KR20170015130A - X선 투과 검사 장치 및 x선 투과 검사 방법 - Google Patents

X선 투과 검사 장치 및 x선 투과 검사 방법 Download PDF

Info

Publication number
KR20170015130A
KR20170015130A KR1020160075115A KR20160075115A KR20170015130A KR 20170015130 A KR20170015130 A KR 20170015130A KR 1020160075115 A KR1020160075115 A KR 1020160075115A KR 20160075115 A KR20160075115 A KR 20160075115A KR 20170015130 A KR20170015130 A KR 20170015130A
Authority
KR
South Korea
Prior art keywords
sample
ray
distance
sensor
tdi
Prior art date
Application number
KR1020160075115A
Other languages
English (en)
Other versions
KR102431593B1 (ko
Inventor
요시키 마토바
아키히로 다케다
신고 츠보이
도시히로 사카이
Original Assignee
가부시키가이샤 히다치 하이테크 사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 히다치 하이테크 사이언스 filed Critical 가부시키가이샤 히다치 하이테크 사이언스
Publication of KR20170015130A publication Critical patent/KR20170015130A/ko
Application granted granted Critical
Publication of KR102431593B1 publication Critical patent/KR102431593B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/652Specific applications or type of materials impurities, foreign matter, trace amounts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)

Abstract

시료의 높이 방향으로 위치 변화가 있어도, 이물의 과검출이나 오검출을 막을 수 있는 X선 투과 검사 장치 및 X선 투과 검사 방법을 제공하는 것이다.
시료 S에 대해 X선 X를 조사하는 X선원(2)과, X선원으로부터의 X선을 조사 중에 시료를 특정 방향으로 연속해서 이동시키는 시료 이동 기구(3)와, 시료에 대해 X선원과 반대측에 설치되며 시료를 투과한 X선을 검출하는 TDI 센서(4)와, X선원과 시료의 거리를 측정하는 거리 센서(5)와, 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 TDI 센서(4)의 전하 이송 속도를 변화시켜 TDI 센서를 제어하는 TDI 제어부(6)를 구비하고 있다.

Description

X선 투과 검사 장치 및 X선 투과 검사 방법{APPARATUS FOR INSPECTING USING X-RAY TRANSMISSION AND METHOD THEREOF}
본 발명은, 시료 중의 미소한 이물 등을 검출 가능하고, 특히 수십 μm 이하의 이물의 검출이 가능한 X선 투과 검사 장치 및 X선 투과 검사 방법에 관한 것이다.
일반적으로, 시료 중의 미소한 금속 등의 이물 등을 검출하기 위해, 시료에 X선을 조사하여 취득한 X선 투과상(像)에 의해 검사를 행하는 X선 투과 검사가 이용되고 있다. 예를 들면, 최근, 자동차, 하이브리드 차 또는 전기 자동차 등에 채용되는 리튬 이온 2차 전지에 있어서, 양극이 되는 전극은, Al막의 양면에 Mn산 리튬막이나 Co산 리튬막이 형성되어 있다. 그 때문에, Fe나 SUS 등의 수십 μm 이상의 이물이 혼입되면, 단락이 발생하여 배터리의 소실이나 성능 저하가 생길 우려가 있어, 이물 혼입을 제조 시에 X선 투과 검사로 검출하여 제거하고 있다.
이러한 시료 중의 이물 등을 검출하는 X선 투과 검사 장치로서, 인 라인으로 검사를 실시할 때, X선원과 라인 센서 등의 X선 검출기가 한방향으로 이동하는 시료를 사이에 끼우도록 대향 배치된 것이 알려져 있다. 예를 들면, 특허 문헌 1에는, TDI 센서를 이용함으로써 미소한 이물이어도 고감도로 검출하는 X선 이물 검사 장치가 제안되어 있다.
이 X선 이물 검사 장치에서는, X선 이미지 인텐시파이어(화상 강도 증폭 장치:IIF)와, TDI 센서를 구비하고 있으며, X선 이미지 인텐시파이어의 결상면 상을 이동하는 X선 투과 화상과, TDI 센서의 전하 이송 속도를 동기시키는 것, 또 벨트 컨베이어의 이동 속도 V에 대해 X선 이미지 인텐시파이어의 입력 화면에 결상되는 화상이, X선원으로부터 이물(실제로는 벨트 컨베이어)까지의 거리 b, X선원으로부터 X선 이미지 인텐시파이어의 입력 화면까지의 거리 a에 의해, 광학적 확대율 b/a로 확대되는 것, 그리고 TDI 센서에 결상되는 이물의 화상의 이동 속도가, 벨트 컨베이어의 이동 속도 V에 대해 b/a 및 그 외를 곱한 속도 V3이 되는 것이 기재되어 있다.
즉, 이 X선 이물 검사 장치에서는, 시료의 이동 속도와 TDI 센서의 전하 이동 속도를 동기시키는 것, 및 미리 설정한 X선원으로부터 이물(실제는, 벨트 컨베이어의 재치면)까지의 거리(FOD)와 X선원으로부터 X선 검출기까지의 거리(FDD)의 비(FDD/FOD)에 의한 광학적 확대율을 보정 팩터로 하고 있다.
일본국 특허공개 2004-257884호 공보
상기 종래의 기술에는, 이하의 과제가 남아 있다.
즉, 종래의 X선 투과 검사 장치에서는, 광학적 확대율을 가미한 TDI 센서의 전하 이송 속도라고 해도, 그것을 일정하게 하여 검사를 행하기 때문에, 시료가 이동 도중에 높이 방향으로 위치 변화를 일으킨 경우, TDI 센서의 검출면에 있어서 X선 투과상의 초점 위치가 변화되어 버려, 동일한 시료의 동일한 이물을 검출했다고 해도, TDI 센서에 의한 검출 신호의 적산의 정도에 차이가 생겨 상에 흐릿함이 생겨 버리는 문제가 있었다. 이와 같이, 시료의 높이 방향으로 위치 변화가 있으면, 시료 중의 이물의 과검출이나 오검출이 발생되어 버릴 우려가 있었다.
본 발명은, 상술한 과제를 감안하여 이루어진 것으로, 시료의 높이 방향으로 위치 변화가 있어도, 이물의 과검출이나 오검출을 막을 수 있는 X선 투과 검사 장치 및 X선 투과 검사 방법을 제공하는 것을 목적으로 한다.
본 발명은, 상기 과제를 해결하기 위해 이하의 구성을 채용했다. 즉, 본 발명의 X선 투과 검사 장치는, 시료에 대해 X선을 조사하는 X선원과, 상기 X선원으로부터의 X선을 조사 중에 상기 시료를 특정 방향으로 연속해서 이동시키는 시료 이동 기구와, 상기 시료에 대해 상기 X선원과 반대측에 설치되며 상기 시료를 투과한 상기 X선을 검출하는 TDI 센서와, 상기 X선원과 상기 시료의 거리를 측정하는 거리 센서와, 상기 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 상기 TDI 센서의 전하 이송 속도를 변화시켜 상기 TDI 센서를 제어하는 TDI 제어부를 구비하고 있는 것을 특징으로 한다.
이 X선 투과 검사 장치에서는, 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 TDI 센서의 전하 이송 속도를 변화시켜 TDI 센서를 제어하므로, 상기 거리의 변동을 실시간으로 감지하고, 그 변동을 전하 이송 속도에 때마다 반영시킴으로써, X선 투과상의 초점 위치를 적정화하여 상의 흐릿함을 방지할 수 있다. 또, 물리적인 동작을 수반하지 않아, TDI 센서의 전하 이송 속도를 실시간으로 순시에 변화시킬 수 있음과 함께, 변동에 대응하는 일련의 제어에 필요로 하는 시간이 짧기 때문에, 데이터 취득 간격을 짧게 할 수 있어, 보다 치밀한 데이터 취득이 가능해지고, 고정밀도의 시료의 위치 보정이 가능해진다.
제2 발명에 관련된 X선 투과 검사 장치는, 제1 발명에 있어서, 상기 시료가 띠형상이며, 상기 거리 센서가, 상기 시료를 향해 출사한 레이저광의 반사로 상기 거리를 측정하는 레이저 거리 센서이며, 상기 레이저광을 상기 시료의 이동 방향과 교차하는 방향 또한 상기 시료의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하는 것을 특징으로 한다.
즉, 이 X선 투과 검사 장치에서는, 거리 센서가, 레이저광을 시료의 이동 방향과 교차하는 방향 또한 시료의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하므로, 이차원에서의 측정이 되어, 넓은 영역의 위치 변동을 파악할 수 있어, 보다 한층 더 정밀도의 향상을 도모할 수 있다.
제3 발명에 관련된 X선 투과 검사 방법은, X선원에 의해 시료에 대해 X선을 조사하는 X선 조사 단계와, 상기 X선원으로부터의 X선을 조사 중에 상기 시료를 특정 방향으로 연속해서 이동시키는 시료 이동 단계와, 상기 시료에 대해 상기 X선원과 반대측에 설치된 TDI 센서로 상기 시료를 투과한 상기 X선을 검출하는 X선 검출 단계와, 거리 센서로 상기 X선원과 상기 시료의 거리를 측정하는 거리 측정 단계와, 상기 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 상기 TDI 센서의 전하 이송 속도를 변화시켜 상기 TDI 센서를 제어하는 TDI 제어 단계를 가지고 있는 것을 특징으로 한다.
제4 발명에 관련된 X선 투과 검사 방법은, 제3 발명에 있어서, 상기 시료가 띠형상이며, 상기 거리 센서가, 상기 시료를 향해 출사한 레이저광의 반사로 상기 거리를 측정하는 레이저 거리 센서이며, 상기 레이저광을 상기 시료의 이동 방향과 교차하는 방향 또한 상기 시료의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하는 것을 특징으로 한다.
본 발명에 의하면, 이하의 효과를 나타낸다.
즉, 본 발명에 관련된 X선 투과 검사 장치 및 X선 투과 검사 방법에 의하면, 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 TDI 센서의 전하 이송 속도를 변화시켜 TDI 센서를 제어하므로, X선 투과상의 흐릿함을 방지할 수 있다. 따라서, 시료의 높이 방향으로 위치 변화가 있어도, 이물의 과검출이나 오검출을 막을 수 있다.
도 1은 본 발명에 관련된 X선 투과 검사 장치 및 X선 투과 검사 방법의 제1 실시 형태를 나타내는 개략적인 전체 구성도이다.
도 2는 제1 실시 형태에 있어서, TDI 센서를 나타내는 사시도이다.
도 3은 제1 실시 형태에 있어서, 거리 센서에 의한 거리 측정 방법을 나타내는 설명도이다.
도 4는 본 발명에 관련된 X선 투과 검사 장치 및 X선 투과 검사 방법의 제2 실시 형태에 있어서, 거리 센서에 의한 거리 측정 방법을 나타내는 설명도이다.
이하, 본 발명에 관련된 X선 투과 검사 장치 및 X선 투과 검사 방법의 일실시 형태를, 도 1 내지 도 3을 참조하면서 설명한다.
본 실시 형태의 X선 투과 검사 장치는, 도 1에 나타내는 바와 같이, 시료 S에 대해 X선 X를 조사하는 X선원(2)과, X선원(2)으로부터의 X선 X를 조사 중에 시료 S를 특정 방향으로 연속해서 이동시키는 시료 이동 기구(3)와, 시료 S에 대해 X선원(2)과 반대측에 설치되며 시료 S를 투과한 X선을 검출하는 TDI 센서(4)와, X선원(2)과 시료 S의 거리를 측정하는 거리 센서(5)와, 시료 S의 이동 시에 거리 센서(5)로 측정한 상기 거리의 변동에 의거하여 실시간으로 TDI 센서(4)의 전하 이송 속도를 변화시켜 TDI 센서(4)를 제어하는 TDI 제어부(6)를 구비하고 있다.
또한, 본 실시 형태의 X선 투과 검사 장치(1)는, 상기 각 구성에 접속되어 각각을 제어하는 주제어부(7)와, 검출된 투과 X선의 강도의 분포를 나타내는 투과상을 표시하는 표시부(8)를 구비하고 있다.
상기 주제어부(7)는, CPU 등으로 구성된 컴퓨터이다. 입력되는 TDI 센서(4)로부터의 신호에 의거하여 화상 처리를 행하여 투과상을 작성하고, 또한 그 화상을 표시부(8)에 표시시키는 연산 처리 회로 등을 포함한다.
상기 표시부(8)는, 주제어부(7)에 접속되어 콘트라스트상 등을 표시하는 디스플레이 장치이다. 이 표시부(8)는, 주제어부(7)로부터의 제어에 따라 다양한 정보를 표시 가능하다.
상기 X선원(2)은, X선 X를 조사 가능한 X선 관구이며, 관구 내의 필라멘트(음극)로부터 발생한 열전자가 필라멘트(음극)와 타겟(양극) 사이에 인가된 전압에 의해 가속되어 타겟의 W(텅스텐), Mo(몰리브덴), Cr(크롬) 등에 충돌하여 발생한 X선 X를 1차 X선으로서 베릴륨 박 등의 창으로부터 출사하는 것이다.
상기 시료 S는, 예를 들면 띠형상으로 형성된 Li 이온 배터리용의 재료나 의약품계에 이용되는 재료이다.
상기 시료 S는, 예를 들면 띠형상으로 형성된 Li 이온 배터리용의 재료나 의약품계에 이용되는 재료이다. 예를 들면, 시료 S가 Li 이온 2차 전지에 사용되는 전극 시트 등인 경우, 그것에 혼입되는 이물은, 예를 들면 전극에 이물로서 혼입이 염려되는 Fe나 SUS이다.
상기 시료 이동 기구(3)는, TDI 센서(4)에 대해, 예를 들면 시료 S의 연장 방향으로 상대적으로 이동 가능한 모터 등이다. 상기 시료 이동 기구(3)는, 예를 들면 띠형상의 시료 S를 롤·투(to)·롤 방식으로 연장 방향으로 이동시키는 적어도 한 쌍의 롤러(도시 대략) 등을 구비하고 있다.
또, 시료 이동 기구(3)에는, 시료 S의 이동량을 정량화하기 위해, 리니어 스케일(9)이 설치되어 있어, 시료 S의 이동량을 계측 피치 Ls로 계측 가능하다.
상기 TDI(Time Delay Integration) 센서(4)는, 도 2에 나타내는 바와 같이, 시료 S의 이동 방향에 대해 수직인 방향과 평행한 방향의 각각에 복수의 셀(센서 소자)을 배치한 X선 검출기로서, 검출면(4a)에 배치된 형광체(4b)와, 형광체(4b) 아래에 복수의 광섬유를 이차원적으로 종횡으로 복수열 늘어놓아 배치한 FOP(파이버 옵틱스 플레이트)(4c)와, FOP(4c) 아래에 배치된 Si 수광 소자(4d)를 구비하고, 라인 센서를 복수열 늘어놓은 것 같은 구성을 가지고 있다. 예를 들면, 시료 S의 이송 방향으로 200~1000단의 단위 라인 센서가 늘어서 TDI 센서(4)가 구성되어 있다.
이 TDI 센서(4)에서는, CsI(요오드화 세슘), GOS(가드리늄옥시 황화물) 또는 YAG(이트륨·알루미늄·가닛) 등의 형광체(4b)가 이용되고 있다.
또한, TDI 센서(4)는, 센서 피치 Lt로 전하 축적 및 전하 전송이 행해진다. 라인 레이트는, 통상 0.5~100kHz 정도이다.
상기 거리 센서(5)는, 시료 S를 향해 출사한 레이저광 L의 반사로 상기 거리를 측정하는 반사형의 레이저 거리 센서이다. 이 거리 센서(5)는, X선원(2)측에서 시료 S에 대향 배치되어, 레이저광 L을 점형상의 스폿형상으로 하여 시료 S에 조사하고, 그 반사광에 의거하여 주로 삼각법을 이용하여 시료 S와 X선원(2)의 거리를 측정한다. 또, 거리 센서(5)의 거리 측정 결과는, TDI 제어부(6)에 보내진다.
이 거리 센서(5)는, 반복 측정 정밀도로 0.01μm 정도, 응답 주파수가 300kHz 이상이며, 샘플링 타임이 수십 μs로, 극히 단시간에 실시간 고정밀도 측정이 가능하다.
거리 센서(5)의 스폿형상은 점형상이지만, 이동하는 시료 S 상에 레이저광 L의 포인트를 취함으로써, 도 3에 나타내는 바와 같이, 일차원(라인형상)에서의 계측이 된다. 이 때, 사용하는 거리 센서(5)의 응답 속도와, TDI 센서(4)의 전하 이송 속도의 응답 속도로부터, X선원(2)으로부터 시료 S까지의 거리 FOD'의 계측 간격을 결정한다.
또한, 거리 센서(5)는, 동일한 목적을 달성할 수 있는 그 외의 원리를 이용한 거리 센서이어도 상관없다.
상기 TDI 제어부(6)는, TDI 센서(4)의 전하 전송의 방향 및 속도를, 시료 S의 이동 방향 및 속도에 맞춤과 함께, 수광면(4a)의 검출 영역에 있어서 TDI 센서(4)가 수광한 X선 X의 휘도치를 적산하는 기능을 가지고 있다.
즉, TDI 제어부(6)는, 시료 S의 높이 방향으로 변동이 없는 경우의 제어로서, 시료 S의 속도 Vs에 대해 TDI 센서(4)의 검출 영역에 있어서의 전하 전송의 속도(전하 이송 속도) VTDI와 구동 방향의 방향을 동일하게 설정하고, 시료 S의 흐름과 TDI 센서(4)의 적산 처리를 동기시켜 제어하고 있다.
또한, 도면 중의 화살표 Y1은, 시료 S의 이동 방향이며, 화살표 Y2는, TDI 센서(4)의 TDI 구동 방향이다.
또, TDI 제어부(6)는, TDI 센서(4)의 확대율(시료 S 상의 상(像)이 수광면(4a) 상에 투영되었을 때의 확대율)을 결정하고, 이 확대율로 TDI 센서(4)를 제어하는 기능을 가지고 있다.
즉, TDI 제어부(6)는, TDI 센서(4)의 확대율 N을 산출하는 분주기(6a)와, 분주기(6a)로 구한 확대율 N을 보정하고 보정 확대율 N'로 함과 함께 보정 확대율 N'에 의거하여 시료 S의 이동 속도를 보정한 속도로 전하 이송 속도를 산출하는 수정부(6b)를 구비하고 있다.
상기 분주기(6a)는, 시료 S의 이동량을 계측하는 리니어 스케일(9)의 계측 피치 Ls와, TDI 센서(4)의 TDI 피치 Lt의 비 「Lt/Ls」로부터 TDI 센서(4)의 확대율 N을 고정치로서 산정하고, 수정부(6b)에 보내는 기능을 가지고 있다.
상기 확대율 N은, 고정치이며, 식 「N=(Lt/Ls)×(FOD/FDD)」에 의해 산출된다. 이 때, FOD는, 고정치이며, 변동하고 있지 않는 상태의 X선원(2)과 시료 S의 거리이다.
또한, 분주기(6a)는, 예를 들면 주파수 f1의 신호를 더하고, 이것에 동기한 주파수 f2(f2=f1/n, n:정수)의 출력을 얻는 회로를 가지는 장치이며, 디지털 IC에 의한 계수 회로를 이용하여 주파수를 정수분의 1로 떨어뜨리는 것이다.
상기 수정부(6b)는, 거리 센서(5)에 의해 실시간으로 계측한 X선원(2)으로부터 시료 S까지의 거리 FOD'와, 고정치로서의 X선원(2)과 수광면(4a)의 거리 FDD의 비 「FOD'/FDD」를 팩터로 하여, 분주기(6a)로부터 보내진 확대율 N을 보정하고 보정 확대율 N'로 하며, 이 보정 확대율 N'에 의거한 TDI 센서(4)의 전하 이송 속도를 결정하여, TDI 센서(4)에 보내는 기능을 가지고 있다.
상기 보정 확대율 N'는, 상시 계측되는 거리 FOD'의 변화에 수반하여, 식 「N'=(Lt/Ls)×(FOD'/FDD)」에 의해 실시간으로 산출된다. 여기서 「실시간」이란, 사용하는 TDI 센서(4)의 라인 레이트 및 거리 센서(5)의 샘플링 타임에 의해 결정되며, 가능한 범위에서 거리 센서(5)의 샘플링 타임을 짧게 함으로써, 보다 정밀도가 높은 제어가 가능해진다.
다음으로, 본 실시 형태의 X선 투과 검사 장치를 이용한 X선 투과 검사 방법에 대해서 설명한다. 이 X선 투과 검사 방법에서는, 예를 들면, Li 이온 2차 전지에 있어서의 양극 시트를 검사 대상의 시료 S로 하고, 그 중의 이물을 검출하는 것을 목적으로 한다.
우선, 시료 이동 기구(3)에 의해, 시료 S를 대향하는 X선원(2)과 TDI 센서(4) 사이에서 일정 속도로 이동시킨다. 또한, 이 시료 S는, 시료 S와 TDI 센서(4)의 거리에 비해 매우 작은 두께를 가지고 있다.
이 상태로, 거리 센서(5)의 측정 결과로부터 X선원(2)과 시료 S의 거리 FOD'를 계산한다.
다음으로, X선원(2)으로부터 X선 X를 시료 S에 조사함과 함께, TDI 센서(4)로 시료 S 및 이물을 투과한 투과 X선을 검출한다. 또한, 시료 이동 기구(3)에 의해 시료 S가 일정 방향으로 이동되기 때문에, 시료 S가 이동 방향에 있어서 전체가 스캔되어, 투과 X선에 대해서 전체의 강도 분포가 취득된다.
또한, 상기와 같이 취득한 투과 X선의 강도 분포를, 주제어부(7)로 화상 처리하여 투과상을 작성함과 함께 표시부(8)에 있어서 투과상을 표시한다. 또한, 이 때, 이물이 존재하는 부위는, 이물이 존재하고 있지 않는 부분과 대비하여, X선의 투과량이 상이하기 때문에, 이물이 존재하는 부위의 콘트라스트가 그 이외와 상이하기 때문에, 이물이 존재하고 있는 것이 검출 가능해진다.
상기 시료 S의 이동 시에 있어서, 예를 들면 시료 이동 기구(3)의 상황 등에 의해 시료 S가 상방으로 이동하여 높이 방향으로 위치 변동을 일으킨 경우, X선원(2)과 시료 S의 거리 FOD'가 커진다. 그 때, 이 변동에 대응하는 기구를 가지지 않는 종래의 장치라면, X선 발생 포인트의 크기가 있는 것에 기인하여, 이물에 의한 콘트라스트 및 강도 분포가 상이하여, 이물에 의한 콘트라스트의 강약이 알기 어려워져, 이물의 검출이 곤란해지는 경우가 있다.
그러나, 본 실시 형태에서는, 거리 센서(5)에 의해 실시간으로 측정한 X선원(2)과 시료 S의 거리 FOD'와, 리니어 스케일(9)에 의해 얻은 시료 S의 이동량에 의거하여 분주기(6a)로 산정한 확대율 N을 이용하여, 수정부(6b)가 확대율 N을 보정하고 보정 확대율 N'를 산출한다. 이 보정 확대율 N'에 의거하여 TDI 제어부(6)가, TDI 센서(4)의 새로운 전하 이송 속도를 결정하여 TDI 센서(4)를 제어한다.
즉, 변동 전의 전하 이송 속도를 v로 하면, 변동 후의 새로운 전하 이송 속도 v'는, 식 「v'=v×(FOD'/FDD)」에 의해 산출된다. 따라서, TDI 제어부(6)가, 전하 이송 속도 v'로 TDI 센서(4)를 제어한다.
이것에 의해, 시료 S의 높이 위치의 변동에 의해 TDI 센서(4)로의 입력 화상의 초점 위치의 변동이 일어날 때에, 전하 이송 속도를 적정하게 변화시킴으로써, 최적의 초점 위치를 재현할 수 있다.
따라서, 항상 거리 센서(5)가 거리 FOD'를 측정하고, 그 변화에 대응하여 보정한 보정 확대율 N'에 의거하여 TDI 센서(4)의 전하 이송 속도를 수정하고 있으므로, 시료 S가 상방 또는 하방으로 이동하여 높이 방향으로 위치 변동을 일으켜도, X선 투과상의 흐릿함이 생기지 않아, 이물의 고정밀도의 검출이 가능해진다.
이와 같이 본 실시 형태의 X선 투과 검사 장치(1) 및 이것을 이용한 X선 투과 검사 방법에서는, 시료 S의 이동 시에 거리 센서(5)로 측정한 상기 거리 FOD'의 변동에 의거하여 실시간으로 TDI 센서(4)의 전하 이송 속도를 변화시켜 TDI 센서(4)를 제어하므로, 거리 FOD'의 변동을 실시간으로 감지하고, 그 변동을 전하 이송 속도에 때마다 반영시킴으로써, X선 투과상의 초점 위치를 적정화하여 상의 흐릿함을 방지할 수 있다.
또, 물리적인 동작을 수반하지 않아, TDI 센서(4)의 전하 이송 속도를 실시간으로 순시에 변화시킬 수 있음과 함께, 변동에 대응하는 일련의 제어에 필요로 하는 시간이 짧기 때문에, 데이터 취득 간격을 짧게 할 수 있어, 보다 치밀한 데이터 취득이 가능해져, 고정밀도의 시료 S의 위치 보정이 가능해진다.
다음으로, 본 발명에 관련된 X선 투과 검사 장치 및 X선 투과 검사 방법의 제2 실시 형태에 대해서, 도 4를 참조하여 이하에 설명한다. 또한, 이하의 실시 형태의 설명에 있어서, 상기 실시 형태에 있어서 설명한 동일한 구성 요소에는 동일한 부호를 붙이고, 그 설명은 생략한다.
제2 실시 형태와 제1 실시 형태의 상이한 점은, 제1 실시 형태에서는, 도 3에 나타내는 바와 같이, 거리 센서(5)의 레이저광 L의 스폿형상이 점형상이며, 이동하는 시료 S 상에서 라인에 의한 일차원 측정을 행하고 있는데 반해, 제2 실시 형태의 X선 투과 검사 장치 및 X선 투과 검사 방법은, 도 4에 나타내는 바와 같이, 거리 센서(25)의 레이저광 L의 스폿형상이 선형상이며, 이동하는 시료 S 상에서 에리어에 의한 이차원 측정을 행하고 있는 점이다.
즉, 제2 실시 형태에서는, 거리 센서(25)가, 레이저광 L을 시료 S의 이동 방향과 교차하는 방향 또한 시료 S의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하는 점이다.
예를 들면, 거리 센서(25)의 레이저광 L의 스폿형상을, 수십 mm~수십 μm의 라인형상으로 하고, 거리 센서(25)로부터 측정 위치까지의 거리를, 수 mm 내지 수십 mm로 하여 거리 측정을 행하면 되며, 상황에 맞추어 최적의 배치로 한다.
따라서, 제2 실시 형태의 X선 투과 검사 장치 및 X선 투과 검사 방법에서는, 거리 센서(25)가, 레이저광 L을 시료 S의 이동 방향과 교차하는 방향 또한 시료 S의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하므로, 이차원에서의 측정이 되어, 넓은 영역의 위치 변동을 파악할 수 있어, 보다 한층 더 정밀도의 향상을 도모할 수 있다.
또한, 본 발명의 기술 범위는 상기 각 실시 형태에 한정되는 것이 아니고, 본 발명의 취지를 일탈하지 않는 범위에 있어서 다양한 변경을 더하는 것이 가능하다.
예를 들면, 시료 S의 이동량을 정량화하기 위한 리니어 스케일(9)은, 로터리 엔코더여도 되고, 그 효과는 리니어 스케일과 동일하다.
또, 상기 실시 형태에 있어서는, 리니어 스케일(9)에 의해 얻은 시료 S의 이동량에 의거하여 분주기(6a)로 산정한 확대율 N을 이용했지만, 시료 S의 이동량의 근거가 되는 구동원인 시료 이동 기구(3)(도시하지 않은 모터 등)에 지시하는 구동 신호에 의거하여, 확대율 N을 산정할 수도 있다.
또, 제2 실시 형태의 거리 센서(25)로서, 에리어 센서를 사용하는 것도 가능하다. 에리어 센서로서는, 스폿형상이 이차원으로 퍼져 있는 것 외에, 스폿형상이 선형상의 센서를 복수 개 늘어놓은 것이어도 된다. 이러한 에리어 센서의 사용은, 보다 고정밀도의 거리 측정의 결과를 얻는 것이 가능하다.
1: X선 투과 검사 장치 2: X선원
3: 시료 이동 기구 4: TDI 센서
5, 25: 거리 센서 6: TDI 제어부
S: 시료 X: X선

Claims (4)

  1. 시료에 대해 X선을 조사하는 X선원과,
    상기 X선원으로부터의 X선을 조사 중에 상기 시료를 특정 방향으로 연속해서 이동시키는 시료 이동 기구와,
    상기 시료에 대해 상기 X선원과 반대측에 설치되며 상기 시료를 투과한 상기 X선을 검출하는 TDI 센서와,
    상기 X선원과 상기 시료의 거리를 측정하는 거리 센서와,
    상기 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 상기 TDI 센서의 전하 이송 속도를 변화시켜 상기 TDI 센서를 제어하는 TDI 제어부를 구비하고 있는 것을 특징으로 하는 X선 투과 검사 장치.
  2. 청구항 1에 있어서,
    상기 시료가 띠형상이며,
    상기 거리 센서가, 상기 시료를 향해 출사한 레이저광의 반사로 상기 거리를 측정하는 레이저 거리 센서이며, 상기 레이저광을 상기 시료의 이동 방향과 교차하는 방향 또한 상기 시료의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하는 것을 특징으로 하는 X선 투과 검사 장치.
  3. X선원에 의해 시료에 대해 X선을 조사하는 X선 조사 단계와,
    상기 X선원으로부터의 X선을 조사 중에 상기 시료를 특정 방향으로 연속해서 이동시키는 시료 이동 단계와,
    상기 시료에 대해 상기 X선원과 반대측에 설치된 TDI 센서로 상기 시료를 투과한 상기 X선을 검출하는 X선 검출 단계와,
    거리 센서로 상기 X선원과 상기 시료의 거리를 측정하는 거리 측정 단계와,
    상기 거리 센서로 측정한 상기 거리의 변동에 의거하여 실시간으로 상기 TDI 센서의 전하 이송 속도를 변화시켜 상기 TDI 센서를 제어하는 TDI 제어 단계를 가지고 있는 것을 특징으로 하는 X선 투과 검사 방법.
  4. 청구항 3에 있어서,
    상기 시료가 띠형상이며,
    상기 거리 센서가, 상기 시료를 향해 출사한 레이저광의 반사로 상기 거리를 측정하는 레이저 거리 센서이며, 상기 레이저광을 상기 시료의 이동 방향과 교차하는 방향 또한 상기 시료의 폭방향으로 연장되는 선형상의 스폿형상으로 하여 조사하는 것을 특징으로 하는 X선 투과 검사 방법.
KR1020160075115A 2015-07-29 2016-06-16 X선 투과 검사 장치 및 x선 투과 검사 방법 KR102431593B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-149138 2015-07-29
JP2015149138A JP6512980B2 (ja) 2015-07-29 2015-07-29 X線透過検査装置及びx線透過検査方法

Publications (2)

Publication Number Publication Date
KR20170015130A true KR20170015130A (ko) 2017-02-08
KR102431593B1 KR102431593B1 (ko) 2022-08-11

Family

ID=57882342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160075115A KR102431593B1 (ko) 2015-07-29 2016-06-16 X선 투과 검사 장치 및 x선 투과 검사 방법

Country Status (4)

Country Link
US (1) US10054555B2 (ko)
JP (1) JP6512980B2 (ko)
KR (1) KR102431593B1 (ko)
CN (1) CN106404811B (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868163B2 (ja) * 2017-04-04 2021-05-12 進 中谷 検査用熱処理炉を備えた検査装置
JP6717784B2 (ja) * 2017-06-30 2020-07-08 アンリツインフィビス株式会社 物品検査装置およびその校正方法
KR20190071111A (ko) 2017-12-14 2019-06-24 삼성전자주식회사 엑스선 검사 장비 및 이를 이용하는 반도체 장치 제조 방법
CN108169258A (zh) * 2017-12-14 2018-06-15 上海海洋大学 一种用于含骨鱼肉片的检测器移动型检测设备及方法
JP6738363B2 (ja) * 2018-03-09 2020-08-12 浜松ホトニクス株式会社 画像取得システムおよび画像取得方法
JP7219148B2 (ja) * 2018-04-25 2023-02-07 住友化学株式会社 検査システム及び検査システムの駆動方法
JP2020020730A (ja) * 2018-08-03 2020-02-06 株式会社日立ハイテクサイエンス X線透過検査装置及びx線透過検査方法
JP7201481B2 (ja) * 2019-03-04 2023-01-10 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
JP7321523B2 (ja) * 2019-11-20 2023-08-07 株式会社日立ハイテクサイエンス X線検査装置及びx線検査方法
WO2023189135A1 (ja) * 2022-03-31 2023-10-05 東レ株式会社 検査装置及び検査方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020721A (ko) * 2002-09-03 2004-03-09 엘지전자 주식회사 라인형 이미지 센서를 이용한 표면 검사방법 및 검사장치
JP2004257884A (ja) 2003-02-26 2004-09-16 Nittetsu Elex Co Ltd X線異物検査方法及び装置
KR20080094291A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 패턴 균일도 검사장치
KR20120135038A (ko) * 2011-06-01 2012-12-12 다이닛뽕스크린 세이조오 가부시키가이샤 화상취득장치, 패턴검사장치 및 화상취득방법
KR20130035190A (ko) * 2011-09-29 2013-04-08 다이닛뽕스크린 세이조오 가부시키가이샤 화상 취득 장치 및 화상 취득 방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310151A (ja) * 1989-06-07 1991-01-17 Fujitsu Ltd 物体検査装置
JP3307519B2 (ja) * 1995-03-24 2002-07-24 株式会社モリタ製作所 医療用x線撮影装置
AU1545997A (en) * 1996-03-08 1997-09-22 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process and device for radioscopically inspecting soldered points in electronic units
JP4449596B2 (ja) * 2004-06-24 2010-04-14 パナソニック株式会社 実装基板検査装置
CN101660966B (zh) * 2009-09-18 2011-04-20 中国科学院长春光学精密机械与物理研究所 一种tdi ccd相机动态成像的模拟装置
JP5269041B2 (ja) * 2009-12-04 2013-08-21 キヤノン株式会社 X線撮像装置およびx線撮像方法
JP5477853B2 (ja) * 2010-01-19 2014-04-23 株式会社庄内クリエート工業 ラインセンサーカメラを用いたx線検査装置
JP5813923B2 (ja) * 2010-03-15 2015-11-17 株式会社日立ハイテクサイエンス X線透過検査装置及びx線透過検査方法
JP5827064B2 (ja) * 2011-08-05 2015-12-02 株式会社日立ハイテクサイエンス 透過x線分析装置及び方法
WO2013118386A1 (ja) * 2012-02-06 2013-08-15 株式会社日立ハイテクノロジーズ X線検査装置、検査方法およびx線検出器
JP5875403B2 (ja) * 2012-02-21 2016-03-02 株式会社日立ハイテクサイエンス 透過x線分析装置
WO2014127468A1 (en) * 2013-02-25 2014-08-28 Huron Technologies International Inc. Microscopy slide scanner with variable magnification
JP2015194423A (ja) * 2014-03-31 2015-11-05 株式会社日立ハイテクサイエンス X線透過検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020721A (ko) * 2002-09-03 2004-03-09 엘지전자 주식회사 라인형 이미지 센서를 이용한 표면 검사방법 및 검사장치
JP2004257884A (ja) 2003-02-26 2004-09-16 Nittetsu Elex Co Ltd X線異物検査方法及び装置
KR20080094291A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 패턴 균일도 검사장치
KR20120135038A (ko) * 2011-06-01 2012-12-12 다이닛뽕스크린 세이조오 가부시키가이샤 화상취득장치, 패턴검사장치 및 화상취득방법
KR20130035190A (ko) * 2011-09-29 2013-04-08 다이닛뽕스크린 세이조오 가부시키가이샤 화상 취득 장치 및 화상 취득 방법

Also Published As

Publication number Publication date
US20170031054A1 (en) 2017-02-02
JP2017032285A (ja) 2017-02-09
US10054555B2 (en) 2018-08-21
CN106404811B (zh) 2020-06-12
KR102431593B1 (ko) 2022-08-11
JP6512980B2 (ja) 2019-05-15
CN106404811A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
KR20170015130A (ko) X선 투과 검사 장치 및 x선 투과 검사 방법
KR101950515B1 (ko) 투과 x선 분석 장치 및 방법
JP5813923B2 (ja) X線透過検査装置及びx線透過検査方法
JP6397690B2 (ja) X線透過検査装置及び異物検出方法
KR20130016059A (ko) X선 분석 장치 및 방법
KR102357088B1 (ko) X 선 투과 검사 장치
CN105403583A (zh) 荧光x射线分析装置以及其测定位置调整方法
CN104076053B (zh) 异物检测装置
CN104950002A (zh) X射线透过检查装置
CN102022987B (zh) 放射线厚度计
US10989674B2 (en) X-ray inspection apparatus and x-ray inspection method
CN112925034A (zh) X射线检查装置和x射线检查方法
WO2023189135A1 (ja) 検査装置及び検査方法
KR100489711B1 (ko) 결함깊이의 측정이 가능한 방사선투과 비파괴검사법
JP2023061041A (ja) 蛍光x線分析装置および蛍光x線分析方法
Tojo et al. Evaluation of plastic film Thickness measuring system using an X-ray slit beam
JP2001083062A (ja) 密度むら測定方法およびその装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant