KR20160064051A - Process for manufacturing multi-layered thin film by dry vacuum vapor deposition - Google Patents

Process for manufacturing multi-layered thin film by dry vacuum vapor deposition Download PDF

Info

Publication number
KR20160064051A
KR20160064051A KR1020160059998A KR20160059998A KR20160064051A KR 20160064051 A KR20160064051 A KR 20160064051A KR 1020160059998 A KR1020160059998 A KR 1020160059998A KR 20160059998 A KR20160059998 A KR 20160059998A KR 20160064051 A KR20160064051 A KR 20160064051A
Authority
KR
South Korea
Prior art keywords
layer
deposition
thin film
vacuum
coating
Prior art date
Application number
KR1020160059998A
Other languages
Korean (ko)
Inventor
김현중
김홍철
김정래
Original Assignee
주식회사 쎄코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄코 filed Critical 주식회사 쎄코
Publication of KR20160064051A publication Critical patent/KR20160064051A/en

Links

Images

Classifications

    • H01L21/203
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

The present invention relates to a manufacturing method of a multi-layered thin film using dry vacuum deposition and, specifically, to a manufacturing method of a multi-layered thin film using stable and dry vacuum deposition, which can give optical beauty and a feeling of exclusivity to a cellular phone, a MP3 player, a portable multimedia player (PMP), a digital multimedia broadcasting (DMB) receiver, a navigation, a case of a portable electronic product display product and the like such as a laptop and the like, a window, a keypad, a function key component, and various accessories.

Description

건식 진공증착을 이용한 다층박막의 제조방법{PROCESS FOR MANUFACTURING MULTI-LAYERED THIN FILM BY DRY VACUUM VAPOR DEPOSITION}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for manufacturing a multilayer thin film using dry vacuum deposition,

본 발명은 건식 진공증착을 이용한 다층박막의 제조방법에 관한 것으로서, 특히 휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 네비게이션, 노트북 등의 휴대용 전자제품 디스플레이 제품 등의 케이스, 윈도우, 키패드, 기능키 부품 및 다양한 액세서리 등에 광학적 미려함과 고급스러운 느낌을 부여할 수 있는, 안정되고 간단한 건식 진공증착을 이용한 다층박막의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a multilayer thin film using dry vacuum deposition, and more particularly, to a method of manufacturing a multilayer thin film using a dry vacuum deposition, The present invention relates to a method for manufacturing a multilayer thin film using a stable and simple dry vacuum deposition capable of imparting an optical beauty and a luxurious feeling to a case, a window, a keypad, a function key part, and various accessories.

휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 네비게이션, 노트북 등의 휴대용 전자제품 및 모니터, 터치스크린 등의 디스플레이 제품 등은 금속, 유리 및 아크릴, 폴리카보네이트(Poly Carbonate; PC), PMMA(Poly Methyl Methacrylate), PET(Polyethylene Terephthalate), ABS 수지(Acrylonitrile butadiene styrene copolymer) 및 이의 혼합된 수지로 된 시트(sheet)상의 패널(panel)형태와 각종 사출물로 이루어진 케이스, 윈도우, 키패드, 기능키 부품 및 다양한 액세서리 등의 부품을 사용하게 되는데, 이러한 부품의 광학적 미려함과 고급스러운 느낌을 위하여 금속 및/또는 금속산화물을 이용하여 진공증착 코팅을 수행하게 된다. Portable electronic products such as mobile phones, MP3 players, portable multimedia players (PMPs), digital multimedia broadcasting (DMB) receivers, navigation and notebooks, and display products such as monitors and touch screens include metals, glass, acrylics, polycarbonates A case made of a panel in the form of a panel made of various resins and a sheet made of a mixed resin of ABS resin (acrylonitrile butadiene styrene copolymer), a poly (methyl methacrylate), a polyethylene terephthalate (PET) , Keypads, functional key parts, and various accessories. In order to provide an optical feeling and luxurious feeling of these parts, a vacuum deposition coating is performed using metal and / or metal oxide.

특히, 휴대폰의 경우 휴대폰 사용시 통화품질의 안정성을 위하여 케이스, 윈도우, 키패드 및 윈도우 일체형 케이스 등의 전면 및 배면에 금속 대신 금속산화물을 이용한 비전도성 유전체 박막코팅을 진공증착 공정으로 코팅층을 형성한다. Especially, in case of mobile phone, a non-conductive dielectric thin film coating using a metal oxide instead of metal is formed on a front surface and a back surface of a case, a window, a keypad and a window integral case by a vacuum deposition process.

그러나, 진공증착 방법으로 코팅된 금속 및/또는 금속산화물의 코팅 박막은 모재(substrate)와 증착층과의 밀착력이 낮아 내마모성, 내스크래치성 및 연필경도가 취약하고, 고온고습 및 염수에 의한 진공증착 박막층의 탈막으로 인한 신뢰성을 확보하기가 어려웠다.However, the coated thin film of the metal and / or metal oxide coated by the vacuum evaporation method is poor in abrasion resistance, scratch resistance and pencil hardness due to low adhesiveness between the substrate and the vapor deposition layer, and the vapor deposition by high temperature, high humidity, It is difficult to secure the reliability due to the membrane separation of the thin film layer.

따라서 이러한 신뢰성 등의 문제를 해결하기 위하여 증착공정 전 및 후에 침지, 스프레이, 스핀, 잉크젯 프린팅 등의 습식공정으로 UV 코팅 및 하드코팅을 수행하게 되었다.Therefore, in order to solve such reliability problems, UV coating and hard coating were performed before and after the deposition process by a wet process such as immersion, spray, spin or inkjet printing.

특히 전자제품의 케이스, 윈도우, 키패드 등으로 사용되는 아크릴, 폴리카보네이트(Poly Carbonate; PC), PMMA(Poly Methyl Methacrylate), PET(Polyethylene Terephthalate), ABS 수지(Acrylonitrile butadiene styrene copolymer) 및 이의 혼합된 수지로 된 시트(sheet)상의 패널(panel)형태와 각종 사출물에 광학적 디자인을 위하여 진공증착 공정을 도입하면 증착막의 밀착력 및 안정성을 위하여 디핑법, 스프레이법, 스핀코팅법, 잉크프린팅법 등 별도의 습식공정을 이용하여 하도코팅 및 상도코팅을 수행하여야 하는데, 이 경우 습식공정과 진공증착공정을 교대로 이용하여 코팅을 하는 경우 서로 다른 공정이용으로 인한 비용 발생은 물론 서로 다른 공정 도입을 위한 이송과정에서 많은 불량이 발생하는 문제를 야기하게 된다. Particularly, it is preferable to use acrylic resin, polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), ABS resin (acrylonitrile butadiene styrene copolymer) A vacuum evaporation process for optical design in the form of a panel on a sheet and various kinds of injection molded products on a sheet can be carried out by a separate wet process such as dipping process, spray process, spin coating process, ink printing process, In this case, when the wet process and the vacuum deposition process are alternately used, the coating process and the top coating process are performed. Resulting in a problem that many defects occur.

즉, 이러한 습식공정의 도입은 습식공정 및 진공증착공정(건식공정)의 서로 다른 공정을 교차 이용하게 됨으로써 서로 다른 공정간의 이송 및 각각의 공정간 코팅 피도물의 장착 및 탈착을 반복하여 수행함으로써 부품코팅의 공정시간이 길어진다.That is, introduction of such a wet process crosses different processes of the wet process and the vacuum deposition process (dry process), thereby transferring between different processes and repeatedly mounting and detaching the coating material between the respective processes, .

또한 복잡하게 교차하는 서로 다른 공정의 수행과정에서 발생되는 공정 불량과 각 공정간의 이송시 발생되는 높은 불량률 및 많은 공정수에 의한 길어진 제조시간에 의하여 생산성이 저하되어 결국 제품의 제조비용이 높아질 수밖에 없는 구조적인 문제점을 가져왔다.In addition, due to process defects occurring in the process of complicated crossing different processes, high defect rate occurring during transfer between each process, and long manufacturing time due to a large number of process steps, the productivity is lowered, Resulting in structural problems.

특히 이러한 공정은 습식코팅을 수행하는 업체와 진공증착을 수행하는 업체가 상이한 경우 더욱 심화되는 경향이 있다.Particularly, this process tends to be further intensified when the company performing the wet coating and the company performing the vacuum deposition differ.

또한 도 4에 나타낸 바와 같이 제품(10)의 표면에 습식공정을 통하여 제조된 코팅막(60)은 진공증착공정(건식공정)으로 제조된 코팅막(70)에 비하여 수백 내지 수천배 두껍기 때문에 광학적인 특성의 저하 및 모재의 표면질감의 저하로 인하여 제품모재의 특성을 잘 살릴 수 없는 단점이 있다.As shown in FIG. 4, since the coating film 60 manufactured through the wet process on the surface of the product 10 is several hundred to several times thicker than the coating film 70 produced by the vacuum deposition process (dry process), the optical characteristic And the surface texture of the base material is deteriorated, there is a drawback that the characteristics of the product base material can not be taken advantage of.

본 발명의 진공증착 박막의 제조방법은 상기한 문제점을 해결하기 위한 것으로서 본 발명은 전자제품의 케이스, 윈도우, 키패드, 기능키 부품, 윈도우일체형 케이스, 다양한 악세서리 모재의 전면 및 배면에 진공증착기 내에서 최소한의 건식 진공증착 박막제조공정만으로도 안정된 진공증착 박막을 형성하여 휴대용 전자제품 및 디스플레이 제품에 미려하고 고급스러운 광학적 디자인을 제공하면서 신뢰성을 확보할 수 있게 하는 다층박막의 제조방법을 제공하는 것을 기술적 과제로 한다.A method of manufacturing a vacuum vapor deposited thin film according to the present invention is to solve the above problems. The present invention provides a method of manufacturing a vacuum vapor deposited thin film of the present invention, which comprises a case, window, keypad, function key part, window integral case, It is an object of the present invention to provide a method for manufacturing a multilayer thin film which can form a stable vacuum vapor deposition thin film even with a minimum dry vacuum vapor deposition thin film manufacturing process so that reliability can be ensured while providing a high quality optical design and a beautiful appearance in portable electronic products and display products. .

또한, 최소한의 진공증착 공정으로 코팅층의 신뢰성을 확보함으로써 공정을 단축시켜 제조시간의 단축 및 불량률 저하로 인한 비용절감 효과는 물론 환경적으로 문제발생의 여지가 많은 습식공정을 제거 또는 최소화함으로써 환경오염발생의 여지를 제거하거나 저하시키는 효과를 얻는 것을 또 다른 기술적 과제로 한다.In addition, the reliability of the coating layer can be ensured by a minimum vacuum deposition process, thereby shortening the process time, shortening the manufacturing time, reducing the cost due to the reduction of the defect rate, and eliminating or minimizing the wet process, Another object of the present invention is to obtain an effect of eliminating or reducing the possibility of occurrence.

상기 과제를 해결하기 위하여 본 발명은 모재와 광학 코팅층 간의 밀착력 부여를 위한 하도증착층을 모재 상에 형성하는 단계; 및 상기 하도증착층 상에 광학 코팅층을 형성하는 단계를 포함하고, 다층박막의 형성이 건식 진공증착을 이용하여 수행되는 것을 특징으로 하는 다층박막의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a base layer on a base material to provide a bonding force between a base material and an optical coating layer; And forming an optical coating layer on the underlying vapor deposition layer, wherein formation of the multilayer thin film is performed using dry vacuum deposition.

본 발명의 다층박막의 제조방법은 바람직하게는, 상기 광학 코팅층 형성 단계 이후에 중도증착층을 형성하는 단계를 더 포함하는 것을 특징으로 한다.The method for manufacturing a multilayer thin film of the present invention is preferably characterized by further comprising the step of forming the intermediate vapor deposition layer after the optical coating layer forming step.

또한 본 발명의 다층박막의 제조방법은 바람직하게는, 상기 중도증착층 형성 단계 이후에 또는 상기 광학 코팅층 형성 단계 이후에 상도증착층을 형성하는 단계를 더 포함하는 것을 특징으로 한다.The method for manufacturing a multilayer thin film of the present invention is further characterized by further comprising forming a top deposition layer after the intermediate deposition layer formation step or after the optical coating layer formation step.

본 발명의 다른 측면에 따르면, 본 발명의 다층박막의 제조방법에 의해 형성되며, 모재 상에 형성된 하도증착층; 및 상기 하도증착층 상에 형성된 광학 코팅층을 포함하는 다층박막코팅이 제공된다.According to another aspect of the present invention, there is provided a method of manufacturing a multilayer thin film, comprising: forming a lower deposition layer on a base material; And an optical coating layer formed on the underlying vapor deposition layer.

본 발명의 다층박막코팅은 바람직하게는, 상기 광학 코팅층 상에 형성된 중도증착층을 더 포함한다.The multilayer thin film coating of the present invention preferably further comprises a middle deposition layer formed on the optical coating layer.

또한 본 발명의 다층박막코팅은 바람직하게는, 상기 중도증착층 상에 형성된 상도증착층을 더 포함한다.Further, the multilayer thin film coating of the present invention preferably further comprises a topmost deposition layer formed on the intermediate deposition layer.

본 발명의 다층박막코팅은 바람직하게는, 상기 광학 코팅층 상에 형성된 상도증착층을 더 포함한다.The multilayer thin film coating of the present invention preferably further comprises a topmost deposition layer formed on the optical coating layer.

본 발명의 또 다른 측면에 따르면, 본 발명의 다층박막의 제조방법에 의해 형성된 다층박막코팅을 포함하는 전자제품이 제공된다.According to another aspect of the present invention, there is provided an electronic product comprising a multilayer thin film coating formed by the method for producing a multilayer thin film of the present invention.

본 발명의 건식 진공증착 박막의 제조방법을 이용하여 휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 차량용 네비게이션 시스템, 노트북 등 휴대용 전자제품, 모니터, 터치스크린 등 디스플레이 제품, 냉장고, 에어컨, TV등 일반 가전제품 등의 케이스, 윈도우, 윈도우 일체형 케이스, 키패드, 키패드일체형 윈도우, 기능키 부품 및 다양한 액세서리 등을 코팅하면 미려하고 고급스러운 광학적 디자인을 제공하면서 신뢰성을 확보할 수 있다.A display device such as a mobile phone, an MP3 player, a portable multimedia player (PMP), a digital multimedia broadcasting (DMB) receiver, a navigation system for a car, a portable electronic product such as a notebook computer, a monitor, and a touch screen using the method of manufacturing a dry vacuum vapor- , Windows, window-integrated cases, keypads, integral keypad windows, function key parts and various accessories can be secured to provide reliable, high-quality optical design. have.

또한, 최소한의 진공증착 공정으로 코팅층의 신뢰성을 확보함으로써 공정을 단축시켜 제조시간의 단축 및 불량률 저하로 인한 비용절감 효과는 물론 환경적으로 문제발생의 여지가 많은 습식공정을 제거하거나 최소화 함으로써 환경오염발생의 여지를 제거하거나 저하시키는 효과를 얻을 수 있다.In addition, the reliability of the coating layer can be ensured by the minimum vacuum deposition process, thereby shortening the manufacturing process and shortening the manufacturing time, reducing the cost due to the reduction of the defect rate, and eliminating or minimizing the wet process, An effect of eliminating or reducing the possibility of occurrence can be obtained.

도 1은 본 발명의 진공증착 다층박막 제조방법의 일 구체예의 공정도이고,
도 2는 본 발명의 일 구체예에 따라 제조된 진공증착 다층박막의 구성 개략도이고,
도 3은 밀착력과 표면 접촉각과의 관계를 나타낸 도면이고,
도 4는 종래의 습식코팅 공정으로 형성된 하도 및 상도코팅막 두께와 본 발명의 진공증착공정으로 형성된 하도 및 상도코팅막 두께를 비교한 도면이고,
도 5는 플라스틱 인몰드 사출 제품 표면의 접촉각을 나타낸 사진이고,
도 6은 본 발명의 일 구체예에 따른 진공증착박막 제조시 하도증착코팅 후 표면의 접촉각을 나타낸 사진이고,
도 7은 본 발명의 일 구체예에 따른 진공증착박막 제조시 상도증착 코팅완료 후 표면의 접촉각을 나타낸 사진이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process diagram of one embodiment of a vacuum vapor-deposited multilayer thin film manufacturing method of the present invention,
FIG. 2 is a schematic view of the structure of a vacuum-deposited multilayered thin film manufactured according to one embodiment of the present invention,
3 is a view showing the relationship between the adhesion force and the surface contact angle,
FIG. 4 is a graph comparing the thicknesses of the lower and upper coating layers formed by the conventional wet coating process and the thicknesses of the lower and upper coating layers formed by the vacuum deposition process of the present invention,
5 is a photograph showing the contact angle of the surface of the plastic in-mold injection product,
6 is a photograph showing the contact angle of the surface of the vacuum evaporated thin film according to one embodiment of the present invention,
FIG. 7 is a photograph showing the contact angle of the surface after top coat deposition coating in the preparation of the vacuum vapor deposited thin film according to one embodiment of the present invention.

본 발명의 진공증착 박막의 제조방법은 종래 습식공정을 이용하여 제공되었던 코팅막을 진공증착기 내에서 건식공정으로 형성하는 것을 특징으로 한다. 종래 습식공정을 이용하여 제공되었던 코팅막으로는 예컨대 UV(자외선)경화형 코팅막, 모재와 광학 코팅층간의 밀착력을 강화 시키는 하도코팅막, 및 광학 단일 내지 멀티코팅층의 보호를 위한 상도코팅막을 들 수 있다.The method for producing a vacuum vapor deposited thin film of the present invention is characterized in that a coating film which has been provided by using a wet process is formed by a dry process in a vacuum evaporator. Examples of the coating film that has been provided using the conventional wet process include a UV (ultraviolet) curing type coating film, a subbing coating film for enhancing adhesion between the base material and the optical coating layer, and an upper coating film for protecting the optical single to multi-

본 발명의 진공증착공정(건식공정)에서는 바람직하게는 한국특허출원 10-2007-0075000호에 개시된 바와 같은 기구물을 이용하여 각각의 박막층을 형성하기 위한 약품을 진공증착기 내에서 각각 초박막으로 코팅하여 안정된 단일 내지 멀티코팅막을 제공한다.In the vacuum deposition process (dry process) of the present invention, the chemicals for forming the respective thin film layers are preferably coated in an ultra-thin film in a vacuum evaporator by using an apparatus as disclosed in Korean Patent Application No. 10-2007-0075000, To provide a single to multiple coating film.

본 발명의 박막 제조방법이 적용가능한 모재로는 휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 차량용 네비게이션 시스템, 노트북 등의 휴대용 전자제품, 디스플레이 제품 등의 케이스, 윈도우, 윈도우일체형 케이스, 키패드, 키패드일체형 윈도우, 기능키 부품 및 다양한 액세서리 부품을 들 수 있으나 이에 제한되는 것은 결코 아니다. 이들 모재의 형태는 시트(sheet)상의 패널(panel)형태일 수도 있고, 각종 사출물 형태일 수도 있으나, 이에 제한되는 것은 결코 아니다.Examples of the base material to which the thin film manufacturing method of the present invention can be applied include a portable electronic product such as a mobile phone, an MP3 player, a portable multimedia player (PMP), a digital multimedia broadcasting (DMB) receiver, , A window integral case, a keypad, an integral keypad window, function key parts, and various accessory parts. The shape of these base materials may be in the form of a panel on a sheet, or may be in various forms of injection, but is not limited thereto.

상기 모재의 재질로는 금속, 유리, 아크릴, 폴리카보네이트(Poly Carbonate; PC), PMMA(Poly Methyl Methacrylate), PET(Polyethylene Terephthalate), ABS 수지(Acrylonitrile butadiene styrene copolymer) 및 이의 혼합물을 들 수 있으나 이에 제한되는 것은 결코 아니다.As the material of the base material, metal, glass, acrylic, polycarbonate (PC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), acrylonitrile butadiene styrene copolymer (ABS) It is by no means limited.

본 발명의 박막 제조방법에 있어서 모재 상에 형성되는 하도증착층은 모재와 이후에 형성될 광학 코팅층 간의 밀착력 부여를 위한 층이다. 바람직하게는 하도증착층은 10Å내지 1000Å(1nm 내지 100nm)의 나노수준의 얇은 두께로 형성되며, 모재 표면과 다음 단계에서 형성될 광학 단일 내지 멀티코팅층과의 밀착력을 강화시키는 소위 나노 프라이머의 역할을 수행하게 된다. In the thin film manufacturing method of the present invention, the underlying deposition layer formed on the base material is a layer for imparting adhesion between the base material and an optical coating layer to be formed later. Preferably, the undercoating layer is formed to have a thin thickness of 10 to 1000 Å (1 nm to 100 nm), and functions as a so-called nano primer for enhancing the adhesion between the surface of the base material and the optical single to multi- .

또한, 상기 하도증착층은 모재의 표면특성 및 광학 코팅층의 멀티층 설계에 따라 진공증착 공정 중에 플라즈마 보조 증착방식(이온어시스트)으로 10Å 내지 1000Å의 두께로 증착하여 경질막 특성을 발현시켜 박막증착층의 밀착특성을 강화할 수 있다.In addition, the undercoat deposition layer may be deposited by a plasma assist deposition method (ion assist) to a thickness of 10 A to 1000 A during a vacuum deposition process according to the surface characteristics of the base material and the multi-layer design of the optical coating layer, Can be enhanced.

바람직하게는, 상기 하도증착층을 형성하게 되는 코팅제로는 카르복시기, 인산기, 실란기, 아민기 수산기, 알데히드기, 케톤기, 에테르기 및 케탈기로부터 선택되는 작용기를 하나 이상 가지는 탄소계 화합물이 사용되며, 그 분자량은 100 내지 10,000일 수 있으나 이에 제한되는 것은 아니다. Preferably, as the coating agent for forming the undercoat deposition layer, a carbon-based compound having at least one functional group selected from a carboxyl group, a phosphoric acid group, a silane group, an amine group hydroxyl group, an aldehyde group, a ketone group, an ether group and a ketal group is used , The molecular weight may be 100 to 10,000, but is not limited thereto.

본 발명의 박막 제조방법에 있어서 하도증착층 상에 형성되는 광학 코팅층은 단일층 또는 멀티층일 수 있으며, 모재, 즉 제품외관에 미려하고 고급스러운 광학적 디자인을 제공하고, 다양한 컬러를 나타낼 수도 있으며, 거울상 또는 반거울상의 효과를 나타낼 수도 있는 층이다.In the thin film manufacturing method of the present invention, the optical coating layer formed on the underlying vapor deposition layer may be a single layer or a multi-layer, and may provide a fine optical design that is attractive to the base material, i.e., the appearance of the product, Or a semi-mirror effect.

상기 광학 코팅층을 형성하기 위한 재료로는 SUS, 니켈(Ni), 알루미늄(Al), 크롬(Cr), 주석(Sn), 인듐(In)-주석(Sn) 등의 금속; 산화규소(SiO2), 산화티탄(TiO2), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화인듐티탄(InxTiyO2,ITO), 산화바륨티탄(BaTiO3), 산화마그네슘(MgO) 등의 금속 산화물; SiN, TiN 등의 금속 질화물; 및 MgF2 등의 금속 불화물을 사용할 수 있으며, 진공증착기 내에서 전자빔 내지 저항가열 장치를 이용하여 이들 재료를 단일층으로 또는 서로 교대로 증착하여 멀티층으로 형성한다. 광학 코팅층의 두께에는 특별한 제한이 없으며, 예컨대 10Å내지 1000Å(1nm 내지 100nm)의 나노수준의 두께에서부터 수 마이크로미터 수준의 두께에까지 이르는 다양한 두께의 층을 단층 또는 다층으로 형성할 수 있다.Examples of the material for forming the optical coating layer include metals such as SUS, Ni, Al, Cr, Sn, and Sn; Silicon (SiO 2), titanium oxide (TiO 2), aluminum oxide (Al 2 O 3), zirconium (ZrO 2), indium titanium oxide (In x Ti y O 2, ITO), barium titanium oxide (BaTiO 3 ) And magnesium oxide (MgO); Metal nitrides such as SiN and TiN; And MgF 2 can be used. In a vacuum evaporator, these materials are formed into a single layer or alternately by vapor deposition using an electron beam or resistance heating apparatus to form a multi-layer. The thickness of the optical coating layer is not particularly limited. For example, layers having various thicknesses ranging from a nano-level thickness of from 10 Å to 1000 Å (1 nm to 100 nm) to a thickness of a few micrometers can be formed as a single layer or a multilayer.

본 발명의 바람직한 일 측면에 따르면, 상기 광학 코팅층 형성 단계 이후에 그 표면 상에 중도증착층이 더 형성될 수 있다. 이 중도증착층은 내염수성, 내마모성, 내스크래치성 등을 보강하고, 추가로 형성가능한 상도증착층의 기능을 보조하는 역할을 한다. According to a preferred aspect of the present invention, a middle deposition layer may further be formed on the surface after the optical coating layer formation step. This intermediate deposition layer reinforces the salt water resistance, abrasion resistance, scratch resistance, and the like, and assists in the function of the topcoat layer which can be formed additionally.

중도증착층은 광학 코팅층의 표면특성 및 멀티층 설계에 따라 진공증착 공정 중에 플라즈마 보조 증착방식(이온어시스트)으로 10Å 내지 1000Å의 두께로 증착하여 박막증착층의 취약한 내스크래치성, 내염수성 등을 강화할 수 있다.The intermediate deposition layer is deposited by a plasma assist deposition method (ion assist) to a thickness of 10 A to 1000 A during the vacuum deposition process according to the surface characteristics of the optical coating layer and the multi-layer design, thereby enhancing the weak scratch resistance and flame resistance of the thin film deposition layer .

바람직하게는, 상기 중도증착층을 형성하게 되는 코팅제로는 카르복시기, 인산기, 실란기, 아민기 수산기, 알데히드기, 케톤기, 에테르기 및 케탈기로부터 선택되는 작용기를 하나 이상 가지는 탄소계 화합물이 사용되며, 그 분자량은 100 내지 10,000일 수 있으나 이에 제한되는 것은 아니다. Preferably, as the coating agent for forming the intermediate deposition layer, a carbon-based compound having at least one functional group selected from a carboxyl group, a phosphoric acid group, a silane group, an amine group hydroxyl group, an aldehyde group, a ketone group, an ether group and a ketal group is used , The molecular weight may be 100 to 10,000, but is not limited thereto.

본 발명의 바람직한 일 측면에 따르면, 상기 중도증착층 형성 단계 이후에 그 표면 상에 상도증착층이 더 형성될 수 있다. 이 상도증착층은 내염수, 내마모성, 내스크래치성 등의 신뢰성 보강은 물론 내오염성(내지문성) 및 오염제거용이성(easy cleaning)을 부여하여 광학 코팅층을 보호하는 역할을 한다. According to a preferred aspect of the present invention, a top deposition layer may further be formed on the surface of the intermediate deposition layer forming step. The top coating layer protects the optical coating layer by imparting easy stain resistance and easy cleaning as well as reliability enhancement such as salt water resistance, abrasion resistance and scratch resistance.

상도증착층은 중도증착층의 표면특성 및 멀티층 설계에 따라 진공증착 공정 중에 플라즈마 보조 증착방식(이온어시스트)으로 10Å 내지 1000Å의 두께로 증착할 수 있다.The top deposition layer can be deposited to a thickness of 10 A to 1000 A by a plasma assisted deposition method (ion assist) during the vacuum deposition process according to the surface characteristics of the intermediate deposition layer and the multi-layer design.

바람직하게는, 상기 상도증착층을 형성하게 되는 코팅제로는 카르복시기, 인산기, 실란기, 아민기 수산기, 알데히드기, 케톤기, 에테르기 및 케탈기로부터 선택되는 작용기를 하나 이상 가지는 불화탄소계 화합물이 사용되며, 그 분자량은 100 내지 10,000일 수 있으나 이에 제한되는 것은 아니다. Preferably, the coating agent for forming the upper deposition layer is a fluorocarbon compound having at least one functional group selected from a carboxyl group, a phosphoric acid group, a silane group, an amine group hydroxyl group, an aldehyde group, a ketone group, an ether group and a ketal group And its molecular weight may be from 100 to 10,000, but is not limited thereto.

본 발명에 있어서, 바람직하게는 한국특허출원 10-2007-0075000호에 개시된 바와 같은 기구물을 이용하여 전자빔, 저항가열 장치, 스퍼터링 장치 또는 이온플레이팅 장치에 의하여 각 층을 형성하기 위한 코팅제를 증착시킨다. In the present invention, a coating agent for depositing each layer is preferably deposited by an electron beam, a resistance heating apparatus, a sputtering apparatus or an ion plating apparatus using an apparatus as disclosed in Korean Patent Application No. 10-2007-0075000 .

또한 본 발명에 있어서 바람직하게는, 다층 구조의 형성이 진공증착기 내에서 연속적으로 진행된다.Further, in the present invention, preferably, the formation of the multilayer structure proceeds continuously in the vacuum evaporator.

각 층을 형성하기 위한 코팅제는 보관성 및 안정성을 위하여 바람직하게는 물, 메탄올, 에탄올, 아세톤 아세틸아세톤, 글리콜, 케톤 등의 용제를 포함한다. The coating agent for forming each layer preferably includes a solvent such as water, methanol, ethanol, acetone acetyl acetone, glycol, and ketone for storage and stability.

이하 구체적인 예를 중심으로 본 발명의 진공증착 다층박막의 제조방법을 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing the vacuum vapor-deposited multilayered thin film of the present invention will be described in detail with reference to specific examples.

본 발명의 진공증착 다층박막의 제조방법의 일 구체예는 도 1에 나타낸 바와 같다. 도 1에 나타낸 공정도에 따르면 모재, 즉 제품을 진공증착기 내에 장착하고 탈착하는 사이에 일어나는 모든 코팅 작업은 진공증착기 내에서 건식공정을 통해 이루어지는 것을 특징으로 한다.One embodiment of the method for producing the vacuum vapor-deposited multilayer thin film of the present invention is as shown in Fig. According to the process diagram shown in Fig. 1, all the coating work which takes place during mounting and dismounting of the base material, that is, the product in the vacuum evaporator, is performed through a dry process in a vacuum evaporator.

1. 장착단계1. Mounting step

휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 네비게이션, 노트북 등의 휴대용 전자제품 디스플레이 제품 등의 케이스, 윈도우, 윈도우일체형 케이스, 키패드, 키패드일체형 윈도우, 기능키 부품 및 다양한 액세서리 등의 모재(substrate)(또는 제품)(10)를 진공증착기에 장착한다. 이 때 다양한 형태의 모재에 맞도록 설계된 치구에 결착하여 진공증착 공정 도중 모재가 탈락되는 것을 방지한다.Such as mobile phone, MP3 player, portable multimedia player (PMP), digital multimedia broadcasting (DMB) receiver, navigation and notebook portable electronic products display case, window, window integral case, keypad, integral keypad window, A substrate (or product) 10, such as various accessories, is mounted in a vacuum evaporator. At this time, it is bonded to a jig designed to fit various types of base materials, thereby preventing the base material from falling off during the vacuum deposition process.

2. 진공단계2. Vacuum step

진공증착기 내에 모재의 장착이 이루어지면 금속 및 금속산화물을 이용하여 진공증착 코팅을 수행하기 위해서 진공증착기의 내부를 1.0×10-6 ~ 1.0×10-3 torr의 고진공 상태, 바람직하게는 5.0×10-5 torr 이하의 고진공 상태를 유지한다. 장착된 모재(10)의 재질에 따라 20~300℃로 증착기의 내부온도를 설정한다.When the base material is mounted in the vacuum evaporator, the inside of the vacuum evaporator is maintained at a high vacuum of 1.0 × 10 -6 to 1.0 × 10 -3 torr, preferably 5.0 × 10 -3 torr, in order to perform vacuum deposition coating using metal and metal oxides. Maintains a high vacuum of -5 torr or less. The internal temperature of the evaporator is set at 20 to 300 ° C. according to the material of the base material 10.

3. 3. 하도증착단계Deposition step

적당한 고진공 상태에 이른 후, 이온빔 장치를 이용하여 아르곤(Ar), 질소(N2) 및 산소(O2)가스를 흘려주면서 고전압 방전을 시키면 해당 가스의 플라즈마가 발생하게 된다. 고에너지를 갖는 이 플라즈마 가스를 장착된 모재의 표면상태에 따라서 10초 내지 1,000초 동안 인가하여 장착된 모재(10) 표면을 활성화(플라즈마 에칭)시킨다.After reaching a suitable high vacuum state, a plasma of the gas is generated when high voltage discharge is performed while flowing argon (Ar), nitrogen (N 2 ) and oxygen (O 2 ) gas using an ion beam apparatus. (Plasma etching) the surface of the base material 10 to which the plasma gas having a high energy is applied for 10 seconds to 1,000 seconds according to the surface condition of the base material.

활성화된 모재(10) 표면에 하도증착층(20)을 형성한다. 하도증착층을 형성하기 위하여 한국특허출원 10-2007-0075000호에 개시된 바와 같은 기구물을 이용할 수 있다. 이 기구물 내에 하도코팅제를 장입하고, 이를 다시 진공증착기 내의 전자빔을 이용한 증발 포트 내지 저항가열식 증발포트에 장입하고, 증발포트에 장입된 기구물을 전자빔 내지 저항가열보트를 이용하여 가열시켜 기구물 내부에 장입된 코팅제를 증발시켜 하도 증착층을 형성시킨다. A lower deposition layer 20 is formed on the surface of the activated base material 10. An apparatus such as disclosed in Korean Patent Application No. 10-2007-0075000 may be used to form the undercoating layer. The lower coating agent is charged into the apparatus and charged into the evaporation port or the resistance heating evaporation port using the electron beam in the vacuum evaporator and the equipment charged into the evaporation port is heated using the electron beam or the resistance heating boat, And the coating agent is evaporated to form a lower vapor deposition layer.

전자빔 가열방식인 경우 진공증착기의 제어장치 중 하나인 IC-5(INFICON)를 이용하여 코팅의 전과정을 자동화할 수 있으며, 전자빔의 파워 값은 1.5% 내지 8.0% 사이의 값에서 제어하며, 바람직하게는 2.0% 내지 4.0%가 적절하다.In the case of the electron beam heating method, the entire process of the coating can be automated by using IC-5 (INFICON) which is one of the control devices of the vacuum evaporator. The power value of the electron beam is controlled at a value between 1.5% and 8.0% Is 2.0% to 4.0%.

이렇게 형성되는 하도증착층은 10Å 내지 1,000Å(0.001㎛ 내지 0.1㎛)의 두께를 가지며, 바람직하게는 100Å(0.01㎛, 10nm)전후로 형성되는 것이 가장 적절하다. 여기에 앞서 설명한 플라즈마 에칭을 0 내지 300초 동안 인가하면 하도증착층을 안정화시킬 수 있다. The undercoat deposition layer thus formed has a thickness of 10 to 1,000 占 (0.001 to 0.1 占 퐉), and is most preferably formed to be around 100 占 (0.01 占 퐉, 10 nm). Applying the above-described plasma etching for 0 to 300 seconds can stabilize the undercoat layer.

모재의 표면에 형성되는 코팅은 표면에너지와 관련이 있으며, 그 밀착력의 크기는 도 3에서 보는 바와 같이 모재 표면에 물방울을 떨어뜨려 모재와 물방울 사이에 생성된 접촉각을 측정하는 것에 의해 가늠할 수 있다. 접촉각이 작을수록 밀착력이 강하다.The coating formed on the surface of the base material is related to the surface energy, and the magnitude of the adhesion can be measured by measuring the contact angle between the base material and the water droplet by dropping water droplets on the surface of the base material as shown in FIG. The smaller the contact angle, the stronger the adhesion.

플라스틱 인몰드 사출 제품의 경우 코팅전 상태(도 5)의 제품 표면의 접촉각은 74.3°였으나, 진공증착기 내에서 이 제품 표면에 하도증착층(20)을 형성시킨 후의 접촉각은 32.2°로 낮아졌고(도 6), 표면에너지는 하도증착 전후에 33.02mN/m에서 47.98mN/m로 높아졌다. 즉, 하도증착에 의하여 밀착력이 강화된 것이다.In the case of the plastic in-mold injection product, the contact angle of the product surface in the state before coating (FIG. 5) was 74.3 DEG, but the contact angle after forming the undercoating layer 20 on the product surface in the vacuum evaporator was lowered to 32.2 DEG 6), the surface energy increased from 33.02 mN / m to 47.98 mN / m before and after the undercoat deposition. That is, adhesion is enhanced by undercoat deposition.

표 1과 표 2는 각각 다양한 재질의 제품표면에 대한 하도증착층 형성전후의 표면접촉각 및 표면에너지 변화를 나타낸 것이다.Table 1 and Table 2 show surface contact angles and surface energy changes before and after the formation of the undercoating layer on the surface of various products, respectively.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

4. 4. 멀티증착단계Multi-deposition stage (광학 코팅층 형성단계)(Optical coating layer forming step)

모재에 미려하고 고급스러운 광학적 디자인을 제공하고, 다양한 컬러를 나타내면서 거울상 또는 반거울상의 효과 및 반사방지 효과를 나타내고자 하도증착층 상에 광학 코팅층(30)을 형성한다. The optical coating layer 30 is formed on the deposition layer to provide a beautiful and luxurious optical design to the base material and to exhibit the effect of antireflection or antireflection effect while exhibiting various colors.

광학 코팅층(30)은 진공증착기 내에서 전자빔 내지 저항가열 장치를 이용하여 SUS, 니켈(Ni), 알루미늄(Al), 크롬(Cr), 주석(Sn), 인듐(In)-주석(Sn) 등의 금속; 산화규소(SiO2), 산화티탄(TiO2), 산화알루미늄(Al2O3), 산화지르코늄(ZrO2), 산화인듐티탄(InxTiyO2,ITO), 산화바륨티탄(BaTiO3), 산화마그네슘(MgO) 등의 금속 산화물; SiN, TiN 등의 금속 질화물; 및/또는 MgF2 등의 금속 불화물을 단일층으로 또는 서로 교대로 증착하여 멀티층으로 하는 것에 의해 형성된다.The optical coating layer 30 may be formed of a material such as SUS, Ni, Al, Cr, Sn, In, Sn or the like using an electron beam or resistance heating apparatus in a vacuum evaporator. Of the metal; Silicon (SiO 2), titanium oxide (TiO 2), aluminum oxide (Al 2 O 3), zirconium (ZrO 2), indium titanium oxide (In x Ti y O 2, ITO), barium titanium oxide (BaTiO 3 ) And magnesium oxide (MgO); Metal nitrides such as SiN and TiN; And / or a metal fluoride such as MgF 2 in a single layer or in alternation with each other to form a multi-layer.

5. 5. 중도증착단계Intermediate deposition stage

상기 광학 코팅층(30)은 금속, 금속 산화물, 금속 질화물 또는 금속 불화물로부터 형성되기 때문에 다양한 표면특성을 갖게 되며 무기물의 특성상 특히 수분 및 오염 등에 취약하다. Since the optical coating layer 30 is formed from a metal, a metal oxide, a metal nitride, or a metal fluoride, the optical coating layer 30 has various surface characteristics and is vulnerable to moisture and contamination due to the nature of the inorganic material.

따라서 다양한 환경에 대해 안정적인 표면을 제공하고 상이한 표면상태에 따라 진공증착 박막의 내마모성 및 환경신뢰성에 대한 내성을 강화하기 위하여 100Å 전후 두께의 중도증착층(40)을 광학 코팅층(30) 상에 제공하는 것이 바람직하다.Accordingly, in order to provide a stable surface for various environments and to enhance the resistance to abrasion resistance and environmental reliability of the vacuum vapor deposited thin film according to different surface conditions, a middle deposition layer 40 having a thickness of about 100 Å is provided on the optical coating layer 30 .

또한, 중도증착층(40)은 광학 코팅층의 멀티층 설계에 따라 진공증착 공정 중 플라즈마 보조 증착방식(이온어시스트)으로 증착하여 경질막 특성을 발현시켜 박막 증착층의 취약한 내스크래치성, 내염수성 등을 강화할 수도 있다. In addition, the intermediate deposition layer 40 is formed by a plasma assist deposition method (ion assist) during the vacuum deposition process according to the multi-layer design of the optical coating layer to manifest the hard film characteristics, and the weak deposition scratch resistance, .

하도증착층과 마찬가지로, 중도증착층을 형성하기 위하여 한국특허출원 10-2007-0075000호에 개시된 바와 같은 기구물을 이용할 수 있다. 이 기구물 내에 중도코팅제를 장입하고, 이를 다시 진공증착기 내의 전자빔을 이용한 증발 포트 내지 저항가열식 증발포트에 장입하고, 증발포트에 장입된 기구물을 전자빔 내지 저항가열보트를 이용하여 가열시켜 기구물 내부에 장입된 코팅제를 증발시켜 중도증착층을 형성시킨다. Similar to the undercoat deposition layer, an apparatus as disclosed in Korean Patent Application No. 10-2007-0075000 may be used to form the intermediate deposition layer. A heavy coating agent is charged into the apparatus and charged into an evaporation port or resistance-heating evaporation port using an electron beam in a vacuum evaporator, and an apparatus charged into the evaporation port is heated using an electron beam or a resistance heating boat, The coating is evaporated to form the intermediate deposition layer.

이렇게 형성되는 중도증착층은 10Å 내지 1,000Å(0.001㎛ 내지 0.1㎛)의 두께를 가지며, 바람직하게는 100Å(0.01㎛, 10nm)전후로 형성되는 것이 가장 적절하다. 여기에 앞서 설명한 플라즈마 에칭을 0 내지 300초 동안 인가하면 중도증착층을 안정화시킬 수 있다. The intermediate deposition layer thus formed has a thickness of 10 to 1000 占 (0.001 to 0.1 占 퐉), and most preferably, it is formed to have a thickness of about 100 占 (0.01 占 퐉, 10 nm). Applying the plasma etching described above for 0 to 300 seconds can stabilize the intermediate deposition layer.

6. 6. 상도증착단계Phase deposition step

상기한 바와 같이 광학 코팅층(30)은 다양한 표면특성을 갖게 되며 무기물의 특성상 특히 수분 및 오염 등에 취약하기 때문에 상도증착층(50)을, 중도증착층(40)을 개재하여 또는 직접적으로 광학 코팅층(30) 상에 제공하는 것이 바람직하다.As described above, the optical coating layer 30 has various surface characteristics and is vulnerable to moisture and contamination due to the nature of the inorganic material. Therefore, the topcoating layer 50 can be formed on the optical coating layer 30).

상도 증착층(50)은 하도 및 중도증착층과 유사한 방법으로 형성될 수 있으며, 코팅두께를 제어하지 않고 100Å 내지 1000Å의 두께를 갖도록 한다.The uppermost deposition layer 50 may be formed in a similar manner to the lower and middle deposition layers, and has a thickness of 100 ANGSTROM to 1000 ANGSTROM without controlling the coating thickness.

상도증착단계를 이용하여 형성된 코팅박막은 표면에너지가 매우 낮고, 낮은 마찰계수의 특성을 지니며, 이로 인해 표면이 매우 미끄러운 특성을 얻을 수 있어 지문 및 오염물질 등에 의한 오염원의 부착을 현저히 줄일 수 있으며, 지문 및 오염물질이 부착되더라도 쉽게 제거가 가능한 뛰어난 이지클리닝(easy cleaning) 기능을 가질 수 있다. 또한 이와 동시에 발수 및 발유성, 내긁힘성, 내구성 등의 특성을 얻을 수 있어 제품의 내측은 물론 외측코팅제품의 신뢰성시험 등에도 안정된 진공증착 코팅막을 형성시킬 수 있다.The coating film formed by using the phase deposition step has a very low surface energy and a low coefficient of friction. As a result, the surface of the film is very slippery and adhesion of the contamination due to fingerprints and pollutants can be significantly reduced , And excellent cleaning ability (easy cleaning) that can be easily removed even if fingerprints and contaminants are attached. At the same time, the characteristics such as water repellency, oil repellency, scratch resistance and durability can be obtained, so that a stable vacuum evaporation coating film can be formed even in the reliability test of the inner side of the product as well as the outer side coating product.

도 3에서 보는 바와 같이 표면의 접촉각이 높을수록 밀착 및 부착력이 나빠지나, 이는 오염물의 부착의 관점에서는 오염에 대한 내성이 강해짐을 의미한다. 상기와 같이 처리된 상도증착층을 갖는 코팅표면을 도 7에 나타내었다. 표 3과 4에 상도증착층을 형성시켰을 때의 접촉각 및 표면에너지를 나타내었다.As shown in FIG. 3, the higher the contact angle of the surface, the worse the adhesion and the adhesion force, which means that the resistance against the contamination is increased from the viewpoint of adhesion of the contaminants. The coated surface having the above-described treated top layer is shown in Fig. Tables 3 and 4 show contact angles and surface energies when a top coat deposition layer is formed.

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

7. 배기(진공파기)7. Exhaust (vacuum break)

건식공정을 이용한 상기 진공증착 다층박막의 제조가 완료되면 진공증착기 내부의 진공상태를 파기한다. After the vacuum deposition multilayer thin film is formed using the dry process, the vacuum state inside the vacuum evaporator is destroyed.

8. 8. 탈착단계Desorption step

진공증착기의 진공상태가 파기된 후에 진공증착기로부터 다층박막코팅이 완료된 제품을 꺼낸다.After the vacuum state of the vacuum evaporator is discarded, the multi-layer thin film coated product is removed from the vacuum evaporator.

이상 본 발명의 일 구체예를 통하여 본 발명을 보다 상세히 설명하였으나, 상기의 구체예에 의하여 본 발명의 범위가 한정되는 것은 결코 아니다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, the invention is not limited to the disclosed exemplary embodiments.

본 발명은 휴대폰, MP3플레이어, 휴대형 멀티미디어플레이어(PMP), 디지털 멀티미디어 방송(DMB) 수신기, 차량용 네비게이션 시스템, 노트북 등의 휴대용 전자제품 및 디스플레이제품은 물론 냉장고, 에어컨, TV등 일반 가전제품에 사용되는 디스플레이 및 각종 액세서리부품의 케이스, 윈도우, 윈도우일체형 케이스, 키패드, 키패드일체형 윈도우, 기능키 부품 및 다양한 액세서리 등에 적용할 수 있다.The present invention relates to portable electronic products and display products such as mobile phones, MP3 players, portable multimedia players (PMPs), digital multimedia broadcasting (DMB) receivers, car navigation systems and notebooks, as well as general household appliances such as refrigerators, It can be applied to cases of display and various accessory parts, window, window integral case, keypad, integral window of keypad, function key parts and various accessories.

10 : 모재
20 : 하도증착층
30 : 광학 코팅층
40 : 중도증착층
50 : 상도증착층
60 : 종래의 습식공정에 의한 코팅층
70 : 본 발명의 건식공정에 의한 진공증착 박막코팅층
10: base metal
20:
30: Optical coating layer
40: intermediate deposition layer
50:
60: Coating layer by conventional wet process
70: Vacuum deposited thin film coating layer by the dry process of the present invention

Claims (1)

모재와 광학 코팅층 간의 밀착력 부여를 위한 하도증착층을 모재 상에 형성하는 단계;
상기 하도증착층 상에 광학 코팅층을 형성하는 단계; 및
상기 광학 코팅층 상에 중도증착층, 또는 상도증착층, 또는 중도증착층 및 상도증착층을 형성하는 단계;를 포함하고,
다층박막의 형성이 단일 진공증착기 내에서 건식 진공증착을 이용하여 수행되며,
상기 하도증착층의 두께가 10Å 내지 1000Å이고,
상기 광학 코팅층의 두께가 10Å 내지 1000Å이며,
상기 중도증착층의 두께가 10Å 내지 1000Å이고,
상기 상도증착층의 두께가 10Å 내지 1000Å인,
다층박막의 제조방법.
Forming an undercoating layer on the base material for imparting an adhesion force between the base material and the optical coating layer;
Forming an optical coating layer on the underlying deposition layer; And
And forming a middle deposition layer, a top deposition layer, or a middle deposition layer and a top deposition layer on the optical coating layer,
The formation of the multilayer film is carried out using a dry vacuum deposition in a single vacuum evaporator,
Wherein the lower deposition layer has a thickness of 10 to 1000 angstroms,
Wherein the optical coating layer has a thickness of 10 A to 1000 A,
Wherein the thickness of the intermediate deposition layer is 10 to 1000 angstroms,
Wherein the uppermost deposition layer has a thickness of 10 A to 1000 A,
A method for producing a multilayer thin film.
KR1020160059998A 2007-08-02 2016-05-17 Process for manufacturing multi-layered thin film by dry vacuum vapor deposition KR20160064051A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070077906 2007-08-02
KR20070077906 2007-08-02

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080075295A Division KR101824017B1 (en) 2007-08-02 2008-07-31 Process for manufacturing multi-layered thin film by dry vacuum vapor deposition

Publications (1)

Publication Number Publication Date
KR20160064051A true KR20160064051A (en) 2016-06-07

Family

ID=40305064

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020080075295A KR101824017B1 (en) 2007-08-02 2008-07-31 Process for manufacturing multi-layered thin film by dry vacuum vapor deposition
KR1020160059998A KR20160064051A (en) 2007-08-02 2016-05-17 Process for manufacturing multi-layered thin film by dry vacuum vapor deposition

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020080075295A KR101824017B1 (en) 2007-08-02 2008-07-31 Process for manufacturing multi-layered thin film by dry vacuum vapor deposition

Country Status (5)

Country Link
JP (1) JP2010535286A (en)
KR (2) KR101824017B1 (en)
CN (1) CN101784692B (en)
HK (1) HK1145192A1 (en)
WO (1) WO2009017376A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246022B1 (en) * 2010-08-19 2013-04-02 (주)에스아이티 Display window panel for anti-reflection and method thereof
EP2616404B1 (en) 2010-09-14 2019-07-10 Corning Incorporated Appliance fascia and mounting therefore
KR101690091B1 (en) * 2015-04-16 2016-12-27 주식회사 쎄코 Antibacterial primer coating agent for vacuum deposition and method of multi-layered coating by using the same
KR102468988B1 (en) 2020-07-14 2022-11-22 주식회사 동남티에스 Method for forming decorative pattern by metal deposition layer and plastic decorative member including the decorative pattern by the same method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273201A (en) * 1990-03-23 1991-12-04 Asahi Optical Co Ltd Surface high-reflection mirror
JP2748066B2 (en) * 1992-04-23 1998-05-06 富士写真光機株式会社 Reflector
JP3352172B2 (en) * 1993-08-30 2002-12-03 キヤノン株式会社 Optical thin film of plastic optical component and method of forming the same
JP2000108262A (en) * 1998-10-09 2000-04-18 Toray Ind Inc Polypropylene film for metal deposition and metal- deposited polypropylene film
WO2000063924A1 (en) * 1999-04-20 2000-10-26 Matsushita Electric Industrial Co., Ltd. Transparent substrate with conductive multilayer antireflection coating, touch panel using transparent substrate, and electronic device using touch panel
JP2000328231A (en) * 1999-05-20 2000-11-28 Toray Ind Inc Deposition method by organic material to be deposited by evaporation
JP4482971B2 (en) * 1999-09-08 2010-06-16 株式会社ニコン Reflector
JP3415801B2 (en) * 2000-02-21 2003-06-09 三容真空工業株式会社 Organic coating method and apparatus
JP4023065B2 (en) * 2000-03-23 2007-12-19 凸版印刷株式会社 Anti-reflective member
JP2003201596A (en) * 2002-01-10 2003-07-18 Nitto Denko Corp Method of depositing metallic layer and metallic foil stacked matter
JP2003255133A (en) * 2002-03-05 2003-09-10 Yazaki Corp Combiner and its manufacturing method, and display device for vehicle
KR20030073733A (en) * 2002-03-13 2003-09-19 주식회사 뮤렉스테크놀로지 Metal Sputtering and Evaporation Equipment and Method on Plastics
KR100514953B1 (en) * 2003-03-05 2005-09-14 주식회사 피앤아이 Method for fabricating plastic housing of electronic article
JP2005169995A (en) * 2003-12-15 2005-06-30 Dainippon Printing Co Ltd Gas barrier sheet and adhesiveness improved sheet
JP4888990B2 (en) * 2004-10-26 2012-02-29 尾池工業株式会社 Reflector for backlight device
JP3756171B1 (en) * 2004-10-28 2006-03-15 尾池工業株式会社 Method for producing metal-deposited film with antioxidant layer and metal-deposited film with antioxidant layer

Also Published As

Publication number Publication date
KR101824017B1 (en) 2018-02-01
WO2009017376A3 (en) 2009-04-16
JP2010535286A (en) 2010-11-18
HK1145192A1 (en) 2011-04-08
WO2009017376A2 (en) 2009-02-05
CN101784692B (en) 2013-03-20
CN101784692A (en) 2010-07-21
KR20090013719A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
KR20160064051A (en) Process for manufacturing multi-layered thin film by dry vacuum vapor deposition
US8673429B2 (en) Transparent conductive film, transparent conductive laminate, touch panel, and method for producing transparent conductive film
US8530041B2 (en) Transparent conductive film and touch panel
US8465812B2 (en) Durable transparent intelligent coatings for polymeric transparencies
CN107209600B (en) Conductive laminate for touch panel and method for producing conductive laminate for touch panel
CN107533880B (en) Transparent conductive film
CN104937685A (en) Multilayer film including first and second dielectric layers
US20180119282A1 (en) High Hardness Soft Film Structure
CN101417863A (en) Housing and surface treatment method
US20100072058A1 (en) Process for surface treating plastic substrate
CN1836878A (en) In-mold decorative injection method
KR101523747B1 (en) Thin film type hard coating film and method for manufacturing the same
JP2007136800A (en) Gas-barrier laminated film and image display element using the same
TW201018738A (en) Multilayer composite plating film, manufacturing method and substrate having the same
KR20150073205A (en) Plastic coated piece coated with an embedded pvd layer
Lin et al. Characterization of the silicon oxide thin films deposited on polyethylene terephthalate substrates by radio frequency reactive magnetron sputtering
US20100183871A1 (en) Nonconductive surface metallization method and plastic article manufactured by the same
CN104419896A (en) Method for manufacturing metal film
KR20100105913A (en) Method for coating surface of reflector in lamp
KR20110073863A (en) Dry process metal coating method with plasma technique
JP2023159680A (en) transparent conductive film
JP7319078B2 (en) Electromagnetic wave permeable metallic luster article
KR20180019916A (en) Method for a vacuum evaporation coating using pattern mask
JP6736104B1 (en) Radio-wave transparent film forming method by insulating chrome sputtering and smart entry unlocking/locking structure resin molded product
JP6481947B2 (en) Metal laminated film and manufacturing method thereof

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid