KR20170040468A - 이미지 센서 및 그 제조방법 - Google Patents
이미지 센서 및 그 제조방법 Download PDFInfo
- Publication number
- KR20170040468A KR20170040468A KR1020150139455A KR20150139455A KR20170040468A KR 20170040468 A KR20170040468 A KR 20170040468A KR 1020150139455 A KR1020150139455 A KR 1020150139455A KR 20150139455 A KR20150139455 A KR 20150139455A KR 20170040468 A KR20170040468 A KR 20170040468A
- Authority
- KR
- South Korea
- Prior art keywords
- substrate
- impurity region
- photoelectric conversion
- epi layer
- image sensor
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 23
- 239000012535 impurity Substances 0.000 claims abstract description 104
- 239000000758 substrate Substances 0.000 claims abstract description 66
- 238000006243 chemical reaction Methods 0.000 claims abstract description 52
- 238000002955 isolation Methods 0.000 claims abstract description 52
- 230000000295 complement effect Effects 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims description 16
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 230000007547 defect Effects 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 6
- 230000002596 correlated effect Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000005036 potential barrier Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000001276 controlling effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1463—Pixel isolation structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/761—PN junctions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14645—Colour imagers
- H01L27/14647—Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
- H01L27/14654—Blooming suppression
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14665—Imagers using a photoconductor layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/103—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
본 기술은 이미지 센서에 관한 것으로, 실시예에 따른 이미지 센서는 기판에 형성되고 각각 불순물영역을 포함하는 복수의 광전변환소자; 상기 복수의 광전변환소자 사이의 기판에 형성되고 측벽이 상기 불순물영역에 접하는 소자분리 트렌치; 및 상기 불순물영역과 상보적인 도전형을 갖는 에피층을 포함하고, 상기 에피층은 상기 소자분리 트렌치에 갭필된 제1부분을 포함할 수 있다.
Description
본 발명은 반도체 장치 제조 기술에 관한 것으로, 보다 구체적으로는 소자분리 구조물을 포함하는 이미지 센서 및 그 제조방법에 관한 것이다.
이미지 센서(image sensor)는 광학 영상을 전기 신호로 변환시키는 소자이다. 최근 들어, 컴퓨터 산업과 통신 산업의 발달에 따라 디지털 카메라, 캠코더, PCS(Personal Communication System), 게임 기기, 경비용 카메라, 의료용 마이크로 카메라, 로보트 등 다양한 분야에서 집적도 및 성능이 향상된 이미지 센서의 수요가 증대되고 있다.
본 발명의 실시예들은 성능이 향상된 이미지 센서 및 그 제조방법을 제공한다.
본 발명의 실시예에 따른 이미지 센서는 기판에 형성되고 각각 불순물영역을 포함하는 복수의 광전변환소자; 상기 복수의 광전변환소자 사이의 기판에 형성되고 측벽이 상기 불순물영역에 접하는 소자분리 트렌치; 및 상기 불순물영역과 상보적인 도전형을 갖는 에피층을 포함하고, 상기 에피층은 상기 소자분리 트렌치에 갭필된 제1부분을 포함할 수 있다.
또한, 실시예에 따른 이미지 센서는 상기 에피층은 상기 제1부분의 에피층으로부터 상기 복수의 광전변환소자를 덮도록 상기 기판상으로 확장된 제2부분의 에피층을 포함할 수 있다.
상기 제1부분의 에피층은 상기 불순물영역보다 큰 불순물 도핑농도를 가질 수 있다. 상기 기판 및 상기 에피층은 서로 동일한 물질을 포함할 수 있다. 상기 기판 및 상기 에피층은 단결정의 실리콘 함유 재료를 포함할 수 있다. 상기 불순물영역의 도전형은 N형일 수 있고, 상기 에피층의 도전형은 P형일 수 있다.
본 발명의 실시예에 따른 이미지 센서의 제조방법은 기판에 각각 불순물영역을 포함하는 복수의 광전변환소자를 형성하는 단계; 상기 기판을 선택적으로 식각하여 상기 복수의 광전변환소자 각각을 분리하고 측벽이 상기 불순물영역에 접하도록 소자분리 트렌치를 형성하는 단계; 및 에피택셜 성장을 통해 상기 불순물영역과 상보적인 도전형을 갖고 상기 소자분리 트렌치를 갭필하는 제1부분의 에피층을 형성하는 단계를 포함할 수 있다.
또한, 실시예에 따른 이미지 센서 제조방법은 상기 제1부분의 에피층으로부터 상기 복수의 광전변환소자를 덮도록 상기 기판상으로 확장된 제2부분의 에피층을 형성하는 단계를 더 포함할 수 있다.
상기 제1부분의 에피층은 상기 불순물영역보다 큰 불순물 도핑농도를 갖도록 형성할 수 있다. 상기 기판 및 상기 에피층은 서로 동일한 물질을 포함할 수 있다. 상기 기판 및 상기 에피층은 단결정의 실리콘 함유 재료를 포함할 수 있다. 상기 불순물영역의 도전형은 N형일 수 있고, 상기 에피층의 도전형은 P형일 수 있다.
상술한 과제의 해결 수단을 바탕으로 하는 본 기술은 측벽이 광전변환소자에 접하는 소자분리 트렌치 및 소자분리 트렌치에 갭필된 에피층을 구비함으로써, 이미지 센서의 필 펙터를 향상시킬 수 있다. 또한, 전기적 크로스토크, 블루밍 현상 및 암전류 발생을 방지할 수 있다.
도 1은 본 발명의 실시예에 따른 이미지 센서를 개략적으로 도시한 블럭도.
도 2는 본 발명의 실시예에 따른 이미지 센서의 픽셀 어레이 일부를 도시한 평면도.
도 3은 본 발명의 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도.
도 4는 본 발명의 다른 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도.
도 5a 내지 도 5c는 본 발명의 실시예에 따른 이미지 센서의 제조방법을 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도
도 6은 본 발명의 실시예에 따른 이미지 센서를 구비한 전자장치를 간략히 도시한 도면.
도 2는 본 발명의 실시예에 따른 이미지 센서의 픽셀 어레이 일부를 도시한 평면도.
도 3은 본 발명의 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도.
도 4는 본 발명의 다른 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도.
도 5a 내지 도 5c는 본 발명의 실시예에 따른 이미지 센서의 제조방법을 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도
도 6은 본 발명의 실시예에 따른 이미지 센서를 구비한 전자장치를 간략히 도시한 도면.
이하 본 발명이 속하는 기술분야에서 통상의 지식을 가진자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 도면을 참조하여 설명하기로 한다. 도면은 반드시 일정한 비율로 도시된 것이라 할 수 없으며, 몇몇 예시들에서, 실시예의 특징을 명확히 보여주기 위하여 도면에 도시된 구조물 중 적어도 일부의 비례는 과장될 수도 있다. 도면 또는 상세한 설명에 둘 이상의 층을 갖는 다층 구조물이 개시된 경우, 도시된 것과 같은 층들의 상대적인 위치 관계나 배열 순서는 특정 실시예를 반영할 뿐이어서 본 발명이 이에 한정되는 것은 아니며, 층들의 상대적인 위치 관계나 배열 순서는 달라질 수도 있다. 또한, 다층 구조물의 도면 또는 상세한 설명은 특정 다층 구조물에 존재하는 모든 층들을 반영하지 않을 수도 있다(예를 들어, 도시된 두 개의 층 사이에 하나 이상의 추가 층이 존재할 수도 있다). 예컨대, 도면 또는 상세한 설명의 다층 구조물에서 제1층이 제2층 상에 있거나 또는 기판상에 있는 경우, 제1층이 제2층 상에 직접 형성되거나 또는 기판상에 직접 형성될 수 있음을 나타낼 뿐만 아니라, 하나 이상의 다른 층이 제1층과 제2층 사이 또는 제1층과 기판 사이에 존재하는 경우도 나타낼 수 있다.
후술하는 본 발명의 실시예는 성능이 향상된 이미지 센서 및 그 제조방법을 제공한다. 여기서, 성능이 향상된 이미지 센서는 필 펙터(Fill Factor)를 극대화시킨 이미지 센서를 의미할 수 있다. 필 펙터는 각각의 단위픽셀에서 광전변환소자 예컨대, 포토다이오드가 차지하는 면적 비율을 의미하며, 필 펙터를 극대화시킬수록 이미지 센서의 감도를 향상시킬 수 있다. 또한, 성능이 향상된 이미지 센서는 인접한 단위픽셀 사이의 전기적 크로스토크(X-Talk) 및 블루밍(Blooming) 현상을 방지할 수 있는 이미지 센서를 의미할 수 있다.
이를 위해, 실시예에 따른 이미지 센서는 기판에 형성되어 각각 불순물영역을 포함하는 광전변환소자 사이를 최소한의 면적에서 접합절연(junction isolation)을 통해 분리할 수 있는 소자분리 구조물을 포함하는 이미지 센서를 제공한다.
도 1은 본 발명의 실시예에 따른 이미지 센서를 개략적으로 도시한 블럭도이다.
도 1에 도시된 바와 같이, 실시예에 따른 이미지 센서는 복수의 단위픽셀(110)들이 매트릭스 구조로 배열된 픽셀 어레이(pixel array, 100), 상관 이중 샘플링(correlated double sampling, CDS, 120), 아날로그-디지털 컨버터(analog digital converter, ADC, 130), 버퍼(Buffer, 140), 로우 드라이버(row driver, 150), 타이밍 제너레이터(timing generator, 160), 제어 레지스터(control register, 170) 및 램프 신호 제너레이터(ramp signal generator, 180)를 포함할 수 있다.
타이밍 제너레이터(160)는 로우 드라이버(150), 상관 이중 샘플링(120), 아날로그-디지털 컨버터(130) 및 램프 신호 제너레이터(180) 각각의 동작을 제어하기 위한 하나 이상의 제어 신호를 생성할 수 있다. 제어 레지스터(170)는 램프 신호 제너레이터(180), 타이밍 제너레이터(160) 및 버퍼(140) 각각의 동작을 제어하기 위한 하나 이상의 제어 신호를 생성할 수 있다.
로우 드라이버(150)는 픽셀 어레이(100)를 로우라인(row line) 단위로 구동할 수 있다. 예를 들어, 로우 드라이버(150)는 복수의 로우라인(row line)들 중에서 어느 하나의 로우라인(row line)을 선택할 수 있는 선택 신호를 생성할 수 있다. 복수의 단위픽셀(110)들 각각은 입사광을 감지하여 이미지 리셋 신호와 이미지 신호를 컬럼라인(column line)을 통해 상관 이중 샘플링(120)으로 출력할 수 있다. 상관 이중 샘플링(120)은 수신된 이미지 리셋 신호와 이미지 신호 각각에 대하여 샘플링을 수행할 수 있다.
아날로그-디지털 컨버터(130)는 램프 신호 제너레이터(180)로부터 출력된 램프 신호와 상관 이중 샘플링(120)으로부터 출력되는 샘플링 신호를 서로 비교하여 비교 신호를 출력할 수 있다. 타이밍 제너레이터(160)로부터 제공되는 클럭 신호에 따라 비교 신호의 레벨 전이(transition) 시간을 카운트하고, 카운트 값을 버퍼(140)로 출력할 수 있다. 램프 신호 제너레이터(180)는 타이밍 제너레이터(160)의 제어 하에 동작할 수 있다.
버퍼(140)는 아날로그-디지털 컨버터(130)로부터 출력된 복수의 디지털 신호 각각을 저장한 후 이들 각각을 감지 증폭하여 출력할 수 있다. 따라서, 버퍼(140)는 메모리(미도시)와 감지증폭기(미도시)를 포함할 수 있다. 메모리는 카운트 값을 저장하기 위한 것이며, 카운트 값은 복수의 단위픽셀(110)들로부터 출력된 신호에 연관된 카운트 값을 의미한다. 감지증폭기는 메모리로부터 출력되는 각각의 카운트 값을 감지하여 증폭할 수 있다.
여기서, 이미지 센서가 고집적화됨에 따라 복수의 단위픽셀(110) 각각의 크기(또는 면적) 및 복수의 단위픽셀(110) 사이의 간격이 점차 감소하고 있다. 이에 따라, 인접한 단위픽셀(110) 사이의 간섭에 기인한 특성 열화 예컨대, 전기적 크로스토크 및 블루밍 현상에 기인한 특성 열화가 심화되고 있다. 이를 방지하기 위해, 기판에는 각각의 단위픽셀(110)을 분리시키는 소자분리 구조물이 형성된다. 소자분리 구조물은 기판에 불순물을 이온주입하여 형성된 불순물영역이거나, 또는 기판에 형성된 소자분리 트렌치 내부에 절연물이 갭필된 절연물영역일 수 있다.
불순물영역을 포함하는 소자분리 구조물은 단위픽셀(110) 사이의 전하 이동(carrier transferring)을 차단하는 전위장벽(potential barrier)으로 작용하여 전기적 크로스토크 및 블루밍 현상을 방지할 수 있다는 장점이 있다. 그러나, 불순물영역 형성공정시 불순물의 확산(diffusition)을 제어하기가 매우 어려워 사실상 소자분리 구조물의 집적도를 증가시킬 수 없다. 즉, 이미지 센서의 필 펙터를 저하시키는 단점이 있다. 아울러, 형성공정시 확산된 불순물에 의해 특성이 열화되는 단점도 있다.
반면에, 절연물영역을 포함하는 소자분리 구조물은 집적화가 용이하여 이미지 센서의 필 펙터를 향상시킬 수 있다는 장점이 있다. 그러나, 소자분리 트렌치 표면에 존재하는 수많은 결함(defect) 예컨대, 댕글링본드(dangling bond)에 의해 소자분리를 위한 절연물영역 자체가 암전류(Dark current) 발생의 원인으로 작용하는 단점이 있다.
따라서, 후술하는 본 발명의 실시예에서는 불순물영역을 포함하는 소자분리 구조물 및 절연물영역을 포함하는 소자분리 구조물 각각의 장점을 취하고, 단점을 제거할 수 있는 소자분리 구조물을 포함하는 이미지 센서에 대해 도면을 참조하여 상세히 설명하기로 한다.
도 2는 본 발명의 실시예에 따른 이미지 센서의 픽셀 어레이 일부를 도시한 평면도이다. 도 3은 본 발명의 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도이다.
도 2 및 도 3에 도시된 바와 같이, 실시예에 따른 이미지 센서는 기판(200)에 형성되고 각각 불순물영역을 포함하는 복수의 광전변환소자(230), 복수의 광전변환소자(230) 사이의 기판(200)에 형성된 소자분리 구조물(260)을 포함할 수 있다. 소자분리 구조물(260)은 복수의 광전변환소자(230) 사이의 기판(200)에 형성되어 측벽이 불순물영역을 포함하는 광전변환소자(230)에 접하는 소자분리 트렌치(240) 및 불순물영역과 상보적인 도전형을 갖고 소자분리 트렌치(240)에 갭필된 형태를 갖는 에피층(250)을 포함할 수 있다.
기판(200)은 반도체 기판을 포함할 수 있다. 반도체 기판은 단결정 상태(Single crystal state)일 수 있으며, 실리콘 함유 재료를 포함할 수 있다. 즉, 기판(200)은 단결정의 실리콘 함유 재료를 포함할 수 있다. 예를 들어, 기판(200) 벌크 실리콘 기판일 수 있다.
광전변환소자(230)는 기판(200)에 형성된 포토다이오드를 포함할 수 있다. 포토다이오드는 P형 영역과 N형 영역을 포함할 수 있다. 여기서, 불순물영역은 N형 영역일 수 있다. 구체적으로, 광전변환소자(230)는 제1불순물영역(210) 및 제1불순물영역(210)과 상보적인 도전형을 갖는 제2불순물영역(220)이 수직하게 적층된 형태를 가질 수 있다. 제1불순물영역(210)은 포토다이오드의 P형 영역일 수 있고, 제2불순물영역(220)은 포토다이오드의 N형 영역일 수 있다. 제1불순물영역(210)은 제2불순물영역(220) 대비 매우 얇은 두께를 가질 수 있다.
한편, 광전변환소자(230)로 입사광이 유입되는 입사면의 위치에 따라 제1불순물영역(210)의 형성위치가 상이할 수 있다. 구체적으로, 실시예에서는 기판(200)의 전면(front side)이 입사면으로 작용하는 경우를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 즉, 기판(200)의 후면(back side)이 입사면으로 작용하는 경우 제1불순물영역(210)은 기판(200)의 후면에 인접하도록 도 3에 도시된 위치에서 정반대편에 형성될 수도 있다.
소자분리 트렌치(240)는 복수의 광전변환소자(230) 사이의 기판(200)에 형성되고, 측벽이 광전변환소자(230)의 제2불순물영역(220)에 접하는 형태를 가질 수 있다. 이는, 이미지 센서의 필 펙터를 향상시키기 위함이다.
에피층(250)은 기판(200)과 동일한 실리콘 함유 물질을 포함할 수 있다. 예를 들어, 에피층(250)은 실리콘에피층일 수 있다. 소자분리 트렌치(240)에 갭필된 형태를 갖는 에피층(250)은 광전변환소자(230)의 제2불순물영역(220)과 상보적인 도전형을 가질 수 있고, 제2불순물영역(220)과 접할 수 있다. 예를 들어, 에피층(250)은 P형 불순물이 도핑된 실리콘에피층일 수 있다. 따라서, 에피층(250)과 광전변환소자(230)의 제2불순물영역(220) 사이는 접합절연될 수 있다. 이때, 광전변환소자(230)의 전기적특성 및 향상된 접합절연을 위해 에피층(250)은 제2불순물영역(220)보다 큰 불순물 도핑농도를 가질 수 있다. 이를 통해, 에피층(250)이 단위픽셀(110) 사이의 전하 이동을 차단하는 전위장벽으로 작용하여 전기적 크로스토크 및 블루밍현상을 방지할 수 있다. 아울러, 에피텍셜 성장을 통해 형성된 에피층(250)은 형성공정시 불순물 도핑과 동시에 도핑된 불순물이 활성화되기 때문에 불순물의 확산을 억제할 수 있다. 즉, 불순물 확산에 기인한 특성 열화를 방지할 수 있다. 그리고, 에피층(250) 형성공정시 소자분리 트렌치(240) 표면에 존재하는 수많은 결함을 치유할 수 있기 때문에 결함에 기인한 특성 열화 예컨대, 암전류 발생을 방지할 수 있다.
참고로, 기존의 불순물영역을 포함하는 소자분리 구조물 및 절연물영역을 포함하는 소자분리 구조물은 각각 불순물의 확산 및 소자분리 트렌치 표면의 결함을 고려하여 광전변환소자로부터 소정 간격 이격하여 소자분리 구조물을 형성하기 때문에 이미지 센서의 필 펙터를 향상시키는데 한계가 있다. 그러나, 실시예에 따른 이미지 센서는 소자분리 트렌치(240)의 측벽이 광전변환소자(230)의 제2불순물영역(220)에 접하는 형태를 갖고, 에피층(250)에 의해 불순물의 확산 억제 및 결함 치유가 가능하기 때문에 이미지 센서의 필 펙터를 용이하게 향상시킬 수 있다.
도 4는 본 발명의 다른 실시예에 따른 이미지 센서를 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도이다. 여기서는, 도 3과 동일한 도면부호를 사용하기로 한다.
도 4에 도시된 바와 같이, 다른 실시예에 따른 이미지 센서는 기판(200)에 형성되고 각각 불순물영역을 포함하는 복수의 광전변환소자(230), 복수의 광전변환소자(230) 사이의 기판(200)에 형성된 소자분리 구조물(260)을 포함할 수 있다. 소자분리 구조물(260)은 복수의 광전변환소자(230) 사이의 기판(200)에 형성되어 측벽이 불순물영역에 접하는 소자분리 트렌치(240), 불순물영역과 상보적인 도전형을 갖고 소자분리 트렌치(240)에 갭필된 형태를 갖는 제1부분의 에피층(251) 및 제1부분의 에피층(251)으로부터 광전변환소자(230)를 덮도록 기판(200) 상으로 확장된 제2부분의 에피층(252)을 포함할 수 있다.
기판(200)은 반도체 기판을 포함할 수 있다. 반도체 기판은 단결정 상태일 수 있으며, 실리콘 함유 재료를 포함할 수 있다. 즉, 기판(200)은 단결정의 실리콘 함유 재료를 포함할 수 있다. 예를 들어, 기판(200) 벌크 실리콘 기판일 수 있다.
광전변환소자(230)는 기판(200)에 형성된 포토다이오드를 포함할 수 있다. 포토다이오드는 P형 영역과 N형 영역을 포함할 수 있다. 여기서, 불순물영역은 N형 영역일 수 있다. 구체적으로, 광전변환소자(230)는 제1불순물영역(210) 및 제1불순물영역(210)과 상보적인 도전형을 갖는 제2불순물영역(220)이 수직하게 적층된 형태를 가질 수 있다. 제1불순물영역(210)은 포토다이오드의 P형 영역일 수 있고, 제2불순물영역(220)은 포토다이오드의 N형 영역일 수 있다. 제1불순물영역(210)은 제2불순물영역(220) 대비 매우 얇은 두께를 가질 수 있다.
소자분리 트렌치(240)는 복수의 광전변환소자(230) 사이의 기판(200)에 형성되고, 측벽이 광전변환소자(230)의 제2불순물영역(220)에 접하는 형태를 가질 수 있다. 이는, 이미지 센서의 필 펙터를 향상시키기 위함이다.
제1부분 및 제2부분을 포함하는 에피층(250)은 기판(200)과 동일한 실리콘 함유 물질을 포함할 수 있다. 예를 들어, 에피층(250)은 실리콘에피층일 수 있다. 에피층(250)은 광전변환소자(230)의 제2불순물영역(220)과 상보적인 도전형을 가질 수 있다. 예를 들어, 에피층(250)은 P형 불순물이 도핑된 실리콘에피층일 수 있다.
제1부분의 에피층(251)은 제2불순물영역(220)과 접할 수 있다. 따라서, 제1부분의 에피층(251)과 광전변환소자(230)의 제2불순물영역(220) 사이는 접합절연될 수 있다. 이때, 광전변환소자(230)의 전기적특성 및 향상된 접합절연을 위해 제1부분의 에피층(251)은 제2불순물영역(220)보다 큰 불순물 도핑농도를 가질 수 있다. 이를 통해, 제1부분의 에피층(251)이 단위픽셀(110) 사이의 전하 이동을 차단하는 전위장벽으로 작용하여 전기적 크로스토크 및 블루밍현상을 방지할 수 있다. 아울러, 에피텍셜 성장을 통해 형성된 제1부분의 에피층(251)은 형성공정시 불순물 도핑과 동시에 도핑된 불순물이 활성화되기 때문에 불순물의 확산을 억제할 수 있다. 즉, 불순물 확산에 기인한 특성 열화를 방지할 수 있다. 그리고, 제1부분의 에피층(251) 형성공정시 소자분리 트렌치(240) 표면에 존재하는 수많은 결함을 치유할 수 있기 때문에 결함에 기인한 특성 열화 예컨대, 암전류 발생을 방지할 수 있다.
제2부분의 에피층(252)은 기판(200) 표면에서의 결함에 기인한 암전류 발생을 방지하는 역할을 수행할 수 있다. 제2부분의 에피층(252)과 제1부분의 에피층(251)은 동일한 공정을 통해 형성된 일체형 에피층(250)일 수 있다.
도 5a 내지 도 5c는 본 발명의 실시예에 따른 이미지 센서의 제조방법을 도 1 및 도 2에 도시된 A-A' 절취선을 따라 도시한 단면도이다. 여기서는, 도 3에 도시된 이미지 센서의 제조방법에 대한 일례를 설명하기로 한다.
도 5a에 도시된 바와 같이, 복수의 단위픽셀(110) 각각의 기판(10)에 광전변환소자(13)를 형성한다. 기판(10)은 단결정의 실리콘 함유 재료를 포함할 수 있다. 예를 들어, 기판(10)은 벌크 실리콘 기판일 수 있다.
광전변환소자(13)는 포토다이오드를 포함할 수 있다. 포토다이오드는 P형 불순물이 도핑된 제1불순물영역(11)과 N형 불순물이 도핑된 제2불순물영역(12)이 수직하게 적층된 형태로 형성할 수 있다. 제1불순물영역(11)은 제2불순물영역(12) 대비 매우 얇은 두께를 갖도록 형성할 수 있다. 제1불순물영역(11) 및 제2불순물영역(12)은 각각 이온주입공정을 통해 형성할 수 있다.
도 5b에 도시된 바와 같이, 복수의 광전변환소자(13) 사이의 기판(10)을 선택적으로 식각하여 소자분리 트렌치(14)를 형성한다. 이때, 소자분리 트렌치(14)의 측벽이 광전변환소자(13)에 접하도록 형성할 수 있다. 특히, 소자분리 트렌치(14)의 측벽이 광전변환소자(13)의 제2불순물영역(12)과 접하도록 형성할 수 있다. 소자분리 트렌치(14)를 형성하기 위한 식각공정은 건식식각으로 진행할 수 있다.
한편, 소자분리 트렌치(14)의 표면에는 식각공정시 발생한 수많이 결함이 존재할 수 있으며, 결함은 암전류 소스로 작용할 수 있다.
도 5c에 도시된 바와 같이, 에피택셜 성장을 통해 소자분리 트렌치(14)를 갭필하도록 에피층(15)을 형성한다. 에피층(15)은 기판(10)과 동일한 실리콘 함유 물질로 형성할 수 있다. 예를 들어, 에피층(15)은 실리콘에피층으로 형성할 수 있다.
에피층(15)이 소자분리 구조물(16)로 작용하도록 에피층(15) 형성공정시 광전변환소자(13)의 제2불순물영역(12)과 상보적인 도전형을 갖는 불순물 즉, P형 불순물을 인시튜로 도핑할 수 있다. 따라서, 에피층(15)의 도전형은 P형일 수 있으며, 이를 통해 에피층(15)과 광전변환소자(13)의 제2불순물영역(12) 사이 접합절연을 구현할 수 있다. 이때, 광전변환소자(13)의 전기적특성 및 향상된 접합절연을 위해 에피층(15)은 제2불순물영역(12)보다 큰 불순물 도핑농도를 갖도록 형성할 수 있다.
상술한 공정을 통해 형성된 에피층(15)은 단위픽셀(110) 사이의 전하 이동을 차단하는 전위장벽으로 작용하여 전기적 크로스토크 및 블루밍현상을 방지할 수 있다. 아울러, 에피텍셜 성장을 통해 형성된 에피층(15)은 형성공정시 불순물 도핑과 동시에 도핑된 불순물이 활성화되기 때문에 불순물의 확산을 억제할 수 있다. 즉, 불순물 확산에 기인한 특성 열화를 방지할 수 있다. 그리고, 에피층(15) 형성공정시 소자분리 트렌치(14) 표면에 존재하는 수많은 결함을 치유할 수 있기 때문에 결함에 기인한 특성 열화 예컨대, 암전류 발생을 방지할 수 있다.
이후, 공지된 제조기술을 통해 이미지 센서를 완성할 수 있다.
상술한 실시예에 따른 이미지 센서는 다양한 전자장치 또는 시스템에 이용될 수 있다. 이하에서는, 도 6을 참조하여 카메라에 본 발명의 실시예에 따른 이미지 센서를 적용한 경우를 예시하여 설명하기로 한다.
도 6은 본 발명의 실시예에 따른 이미지 센서를 구비한 전자장치를 간략히 도시한 도면이다.
도 6을 참조하여, 실시예에 따른 이미지 센서를 구비한 전자장치는 정지영상 또는 동영상을 촬영할 수 있는 카메라일 수 있다. 전자장치는 광학 시스템(310, 또는, 광학 렌즈), 셔터 유닛(311), 이미지 센서(300) 및 셔터 유닛(311)을 제어/구동하는 구동부(313) 및 신호 처리부(312)를 포함할 수 있다.
광학 시스템(310)은 피사체로부터의 이미지 광(입사광)을 이미지 센서(300)의 픽셀 어레이(도 1의 도면부호 '100' 참조)로 안내한다. 광학 시스템(310)은 복수의 광학 렌즈로 구성될 수 있다. 셔터 유닛(311)은 이미지 센서(300)에 대한 광 조사 기간 및 차폐 기간을 제어한다. 구동부(313)는 이미지 센서(300)의 전송 동작과 셔터 유닛(311)의 셔터 동작을 제어한다. 신호 처리부(312)는 이미지 센서(300)로부터 출력된 신호에 관해 다양한 종류의 신호 처리를 수행한다. 신호 처리 후의 이미지 신호(Dout)는 메모리 등의 저장 매체에 저장되거나, 모니터 등에 출력된다.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술분야의 통상의 전문가라면 본 발명의 기술사상의 범위내의 다양한 실시예가 가능함을 이해할 수 있을 것이다.
110 : 단위픽셀
200 : 기판
210 : 제1불순물영역 220 : 제2불순물영역
230 : 광전변환소자 240 : 소자분리 트렌치
250 : 에피층 260 : 소자분리 구조물
210 : 제1불순물영역 220 : 제2불순물영역
230 : 광전변환소자 240 : 소자분리 트렌치
250 : 에피층 260 : 소자분리 구조물
Claims (12)
- 기판에 형성되고 각각 불순물영역을 포함하는 복수의 광전변환소자;
상기 복수의 광전변환소자 사이의 기판에 형성되고 측벽이 상기 불순물영역에 접하는 소자분리 트렌치; 및
상기 불순물영역과 상보적인 도전형을 갖는 에피층을 포함하고,
상기 에피층은 상기 소자분리 트렌치에 갭필된 제1부분을 포함하는 이미지 센서.
- 제1항에 있어서,
상기 에피층은 상기 제1부분의 에피층으로부터 상기 복수의 광전변환소자를 덮도록 상기 기판상으로 확장된 제2부분의 에피층을 포함하는 이미지 센서.
- 제1항에 있어서,
상기 제1부분의 에피층은 상기 불순물영역보다 큰 불순물 도핑농도를 갖는 이미지 센서.
- 제1항에 있어서,
상기 기판 및 상기 에피층은 서로 동일한 물질을 포함하는 이미지 센서.
- 제1항에 있어서,
상기 기판 및 상기 에피층은 단결정의 실리콘 함유 재료를 포함하는 이미지 센서.
- 제1항에 있어서,
상기 불순물영역의 도전형은 N형이고, 상기 에피층의 도전형은 P형인 이미지 센서.
- 기판에 각각 불순물영역을 포함하는 복수의 광전변환소자를 형성하는 단계;
상기 기판을 선택적으로 식각하여 상기 복수의 광전변환소자 각각을 분리하고 측벽이 상기 불순물영역에 접하도록 소자분리 트렌치를 형성하는 단계; 및
에피택셜 성장을 통해 상기 불순물영역과 상보적인 도전형을 갖고 상기 소자분리 트렌치를 갭필하는 제1부분의 에피층을 형성하는 단계
를 포함하는 이미지 센서. - 제7항에 있어서,
상기 제1부분의 에피층으로부터 상기 복수의 광전변환소자를 덮도록 상기 기판상으로 확장된 제2부분의 에피층을 형성하는 단계를 더 포함하는 이미지 센서 제조방법.
- 제7항에 있어서,
상기 제1부분의 에피층은 상기 불순물영역보다 큰 불순물 도핑농도를 갖도록 형성하는 이미지 센서 제조방법.
- 제7항에 있어서,
상기 기판 및 상기 에피층은 서로 동일한 물질을 포함하는 이미지 센서 제조방법.
- 제7항에 있어서,
상기 기판 및 상기 에피층은 단결정의 실리콘 함유 재료를 포함하는 이미지 센서 제조방법. - 제7항에 있어서,
상기 불순물영역의 도전형은 N형이고, 상기 에피층의 도전형은 P형인 이미지 센서 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150139455A KR20170040468A (ko) | 2015-10-05 | 2015-10-05 | 이미지 센서 및 그 제조방법 |
US14/992,455 US20170098681A1 (en) | 2015-10-05 | 2016-01-11 | Image sensor and method for fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150139455A KR20170040468A (ko) | 2015-10-05 | 2015-10-05 | 이미지 센서 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20170040468A true KR20170040468A (ko) | 2017-04-13 |
Family
ID=58447624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150139455A KR20170040468A (ko) | 2015-10-05 | 2015-10-05 | 이미지 센서 및 그 제조방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20170098681A1 (ko) |
KR (1) | KR20170040468A (ko) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4270742B2 (ja) * | 2000-11-30 | 2009-06-03 | Necエレクトロニクス株式会社 | 固体撮像装置 |
US20030038336A1 (en) * | 2001-08-22 | 2003-02-27 | Mann Richard A. | Semiconductor device for isolating a photodiode to reduce junction leakage and method of formation |
JP4507769B2 (ja) * | 2004-08-31 | 2010-07-21 | ソニー株式会社 | 固体撮像素子、カメラモジュール及び電子機器モジュール |
JP4680552B2 (ja) * | 2004-09-02 | 2011-05-11 | 富士フイルム株式会社 | 固体撮像素子の製造方法 |
US20060180885A1 (en) * | 2005-02-14 | 2006-08-17 | Omnivision Technologies, Inc. | Image sensor using deep trench isolation |
KR100755674B1 (ko) * | 2006-09-07 | 2007-09-05 | 삼성전자주식회사 | 이미지 센서 및 그 제조 방법 |
US7824948B2 (en) * | 2009-01-21 | 2010-11-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for reducing cross-talk in image sensor devices |
JP5810551B2 (ja) * | 2011-02-25 | 2015-11-11 | ソニー株式会社 | 固体撮像装置、および、その製造方法、電子機器 |
JP2013157422A (ja) * | 2012-01-30 | 2013-08-15 | Sony Corp | 固体撮像素子、固体撮像素子の製造方法、および電子機器 |
JP2015228388A (ja) * | 2012-09-25 | 2015-12-17 | ソニー株式会社 | 固体撮像装置、電子機器 |
-
2015
- 2015-10-05 KR KR1020150139455A patent/KR20170040468A/ko unknown
-
2016
- 2016-01-11 US US14/992,455 patent/US20170098681A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20170098681A1 (en) | 2017-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102367384B1 (ko) | 이미지 센서 및 그 형성 방법 | |
US20190088704A1 (en) | Image sensors | |
KR101721795B1 (ko) | 3d 이미지 센서 구조를 제조하는 시스템 및 방법 | |
KR102546550B1 (ko) | 딥 트렌치들 내의 전달 게이트들을 갖는 이미지 센서 | |
US8963066B2 (en) | Solid-state imaging device, manufacturing method thereof, and electronic device having a pixel separating section configured to separate charge accumulating regions of adjacent pixels | |
US9876042B2 (en) | Image sensor having vertical transfer gate and method for fabricating the same | |
KR20160091244A (ko) | 고체 촬상 장치 및 고체 촬상 장치의 제조 방법 | |
US10068937B2 (en) | Image sensor and method for fabricating the same | |
US9257464B2 (en) | Solid-state image device, method of fabricating the same, and electronic apparatus | |
KR20170083783A (ko) | 이미지 센서 | |
KR20120033027A (ko) | 이미지 센서 및 이의 형성 방법 | |
KR20200087909A (ko) | 이미지 센서 | |
KR20170111594A (ko) | 이미지 센서 및 그 제조방법 | |
CN111564459B (zh) | 图像感测装置及其形成方法 | |
KR20150001578A (ko) | 고체 촬상 장치, 고체 촬상 장치의 제조 방법 및 카메라 모듈 | |
KR102667510B1 (ko) | 이미지 센싱 장치 | |
US9978787B1 (en) | Image sensor and method for fabricating the same | |
KR20240011988A (ko) | 이미지 센서 및 그의 제조 방법 | |
KR20170040468A (ko) | 이미지 센서 및 그 제조방법 | |
KR102394284B1 (ko) | 이미지 센서 및 그 제조방법 | |
US20230411418A1 (en) | Imaging sensing device and method of manufacturing the same | |
JP2014127514A (ja) | 固体撮像素子、固体撮像素子の製造方法および電子機器 | |
US11670654B2 (en) | Image sensing device | |
US20240321922A1 (en) | Pixel, pixel array, and image sensors including the pixel | |
CN104282697B (zh) | 图像传感器的形成方法 |