 있다. 파장의 광대역은 제한된 코히어런스 길이에 대응한다. 병진 스테이지(350)는 테스트광과 레퍼런스광 사이의 상대적인 광학기 경로 길이를 조절하여, 검출기 요소들 각각에서 광학적 간섭 신호를 생성한다. 예를 들어, 도 3 의 실시예에서, 병진 스테이지(350)는 테스트면과 간섭 대물계 사이의 거리를 조절하도록, 그리고 이를 통해서 검출기에서의 테스트광과 레퍼런스광 사이의 상대적인 광로 길이를 변동시키도록 간섭 대물계(306)에 커플링된 압전 트랜스듀서이다.
다시 도 2a 를 참조하면, 광학 기기(201)는 도 2a 에 도시되는 z-축과 평행한 관찰 방향에 따라서 렌즈(200)를 내려다본다. 이러한 도면에서, S1 및 S2 는 렌즈(200) 상의 상부 및 하부 공칭적인 평면-평행면(211 및 212), 각각으로부터의 광 반사를 나타낸다. 계측 데이터가 얻어지는 동안에, 시스템은 광역 좌표계(x, y, z)에서 이러한 표면들의 높이 정보를 수집한다. 이러한 좌표계는 광학 기기(201)에 의해 구축된다. 이상적으로는, 렌즈면의 회전 축들은 z-축에 공칭적으로 평행하게 정렬된다.
렌즈(200)의 상면(211)에 대한 계측 정보는 공기중에서의 광의 반사(도면에서는 신호 "S1")로부터 유도된다. 개별적으로, 렌즈(200)의 하면(212)에 대한 계측 정보는 렌즈 재료 내에서의 광 반사(도면에서 신호 "S2")로부터 유도된다.
시스템(300)과 같은 CSI 현미경 시스템의 경우인 특정한 예를 고려하면, 특정 좌표(x, y)에서의 상면과 하면(211 및 212) 사이의 상대 거리 T는 수학식 1과 같이 주어질 것인데,
Figure pct00001
여기에서
Figure pct00002
'은 코히어런스 정보를 사용하여 CSI 현미경 또는 파장-튜닝된 FTPSI에 의해 결정되는 바와 같은 피상 또는 측정된 광학적 두께이고, 낮은 NA(예를 들어, 0.06 이하)에서의
Figure pct00003
는 그룹-속도 굴절률(group-velocity index of refraction)이다(높은 NA, 예를 들어 0.2 이상에서는, 값
Figure pct00004
는 경사 효과(obliquity effect) 때문에 변경되어, 유효 그룹-속도 굴절률이 얻어질 수 있음). 반대로, 공초점의 구조화된 조명 또는 초점 감지를 사용할 경우 더 높은 z 위치에서 신호 S2 가 유래하는 것으로 보일 것이다. 이러한 경우에서 물리적 두께는 수학식 2와 같이 주어지는데,
Figure pct00005
여기에서
Figure pct00006
은 공초점 또는 관련된 초점-감응 기기에 의해 결정되는 바와 같은 피상 또는 측정된 광학적 두께이고, n은 상-속도 굴절률(phase-velocity index of refraction)이다.
두께 맵
Figure pct00007
또는
Figure pct00008
는, 굴절률
Figure pct00009
또는
Figure pct00010
에 의해 예시되는 바와 같은, 물리적 두께
Figure pct00011
의 평균값 및 균일성 및 렌즈(200)의 광학적 특성에 대한 정보를 제공한다. 일부 경우에는, 치수 및 광학 정보인 이러한 특성들 양자 모두의 복합 균일성 및 평균값은, 렌즈(200)를 제조할 때의 공정 제어를 하기에 충분하다.
원하는 경우에는, 다른 수단, 예컨대 콘택 프로필메트리(profilometry)(예를 들어 P. Scott, "Recent Developments in the Measurement of Aspheric Surfaces by Contact Stylus Instrumentation", Proc. SPIE 4927, 199-207 (2002)에 개시됨)에 의해 획득된 두께 맵
Figure pct00012
또는 광학적 굴절률
Figure pct00013
과 같은 추가적인 정보가, 광계측 기기(201)에 의해 수행되는 측정을 보완할 수 있어서, 물리적 두께로부터 굴절률의 효과를 개별적이고 독립적으로 평가하게 한다.
전술된 렌즈 특징 결정 과정이 표면(211 및 212)에 대한 높이 프로파일 정보에만 의존하지만, 렌즈 특징 결정 동작은 다른 정보도 이용할 수 있다. 예를 들어, 일부 구현형태들에서, 추가적인 광학 정보를 제공하기 위하여 전문화된 레퍼런스 고정대(reference fixture)가 포함된다. 도 4a 를 참조하면, 어떤 실시예들에서는, 렌즈(200)가 임베딩된 레퍼런스면(420)을 가지는 고정대(400) 상에 탑재된다. 도 4a 에서, S1, S2 및 S3 는 렌즈(200)의 관심 대상인 상면과 하면(211 및 212), 및 레퍼런스 고정대의 상면(420)으로부터 반사된 광을 나타내는데, 이러한 면은 하부 렌즈면(212)으로부터 z-축을 따라 측정할 때 거리 T air 만큼 떨어져 있다.
고정대(400)는 지지 구조체(410) 및 반사성 상면(420)을 포함한다. 렌즈(200)는 지지 구조체(410) 상에 놓이고, 이것은 렌즈를 반사면(420)으로부터의 거리 T air 에 위치시킨다. 지지 구조체(410)는 렌즈(200)의 마주보는 측면에 있는 다수의 필라 또는 벽으로 구성될 수도 있고, 또는 내부 부분(422)을 반사면(420)의 외부 부분(421)으로부터 분리시키는 하나의 원통형 서포트일 수도 있다. 고정대(400)는 렌즈(200)에 대해서 특정하게 맞춤될 수 있고, 다른 성형된 렌즈가 측정되는 경우에는 다른 고정대로 대체될 수 있다.
도 4b 및 도 4c 는 광학 기기(201)가 렌즈(200)의 평행 평면부(210)의 전체 필드에 걸쳐서 측정하는, 두 개의 연속적인 측정 단계를 나타낸다. 그러면, 도 5 의 흐름도(500)에 따라서 렌즈의 기하학적 구조 및 광학적 특성의 특징 결정 동작을 완료하도록, 표면(211, 212, 및 420)의 높이 프로파일 측정을 포함하는 계측 정보가 제공된다. 피상 높이 측정
Figure pct00014
는 도면에서 반사된 광 S1... S4 에 각각 대응한다.
도 4b 에서 묘사되는 제 1 단계에서, 계측 정보가 3 개의 표면(211, 212, 및 420)에 대해 수집되는데(단계(510, 520, 530)), 하면(212) 및 보조 레퍼런스면(420)이 렌즈 재료를 통해서 측정되고, 따라서 피상 높이에 대응한다. 계측 정보는 고정대 상에서의 렌즈의 위치를 조절하지 않고서 3 개의 표면에 대해 수집된다.
도 4c 에서 묘사되는 제 2 단계에서, 렌즈는 고정대(400)로부터 제거되고(단계(540)) 및 보조 레퍼런스면(420)이 두 번째로 측정된다(신호 S4)(단계(550)).
계측 정보는 결합되어 렌즈 요소의 상부 및 하부 평행면 사이에서의 두께 및 굴절률 분포의 맵을 생성한다. 코히어런스 스캐닝 간섭측정계 및 비견되는 간섭 측정식 기기에 대해서, 피상 높이 정보
Figure pct00015
를 획득한 후에, 물리적 및 광학적 두께 맵은 다음 수학식으로 제공된다:
Figure pct00016
Figure pct00017
그러면, 그룹-속도 굴절률의 맵은 수학식 5와 같다.
Figure pct00018
계측 시스템이 공초점, 구조화된 조명 또는 초점 감지면 프로파일링에 의존하는 경우, 수학식 4와 5는 다음이 된다.
Figure pct00019
Figure pct00020
두께 맵은 렌즈의 평균 두께 및 렌즈의 두 측면 사이에서의 가능한 틸트에 대한 정보를 렌즈의 일측에서부터 타측까지 측정된 두께의 변동에 기초하여 제공한다. 굴절률 맵은 렌즈 영역에 걸쳐 가능한 굴절률 구배에 대한 정보를 제공한다.
선택적인 추가 단계로서, 렌즈의 재료의 공칭 굴절성 분산 특성을 알고 있으면, 그룹 인덱스를 상 인덱스로 변환하는 것은 흔히 가능하다:
Figure pct00021
일부 경우에, 이러한 변환은 가산 상수와 같이 간단할 수 있다. 예를 들면, 가산 상수는
Figure pct00022
인데, 여기에서
Figure pct00023
는 파수의 함수로서 표시되는 재료의 공칭 굴절률 이고(제조사에 의해 진술되는 것 또는 몇 가지 다른 수단을 통해 측정되는 것과 같음),
Figure pct00024
는 측정을 위해 사용되는 스펙트럼 대역의 센트로이드 파수(wavenumber)이다. 룩업 테이블 또는 다항식 함수와 같은 다른 변환들도 가능하다. 변환 다항식은 측정된 그룹 인덱스 값(기기를 사용함)의 데이터 포인트를 테스트 샘플의 알려진 굴절률의 함수로서 맞춤(fitting)시킴으로써 생성될 수 있다.
공정의 정확도를 개선하기 위하여 추가적인 측정이 이루어질 수도 있다. 예를 들어, 도 6a, 도 6b, 및 도 7 을 참조하면, 일부 실시예에서 광 경로가 렌즈(200)에 의해 방해받지 않는 고정대 레퍼런스면으로부터의 반사 S5에 대한 추가적인 측정
Figure pct00025
이 렌즈 이미지와 동시에 캡쳐된다(흐름도(700)의 단계(710)). 이러한 추가적 정보는, 예를 들어 고정대가 두 개의 측정 단계들 사이에서 이동할 수 있는 경우에 대하여, 광학 기기에 대한 고정대의 전체 높이 오프셋을 제공한다. 이러한 정보는
Figure pct00026
측정의 결과를, 예를 들어 측정들 마다의 고정대 포지션의 변화에 대한 오프셋 또는 오프셋들의 조합, 팁 및 틸트 보상을 제공함으로써 정정할 수 있다(단계(720)).
일부 실시예에서, 측정은 기기의 상이한 구성들에 대해 반복됨으로써, 데이터 수집이 실질적으로 상이한 스펙트럼 분포로 수행되게 하며, 예를 들어 제 1 스펙트럼 분포는 400 nm 내지 490 nm에 중심이 있고, 제 2 스펙트럼 분포는 490 nm 내지 590 nm에 중심이 있으며, 제 3 스펙트럼 분포는 590 nm 내지 700 nm에 중심이 있다. 각각의 스펙트럼 분포는 렌즈 재료의 광학적 특성의 독립적 측정을 제공한다. 그러면 그룹-속도 인덱스 또는 상-속도 인덱스의 다수의 측정된 값들이 결합되어 파장(또는 분산)에 대한 재료 광학적 특성 변동의 추정을 유도할 수 있고, 이것이 재료가 공차 내에 속한다는 것을 증명하기 위해서 및/또는 제조 공정을 제어하기 위해서 사용될 수 있다. 기기가 그룹-인덱스(예를 들어 코히어런스 스캐닝 간섭측정계)를 측정하는 경우, 분산의 추정은, 예를 들어 센트로이드 파수에 의한 일차 도함수의 곱을 사용하여, 굴절률의 추정을 계산하기 위해서도 사용된다. 일부 실시예에서, 기기가 스캐닝 데이터 획득으로부터 얻어진 데이터를 수집하는 동안에 다수의 스펙트럼 분포가 동시에 존재한다. 다수의 스펙트럼 대역은, 예를 들어 컬러 감응 디바이스(컬러 필터가 장착된 CCD 또는 CMOS 카메라)를 사용하여 검출기에서 분리된다. 또는, 센서로부터의 복귀 광은 특정 스펙트럼 컴포넌트를 다수의 흑백 센서를 향해 반사하거나 투과시키는 이색성 광요소에 의해서 공간적으로 분리된다. 두 개의 스펙트럼 대역들 중 최소치가 재료의 분산 특성을 추정하기 위해서 요구된다.
앞선 측정이 편광된 또는 비편광된 광을 사용하여 수행될 수 있지만, 편광된 광을 사용하여 렌즈(200)에 대한 추가적 정보를 얻는 것도 가능하다. 예를 들어, 도 8 을 참조하면, 렌즈(또는 다른 부분-투명 샘플) 제조의 문제점을 드러낼 수 있는 스트레스 복굴절의 영향을 포함하는, 렌즈의 편광-의존적 광학적 특성에 대한 정보가 결정될 수 있다. 대부분의 경우에, 스트레스와 연관된 스트레스 복굴절이 없는 렌즈를 제조하는 것이 제조 공정 제어의 디자인 목표이다.
샘플에 스트레스 복굴절이 존재하는 것은 샘플의 평면-평행 영역 내에서의 그 효과를 관찰함으로써 모니터링될 수도 있다. 여기에서, 흐름도(500) 또는 흐름도(700)에서 개략적으로 표시된 측정 공정은 적어도 두 번 수행되며, 여기에서 각각의 완전한 데이터 획득 사이클은 계측 시스템에 의해 사용되는 조명 광의 상이한 편광 상태에 대해서 수행된다. 광학적 측정 기기의 편광 상태는 종래의 편광자 및/또는 파플레이트(waveplates)를 사용하여 조절될 수 있다.
예를 들어, 흐름도(800)에 도시된 바와 같이, 제 1 측정은 x 방향을 따라서 선형으로 편광된 조명 광을 가지고, y 방향을 따라 선형으로 편광된 조명 광을 가지고 반복된다. 일부 실시예에서, 편광 방향은 렌즈(200) 상의 자료 피쳐에 대해서 정렬되는데, 여기에서 렌즈가 사출성형된 렌즈인 경우 자료 피쳐는 주입된 재료가 몰드 캐비티에 진입하는 게이트에 대응할 수 있다.
그러면 수집된 다수의 굴절률 맵은 결합되어 렌즈 재료 내에 존재하는 복굴절의 정량적 측정을 제공한다. 예를 들어, 단계(870)에서, 복굴절 효과가 측정들로부터 계산된다. 단계(880)에서, 측정들로부터 평균 굴절률이 계산된다. 복굴절은, 예를 들어, 흐름도(800)의 단계(870)에 나타난 바와 같이, 렌즈를 통과하는 광로차로서 표현될 수 있다. 여기에서 렌즈 전체의 복굴절의 누적 효과는 수학식 9로 연산되는데
Figure pct00027
평균 인덱스(단계(880)에 나타난 바와 같음)는 다음이다.
Figure pct00028
이와 유사하게, 복굴절은 재료 내의 전파의 단위 길이당 광로차로서 표현될 수 있다. 상-속도 굴절률들
Figure pct00029
는 두 개의 편광 배향에 대응한다. 공정을 제어하기 위해서, 이러한 인덱스들은, 예를 들어 CSI 현미경 측정으로부터 나오는 그룹 인덱스 측정에 의해 적절하게 표현된다. 또한, 일부 공정 제어 상황에 대해서, 도 2a 의 더 간단한 구성을 사용한 광학적 두께 변동의 측정
Figure pct00030
또는
Figure pct00031
만으로 이미 충분할 수도 있다.
비록 전술된 실시예들이 렌즈의 비활성부(예를 들어, 평행 평면부)를 특징짓는 측정과 렌즈에 대한 정보를 일반적으로 그러한 특징 결정 동작으로부터 유추하는 것을 수반하지만, 다른 구현형태들도 역시 가능하다. 예를 들어, 렌즈의 활성부를 직접적으로 특징짓는 측정들도 역시 수행될 수 있다.
도 9 및 도 10 을 참조하면, 테스트 대상 샘플 렌즈(900)는 만곡면을 가지는 활성부(920), 및 활성부를 둘러싸는 여러 공칭적으로 평면인 표면들로 구성된 비활성부(910)를 포함한다. 도 9 는 렌즈(900)의 측면도를 나타내는 반면에 도 10 은 평면도를 나타낸다. 활성부(920)는 볼록 상면(921) 및 볼록 하면(922)에 대응한다. 상면(221)은 하면(922)의 꼭지점(924)과 같은 축 주위에 공칭적으로 정렬된 꼭지점(923)을 가진다.
비활성부(910)는 내부 및 외부 평면 표면을 렌즈(900)의 양측에서 오프셋하는 단차 피쳐를 가지는 일련의 평면 환형 표면으로 구성된다. 일반적으로, 비활성부(910)의 표면은, 예를 들어 최종 어셈블리 내에 렌즈의 정렬 및 고정을 수행하는 것을 돕도록, 및/또는 렌즈 피쳐의 상대적인 정렬의 측정을 쉽게 하도록, 샘플 상에 형성된 피쳐를 포함할 수 있다. 이러한 경우에, 비활성부(910)의 상측은 평면형 표면(912 및 916)을 포함한다. 단차(914)는 표면(912 및 916)을 분리한다. 단차(914)는 에지(914o)에서 표면(912)과, 그리고 에지(914i)에서 표면(916)과 만난다. 표면(916)은 에지(918)에서 상부 볼록 표면(921)과 만난다.
비활성부(910)의 하측은 평면형 표면(911 및 917)을 포함한다. 단차(915)가 표면(911 및 917)을 분리한다. 단차(915)는 에지(915o)에서 표면(911)과, 그리고 에지(915i)에서 표면(917)과 만난다. 표면(917)은 에지(919)에서 하부 오목면(922)과 만난다.
광계측 기기(201)는, 꼭지점-꼭지점 두께
Figure pct00032
를 포함하는(하지만 한정되는 것은 아님) 렌즈(900)의 몇 개의 치수 피쳐 및 꼭지점 중심 및 정렬 표면 피쳐를 포함하는(하지만 한정되는 것은 아님) 표면 피쳐 위치의 상대적인
Figure pct00033
측방향 오프셋(공통 축
Figure pct00034
이라고 불림)을 평가하도록 사용된다. 이러한 평가는 상면 프로파일을 측정하여 다른 표면 피쳐들의 3D 꼭지점의 위치 및 상대적인 3D 위치 및 토포그래피를 결정함으로써 수행된다. 이러한 측정은 렌즈의 전체 치수 특성의 표시자로서의 역할을 한다.
동작할 때, 광학 기기(201)는 기구(201)의 광축에 대응하는, 도 9 에 표시된 z-축과 나란한 관찰 방향을 따라 샘플을 내려다 본다. 계측 데이터를 획득하는 동안, 시스템은 광역 좌표계(x, y, z)에서 관심대상 표면에 대한 높이 및 세기 정보를 수집한다.
꼭지점(923)에 대한 계측 정보는, 상면에 있는 다른 관심 대상 피쳐에 대한 계측 정보(도 9 의 신호
Figure pct00035
)가 그러하듯이, 공중에서의 광의 반사(도 9 의 신호
Figure pct00036
)로부터 유도된다. 개별적으로, 하면에 있는 관심대상 피쳐에 대한 계측 정보는 렌즈 재료 내에서의 광 반사(도 9 의 신호
Figure pct00037
)로부터 유도된다.
도 3 에 도시되는 것과 같은 CSI 현미경 시스템의 특정한 예를 고려하면, 신호
Figure pct00038
는 일반적으로 높이 정보를 생성하기 위해 처리되고, 이것은 이제 꼭지점(923)의 3D 위치
Figure pct00039
를 결정하기 위하여 사용될 수 있다. 신호
Figure pct00040
로부터 유도된 높이 정보는
Figure pct00041
와 결합되어
Figure pct00042
를 결정할 수 있는데, 이것은 관심 대상 상면 피쳐인 표면(912)에 상대적인
Figure pct00043
축에서의 꼭지점 높이이다. 이러한 동일한 높이 정보는, 예를 들어 관심 대상 상면 피쳐(912)의 공칭적으로 원형 에지인 상면 에지 피쳐의 위치를 결정하기 위해서도 사용될 수 있다. 그 대신에 또는 추가하여, 신호
Figure pct00044
는 세기 정보를 생성하도록 처리될 수 있고, 이것은 이제 상면 에지 피쳐(914)의 위치를 결정하기 위해 분석될 수 있다.
Figure pct00045
는 하면 에지 피쳐(915)의 위치를 결정하기 위하여 분석될 수 있는 비-간섭 측정식 세기 신호이다. 도 12 를 참조하면,
Figure pct00046
는 도 12 에 도시되는 것처럼, 해당
Figure pct00047
위치에서의 상면의 초점면에 상대적으로
Figure pct00048
만큼 이격되는 최적 초점의
Figure pct00049
포지션에서 현미경 시스템을 사용하여 측정될 수 있다. 두께
Figure pct00050
및 굴절률
Figure pct00051
에 대하여,
Figure pct00052
는 법선에 가까운 입사각으로 다음과 같이 계산될 수 있다:
Figure pct00053
이러한 계산을 위하여, 두께 및 인덱스는 공칭 값이거나 몇 가지 다른 수단, 예를 들어 동일한 기기 또는 캘리퍼를 사용하여 이전에 측정된 것으로 가정될 수 있다. 주어진 애플리케이션에 대해 요구된 정확도에 따라서, 렌즈 재료를 통과하는 굴절에 의해 유도된 구면 수차의 효과를 보상하고, 예를 들어 다음 수학식을 사용하여
Figure pct00054
에 대한 정정된 값을 계산하는 것이 여전히 유익할 수 있다:
[수학식 13B]
Figure pct00055
여기에서 NA는 광학 기기의 개구수를 가리킨다.
상면 꼭지점의 측방향 위치
Figure pct00056
Figure pct00057
x, y 좌표에 의해 주어진다. 다른 관심 대상 피쳐의 위치는 다른 방식으로, 예를 들어 도 11 에서
Figure pct00058
Figure pct00059
로 표시된 측정된 에지 포지션의 중심으로서 규정될 수 있다. 이러한 위치들 사이의 측방향 거리는 묵시적으로 자료 평면이라고 불리는
Figure pct00060
-축과 평행한 축들 사이의 오프셋에 대응하고, 일부 경우에는 상면의 평면형 피쳐에 대응한다. 예를 들어, 피쳐간 측방향 거리
Figure pct00061
는 다음 수학식과 같이 계산될 수 있다:
Figure pct00062
이와 유사하게, 상면 꼭지점-피쳐 측방향 거리
Figure pct00063
는 다음과 같이 계산될 수 있다:
Figure pct00064
일부 경우에는,
Figure pct00065
는, 예를 들어 몰드 이분체(halves)의 측방향 정렬을 위한 조치로서, 렌즈를 제조할 때의 공정 제어를 위해 충분할 수 있다. 이와 유사하게, 상대적인 꼭지점 높이
Figure pct00066
와 함께
Figure pct00067
는 렌즈 형성의 이슈들, 예를 들어 이들이 상면 몰드 이분체로부터 기대되는 치수들로부터 편차를 가지는지를 식별하기 위해 충분할 수도 있다.
상면 꼭지점과 하면 꼭지점 사이의 치수 특성, 예컨대 도 9 에 표시된 꼭지점 두께
Figure pct00068
또는 도 11 에 표시된
Figure pct00069
Figure pct00070
사이의 측방향 거리에 대응하는 꼭지점간 측방향 거리
Figure pct00071
를 명백하게 측정하는 것이 필요할 수 있다. 일부 실시예에서, 그리고 도 13 을 참조하면, 이것은, 광학 기기(201)를 바라보는 렌즈(900)의 상면에서 이루어진 측정에 상대적인 방위각 배향을 추적하면서, 하면(911, 917, 및 922)이 광학 기기(201)를 바라보는 렌즈(900)를 추가적으로 측정함으로써 획득될 수 있다. 제 1 측정에 대해 설명된 것과 유사한 방법을 사용하면, 이러한 제 2 측정은
Figure pct00072
,
Figure pct00073
, 및
Figure pct00074
Figure pct00075
사이의 측방향 거리에 대응하는 하면 꼭지점-피쳐 측방향 거리
Figure pct00076
를 제공한다:
Figure pct00077
Figure pct00078
이 도 13 에서 도시되는 특정한 기하학적 구조에 대해서는 음수라는 것에 주의한다.
일부 경우, 이러한 제 2 측정은
Figure pct00079
의 독립적 측정을 제공할 수 있다.
일부 실시예에서, 우선 한 면이 기기를 바라보게 하고, 그리고 다른 면이 바라보게 하여 렌즈를 측정하는 것으로부터 얻어지는 계측 정보는 도 14 의 흐름도(1400)에 따라 결합되어, 총 꼭지점 두께의 측정과 원하는 측방향 거리를 생성한다. 이러한 구현형태에서, 단계들의 시퀀스는 다음과 같다: 우선, 렌즈(900)는 상면이 계측 기기(201)를 바라보도록 포지셔닝된다(단계(1405)). 이러한 구성일 때, 계측 기기(201)는 적어도 상면의 꼭지점의 지역에서 높이 프로파일을 측정하고, 이러한 상부 꼭지점의 위치를 계산한다(단계(1410)). 렌즈(900)가 동일한 포지션에 있고, 기기(201)는 관심 대상 상부 피쳐, 예컨대 에지(914o)에 대한 높이 프로파일 및 세기 프로파일을 측정한다(단계(1415)). 단계(1420)에서, 시스템은 이제 상부 꼭지점 높이 H UA , 및 상부 꼭지점-피쳐 측방향 거리 XY UAF 를 계산한다(예를 들어, 수학식 15 사용).
하면 피쳐를 측정하기 위해서, 계측 기기(201) 및 렌즈(900)는, 관심 대상 하부 피쳐, 예컨대 에지(915o)가 최적 초점 포지션에 있도록 서로에 대해 이동된다(단계(1425)). 이러한 위치는 T feature n의 공칭 또는 측정된 값을 사용하여 결정될 수 있다. 이러한 포지션에서, 기기는 하부 피쳐에 대한 세기 프로파일을 측정한다(단계(1430)). 세기 프로파일로부터 얻어지는 정보를 사용하여, 시스템은 피쳐간 측방향 오프셋 XY Feature 를 계산한다(단계(1435)).
다음으로, 렌즈(900)가 뒤집히고 그 하면이 기기(201)를 바라보도록 포지셔닝된다(단계(1440)). 이러한 포지션에서, 높이 프로파일이 하부 꼭지점 지역(924)에서 측정되고, 하부 꼭지점의 위치 P LA 가 계산된다(단계(1445)). 그러면, 단계(1450)에서, 시스템은 하면 상의 하나 이상의 피쳐(예를 들어, 에지(915))에 대한 높이 프로파일 및 세기 프로파일을 측정한다. 이러한 측정이 이루어지면, 시스템은 하부 꼭지점 높이 H LA , 및 하부 꼭지점-피쳐 측방향 거리 XY LAF 를 계산한다(단계(1455)).
단계(1460)에서, 꼭지점 두께
Figure pct00080
가 다음과 같이 계산될 수 있다:
Figure pct00081
마지막으로, 단계(1465)에서, 꼭지점간 측방향 거리
Figure pct00082
Figure pct00083
Figure pct00084
사이의 측방향 거리에 대응하고, 다음을 사용하여 계산될 수 있는데, 여기에서 아랫첨자는 파라미터들이 상면 측정 또는 하면 측정 중 어느 것으로부터 획득되는지를 나타낸다:
Figure pct00085
하면 측정이 피쳐간 측방향 거리
Figure pct00086
의 독립적 측정을 제공한다면, 통계적 변이율을 잠재적으로 감소시키도록 다음의 수학식이 선택적으로 사용될 수 있다:
Figure pct00087
Figure pct00088
일부 실시예에서, 도 4a 내지 도 4c 에 대해서 전술된 바와 같이, 장치는, 공칭적으로 평평한 반사면을 가지면서, 샘플을 통과해서 전파된 광을 다시 샘플을 통과하여 그리고 계측 기기를 향하여 반사하도록 샘플 밑에 배치되는 부품 고정대를 포함할 수 있다. 이러한 구현형태는 광학 기기(201)를 사용하여 얻어진 세기 이미지에서의 콘트라스트를 개선할 수도 있다.
어떤 실시예들에서는, 관심 대상 피쳐를 포함하는 영역 내의
Figure pct00089
공간 변이에 관련된 정보는, 치수 피쳐를 더 정확하게 결정하도록 활용될 수 있다. 예를 들어, 이러한 정보는 굴절률
Figure pct00090
, 두께
Figure pct00091
, 및 표면 토포그래피
Figure pct00092
Figure pct00093
의 맵을 포함할 수 있다.
도 15a 및 도 15b 를 참조하면, 테스트 대상 렌즈의 평면형 표면 영역은 평행한 것으로 보이지만, 실제로는 이러한 이상적인 상황과는 다를 수 있다. 예를 들어, 관심 대상 상부 및 하부 피쳐에 걸친 최적-맞춤 평면은 평행한 것과는 편차가 있을 수 있다. 그러면, 이것은, 예를 들어 부분 틸트가 상면과 하면 각각에 있는 비-평행 피쳐에 상대적으로 조절된다면, 제 2 측정(하면이 기기를 바라봄)에 상대적인 제 1 측정(상면이 기기를 바라봄)에 대한 비-평행 피쳐를 생성할 수 있다. 이러한 상대적인 부분 틸트는 두께 맵
Figure pct00094
으로부터 유도되고 치수 피쳐를 계산하는 데에 통합될 수 있는 쐐기각
Figure pct00095
을 형성한다. 예를 들어, 꼭지점 두께
Figure pct00096
는 다음과 같이 표현될 수 있다:
Figure pct00097
측방향 거리
Figure pct00098
Figure pct00099
는 다음과 같이 표현될 수 있다:
Figure pct00100
Figure pct00101
도 9 는 영역면 토포그래피 기기의 광축에 수직인 것으로 보이지만 여전히 실제로는 이러한 이상적인 상황에서 편차가 있을 수 있는 상면 인터페이스를 통해 측정된 하면 에지를 도시한다. 더욱이, 이러한 편차는
Figure pct00102
의존성을 가질 수 있고, 예를 들어 표면 토포그래피 맵
Figure pct00103
에서의 로컬 틸트의 변동으로서 나타난다. 도 15a 는 수직으로부터
Figure pct00104
만큼 틸트된 표면과 처음 만나는 광 빔에 의해 측정되는 굴절률
Figure pct00105
을 가지는 재료 내의 두께
Figure pct00106
에 걸쳐 측정된 특정 측방향 위치에서의 관심 포지션을 나타낸다.
굴절 효과 때문에, 다음과 같이 대략적으로 주어지는 관심 포지션의 피상 및 실제 측방향 위치 사이에 측방향 천이
Figure pct00107
이 존재할 것이다:
Figure pct00108
여기에서
Figure pct00109
Figure pct00110
는 스넬의 법칙을 통해 관련된다:
Figure pct00111
따라서,
Figure pct00112
은 다음과 같이 주어진다:
Figure pct00113
도 15a 에서, 두께 T는, 샘플이 동일한 배향을 가지는 특정 두께 측정 방법에서 기대되는 것과 같이, 빔의 방향에 따라 측정되는 것으로 표시된다. 일부 실시예들에서,
Figure pct00114
는 광축을 따른 두께에 대응할 수 있다.
Figure pct00115
의 작은 값에 대해서, 이러한 전위차의
Figure pct00116
에 대해 통상적으로 마주하게 되는 영향은 무시될 수 있다.
로컬 틸트
Figure pct00117
Figure pct00118
평면에서 어느 정도의 방위각 배향
Figure pct00119
을 가질 것이다. 도 15b 에 도시된 바와 같이, 측방향 천이
Figure pct00120
는 동일한 방위각 배향을 가질 것이다. 그러면, 관심 포지션의 피상 위치의
Figure pct00121
Figure pct00122
좌표에 대한 정정은 각각 다음이 된다:
Figure pct00123
Figure pct00124
일반적으로, 인덱스
Figure pct00125
, 두께
Figure pct00126
, 틸트
Figure pct00127
및 방위각 배향
Figure pct00128
은 측방향 위치
Figure pct00129
에 종속적일 것이고, 따라서
Figure pct00130
도 역시 일반적으로는
Figure pct00131
의 함수일 것이다. 각각의 측정된 에지 포인트에 굴절 정정이 적용될 수 있고, 그 뒤에 정정된 에지 포인트의 콜렉션이 원하는 바에 따라 분석되어 관심 대상 피쳐에 대한 정정된 위치를 생성할 수 있다.
도 16 을 참조하면, 렌즈의 틸트각을 설명하는 예시적인 구현형태가 흐름도(1600)에 나타난다. 여기에서, 렌즈는 우선 그 상면이 계측 기기를 바라보도록 포지셔닝되고(단계(1605)), 기기가 상부 꼭지점 지역의 높이 프로파일을 측정하기 위해 사용되며, 이러한 측정으로부터, 상부 꼭지점의 위치 P UA 를 계산한다(단계(1610)). 그러면, 시스템은 관심 대상 상부 피쳐, 예컨대 상면(915) 또는 상면 상의 에지에 대한 높이 및 세기 프로파일을 측정한다(단계(1615)). 이러한 측정으로부터, 시스템은 상부 피쳐 중심 C UF 를 계산한다. 단계(1620)에서, 시스템은 이제 상부 꼭지점 높이 HUA 및 상부 꼭지점-피쳐 측방향 거리 XY UAF 를 계산한다. T feature n에 대한 공칭 또는 측정된 값을 사용하는 다음 측정에 대하여, 시스템은 관심 대상 하부 피쳐(예를 들어, 평면형 표면 또는 에지)가 최적-초점 포지션에 있게 되도록 광학 기기에 상대적으로 렌즈를 이동시킨다(단계(1625)). 이러한 포지션에서, 시스템은 하면 피쳐에 대한 세기 프로파일을 측정하고, 하면 상의 피상 에지 포지션을 측정한다(단계(1630)). 이러한 측정은, 측방향 천이 △L에 대해, 각각의 에지 포지션에 대한 인덱스 n, 틸트 α tilt , 및 두께, T의 국지값을 사용하여 시스템에 의해서 정정된다(단계(1635)). 정정된 에지 포지션을 사용하면, 시스템은 하부 피쳐의 중심 C LF 의 위치를 계산한다(단계(1640)). 상부 및 하부 피쳐의 위치(C UF C LF ) 및 쐐기각 W를 알면, 시스템은 피쳐간 측방향 오프셋 XY Feature 를 계산한다(단계(1645)). 여기에서, 쐐기각은 렌즈의 두께 맵에서의 틸트에 대응한다.
다음으로, 단계(1650)에서, 렌즈는 하면이 광학 기기를 바라보도록 뒤집히고(단계(1650)) 하부 꼭지점 지역의 높이 프로파일이 얻어진다(단계(1655)). 시스템은 이러한 높이 프로파일로부터 하부 꼭지점의 위치 P LA 를 계산한다. 그러면, 시스템은 관심 대상 하면 피쳐에 대한 높이 프로파일 및 세기 프로파일을 측정한다(단계(1660)). 그러면, 하면 꼭지점 높이인 H LA 및 하부 꼭지점-피쳐 측방향 거리인 XY LAF 가 단계(1655 및 1660)로부터 얻어진 정보로부터 계산된다(단계(1665)). H LA 의 이러한 값을 H UA T feature 의 값과 함께 사용하면, 시스템은 꼭지점 두께 T Apex 을 계산한다(단계(1670)). XY UAF , XY LAF , XY Feature , 및 W를 사용하여, 시스템은 꼭지점간 측방향 오프셋 XY Apex 의 값도 계산한다(단계(1675)).
일부 실시예에서, 샘플은 광학 기기에 상대적인 두 개 이상의 방위각의 배향에서 측정된다. 상이한 방위각의 배향에서 렌즈의 치수 특성의 독립적인 측정을 얻음으로써, 최종으로 보고된 치수 특성에 있는 시스템 에러를 감소시키도록 시스템은 이러한 독립적인 측정들을 결합할 수 있다.
시스템 에러가 발생하는 원인들의 예에는, 광축과 스캔 축 사이의 오정렬, 조명의 측방향 또는 축상 오정렬, 및 샘플 틸트에 있는 바이어스가 포함된다.
일부 경우에, 시스템 에러는 샘플 배향과 독립적인 컴포넌트를 포함한다. 예를 들어, 두 개의 특정 피쳐들 사이의 보고된 측방향 거리는 기기 좌표
Figure pct00132
에 있는 어느 정도의 오프셋만큼 바이어스될 수 있다. 이러한 바이어스는 측정되는 중인 특정 샘플 피쳐에 따라 달라질 수 있다. 이러한 경우, 측정된 측방향 거리에 있는 시스템 에러는 기기에 상대적인 방위각 배향
Figure pct00133
을 가지는 샘플의 측정과 기기에 상대적인 방위각 배향
Figure pct00134
을 가지는 샘플의 측정을 결합함으로써 감소될 수 있는데, 여기에서
Figure pct00135
Figure pct00136
에 상대적으로 180° 만큼 오프셋되어야 한다. 도 17a 및 도 17b 에 도시되는 바와 같이, 이것은 샘플 좌표
Figure pct00137
와 기기 좌표
Figure pct00138
사이의 180°의 상대적인 방위각의 회전에 대응한다. 이러한 상대적인 방위각 배향은 샘플 고정을 통해 또는 그 일부에 있는 뚜렷한 피쳐로 정렬시킴으로써 얻어질 수 있다. 예를 들면, 샘플 지지부는 원하는 양만큼 광학 기기의 광축 주위에서 수동으로 또는 자동적으로 회전될 수 있는 회전 스테이지 및 스케일을 포함할 수 있다.
도 18 을 참조하면, 샘플 회전을 이용하는 예시적인 방법이 흐름도(1800)에 나타난다. 이러한 공정은 기기에 상대적으로 다음과 같은 4 개의 구별되는 배향을 가지는 렌즈를 이용해서 수행된 측정 시퀀스들을 결합한다:
- 상면이 방위각 배향
Figure pct00139
에서 기기를 바라봄
- 상면이 방위각 배향
Figure pct00140
에서 기기를 바라봄
- 하면이 방위각 배향
Figure pct00141
에서 기기를 바라봄
- 하면이 방위각 배향
Figure pct00142
에서 기기를 바라봄
구체적인 단계들은 다음과 같다. 우선, 렌즈는 그 상면이 광학 기기를 바라보고 방위각 배향 θ 0로 포지셔닝된다(단계(1805)). 이러한 배향에서, 시스템은 높이 및 세기 프로파일 측정의 시퀀스를 수행하고,
Figure pct00143
Figure pct00144
에 대한 값을 계산한다(단계(1810)).
다음 측정 시퀀스에 대하여, 렌즈는 그 상면이 광학 기기를 바라보고 방위각 배향
Figure pct00145
에서 포지셔닝된다(단계(1815)). 이러한 배향에서, 시스템은 높이 및 세기 프로파일 측정의 시퀀스를 수행하고,
Figure pct00146
Figure pct00147
에 대한 값을 계산한다(단계(1820)).
후속하는 측정 시퀀스에 대하여, 렌즈는 그 하면이 광학 기기를 바라보고 방위각 배향
Figure pct00148
에서 포지셔닝된다(단계(1825)). 이러한 배향에서, 시스템은 높이 및 세기 프로파일 측정의 시퀀스를 수행하고,
Figure pct00149
에 대한 값을 계산한다(단계(1830)).
마지막 측정 시퀀스에 대하여, 렌즈는 그 하면이 광학 기기를 바라보고 방위각 배향
Figure pct00150
에서 포지셔닝된다(단계(1835)). 이러한 배향에서, 시스템은 높이 및 세기 프로파일 측정의 시퀀스를 수행하고,
Figure pct00151
에 대한 값을 계산한다(단계(1840)). 이러한 상대 배향들에서 측정이 이루어지는 순서는 중요하지 않으며, 가장 편리하도록 조절될 수 있다.
계산된 값들은 계속하여 각각의 배향에 대한 구성하는(constituent) 꼭지점간 측방향 거리,
Figure pct00152
Figure pct00153
를 계산하기 위하여 사용된다(단계(1845)). 마지막으로, 이러한 구성하는 값들을 사용하여, 시스템은 꼭지점간 측방향 거리
Figure pct00154
(단계(1850)), 및 최종 꼭지점-피쳐 측방향 거리
Figure pct00155
Figure pct00156
를 계산한다(단계(1855).
최종 보고된 측방향 거리
Figure pct00157
Figure pct00158
Figure pct00159
에서 측정된 대응하는 각각의 측방향 거리
Figure pct00160
Figure pct00161
를 결합함으로써 계산된다:
Figure pct00162
피쳐간 측방향 거리
Figure pct00163
, 꼭지점-피쳐 측방향 거리
Figure pct00164
Figure pct00165
, 및 꼭지점간 측방향 거리
Figure pct00166
와 같이 전술된 것들을 포함하는 앞선 수학식이 관심 대상 측방향 거리에 적용될 수 있다. 만일 측방향 거리들의 구성하는 측정이, 모두 샘플 좌표
Figure pct00167
에 상대적으로 샘플의 레퍼런스 프레임 내에 있다면, 일부 경우에는 결합 함수는 구성하는 측정들의 산술 평균과 같이 간단할 수도 있다. 그 대신에 또는 추가하여, 몇 가지 동작은 툴-레퍼런스-프레임 결과를 샘플-레퍼런스-프레임으로 단일 단계에서 매핑할 수도 있다. 가능한 다른 동작들이 이전에 결정된 나머지(remnant) 툴 바이어스를 설명할 수 있다.
전술된 바와 같이, 측정 에러가 발생하는 원인이 될 수 있는 다른 소스는 샘플 내의 재료 복굴절이다. 일부 경우에, 측정 에러는 다양한 편광 상태에서, 예를 들어 편광자 및/또는 파플레이트를 사용하여 기기를 가지고 획득된 측정들을 결합함으로써 감소될 수 있다. 또한, 이것은 기기에 상대적인 샘플의 상대적인 방위각 배향의 변동과 결합될 수 있다.
전술된 장치 및 방법은, 특히, 샘플의 치수 및 광학적 치수 및 광학적 특성 특성을 결정하기 위한 대용(surrogate)의 역할을 하는 만곡형 활성 표면 영역 및 평면-평행 영역을 포함하는 렌즈를 포함하는, 인-프로세스 투명 샘플의 평가가 가능하게 한다. 투명 샘플은, 예를 들어 디지털 카메라용인 멀티-렌즈 렌즈 어셈블리의 일부인 몰딩된 렌즈와 같은 렌즈를 포함한다. 이러한 렌즈 어셈블리는 무엇보다도, 셀 폰, 스마트 폰, 및 태블릿 컴퓨터와 같은 모바일 디바이스용의 카메라에서 널리 사용된다.
일부 실시예에서, 앞선 방법은 렌즈에 대한 몰드를 측정하는 데에 적용될 수 있다. 예를 들어, 도 19 를 참조하면, 테스트 대상 샘플은 렌즈 몰드의 이분체(1900)일 수 있다. 이러한 몰드는 몰드를 사용해서 제작된 렌즈의 활성 영역에 대응하는 만곡면(1921)을 포함한다. 만곡면(1921)은 꼭지점(1921)을 가진다. 또한, 몰드는 제 1 의 내부 평면형 표면(1916) 및 제 2 의 외부 평면형 표면(1912)으로 이루어지는 평면부를 포함한다. 평면형 표면들은 단차(1914)에 의해 분리된다. 단차(1914)의 외부 에지(1914o)가 몰드(1900)의 특징을 결정하는 측정에서 관심 대상 피쳐로서 사용될 수 있다. 외부의 평면형 표면(1912) 및 꼭지점(1923)은 기기(201)의 z-축을 따라 측정된 높이 H A 만큼 오프셋된다. 몰드(1900)는, 예를 들어 표면(1921)(광 S A 을 통해) 및 외부의 평면형 표면(1912)(S F )으로부터 높이 프로파일 및 세기 프로파일을 획득함으로써 특징이 결정될 수 있다. 예를 들어 꼭지점의 위치 및 관심 대상 피쳐의 에지까지의 꼭지점의 측방향 오프셋은 렌즈(900)에 대해서 전술된 바와 같이 결정될 수 있다.
도 20a 및 도 20b 의 흐름도는 기술된 기법을 사용할 수 있는 용도를 설명한다. 도 19 의 흐름도(2000)는 전술된 바와 같이 두께 및 복굴절(단계(2010))의 측정을 사용하는 렌즈 특징 결정 기법을 보여준다. 단계(2020)에서, 이러한 측정에 기초하여, 시스템은 두께, 평행성, 평균 굴절률, 인덱스 구배, 및 복굴절에 대한 값을 보고한다. 이제, 이러한 값들은 이러한 파라미터에 대한 선결정된 사양과 비교된다(단계(2030)).
사양을 벗어나는 렌즈의 경우, 그러한 렌즈들은 거절되고(단계(2040)) 시스템은 대응하는 몰딩 사이트가 공정 제어 타겟에서 벗어난다고 보고한다(단계(2050)). 사양을 만족시키는 렌즈의 경우, 그러한 렌즈들은 두께 빈 내에서 정렬되고(단계(2060)) 및 대응하는 몰딩 사이트가 프로세스 제어 타겟 안에 속한다고 보고된다(단계(2070)).
도 20b 의 흐름도(2001)는 꼭지점-피쳐 높이, 꼭지점 두께, 꼭지점간 측방향 거리, 및 피쳐간 측방향 거리의 측정을 사용하는 렌즈 특징 결정 기법을 나타낸다. 여기에서, 제 1 단계에서(2011), 렌즈 상의 다양한 피쳐의 위치가 전술된 바와 같이 측정된 높이 및 세기 데이터로부터 유도된다. 단계(2021)에서, 이러한 측정에 기초하여, 시스템은 꼭지점-피쳐 높이, 꼭지점 두께, 꼭지점간 측방향 거리, 및 피쳐간 측방향 거리에 대한 값을 보고한다. 이러한 값은 이제 이러한 파라미터에 대한 선결정된 사양과 비교된다(단계(2031)).
사양을 벗어나는 렌즈의 경우, 그러한 렌즈들은 거절되고(단계(2041)) 시스템은 대응하는 몰딩 사이트가 공정 제어 타겟에서 벗어난다고 보고한다(단계(2051)). 사양을 만족시키는 렌즈의 경우, 그러한 렌즈들은 두께 빈 내에서 정렬되고(단계(2061)) 및 대응하는 몰딩 사이트가 프로세스 제어 타겟 안에 속한다고 보고된다(단계(2071)).
또한 측정 기법은 렌즈를 제작하기 위해 사용되는 몰딩 프로세스의 특징을 결정하기 위해서 사용될 수도 있다. 몰딩 프로세스의 특징을 결정하기 위한 구현예들은 도 21a 및 도 21b 의 흐름도에 도시된다.
도 21a 의 흐름도(2100)에 도시된 프로세스에서, 제 1 단계(2110)는 렌즈의 비활성부의 두께 및 복굴절을 측정하기 위한 것이다. 이러한 측정에 기초하여, 시스템은 렌즈의 두께, 평행성, 평균 굴절률, 인덱스 구배 및 복굴절을 분석한다(단계(2120)). 이러한 분석에 기초하여, 몰드의 두 개의 이분체들의 상대 위치가 두께 및 평행성 사양을 만족시키도록 조절된다(단계(2130)). 몰딩 공정 파라미터(예를 들어, 온도 및 온도 증가율, 렌즈 재료 조성, 주입 압력)가 굴절률 사양을 만족시키기 위해 조절된다(단계(2140)).
도 21b 의 흐름도(2101)에 도시된 프로세스에서, 제 1 단계(2150)는 렌즈면의 높이 프로파일 및 꼭지점들 및 피쳐의 측방향 포지션을 측정하기 위한 것이다. 이러한 측정에 기초하여, 시스템은 꼭지점-피쳐 높이, 꼭지점 두께, 꼭지점간 측방향 거리, 및 피쳐간 측방향 거리를 결정하고 보고한다(단계(2160)). 이러한 분석에 기초하여, 몰드의 두 개의 이분체들의 상대 위치가 두께 및 측방향 센터링 사양을 만족시키기 위해 조절된다(단계(2130)). 몰딩 공정 파라미터(예를 들어, 온도 및 온도 증가율, 렌즈 재료 조성)는 꼭지점-피쳐 사양을 만족시키기 위해 조절된다(단계(2140)).
전술된 흐름도가 꼭지점 및 피쳐 측정이 아닌 복굴절 및 두께 측정을 위한 별개의 공정들을 설명하지만, 일부 실시예에서 이러한 세트의 측정들 양자 모두가, 예를 들어 렌즈 특징 결정 동작 및/또는 렌즈 몰딩을 개선하기 위해서 결합될 수도 있다.
특정 구현형태들이 설명되지만, 다른 구현형태들도 역시 가능하다. 예를 들어, 렌즈(200) 및 렌즈(900)는 양자 모두 메니스커스 렌즈이지만, 좀 더 일반적으로는 다른 타입의 렌즈, 예를 들어 볼록-볼록 렌즈, 오목-오목 렌즈, 평면(plano)-볼록 렌즈, 및 평면-오목 렌즈의 특징도 본 발명의 기법을 사용하여 결정될 수 있다. 렌즈면은 비구면일 수도 있다. 일부 실시예에서, 렌즈면은 표면의 오목성(concavity)이 변동되는 변곡점을 포함할 수 있다. 이러한 표면의 일 예가 도 1 의 표면(132)이다.
더 나아가, 설명된 것들 외에 다양한 정렬 피쳐들이 사용될 수도 있다. 예를 들어, 렌즈(200 및 900) 내의 평면형 표면이 환형 표면이지만, 다른 기하학적 구조들도 가능하다. 표면 상의 돌출부, 함몰부, 또는 단순히 표면 상의 마크와 같은 이산 피쳐가, 전술된 측정에서 피쳐로서 사용될 수 있다.
본 명세서는 일반적으로 광학 컴포넌트의 계측에 중점을 두고 있지만, 관련된 적용 클래스는 사출 성형 렌즈를 제작하기 위해 사용되는 몰드의 계측이다. 이러한 경우에, 몰드는 렌즈 상에서 역시 발견되는 모든 피쳐, 즉 활성 광학면 및 하나 이상의 위치, 중심일치 또는 정렬 데이터를 드러낸다. 그러면, 렌즈의 일측에 대해서 설명된 계측 단계가 쉽게 적용될 수 있다. 예를 들면, 기기는 기계적 데이터에 대한 광학면의 꼭지점의 중심일치 및 높이를 측정하기 위해 사용된다. 다른 계측 단계는 외부 데이터들 사이의 단차 및 가파른 원추형 중심일치 데이터의 각도의 특징을 결정하는 것을 포함한다.
테스트 대상 부분이 광학 기기의 가시 범위보다 더 넓은 어떤 실시예들에서, 해당 부분의 상이한 지역의 측정들이 서로 이어붙여져서 전체 부분의 측정을 제공할 수 있다. 측정들을 이어붙이기 위한 예시적인 기법은 J. Roth and P. de Groot, "Wide-field scanning white light interferometry of rough surfaces", Proc. ASPE Spring Topical Meeting on Advances in Surface Metrology, 57-60 (1997)에 개시된다.
일부 구현형태들에서, 측정 정확도를 개선하기 위해서 추가적 정정이 적용될 수도 있다. 예를 들어, 표면의 반사 특성에 대한 상 변화에 대한 정정이 적용될 수 있다. 예를 들어 P. de Groot, J. Biegen, J. Clark, X. Colonna de Lega and D. Grigg, "Optical Interferometry for Measurement of the Geometric Dimensions of Industrial Parts", Applied Optics 41(19), 3853-3860 (2002)를 참조한다.
어떤 구현형태에서, 이러한 부분은 두 개 이상의 시야각으로부터, 또는 양자 모두의 측면에서부터 측정될 수 있다. 예를 들어 P. de Groot, J. Biegen, J. Clark, X. Colonna de Lega and D. Grigg, "Optical Interferometry for Measurement of the Geometric Dimensions of Industrial Parts", Applied Optics 41(19), 3853-3860 (2002)를 참조한다.
측정 결과는, 예를 들어, P. Scott, "Recent Developments in the Measurement of Aspheric Surfaces by Contact Stylus Instrumentation", 4927, 199-207 (2002)에서 개시되는 것과 같은 비구면 형태의 스타일러스 측정을 포함하는 다른 측들과 결합될 수 있다.
다양한 데이터 공정 방법들이 적용될 수 있다. 예를 들면, 코히어런스 스캐닝 간섭측정계를 사용하여 여러 표면들을 측정하도록 적응되는 방법이 사용될 수 있다. 예를 들어 P. J. de Groot and X. Colonna de Lega, "Transparent film profiling and analysis by interference microscopy", Proc. SPIE 7064, 706401-1 706401-6 (2008)을 참조한다.
전술된 측정과 분석과 연관된 연산들은 본 명세서에서 설명되는 방법 및 도면을 따르는 표준 프로그래밍 기법을 사용하여 컴퓨터 프로그램으로 구현될 수 있다. 프로그램 코드는 입력 데이터에 인가되어 본 명세서에서 설명된 기능들을 수행하고 출력 정보를 생성한다. 출력 정보는 디스플레이 모니터와 같은 하나 이상의 출력 디바이스에 인가될 수 있다. 각 프로그램은 컴퓨터 시스템과 통신하는 고수준 절차 또는 객체 지향 프로그래밍 언어로 구현될 수도 있다. 그러나, 그 프로그램은 바람직하다면, 어셈블리 또는 머신 언어로 구현될 수 있다. 어느 경우에나, 그 언어는 컴파일식 또는 인터프리트식 언어일 수도 있다. 더욱이, 프로그램은 그 목적을 위한 전용 집적 회로에서 실행할 수 있다.
각각의 이러한 컴퓨터 프로그램은 바람직하게는 스토리지 미디어 또는 디바이스가 본 명세서에서 설명되는 프로시저를 수행하기 위하여 컴퓨터에 의해 판독될 때 컴퓨터를 구성하고 작동시키기 위하여, 범용 또는 특수 목적 프로그래밍가능한 컴퓨터에 의하여 판독가능한 스토리지 매체 또는 디바이스(예를 들어, ROM, 광학 디스크 또는 자기 디스크)에 저장된다. 컴퓨터 프로그램은 또한 프로그램 실행 도중에 캐시 또는 메인 메모리에 상주할 수 있다. 캘리브레이션 방법은, 적어도 부분적으로 컴퓨터 프로그램으로써 구성된 컴퓨터-판독가능 저장 매체로서 구현될 수 있는데, 여기에서 이와 같이 구성된 저장 매체는 컴퓨터가 본 명세서에서 설명된 기능들을 수행하기 위하여 특정하고 선정의된 방식으로 작동하도록 한다.
다른 실시예들은 종속항에서 규정된다.

Claims (60)

  1. 렌즈부 및 평행 평면부를 포함하는 투명 광요소에 대한 정보를 결정하는 방법으로서,
    광학 기기를 사용하여 상기 투명 광요소의 제 1 면 및 상기 제 1 면의 반대측인 상기 투명 광요소의 제 2 면에 대한 높이 정보를 획득하는 단계;
    상기 광학 기기를 사용하여 상기 제 1 면의 세기 맵 및 상기 제 2 면의 세기 맵을 획득하는 단계; 및
    상기 높이 정보 및 세기 맵에 기초하여, 상기 제 1 면 및 제 2 면 중 적어도 하나 상의 상기 투명 광요소의 하나 이상의 피쳐에 대한 치수 정보(dimensional information)를 결정하는 단계를 포함하는, 정보 결정 방법.
  2. 제 1 항에 있어서,
    상기 광학 기기는 코히어런스 스캐닝 간섭 현미경인, 정보 결정 방법.
  3. 제 1 항에 있어서,
    상기 제 1 및 제 2 면에 대한 높이 정보는 각각 상기 제 1 및 제 2 면의 표면 프로파일을 포함하는, 정보 결정 방법.
  4. 제 1 항에 있어서,
    상기 세기 맵은 상기 광학 기기의 다원 검출기를 사용하여 수집된 세기 프레임의 시퀀스에 기초하여 결정되는, 정보 결정 방법.
  5. 제 4 항에 있어서,
    상기 세기 맵은 상기 세기 프레임의 시퀀스에 대한 상기 다원 검출기의 각각의 요소에서의 세기를 평균화함으로써 결정되는, 정보 결정 방법.
  6. 제 4 항에 있어서,
    상기 광학 기기를 사용하여 상기 제 1 면의 세기 맵 및 상기 제 2 면의 세기 맵을 획득하는 단계는, 상기 다원 검출기의 각각의 요소에 대한 세기를, 상기 광학 기기에 상대적인 상기 제 1 및 제 2 면에 대한 최적 초점의 개개의 포지션에서 결정하는 단계를 포함하는, 정보 결정 방법.
  7. 제 1 항에 있어서,
    상기 치수 정보는 상기 제 1 또는 제 2 면 상의 다른 피쳐에 대한 상기 제 1 또는 제 2 면의 꼭지점의 상대적인 위치를 포함하는, 정보 결정 방법.
  8. 제 1 항에 있어서,
    상기 치수 정보는 꼭지점과 다른 피쳐 사이의 측방향 거리이고, 상기 측방향 거리는 상기 평행 평면부에 공칭적으로 평행한 평면에서 측정된 거리인, 정보 결정 방법.
  9. 제 8 항에 있어서,
    상기 다른 피쳐는 상기 제 1 또는 제 2 면의 평행 평면부에 위치되는 피쳐인, 정보 결정 방법.
  10. 제 9 항에 있어서,
    상기 다른 피쳐는, 공칭적으로 상기 꼭지점에 중심을 가진 환형 피쳐인, 정보 결정 방법.
  11. 제 9 항에 있어서,
    상기 다른 피쳐는 상기 평행 평면부의 제 1 및/또는 제 2 면에 있는 단차인, 정보 결정 방법.
  12. 제 1 항에 있어서,
    상기 광학 기기는, 상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정을 수행하고, 상기 제 2 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정을 수행하도록 사용되는, 정보 결정 방법.
  13. 제 12 항에 있어서,
    상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 렌즈부의 꼭지점의 위치를 결정하도록 사용되는, 정보 결정 방법.
  14. 제 13 항에 있어서,
    상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 평행 평면부 상의 피쳐의 위치에 대한 상기 제 1 면의 렌즈부의 꼭지점의 상대적인 위치를 결정하도록 사용되는, 정보 결정 방법.
  15. 제 12 항에 있어서,
    상기 제 1 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 2 면의 평행 평면부 상의 피쳐의 위치에 대한 상기 제 1 면의 평행 평면부 상의 피쳐의 상대적인 위치를 결정하도록 사용되는, 정보 결정 방법.
  16. 제 15 항에 있어서,
    상기 제 2 면이 상기 광학 기기를 바라보는 상태로 투명 광학 물체의 측정으로부터 획득된 데이터는, 상기 제 1 면의 꼭지점의 위치에 대한 상기 제 2 면의 렌즈부 상의 꼭지점의 상대적인 위치를 결정하도록 사용되는, 정보 결정 방법.
  17. 제 1 항에 있어서,
    상기 치수 정보를 결정하는 단계는, 상기 광학 기기에 대한 상기 투명 광요소의 틸트에 기인한 굴절의 효과를 고려하는 단계를 포함하는, 정보 결정 방법.
  18. 제 17 항에 있어서,
    상기 굴절의 효과가 고려되는 치수 정보는, 상기 광학 기기의 반대측인 상기 투명 광요소의 표면 상의 피쳐의 위치인, 정보 결정 방법.
  19. 제 1 항에 있어서,
    상기 광학 기기는, 상기 광학 기기의 축에 대한 제 1 방위각 배향으로 투명 광학 물체의 측정을 수행하고, 상기 제 1 방위각 배향과 상이한, 상기 축에 대한 제 2 방위각 배향으로 투명 광학 물체의 측정을 수행하도록 사용되는, 정보 결정 방법.
  20. 제 19 항에 있어서,
    상기 치수 정보를 결정하는 단계는, 하나 이상의 피쳐에 대한 치수 정보를, 상기 제 1 방위각 배향으로 투명 광요소를 사용한 측정으로부터 획득된 데이터로부터 결정하는 단계, 및 상기 하나 이상의 피쳐에 대한 치수 정보를, 상기 제 2 방위각 배향으로 투명 광요소를 사용한 측정으로부터 획득된 데이터로부터 결정하는 단계를 포함하는, 정보 결정 방법.
  21. 제 20 항에 있어서,
    상기 치수 정보를 결정하는 단계는, 상기 치수 정보의 오차를 상기 제 1 및 제 2 방위각의 배향에 대해 획득된 치수 정보에 기초하여 감소시키는 단계를 포함하는, 정보 결정 방법.
  22. 제 1 항에 있어서,
    상기 방법은,
    상기 투명 광요소가 요구 사양을 만족시키는지 여부를 상기 치수 정보에 기초하여 결정하는 단계를 더 포함하는, 정보 결정 방법.
  23. 투명 광요소에 대한 정보를 결정하기 위한 시스템으로서,
    광학 기기, 및
    상기 광학 기기와 통신하고, 상기 시스템이 제 1 항 내지 제 22 항 중 어느 한 항에 따른 방법을 수행하게 하도록 프로그램된 전자 제어기를 포함하는, 투명 광요소 정보 결정 시스템.
  24. 만곡부 및 평면부를 포함하는 물체에 대한 정보를 결정하는 방법에 있어서, 상기 만곡부는 꼭지점을 가지고 상기 물체의 축을 규정하는 제 1 만곡면을 포함하며, 상기 방법은:
    측정광을 물체로 지향시키는 단계;
    상기 만곡부의 제 1 만곡면으로부터 반사된 측정광을 검출하는 단계;
    상기 물체의 적어도 하나의 다른 표면으로부터 반사된 측정광을 검출하는 단계; 및
    검출된 광에 기초하여, 상기 만곡부의 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계를 포함하는, 정보 결정 방법.
  25. 제 24 항에 있어서,
    상기 물체는 투명 광요소인, 정보 결정 방법.
  26. 제 25 항에 있어서,
    상기 투명 광요소는 렌즈 요소인, 정보 결정 방법.
  27. 제26항에 있어서,
    상기 렌즈 요소는 몰딩된 렌즈 요소인, 정보 결정 방법.
  28. 제 24 항에 있어서,
    상기 물체는 광요소에 대한 몰드의 일부인, 정보 결정 방법.
  29. 제 24 항에 있어서,
    상기 물체는 렌즈 요소의 일측에 대한 몰드인, 방법.
  30. 제 24 항에 있어서,
    상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함하고, 상기 제 2 만곡면은 꼭지점을 가지며, 상기 제 1 만곡면의 꼭지점에 대한 정보는, 광축을 따라서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이에서의 렌즈의 두께를 포함하는, 정보 결정 방법.
  31. 제 24 항에 있어서,
    상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함하고, 상기 제 2 만곡면은 꼭지점을 가지며, 상기 제 1 만곡면의 꼭지점에 대한 정보는, 광축과 직교하는 평면에서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이의 측방향 오프셋을 포함하는, 정보 결정 방법.
  32. 제 24 항에 있어서,
    상기 측정광은 광학 기기에 의해 상기 물체로 지향되고, 상기 제 1 만곡면은 상기 측정광을 반사시킬 때 상기 광학 기기를 바라보는, 정보 결정 방법.
  33. 제 32 항에 있어서,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 꼭지점의 위치를 결정하는 단계를 포함하는, 정보 결정 방법.
  34. 제 33 항에 있어서,
    상기 적어도 하나의 다른 표면은 상기 광학 기기를 바라보는 다른 표면을 포함하고,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 꼭지점과 상기 적어도 하나의 다른 표면 상의 관심 대상 피쳐 사이에서 광축에 직교하는 평면에서 측정된 측방향 오프셋을 결정하는 단계를 더 포함하는, 정보 결정 방법.
  35. 제 34 항에 있어서,
    상기 적어도 하나의 다른 표면은 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면을 포함하고, 상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 피쳐와 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐 사이에서 상기 광축에 직교하는 평면에서 측정된 측방향 오프셋을 결정하는 단계를 더 포함하는, 정보 결정 방법.
  36. 제 35 항에 있어서,
    상기 만곡부는 상기 제 1 만곡면의 반대측인 제 2 만곡면을 포함하고,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 제 2 만곡면의 꼭지점의 위치를 결정하는 단계를 포함하는, 정보 결정 방법.
  37. 제 36 항에 있어서,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 제 1 및 제 2 만곡면의 꼭지점들의 위치에 기초하여 상기 광축을 따라 측정된 상기 만곡부의 두께를 결정하는 단계를 포함하는, 정보 결정 방법.
  38. 제 36 항에 있어서,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 광축에 직교하는 평면에서 측정된, 상기 제 1 면의 꼭지점과 상기 제 2 면의 꼭지점 사이의 측방향 오프셋을:
    (i) 상기 제 1 만곡면의 꼭지점과 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋;
    (ii) 상기 광학 기기를 바라보는 다른 표면 상의 관심 대상 피쳐와 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋; 및
    (iii) 상기 제 2 만곡면의 꼭지점과 상기 광학 기기로부터 멀어지는 방향으로 바라보는 표면 상의 관심 대상 피쳐 사이의 측방향 오프셋에 기초하여 결정하는 단계를 포함하는, 정보 결정 방법.
  39. 제 24 항에 있어서,
    상기 제 1 만곡면의 꼭지점에 대한 정보를 결정하는 단계는, 상기 평면부의 적어도 하나의 표면의 틸트에 대한 정보를 결정하는 단계 및 상기 제 1 면의 꼭지점에 대한 정보를 결정할 때 상기 틸트를 고려하는 단계를 포함하는, 정보 결정 방법.
  40. 제 39 항에 있어서,
    상기 틸트에 대한 정보는, 상기 측정광을 상기 물체로 지향시키는데 사용되는 광학 기기의 광축에 상대적인 틸트각 α tilt 인, 정보 결정 방법.
  41. 제 24 항에 있어서,
    상기 방법은,
    상기 측정광을 검출한 이후에, 상기 측정광을 물체로 지향시키는데 사용되는 광학 기기에 대한 상기 물체의 방위각 배향을 조절하는 단계, 및 방위각 배향 조절 이후에 상기 제 1 만곡면 및 상기 적어도 하나의 다른 표면으로부터의 측정광의 검출을 반복하는 단계를 더 포함하는, 정보 결정 방법.
  42. 제 41 항에 있어서,
    상기 방법은,
    상기 제 1 만곡면의 꼭지점에 대한 추가적 정보를 방위각 배향 조절 이후에 검출된 측정광에 기초하여 결정하는 단계를 더 포함하는, 정보 결정 방법.
  43. 제 24 항에 있어서,
    상기 방법은, 상기 측정광을 검출한 이후에 상기 측정광의 편광 상태를 변경하는 단계, 및 편광 상태 변경 이후에 상기 제 1 만곡면 및 상기 적어도 하나의 다른 표면으로부터의 측정광의 검출을 반복하는 단계를 더 포함하는, 정보 결정 방법.
  44. 제 43 항에 있어서,
    상기 방법은,
    상기 편광 상태 변경 이전과 이후에, 검출된 측정광에 기초하여 상기 물체의 복굴절에 대한 정보를 결정하는 단계를 더 포함하는, 정보 결정 방법.
  45. 제 24 항에 있어서,
    상기 방법은, 상기 제 1 만곡면의 꼭지점에 대한 정보에 기초하여 상기 물체를 평가하는 단계를 더 포함하는, 정보 결정 방법.
  46. 제 45 항에 있어서,
    상기 물체를 평가하는 단계는, 상기 제 1 만곡면의 꼭지점에 대한 정보에 기초하여, 상기 물체가 요구 사양을 만족시키는지 여부를 결정하는 단계를 포함하는, 정보 결정 방법.
  47. 제 24 항에 있어서,
    상기 평면부는 상기 물체의 틸트 제어 인터록인, 정보 결정 방법.
  48. 제 24 항에 있어서,
    상기 만곡부의 적어도 하나의 만곡면은 비구면인, 정보 결정 방법.
  49. 제 24 항에 있어서,
    상기 평면부는 상기 만곡부의 둘레 주위에 위치되는, 정보 결정 방법.
  50. 광학 어셈블리를 형성하는 방법으로서,
    제 24 항의 방법을 사용하여 물체에 대한 정보를 결정하는 단계로서, 상기 물체는 렌즈인, 단계; 및
    상기 광학 어셈블리를 형성하도록, 상기 렌즈를 경통 내의 하나 이상의 다른 렌즈에 상대적으로 고정하는 단계를 포함하는, 광학 어셈블리 형성 방법.
  51. 제 50 항에 있어서,
    상기 방법은,
    디지털 카메라용 모듈을 제공하도록, 상기 광학 어셈블리를 센서에 상대적으로 고정시키는 단계를 더 포함하는, 광학 어셈블리 형성 방법.
  52. 만곡부 및 평면부를 포함하는 물체에 대한 정보를 결정하기 위한 시스템으로서, 상기 만곡부는 꼭지점을 가지고 상기 물체의 축을 규정하는 제 1 만곡면을 포함하며, 상기 시스템은:
    상기 물체를 지지하기 위한 고정대(fixture);
    광원, 검출기, 및 상기 물체가 상기 고정대에 의해 지지되는 경우 상기 광원으로부터의 광을 상기 물체를 향해 지향시키고, 상기 물체로부터 반사된 광을 상기 검출기로 지향시키도록 구성되는 광요소를 포함하는 광학 기기; 및
    상기 검출기와 통신하는 전자 제어기로서, 상기 전자 제어기는 상기 제 1 만곡면 및 상기 물체의 적어도 하나의 다른 표면으로부터 검출된 광에 기초하여 제 1 면의 꼭지점에 대한 정보를 결정하도록 프로그램되는, 전자 제어기를 포함하는, 정보 결정 시스템.
  53. 제 52 항에 있어서,
    상기 광학 기기는 광학 영역면 토포그래피 기기(optical areal surface topography instrument)인, 정보 결정 시스템.
  54. 제 53 항에 있어서,
    상기 광학 영역면 토포그래피 기기는 코히어런스 스캐닝 간섭측정계인, 정보 결정 시스템.
  55. 제 53 항에 있어서,
    상기 광학 영역면 토포그래피 기기는 공초점 현미경인, 정보 결정 시스템.
  56. 제 52 항에 있어서,
    상기 고정대는 상기 광학 기기에 대하여 상기 물체를 재배향하도록 구성되는 액츄에이터를 포함하는, 정보 결정 시스템.
  57. 제 56 항에 있어서,
    상기 액츄에이터는 상기 광학 기기의 광축에 상대적으로 상기 물체를 회전시키도록 구성되는, 정보 결정 시스템.
  58. 제 52 항에 있어서,
    상기 광학 기기는 상기 광원으로부터의 광을 편광시키도록 구성되는 편광 모듈을 포함하는, 정보 결정 시스템.
  59. 제 58 항에 있어서,
    상기 편광 모듈은 직교 편광 상태에 있는 상기 광원으로부터의 광을 선택적으로 편광시키도록 구성되는, 정보 결정 시스템.
  60. 제 52 항에 있어서,
    상기 검출기는 다원 검출기이고, 상기 광학 기기는 상기 물체의 표면을 상기 다원 검출기 상에 이미징하도록 구성되는, 정보 결정 시스템.
KR1020177007212A 2014-08-15 2015-08-13 렌즈 및 렌즈 몰드의 광학적 평가 방법 KR102332215B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462037966P 2014-08-15 2014-08-15
US62/037,966 2014-08-15
US201462039398P 2014-08-19 2014-08-19
US62/039,398 2014-08-19
PCT/US2015/045149 WO2016025769A1 (en) 2014-08-15 2015-08-13 Optical evaluation of lenses and lens molds

Publications (2)

Publication Number Publication Date
KR20170042361A true KR20170042361A (ko) 2017-04-18
KR102332215B1 KR102332215B1 (ko) 2021-11-26

Family

ID=55301969

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020177007212A KR102332215B1 (ko) 2014-08-15 2015-08-13 렌즈 및 렌즈 몰드의 광학적 평가 방법
KR1020177007211A KR102332214B1 (ko) 2014-08-15 2015-08-13 렌즈 및 렌즈 몰드의 광학적 평가 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020177007211A KR102332214B1 (ko) 2014-08-15 2015-08-13 렌즈 및 렌즈 몰드의 광학적 평가 방법

Country Status (6)

Country Link
US (2) US9599534B2 (ko)
EP (1) EP3180597B1 (ko)
JP (2) JP6542355B2 (ko)
KR (2) KR102332215B1 (ko)
CN (2) CN107110739B (ko)
WO (2) WO2016025769A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6542355B2 (ja) * 2014-08-15 2019-07-10 ザイゴ コーポレーションZygo Corporation レンズ及びレンズ金型の光学評価
FI126062B (en) * 2014-11-24 2016-06-15 Åbo Akademi Åbo Akademi University Method for calibrating 3D imaging and system for 3D imaging
DE102017006345A1 (de) * 2017-07-05 2019-01-10 Innolite Gmbh Verfahren zur Bestimmung der Dezentrierung einer transmissiven Ist-Optik und Vorrichtung zur Bestimmung der Dezentrierung optischer Flächen dieser Optik
TWI625557B (zh) * 2017-07-11 2018-06-01 大立光電股份有限公司 環形光學元件、成像鏡頭模組與電子裝置
WO2019038716A1 (en) * 2017-08-24 2019-02-28 Novartis Ag METHOD AND DEVICE FOR DETERMINING WHETHER SINGLE-USE MOLD IS ACCEPTABLE OR NOT
CN112313499A (zh) * 2018-06-21 2021-02-02 鲁姆斯有限公司 光导光学元件(loe)的板之间折射率不均匀性的测量技术
CN108981593B (zh) * 2018-07-26 2020-04-28 西安工业大学 激光三角法透镜中心厚度测量装置及其测量方法
CN109001899A (zh) * 2018-09-26 2018-12-14 埃卫达智能电子科技(苏州)有限公司 一种20x工业显微镜的光学系统
CN111638230A (zh) * 2019-03-01 2020-09-08 Oppo(重庆)智能科技有限公司 终端镜片检测方法、装置、电子设备及存储介质
US11808656B2 (en) 2019-06-07 2023-11-07 Fogale Nanotech Device and method for measuring interfaces of an optical element
FR3114385A1 (fr) 2020-09-21 2022-03-25 Fogale Nanotech Dispositif et procédé de mesure d’interfaces d’un élément optique
CN114199521B (zh) * 2021-11-30 2023-09-08 宁波法里奥光学科技发展有限公司 光学镜片参数测量装置及方法
CN114252243B (zh) * 2021-12-10 2023-09-19 中国科学院光电技术研究所 一种微柱面透镜阵列的检测装置和方法
FR3131955A1 (fr) * 2022-01-17 2023-07-21 Fogale Nanotech Procédé et dispositif de détermination d’informations géométriques d’interfaces d’un élément optique
CN114739300A (zh) * 2022-03-29 2022-07-12 上海优睿谱半导体设备有限公司 一种测量外延片的外延层厚度的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128946A (ja) * 1994-10-31 1996-05-21 Nec Corp 光学特性測定方法及び測定装置
JPH08216272A (ja) * 1995-02-13 1996-08-27 Canon Inc 立体形状測定方法およびこれを用いたプラスチックレンズの製造方法
JP2002250622A (ja) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd 光学素子及びその型の形状測定方法及び装置
JP2002365533A (ja) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd 対物レンズ及びそれを用いた光ヘッド装置と収差計測方法と光情報記録再生装置
JP2005156524A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法
JP2007279255A (ja) * 2006-04-04 2007-10-25 Olympus Corp 光学素子および光学素子の測定方法
KR20080031509A (ko) * 2005-08-05 2008-04-08 미따까 고오끼 가부시끼가이샤 렌즈에 있어서의 표리면의 광축 편심량의 측정 방법
JP2010156558A (ja) * 2008-12-26 2010-07-15 Olympus Corp 透過照明装置、検査システム、および透過照明方法
JP2011058872A (ja) * 2009-09-08 2011-03-24 Konica Minolta Opto Inc オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861808A (en) * 1972-12-04 1975-01-21 Edmund R Halsey Instrument for measuring curved surfaces
JP3602925B2 (ja) * 1995-12-08 2004-12-15 独立行政法人科学技術振興機構 光干渉法による測定対象物の屈折率と厚さの同時測定装置
CN1168971C (zh) * 1998-04-22 2004-09-29 株式会社理光 双折射测定方法及其装置
US6447176B2 (en) * 1999-03-05 2002-09-10 West Bend Film Company, Llc Film canister device for use in a film package assembly and a method for loading a camera therewith and a camera loadable thereby
EP1151806B1 (en) * 2000-05-01 2007-08-22 FUJIFILM Corporation Fluid dispenser
DE60237630D1 (de) * 2001-11-14 2010-10-21 Zygo Corp Vorrichtung und verfahren zum kalibrieren eines interferometers
JP2003270140A (ja) * 2002-03-13 2003-09-25 Matsushita Electric Ind Co Ltd 相対屈折率の測定方法および相対屈折率測定装置
US7102761B2 (en) * 2003-06-13 2006-09-05 Zygo Corporation Scanning interferometry
JP4963231B2 (ja) * 2003-10-20 2012-06-27 ザイゴ コーポレイション 再構成可能干渉計システム
TWI335417B (en) * 2003-10-27 2011-01-01 Zygo Corp Method and apparatus for thin film measurement
WO2005114096A2 (en) * 2004-05-18 2005-12-01 Zygo Corporation Methods and systems for determining optical properties using low-coherence interference signals
US7595891B2 (en) * 2005-07-09 2009-09-29 Kla-Tencor Corporation Measurement of the top surface of an object with/without transparent thin films in white light interferometry
US7408649B2 (en) * 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
US7663742B2 (en) 2005-11-24 2010-02-16 Novartis Ag Lens inspection system using phase contrast imaging
US7349161B1 (en) 2006-10-20 2008-03-25 E-Pin Optical Industry Co., Ltd. Molding lens with indentation for measuring eccentricity and method for measuring eccentricity thereof
JP2010107210A (ja) * 2008-10-28 2010-05-13 Hitachi Maxell Ltd レンズの検査方法、レンズの製造方法、及びレンズ検査装置
TWI406004B (zh) 2009-02-19 2013-08-21 Largan Precision Co Ltd 成像光學透鏡組
JP2010237189A (ja) 2009-03-11 2010-10-21 Fujifilm Corp 3次元形状測定方法および装置
JP2011002240A (ja) * 2009-06-16 2011-01-06 Olympus Corp 三次元形状測定方法および装置
JP5468836B2 (ja) * 2009-07-28 2014-04-09 株式会社 光コム 測定装置及び測定方法
JP5261314B2 (ja) * 2009-07-31 2013-08-14 シャープ株式会社 偏芯測定装置および偏芯測定方法
JP5582188B2 (ja) 2010-04-13 2014-09-03 コニカミノルタ株式会社 偏心量測定方法
JP2013242337A (ja) * 2010-09-08 2013-12-05 Panasonic Corp 対物レンズ、光ヘッド装置、光情報装置、及び光情報システム
JP5008763B2 (ja) * 2010-12-03 2012-08-22 キヤノン株式会社 屈折率分布計測方法、屈折率分布計測装置および光学素子の製造方法
US8649024B2 (en) 2010-12-03 2014-02-11 Zygo Corporation Non-contact surface characterization using modulated illumination
US20120320374A1 (en) 2011-06-17 2012-12-20 Sites Peter W Method of imaging and inspecting the edge of an ophthalmic lens
WO2013105922A2 (en) * 2011-12-12 2013-07-18 Zygo Corporation Non-contact surface characterization using modulated illumination
TWI497150B (en) 2011-12-25 2015-08-21 Multi-focal optical lenses
JP2014016253A (ja) 2012-07-09 2014-01-30 Canon Inc 屈折率分布計測方法、光学素子の製造方法、および、屈折率分布計測装置
EP2917783A4 (en) 2012-11-08 2016-07-13 Dynaoptics Pte Ltd MINIATURIZED OPTICAL ZOOMOBJEKTIV
JP6542355B2 (ja) * 2014-08-15 2019-07-10 ザイゴ コーポレーションZygo Corporation レンズ及びレンズ金型の光学評価

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128946A (ja) * 1994-10-31 1996-05-21 Nec Corp 光学特性測定方法及び測定装置
JPH08216272A (ja) * 1995-02-13 1996-08-27 Canon Inc 立体形状測定方法およびこれを用いたプラスチックレンズの製造方法
JP2002250622A (ja) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd 光学素子及びその型の形状測定方法及び装置
JP2002365533A (ja) * 2001-06-07 2002-12-18 Matsushita Electric Ind Co Ltd 対物レンズ及びそれを用いた光ヘッド装置と収差計測方法と光情報記録再生装置
JP2005156524A (ja) * 2003-10-30 2005-06-16 Hitachi Maxell Ltd 光学素子の光軸検出方法
KR20080031509A (ko) * 2005-08-05 2008-04-08 미따까 고오끼 가부시끼가이샤 렌즈에 있어서의 표리면의 광축 편심량의 측정 방법
JP2007279255A (ja) * 2006-04-04 2007-10-25 Olympus Corp 光学素子および光学素子の測定方法
JP2010156558A (ja) * 2008-12-26 2010-07-15 Olympus Corp 透過照明装置、検査システム、および透過照明方法
JP2011058872A (ja) * 2009-09-08 2011-03-24 Konica Minolta Opto Inc オートコリメータを用いた光学素子の偏心調整方法及び偏心測定方法、並びにレンズ加工方法

Also Published As

Publication number Publication date
CN106796160A (zh) 2017-05-31
JP2017529524A (ja) 2017-10-05
CN106796160B (zh) 2021-01-12
US9599534B2 (en) 2017-03-21
JP2017530341A (ja) 2017-10-12
CN107110739B (zh) 2019-08-30
JP6542356B2 (ja) 2019-07-10
KR102332215B1 (ko) 2021-11-26
JP6542355B2 (ja) 2019-07-10
US20160047712A1 (en) 2016-02-18
US9658129B2 (en) 2017-05-23
CN107110739A (zh) 2017-08-29
EP3180597A4 (en) 2018-12-05
WO2016025769A1 (en) 2016-02-18
KR102332214B1 (ko) 2021-11-26
US20160047711A1 (en) 2016-02-18
WO2016025772A1 (en) 2016-02-18
EP3180597A1 (en) 2017-06-21
EP3180597B1 (en) 2021-02-17
KR20170042360A (ko) 2017-04-18

Similar Documents

Publication Publication Date Title
KR102332214B1 (ko) 렌즈 및 렌즈 몰드의 광학적 평가 방법
JP6306724B2 (ja) 非球面およびその他の非平坦面のトポグラフィの測定
US7212291B2 (en) Interferometric microscopy using reflective optics for complex surface shapes
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
Langehanenberg et al. Automated measurement of centering errors and relative surface distances for the optimized assembly of micro-optics
TWI570397B (zh) 透鏡和透鏡模具的光學評估技術
KR20110065365A (ko) 비구면체 측정 방법 및 장치
TWI596325B (zh) 決定物體或透明光學元件的資訊的方法與系統以及形成光學組件方法
Laubach et al. Combination of a fast white-light interferometer with a phase shifting interferometric line sensor for form measurements of precision components
Gomez et al. Micro-optic reflection and transmission interferometer for complete microlens characterization
Heinisch et al. Complete characterization of assembled optics with respect to centering error and lens distances
US6788423B2 (en) Conic constant measurement methods for refractive microlenses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant