KR20160003665A - 고리형 카보네이트 합성용 촉매의 제조 방법 - Google Patents

고리형 카보네이트 합성용 촉매의 제조 방법 Download PDF

Info

Publication number
KR20160003665A
KR20160003665A KR1020157030128A KR20157030128A KR20160003665A KR 20160003665 A KR20160003665 A KR 20160003665A KR 1020157030128 A KR1020157030128 A KR 1020157030128A KR 20157030128 A KR20157030128 A KR 20157030128A KR 20160003665 A KR20160003665 A KR 20160003665A
Authority
KR
South Korea
Prior art keywords
group
catalyst
cyclic carbonate
phosphine
silica gel
Prior art date
Application number
KR1020157030128A
Other languages
English (en)
Other versions
KR102156460B1 (ko
Inventor
마스오 야마자키
다카시 나니키
도시카즈 다카하시
히로유키 야스다
쇼우지 야마모토
Original Assignee
마루젠 세끼유가가꾸 가부시키가이샤
고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마루젠 세끼유가가꾸 가부시키가이샤, 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 filed Critical 마루젠 세끼유가가꾸 가부시키가이샤
Publication of KR20160003665A publication Critical patent/KR20160003665A/ko
Application granted granted Critical
Publication of KR102156460B1 publication Critical patent/KR102156460B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5407Acyclic saturated phosphonium compounds
    • C07F9/5414Acyclic saturated phosphonium compounds substituted by B, Si, P or a metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/182Phosphorus; Compounds thereof with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0269Phosphorus containing compounds on mineral substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/36Alkylene carbonates; Substituted alkylene carbonates
    • C07D317/38Ethylene carbonate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • B01J31/0268Phosphonium compounds, i.e. phosphine with an additional hydrogen or carbon atom bonded to phosphorous so as to result in a formal positive charge on phosphorous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)

Abstract

에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 우수한 촉매 활성을 갖는 불균일계 촉매를, 간편하게 또한 저비용으로 제조하는 방법, 그 제조 방법으로 얻어진 촉매, 그 촉매를 사용하는 고리형 카보네이트의 합성 방법의 제공.
에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매의 제조 방법으로서, 하기 공정 (a) 및 (b) 를 포함하는 제조 방법.
(a) 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과 실리카 겔을 자일렌 존재하에서 반응시켜, 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체를 얻는 공정
(b) 공정 (a) 에서 얻어진 촉매 전구체와 3 급 포스핀을 반응시켜 고리형 카보네이트 합성용 촉매를 얻는 공정

Description

고리형 카보네이트 합성용 촉매의 제조 방법{METHOD FOR MANUFACTURING CATALYST FOR SYNTHESIZING CYCLIC CARBONATE}
본 발명은 고리형 카보네이트 합성용 촉매의 제조 방법, 그 제조 방법으로 얻어진 촉매, 그 촉매를 사용하는 고리형 카보네이트의 합성 방법에 관한 것이다.
고리형 카보네이트는 유기 용제, 합성 섬유 가공제, 의약품 원료, 화장품 첨가제, 리튬 전지용 전해액 용매로서, 나아가서는 알킬렌글리콜 및 디알킬카보네이트 합성의 중간체로서 넓은 용도에 사용되는 중요한 화합물의 하나이다.
종래, 이 고리형 카보네이트는 에폭사이드와 이산화탄소를 균일계 촉매의 존재하, 적당한 가압 조건하에서 반응시킴으로써 합성되고 있었다. 이와 같은 균일계 촉매로는, 알칼리 금속 등의 할로겐화물 (특허문헌 1) 이나 제 4 급 암모늄염 등의 오늄염 (특허문헌 2) 이 예로부터 알려져 있으며, 공업적으로도 사용되고 있다.
그러나, 이와 같은 균일계 촉매를 사용하는 경우, 통상, 반응 혼합물과 촉매의 증류 등에 의한 분리 조작이 필요하여, 제조 공정이 복잡해질 뿐만 아니라, 분리 공정 중의 촉매의 분해나 부생성물의 생성과 같은 문제도 있다.
일본 특허공보 소63-17072호 일본 공개특허공보 소55-145623호 국제 공개 제2005/084801호 일본 공개특허공보 2008-296066호
그래서, 촉매 분리 프로세스의 간소화를 목적으로 하여, 할로겐화물 이온을 카운터 이온으로 하는 4 급 포스포늄기를 실리카 겔 등의 담체에 고정화시킨 불균일계 촉매가 제안되어 있다 (특허문헌 3). 이 촉매는, 할로알킬 사슬이 실리카 겔에 공유 결합으로 고정된 시판되는 담체를 트리알킬포스핀과 반응시켜 4 급 포스포늄화함으로써 제조된다.
그러나, 특허문헌 3 에 기재된 제조 방법은 장기간 고온에서 4 급 포스포늄화 반응을 실시하는 것이 필요하고, 또, 장기간 반응시켜도 상당한 양의 할로알킬 사슬이 상기 포스핀과 반응하지 않은 채로 잔존한다.
또, 할로알킬 사슬이나 할로아릴 사슬이 공유 결합으로 고정된 실리카 겔은, 시판품을 사용하지 않아도, 예를 들어, 3-브로모프로필트리에톡시실란 등의 실란 화합물과 실리카 겔을, 톨루엔 중, 환류 조건하에서 반응시킴으로써 얻어지지만, 이 반응은, 일반적으로, 실란 화합물의 농도가 낮아지면 반응 속도가 느려진다. 그 때문에, 충분히 양의 할로알킬 사슬을 도입시키기 위해서 실리카 겔에 대해 수 배 ∼ 수 십배량의 대과잉량의 실란 화합물을 사용하거나, 혹은 반응액을 증류하여 실란 화합물의 농도를 높이는 조작을 반복하는 등의 수법이 취해진다.
그러나, 상기 실란 화합물을 다량으로 사용한 경우에는, 실란 화합물끼리의 축합물이 생성되기 쉬워져 촉매 활성이 저하되는 경우가 있을 뿐만 아니라, 촉매 제조 공정에 있어서의 폐기물이 증가하여 촉매의 제조 효율이 저하된다. 또, 용매를 증류 제거하면서 반응을 진행시키는 방법은, 반응 장치가 복잡해져 공정수도 많아진다.
또, 특허문헌 3 에 기재된 바와 같은 할로겐화물 이온을 카운터 이온으로 하는 4 급 포스포늄을 고정화시킨 촉매를 간편하게 제조하는 방법으로서, 3-브로모프로필트리에톡시실란을 미리 디페닐모노알킬포스핀과 반응시켜 4 급 포스포늄화하고, 이것을 촉매 가교제로서 담체 표면을 수식하는 방법이 제안되어 있다 (특허문헌 4).
그러나, 디페닐모노알킬포스핀과 반응시켜 4 급 포스포늄화한 실란 화합물을 촉매 가교제로서 사용한 경우, 입체 장해에 의해 실리카 겔 표면과 결합하는 실란 화합물의 양이 제한되기 때문에, 충분한 양의 할로겐이나 인을 담지할 수 있다고는 할 수 없다. 또, 실리카 겔의 존재하에서는, 4 급 포스포늄염과 실란 화합물이 반응하여 부생성물을 생성하기 때문에, 4 급 포스포늄염과 실란 화합물의 사용량에 알맞은 활성을 나타내는 촉매의 제조가 어렵다.
따라서, 본 발명은 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 우수한 촉매 활성을 갖는 불균일계 촉매를, 간편하게 또한 저비용으로 제조하는 방법, 그 제조 방법으로 얻어진 촉매, 그 촉매를 사용하는 고리형 카보네이트의 합성 방법을 제공하는 것에 관한 것이다.
그래서, 본 발명자들은 예의 연구를 거듭한 결과, 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과 실리카 겔을 자일렌 존재하에서 반응시켜, 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체를 얻고, 이어서 그 촉매 전구체와 3 급 포스핀을 반응시킴으로써, 상기 실란 화합물의 사용량이 소량인 경우나 반응 시간이 짧은 경우였다고 해도, 간편하게 또한 저비용으로 고리형 카보네이트 합성용 촉매를 제조할 수 있고, 또한 그 촉매가 우수한 촉매 활성을 나타내는 것을 알아내어 본 발명을 완성하였다.
즉, 본 발명은 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매의 제조 방법으로서, 하기 공정 (a) 및 (b) 를 포함하는 제조 방법을 제공하는 것이다.
(a) 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과 실리카 겔을 자일렌 존재하에서 반응시켜, 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체를 얻는 공정
(b) 공정 (a) 에서 얻어진 촉매 전구체와 3 급 포스핀을 반응시켜 고리형 카보네이트 합성용 촉매를 얻는 공정
또, 본 발명은 상기 제조 방법으로 얻어진, 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매를 제공하는 것이다.
또한, 본 발명은, 상기 촉매의 존재하에서, 에폭사이드와 이산화탄소를 반응시키는 고리형 카보네이트의 합성 방법을 제공하는 것이다.
본 발명의 제조 방법에 의하면, 고전화율 및 고수율로 고리형 카보네이트를 합성할 수 있고 우수한 촉매 활성을 나타내는 불균일계 촉매를, 실란 화합물의 사용량이 소량인 경우나 반응 시간이 짧은 경우였다고 해도 간편하게 또한 저비용으로 제조할 수 있다.
따라서, 본 발명의 촉매는 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용하는 촉매로서 유용하다. 또, 본 발명의 고리형 카보네이트의 합성 방법에 의하면, 고전화율 및 고수율로 고리형 카보네이트를 합성할 수 있다.
도 1 은 본 발명의 고리형 카보네이트의 합성 방법에 사용하는 장치의 일례를 나타내는 모식도이다.
<고리형 카보네이트 합성용 촉매의 제조 방법>
본 발명의 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매의 제조 방법은, 상기 공정 (a) 및 (b) 를 포함하는 것이다.
[공정 (a)]
공정 (a) 는, 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과 실리카 겔을 자일렌 존재하에서 반응시켜 (실란화 반응), 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체를 얻는 공정이다.
공정 (a) 에서 용매로서 자일렌을 사용함으로써, 충분한 할로겐 함유량의 촉매 전구체를 얻을 수 있다. 또한, 실리카 겔의 실란화 반응은, 실란 화합물의 농도가 낮아지면 반응이 느려지기 때문에, 원하는 담지량에 대해 수 배 ∼ 수 십배량의 대과잉량의 실란 화합물의 존재하에서 반응을 실시하거나, 혹은 반응액을 적절히 증류하여 용매를 일부 증류 제거하고, 실란 화합물의 농도를 높이는 것을 반복하여 반응을 진행시키는 등의 수법이 취해지지만, 본 발명의 방법에 의하면, 실란 화합물의 사용량이 소량인 경우나 반응 시간이 짧은 경우에도, 상기와 같은 수법을 취하지 않고 충분한 할로겐 함유량의 촉매 전구체를 얻을 수 있다.
상기 자일렌은 o-자일렌, m-자일렌, p-자일렌, 혼합 자일렌 중 어느 것이어도 된다. 또한, 자일렌은 에틸벤젠 등의 다른 용매와 조합하여 사용해도 된다.
상기 자일렌의 사용량은 특별히 한정되지 않지만, 실리카 겔 100 질량부에 대하여, 통상적으로 100 ∼ 1000 질량부이지만, 바람직하게는 100 ∼ 750 질량부이고, 보다 바람직하게는 100 ∼ 500 질량부이고, 더욱 바람직하게는 200 ∼ 300 질량부이다.
또, 상기 공정 (a) 에서 사용하는 실리카 겔의 평균 세공 직경으로는, 촉매 활성 및 고리형 카보네이트 합성에 있어서의 부생성물 억제의 관점에서, 3.5 ∼ 50 ㎚ 의 범위가 바람직하고, 3.5 ∼ 25 ㎚ 의 범위가 바람직하고, 5 ∼ 20 ㎚ 의 범위가 보다 바람직하고, 6 ∼ 15 ㎚ 의 범위가 특히 바람직하다. 이와 같은 범위의 평균 세공 직경의 실리카 겔을 사용함으로써, 촉매의 실리카 겔 함유량, 인 함유량을 제어하기 쉬워진다. 또, 평균 세공 직경이 3.5 ㎚ 이상으로 함으로써, 세공 내에 3 급 포스핀을 도입하기 쉬워져, 표면에서의 응집, 세공의 폐색 등을 억제할 수 있다.
또, 상기 실리카 겔의 비표면적은, 바람직하게는 80 ∼ 2000 ㎡/g 의 범위, 보다 바람직하게는 100 ∼ 1000 ㎡/g 의 범위이고, 더욱 바람직하게는 150 ∼ 750 ㎡/g 의 범위이다.
또, 상기 실리카 겔은, 분리 회수 등의 핸들링성의 점에서, 입자의 형태를 이루고 있는 것이 바람직하다. 입자의 형상은 특별히 한정되는 것은 아니며, 예를 들어, 파쇄상, 입상, 비즈상, 정제상, 펠릿상, 원통상, 분체상을 들 수 있고, 불규칙한 형상이어도 된다. 실리카 겔이 비즈상인 경우, 그 입경은, 바람직하게는 0.1 ∼ 10 ㎜ 의 범위, 보다 바람직하게는 0.2 ∼ 8 ㎜ 의 범위, 더욱 바람직하게는 0.5 ∼ 5.0 ㎜ 의 범위이다. 또, 분체상인 경우, 그 입도는, 바람직하게는 30 ∼ 5000 메시이고, 보다 바람직하게는 100 ∼ 1000 메시이다.
또한, 상기 실리카 겔의 평균 세공 직경, 비표면적, 입경은 비표면적/세공 분포 측정 장치 등에 의해 측정 가능하다.
또, 실리카 겔은 미리 건조시켜 둔 것이 바람직하고, 흡착 수분량이 1 질량% 이하인 것 (실리카 겔에 대한 흡착 수분량이 1 질량% 이하로 조정된 것) 이 보다 바람직하다. 흡착 수분량을 1 질량% 이하로 함으로써 표면 실란올이 억제되고, 할로알킬기나 할로아릴기의 과잉인 담지가 억제되어, 촉매 활성이 향상된다.
여기서, 흡착 수분량이란, 실리카 겔 세공 내에 존재하는 수분량을 말하고, 열 중량 측정 장치 등에 의해 측정 가능하다.
상기 실리카 겔의 건조 방법은 특별히 한정되지 않지만, 예를 들어, 감압하 또는 건조 공기 (또는 불활성 가스) 유통하에서 가열하는 방법, 딘스탁 트랩을 사용한 환류 처리 등의 방법을 들 수 있다. 그 환류 처리에 사용되는 용매는, 공비에 의해 물을 제거하는 것이 가능한 것이면 특별히 한정되지 않지만, 용매의 치환에 의한 수분의 반입을 억제하는 관점에서, 그 용매를 그대로 공정 (a) 에서 사용하는 용매로 하는 것이 바람직하다.
또한, 실리카 겔은 상기 건조에 앞서 염산 등으로 산 처리되어 있어도 된다.
또, 공정 (a) 에서 사용하는 할로알킬기 또는 할로아릴기를 함유하는 실란 화합물로는, 하기 식 (1) 로 나타내는 것이 바람직하다. 그 실란 화합물은 1 종을 단독으로 또는 2 종 이상을 조합하여 사용해도 된다.
[화학식 1]
Figure pct00001
[식 (1) 중, R1 은 탄소수 2 ∼ 8 의 직사슬형 또는 분기 사슬형의 알킬렌기, 아릴렌기, 알카릴렌기, 아릴렌알킬렌기 또는 알킬렌아릴렌기를 나타내고, R2 는 탄소수 1 ∼ 4 의 알킬기를 나타내고, X 는 할로겐 원자를 나타낸다]
상기 식 (1) 중, R1 로 나타내는 탄소수 2 ∼ 8 의 직사슬형 또는 분기 사슬형의 알킬렌기로는, 예를 들어, 에틸렌기, 트리메틸렌기, 프로필렌기, 테트라메틸렌기, 펜타메틸렌기, 헥사메틸렌기, 헵타메틸렌기, 옥타메틸렌기 등을 들 수 있다.
또, R1 로 나타내는 아릴렌기는 바람직하게는 탄소수 6 ∼ 10 의 아릴렌기이고, 예를 들어 페닐렌기, 톨릴렌기 등을 들 수 있다.
또, R1 로 나타내는 알카릴렌기는 바람직하게는 탄소수 8 ∼ 10 의 알카릴렌기이고, 예를 들어 자일릴렌기 등을 들 수 있다.
또, R1 로 나타내는 아릴렌알킬렌기는 바람직하게는 탄소수 6 ∼ 10 의 아릴렌알킬렌기이고, 예를 들어 페닐렌메틸렌기, 페닐렌에틸렌기 등을 들 수 있다.
또, R1 로 나타내는 알킬렌아릴렌기는 바람직하게는 탄소수 6 ∼ 10 의 알킬렌아릴렌기이고, 예를 들어 메틸렌페닐렌기, 에틸렌페닐렌기 등을 들 수 있다.
이들 중에서도, 탄소수 2 ∼ 8 의 직사슬형 또는 분기 사슬형의 알킬렌기가 바람직하고, 탄소수 2 ∼ 6 의 직사슬형 또는 분기 사슬형의 알킬렌기가 보다 바람직하고, 트리메틸렌기가 특히 바람직하다.
또, 식 (1) 에 있어서, R2 로 나타내는 탄소수 1 ∼ 4 의 알킬기로는, 메틸기, 에틸기, 프로필기, 부틸기를 들 수 있고, 바람직하게는 메틸기, 에틸기이고, 보다 바람직하게는 메틸기이다.
식 (1) 에 있어서, X 로 나타내는 할로겐 원자로는 염소 원자, 브롬 원자, 요오드 원자를 들 수 있고, 바람직하게는 브롬 원자이다.
식 (1) 로 나타내는 실란 화합물 중 할로알킬기를 함유하는 것의 구체예로는, 할로 C2-8 알킬트리메톡시실란, 할로 C2-8 알킬트리에톡시실란, 할로 C2-8 알킬트리프로폭시실란, 할로알킬아릴트리메톡시실란, 할로알킬아릴트리에톡시실란, 할로알킬아릴트리프로폭시실란, 할로알킬아르알킬트리메톡시실란, 할로알킬아르알킬트리에톡시실란, 할로알킬아르알킬트리프로폭시실란 등을 들 수 있다.
상기 할로 C2-8 알킬트리메톡시실란으로는, 예를 들어, 2-클로로에틸트리메톡시실란, 2-브로모에틸트리메톡시실란, 2-요오드에틸트리메톡시실란, 3-클로로프로필트리메톡시실란, 3-브로모프로필트리메톡시실란, 3-요오드프로필트리메톡시실란, 4-클로로부틸트리메톡시실란, 4-브로모부틸트리메톡시실란, 4-요오드부틸트리메톡시실란, 5-클로로펜틸트리메톡시실란, 5-브로모펜틸트리메톡시실란, 5-요오드펜틸트리메톡시실란, 6-클로로헥실트리메톡시실란, 6-브로모헥실트리메톡시실란, 6-요오드헥실트리메톡시실란, 7-클로로헵틸트리메톡시실란, 7-브로모헵틸트리메톡시실란, 7-요오드헵틸트리메톡시실란, 8-클로로옥틸트리메톡시실란, 8-브로모옥틸트리메톡시실란, 8-요오드옥틸트리메톡시실란을 들 수 있다.
또, 상기 할로 C2-8 알킬트리에톡시실란으로는, 예를 들어, 2-클로로에틸트리에톡시실란, 2-브로모에틸트리에톡시실란, 2-요오드에틸트리에톡시실란, 3-클로로프로필트리에톡시실란, 3-브로모프로필트리에톡시실란, 3-요오드프로필트리에톡시실란, 4-클로로부틸트리에톡시실란, 4-브로모부틸트리에톡시실란, 4-요오드부틸트리에톡시실란, 5-클로로펜틸트리에톡시실란, 5-브로모펜틸트리에톡시실란, 5-요오드펜틸트리에톡시실란, 6-클로로헥실트리에톡시실란, 6-브로모헥실트리에톡시실란, 6-요오드헥실트리에톡시실란, 7-클로로헵틸트리에톡시실란, 7-브로모헵틸트리에톡시실란, 7-요오드헵틸트리에톡시실란, 8-클로로옥틸트리에톡시실란, 8-브로모옥틸트리에톡시실란, 8-요오드옥틸트리에톡시실란을 들 수 있다.
또, 상기 할로 C2-8 알킬트리프로폭시실란으로는, 예를 들어, 2-클로로에틸트리프로폭시실란, 2-브로모에틸트리프로폭시실란, 2-요오드에틸트리프로폭시실란, 3-클로로프로필트리프로폭시실란, 3-브로모프로필트리프로폭시실란, 3-요오드프로필트리프로폭시실란, 4-클로로부틸트리프로폭시실란, 4-브로모부틸트리프로폭시실란, 4-요오드부틸트리프로폭시실란, 5-클로로펜틸트리프로폭시실란, 5-브로모펜틸트리프로폭시실란, 5-요오드펜틸트리프로폭시실란, 6-클로로헥실트리프로폭시실란, 6-브로모헥실트리프로폭시실란, 6-요오드헥실트리프로폭시실란, 7-클로로헵틸트리프로폭시실란, 7-브로모헵틸트리프로폭시실란, 7-요오드헵틸트리프로폭시실란, 8-클로로옥틸트리프로폭시실란, 8-브로모옥틸트리프로폭시실란, 8-요오드옥틸트리프로폭시실란을 들 수 있다.
또, 상기 할로알킬아릴트리메톡시실란으로는, 예를 들어, p-클로로메틸페닐트리메톡시실란, p-(2-클로로에틸)페닐트리메톡시실란, p-브로모메틸페닐트리메톡시실란, p-(2-브로모에틸)페닐트리메톡시실란, p-요오드메틸페닐트리메톡시실란, p-(2-요오드에틸)페닐트리메톡시실란을 들 수 있다.
또, 상기 할로알킬아릴트리에톡시실란으로는, 예를 들어, p-클로로메틸페닐트리에톡시실란, p-(2-클로로에틸)페닐트리에톡시실란, p-브로모메틸페닐트리에톡시실란, p-(2-브로모에틸)페닐트리에톡시실란, p-요오드메틸페닐트리에톡시실란, p-(2-요오드에틸)페닐트리에톡시실란을 들 수 있다.
또, 상기 할로알킬아릴트리프로폭시실란으로는, 예를 들어, p-클로로메틸페닐트리프로폭시실란, p-(2-클로로에틸)페닐트리프로폭시실란, p-브로모메틸페닐트리프로폭시실란, p-(2-브로모에틸)페닐트리프로폭시실란, p-요오드메틸페닐트리프로폭시실란, p-(2-요오드에틸)페닐트리프로폭시실란을 들 수 있다.
또, 상기 할로알킬아르알킬트리메톡시실란으로는, 예를 들어, p-클로로메틸벤질트리메톡시실란, p-브로모메틸벤질트리메톡시실란, p-요오드메틸벤질트리메톡시실란을 들 수 있다.
또, 상기 할로알킬아르알킬트리에톡시실란으로는, p-클로로메틸벤질트리에톡시실란, p-브로모메틸벤질트리에톡시실란, p-요오드메틸벤질트리에톡시실란을 들 수 있다.
또, 상기 할로알킬아르알킬트리프로폭시실란으로는, p-클로로메틸벤질트리프로폭시실란, p-브로모메틸벤질트리프로폭시실란, p-요오드메틸벤질트리프로폭시실란을 들 수 있다.
또, 식 (1) 로 나타내는 실란 화합물 중 할로아릴기를 함유하는 것의 구체예로는, 할로아릴트리알콕시실란, 할로아르알킬트리알콕시실란 등을 들 수 있다.
상기 할로아릴트리알콕시실란으로는, p-클로로페닐트리메톡시실란, p-브로모페닐트리메톡시실란, p-클로로페닐트리에톡시실란, p-브로모페닐트리에톡시실란, p-클로로페닐트리프로폭시실란, p-브로모페닐트리프로폭시실란을 들 수 있다.
또, 상기 할로아르알킬트리알콕시실란으로는, p-클로로벤질트리메톡시실란, p-브로모벤질트리메톡시실란, p-요오드벤질트리메톡시실란, p-클로로벤질트리에톡시실란, p-브로모벤질트리에톡시실란, p-요오드벤질트리에톡시실란, p-클로로벤질트리프로폭시실란, p-브로모벤질트리프로폭시실란, p-요오드벤질트리프로폭시실란 등을 들 수 있다.
상기 실란 화합물의 사용량은, 촉매 활성 및 저가로 촉매를 제조하는 관점에서, 실리카 겔 1 몰에 대하여, 0.001 ∼ 0.5 몰이 바람직하고, 0.01 ∼ 0.1 몰이 보다 바람직하고, 0.02 ∼ 0.08 몰이 더욱 바람직하고, 0.025 ∼ 0.06 몰이 특히 바람직하다.
공정 (a) 의 반응 온도는 특별히 한정되지 않지만, 바람직하게는 50 ∼ 160 ℃, 보다 바람직하게는 80 ∼ 150 ℃, 더욱 바람직하게는 100 ∼ 140 ℃ 이고, 더욱 바람직하게는 110 ∼ 140 ℃ 이고, 더욱 바람직하게는 125 ∼ 140 ℃ 의 범위이다. 반응 온도를 160 ℃ 이하로 함으로써 담지된 실란 화합물의 분해를 억제할 수 있고, 한편, 50 ℃ 이상으로 함으로써 반응 속도를 빠르게 할 수 있다.
공정 (a) 의 반응 시간은 특별히 한정되지 않지만, 바람직하게는 1 ∼ 30 시간, 보다 바람직하게는 3 ∼ 28 시간, 특히 바람직하게는 5 ∼ 26 시간이다. 또한, 본 공정 (a) 에 의하면, 반응 시간이 5 ∼ 10 시간이어도 충분한 할로겐 함유량의 촉매 전구체를 얻을 수 있다.
또, 공정 (a) 에서 얻어지는 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체에 있어서의 할로겐의 함유량으로는, 촉매 활성의 관점에서, 촉매 전구체 1 g 당 1.0 m㏖ 이하가 바람직하고, 0.1 ∼ 1.0 m㏖ 이 보다 바람직하고, 0.2 ∼ 0.95 m㏖ 이 더욱 바람직하고, 0.3 ∼ 0.9 m㏖ 이 더욱 바람직하고, 0.3 ∼ 0.75 m㏖ 이 더욱 바람직하고, 0.3 ∼ 0.5 m㏖ 이 특히 바람직하다.
할로알킬기 또는 할로아릴기를 갖는 실란 화합물의 사용량을 조정하여 공정 (a) 를 자일렌 존재하에서 실시함으로써, 상기 범위의 할로겐 함유량의 촉매 전구체가 얻어진다. 또, 상기 흡착 수분량 1 질량% 이하로 조제된 실리카 겔의 사용에 의해, 할로겐 함유량을 더욱 제어하기 쉬워진다.
상기 할로겐 함유량은, 나중에 기재하는 실시예와 동일하게 하여 측정하면 된다.
[공정 (b)]
공정 (b) 는 공정 (a) 에서 얻어진 촉매 전구체와 3 급 포스핀을 반응시켜 고리형 카보네이트 합성용 촉매를 얻는 공정이다. 촉매 전구체와 3 급 포스핀을 반응시킴으로써, 촉매 전구체의 할로알킬기 또는 할로아릴기가, 할로겐화물 아니온을 카운터 이온으로 하는 4 급 포스포늄기로 변환된다. 따라서, 고리형 카보네이트 합성용 촉매는, 할로겐화물 아니온을 카운터 이온으로 하는 4 급 포스포늄기를 갖는다.
공정 (b) 에서 사용하는 3 급 포스핀으로는, 하기 식 (2) 로 나타내는 것이 바람직하다. 그 3 급 포스핀은 1 종을 단독으로 또는 2 종 이상을 조합하여 사용해도 된다.
[화학식 2]
Figure pct00002
[식 (2) 중, R3 ∼ R5 는 각각 독립적으로 탄소수 1 ∼ 8 의 알킬기, 아릴기, 아르알킬기, 알콕시알킬기, 알콕시를 치환기로서 갖는 아릴기, 또는 이들 기에 함유되는 수소 원자의 1 개 이상이 헤테로 원자를 함유하는 기로 치환된 것을 나타낸다]
식 (2) 중, R3 ∼ R5 로 나타내는 탄소수 1 ∼ 8 의 알킬기는, 직사슬형, 분기 사슬형, 고리형 중 어느 것이어도 되고, 예를 들어, 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 시클로헥실기 등을 들 수 있다.
또, R3 ∼ R5 로 나타내는 아릴기는 바람직하게는 탄소수 6 ∼ 10 의 아릴기이고, 예를 들어, 페닐기, 톨릴기, 자일릴기, 나프틸기 등을 들 수 있다.
또, R3 ∼ R5 로 나타내는 아르알킬기는 바람직하게는 탄소수 7 ∼ 12 의 아르알킬기이고, 예를 들어, 벤질기 등을 들 수 있다.
또, R3 ∼ R5 로 나타내는 알콕시알킬기는 바람직하게는 탄소수 2 ∼ 8 의 알콕시알킬기이고, 예를 들어 메톡시에틸기 등을 들 수 있다.
또, R3 ∼ R5 로 나타내는 알콕시를 치환기로서 갖는 아릴기는 바람직하게는 탄소수 7 ∼ 14 의 알콕시아릴기이고, 예를 들어 메톡시페닐기, 디메톡시페닐기 등을 들 수 있다. 또, 아릴기가 갖는 알콕시기의 개수 및 위치는 임의이지만, 바람직한 알콕시기의 개수는 1 ∼ 4 개이고, 보다 바람직하게는 1 또는 2 개이다.
또한, 상기 탄소수 1 ∼ 8 의 알킬기, 아릴기, 아르알킬기, 알콕시알킬기, 알콕시를 치환기로서 갖는 아릴기는, 이들 기에 함유되는 수소 원자의 1 개 이상이 헤테로 원자를 함유하는 기로 치환되어 있어도 된다. 헤테로 원자로는, 질소, 산소, 인, 황, 할로겐 원자 (불소 원자 등) 등을 들 수 있다.
상기 헤테로 원자를 함유하는 기로는, 아미노기, 하이드라지노기, 니트로기, 시아노기, 이소시아노기, 아미디노기 등의 질소 함유기 ; 알카노일기, 카르복실기, 알콕시카르보닐기, 하이드록시기 등의 산소 함유기 ; 포스파닐기, 포스포노기, 포스피닐기 등의 인 함유기 ; 술포기, 술파닐기, 알킬술파닐기, 알킬술포닐기, 알킬술포닐아미노기, 알킬아미노술포닐기, 알킬술피닐기, 알킬아미노술피닐기, 알킬술피닐아미노기, 티오카르복실기 등의 황 함유기 등을 들 수 있다.
상기 서술한 바와 같은 R3 ∼ R5 중에서도, 탄소수 1 ∼ 8 의 알킬기가 바람직하고, 탄소수 1 ∼ 8 의 직사슬형 또는 분기 사슬형의 알킬기가 보다 바람직하고, 탄소수 1 ∼ 4 의 직사슬형 또는 분기 사슬형의 알킬기가 더욱 바람직하고, 부틸기가 특히 바람직하다.
상기 식 (2) 로 나타내는 화합물의 구체예로는, 트리 C1-8 알킬포스핀, 트리아릴포스핀, 디아릴 C1-8 알킬포스핀, 아릴디 C1-8 알킬포스핀, 트리아르알킬포스핀, 디아르알킬 C1-8 알킬포스핀, 디아르알킬아릴포스핀, 아르알킬디 C1-8 알킬포스핀, 아르알킬디아릴포스핀, 트리스(알콕시아릴)포스핀, 비스(알콕시아릴) C1-8 알킬포스핀, 비스(알콕시아릴)아릴포스핀, 비스(알콕시아릴)아르알킬포스핀, (알콕시아릴)디 C1-8 알킬포스핀, (디알콕시아릴)디 C1-8 알킬포스핀, 알콕시아릴디아릴포스핀, (디알콕시아릴)디아릴포스핀, 알콕시아릴디아르알킬포스핀, (디알콕시아릴)디아르알킬포스핀을 들 수 있다.
상기 트리 C1-8 알킬포스핀으로는, 예를 들어, 트리메틸포스핀, 트리에틸포스핀, 트리프로필포스핀, 트리이소프로필포스핀, 트리n-부틸포스핀, 트리이소부틸포스핀, 트리펜틸포스핀, 트리헥실포스핀, 트리헵틸포스핀, 트리옥틸포스핀, 트리시클로헥실포스핀, 디메틸에틸포스핀, 디메틸프로필포스핀, 디메틸이소프로필포스핀, 디메틸n-부틸포스핀, 디메틸이소부틸포스핀, 디메틸펜틸포스핀, 디메틸헥실포스핀, 디메틸헵틸포스핀, 디메틸옥틸포스핀, 디메틸시클로헥실포스핀, 디에틸메틸포스핀, 디에틸프로필포스핀, 디에틸이소프로필포스핀, 디에틸n-부틸포스핀, 디에틸이소부틸포스핀, 디에틸펜틸포스핀, 디에틸헥실포스핀, 디에틸헵틸포스핀, 디에틸옥틸포스핀, 디에틸시클로헥실포스핀,
디프로필메틸포스핀, 디프로필에틸포스핀, 디프로필이소프로필포스핀, 디프로필n-부틸포스핀, 디프로필이소부틸포스핀, 디프로필펜틸포스핀, 디프로필헥실포스핀, 디프로필헵틸포스핀, 디프로필옥틸포스핀, 디프로필시클로헥실포스핀, 디이소프로필메틸포스핀, 디이소프로필에틸포스핀, 디이소프로필프로필포스핀, 디이소프로필n-부틸포스핀, 디이소프로필이소부틸포스핀, 디이소프로필펜틸포스핀, 디이소프로필헥실포스핀, 디이소프로필헵틸포스핀, 디이소프로필옥틸포스핀, 디이소프로필시클로헥실포스핀, 디n-부틸메틸포스핀, 디n-부틸에틸포스핀, 디n-부틸프로필포스핀, 디n-부틸이소프로필포스핀, 디n-부틸이소부틸포스핀, 디n-부틸펜틸포스핀, 디n-부틸헥실포스핀, 디n-부틸헵틸포스핀, 디n-부틸옥틸포스핀, 디n-부틸시클로헥실포스핀,
디이소부틸메틸포스핀, 디이소부틸에틸포스핀, 디이소부틸프로필포스핀, 디이소부틸이소프로필포스핀, 디이소부틸n-부틸포스핀, 디이소부틸펜틸포스핀, 디이소부틸헥실포스핀, 디이소부틸헵틸포스핀, 디이소부틸옥틸포스핀, 디이소부틸시클로헥실포스핀, 디펜틸메틸포스핀, 디펜틸에틸포스핀, 디펜틸프로필포스핀, 디펜틸이소프로필포스핀, 디펜틸n-부틸포스핀, 디펜틸이소부틸포스핀, 디펜틸헥실포스핀, 디펜틸헵틸포스핀, 디펜틸옥틸포스핀, 디펜틸시클로헥실포스핀, 디헥실메틸포스핀, 디헥실에틸포스핀, 디헥실프로필포스핀, 디헥실이소프로필포스핀, 디헥실n-부틸포스핀, 디헥실이소부틸포스핀, 디헥실펜틸포스핀, 디헥실헵틸포스핀, 디헥실옥틸포스핀, 디헥실시클로헥실포스핀,
디헵틸메틸포스핀, 디헵틸에틸포스핀, 디헵틸프로필포스핀, 디헵틸이소프로필포스핀, 디헵틸n-부틸포스핀, 디헵틸이소부틸포스핀, 디헵틸펜틸포스핀, 디헵틸헥실포스핀, 디헵틸옥틸포스핀, 디헵틸시클로헥실포스핀, 디옥틸메틸포스핀, 디옥틸에틸포스핀, 디옥틸프로필포스핀, 디옥틸이소프로필포스핀, 디옥틸n-부틸포스핀, 디옥틸이소부틸포스핀, 디옥틸펜틸포스핀, 디옥틸헥실포스핀, 디옥틸헵틸포스핀, 디옥틸시클로헥실포스핀, 디시클로헥실메틸포스핀, 디시클로헥실에틸포스핀, 디시클로헥실프로필포스핀, 디시클로헥실이소프로필포스핀, 디시클로헥실n-부틸포스핀, 디시클로헥실이소부틸포스핀, 디시클로헥실펜틸포스핀, 디시클로헥실헥실포스핀, 디시클로헥실헵틸포스핀, 디시클로헥실옥틸포스핀을 들 수 있다.
상기 트리아릴포스핀으로는, 트리페닐포스핀, 트리톨릴포스핀, 트리자일릴포스핀을 들 수 있다.
상기 디아릴 C1-8 알킬포스핀으로는, 디페닐메틸포스핀, 디페닐에틸포스핀, 디페닐프로필포스핀, 디페닐이소프로필포스핀, 디페닐n-부틸포스핀, 디페닐이소부틸포스핀, 디페닐펜틸포스핀, 디페닐헥실포스핀, 디페닐헵틸포스핀, 디페닐옥틸포스핀, 디페닐시클로헥실포스핀, 디톨릴메틸포스핀, 디톨릴에틸포스핀, 디톨릴프로필포스핀, 디톨릴이소프로필포스핀, 디톨릴n-부틸포스핀, 디톨릴이소부틸포스핀, 디톨릴펜틸포스핀, 디톨릴헥실포스핀, 디톨릴헵틸포스핀, 디톨릴옥틸포스핀, 디톨릴시클로헥실포스핀, 디자일릴메틸포스핀, 디자일릴에틸포스핀, 디자일릴프로필포스핀, 디자일릴이소프로필포스핀, 디자일릴n-부틸포스핀, 디자일릴이소부틸포스핀, 디자일릴펜틸포스핀, 디자일릴헥실포스핀, 디자일릴헵틸포스핀, 디자일릴옥틸포스핀, 디자일릴시클로헥실포스핀을 들 수 있다.
상기 아릴디 C1-8 알킬포스핀으로는, 페닐디메틸포스핀, 페닐디에틸포스핀, 페닐디프로필포스핀, 페닐디이소프로필포스핀, 페닐디n-부틸포스핀, 페닐디이소부틸포스핀, 페닐디펜틸포스핀, 페닐디헥실포스핀, 페닐디헵틸포스핀, 페닐디옥틸포스핀, 페닐디시클로헥실포스핀, 톨릴디메틸포스핀, 톨릴디에틸포스핀, 톨릴디프로필포스핀, 톨릴디이소프로필포스핀, 톨릴디n-부틸포스핀, 톨릴디이소부틸포스핀, 톨릴디펜틸포스핀, 톨릴디헥실포스핀, 톨릴디헵틸포스핀, 톨릴디옥틸포스핀, 톨릴디시클로헥실포스핀, 자일릴디메틸포스핀, 자일릴디에틸포스핀, 자일릴디프로필포스핀, 자일릴디이소프로필포스핀, 자일릴디n-부틸포스핀, 자일릴디이소부틸포스핀, 자일릴디펜틸포스핀, 자일릴디헥실포스핀, 자일릴디헵틸포스핀, 자일릴디옥틸포스핀, 자일릴디시클로헥실포스핀을 들 수 있다.
상기 트리아르알킬포스핀으로는, 트리벤질포스핀을 들 수 있다.
또, 상기 디아르알킬 C1-8 알킬포스핀으로는, 디벤질메틸포스핀, 디벤질에틸포스핀, 디벤질프로필포스핀, 디벤질이소프로필포스핀, 디벤질n-부틸포스핀, 디벤질이소부틸포스핀, 디벤질펜틸포스핀, 디벤질헥실포스핀, 디벤질헵틸포스핀, 디벤질옥틸포스핀, 디벤질시클로헥실포스핀을 들 수 있다.
상기 디아르알킬아릴포스핀으로는, 디벤질페닐포스핀, 디벤질톨릴포스핀, 디벤질자일릴포스핀을 들 수 있다.
상기 아르알킬디 C1-8 알킬포스핀으로는, 벤질디메틸포스핀, 벤질디에틸포스핀, 벤질디프로필포스핀, 벤질디이소프로필포스핀, 벤질디n-부틸포스핀, 벤질디이소부틸포스핀, 벤질디펜틸포스핀, 벤질디헥실포스핀, 벤질디헵틸포스핀, 벤질디옥틸포스핀, 벤질디시클로헥실포스핀을 들 수 있다.
상기 아르알킬디아릴포스핀으로는, 벤질디페닐포스핀, 벤질디톨릴포스핀, 벤질디자일릴포스핀을 들 수 있다.
상기 트리스(알콕시아릴)포스핀으로는, 트리스(2,6-디메톡시페닐)포스핀, 트리-o-메톡시페닐포스핀, 트리-p-메톡시페닐포스핀을 들 수 있다.
상기 비스(알콕시아릴) C1-8 알킬포스핀으로는, 비스(2,6-디메톡시페닐)메틸포스핀, 비스(2,6-디메톡시페닐)에틸포스핀, 비스(2,6-디메톡시페닐)프로필포스핀, 비스(2,6-디메톡시페닐)이소프로필포스핀, 비스(2,6-디메톡시페닐)n-부틸포스핀, 비스(2,6-디메톡시페닐)이소부틸포스핀, 비스(2,6-디메톡시페닐)펜틸포스핀, 비스(2,6-디메톡시페닐)헥실포스핀, 비스(2,6-디메톡시페닐)헵틸포스핀, 비스(2,6-디메톡시페닐)옥틸포스핀, 비스(2,6-디메톡시페닐)시클로헥실포스핀, 디-o-메톡시페닐메틸포스핀, 디-o-메톡시페닐에틸포스핀, 디-o-메톡시페닐프로필포스핀, 디-o-메톡시페닐이소프로필포스핀, 디-o-메톡시페닐n-부틸포스핀, 디-o-메톡시페닐이소부틸포스핀, 디-o-메톡시페닐펜틸포스핀, 디-o-메톡시페닐헥실포스핀, 디-o-메톡시페닐헵틸포스핀, 디-o-메톡시페닐옥틸포스핀, 디-o-메톡시페닐시클로헥실포스핀, 디-p-메톡시페닐메틸포스핀, 디-p-메톡시페닐에틸포스핀, 디-p-메톡시페닐메틸포스핀, 디-p-메톡시페닐에틸포스핀, 디-p-메톡시페닐프로필포스핀, 디-p-메톡시페닐이소프로필포스핀, 디-p-메톡시페닐n-부틸포스핀, 디-p-메톡시페닐이소부틸포스핀, 디-p-메톡시페닐펜틸포스핀, 디-p-메톡시페닐헥실포스핀, 디-p-메톡시페닐헵틸포스핀, 디-p-메톡시페닐옥틸포스핀, 디-p-메톡시페닐시클로헥실포스핀을 들 수 있다.
상기 비스(알콕시아릴)아릴포스핀으로는, 비스(2,6-디메톡시페닐)페닐포스핀, 비스(2,6-디메톡시페닐)톨릴포스핀, 비스(2,6-디메톡시페닐)자일릴포스핀, 디-o-메톡시페닐페닐포스핀, 디-o-메톡시페닐톨릴포스핀, 디-o-메톡시페닐자일릴포스핀, 디-p-메톡시페닐페닐포스핀, 디-p-메톡시페닐톨릴포스핀, 디-p-메톡시페닐자일릴포스핀을 들 수 있다.
상기 비스(알콕시아릴)아르알킬포스핀으로는, 비스(2,6-디메톡시페닐)벤질포스핀, 디-o-메톡시페닐벤질포스핀, 디-p-메톡시페닐벤질포스핀을 들 수 있다.
상기 (알콕시아릴)디 C1-8 알킬포스핀으로는, o-메톡시페닐디메틸포스핀, o-메톡시페닐디에틸포스핀, o-메톡시페닐디프로필포스핀, o-메톡시페닐디이소프로필포스핀, o-메톡시페닐디n-부틸포스핀, o-메톡시페닐디이소부틸포스핀, o-메톡시페닐디펜틸포스핀, o-메톡시페닐디헥실포스핀, o-메톡시페닐디헵틸포스핀, o-메톡시페닐디옥틸포스핀, o-메톡시페닐디시클로헥실포스핀, p-메톡시페닐디메틸포스핀, p-메톡시페닐디에틸포스핀, p-메톡시페닐디프로필포스핀, p-메톡시페닐디이소프로필포스핀, p-메톡시페닐디n-부틸포스핀, p-메톡시페닐디이소부틸포스핀, p-메톡시페닐디펜틸포스핀, p-메톡시페닐디헥실포스핀, p-메톡시페닐디헵틸포스핀, p-메톡시페닐디옥틸포스핀, p-메톡시페닐디시클로헥실포스핀을 들 수 있다.
상기 (디알콕시아릴)디 C1-8 알킬포스핀으로는, 2,6-디메톡시페닐디메틸포스핀, 2,6-디메톡시페닐디에틸포스핀, 2,6-디메톡시페닐디프로필포스핀, 2,6-디메톡시페닐디이소프로필포스핀, 2,6-디메톡시페닐디n-부틸포스핀, 2,6-디메톡시페닐디이소부틸포스핀, 2,6-디메톡시페닐디펜틸포스핀, 2,6-디메톡시페닐디헥실포스핀, 2,6-디메톡시페닐디헵틸포스핀, 2,6-디메톡시페닐디옥틸포스핀, 2,6-디메톡시페닐디시클로헥실포스핀을 들 수 있다.
상기 알콕시아릴디아릴포스핀으로는, o-메톡시페닐디페닐포스핀, o-메톡시페닐디톨릴포스핀, o-메톡시페닐디자일릴포스핀, p-메톡시페닐디페닐포스핀, p-메톡시페닐디톨릴포스핀, p-메톡시페닐디자일릴포스핀을 들 수 있다.
상기 (디알콕시아릴)디아릴포스핀으로는, 2,6-디메톡시페닐디페닐포스핀, 2,6-디메톡시페닐디톨릴포스핀, 2,6-디메톡시페닐디자일릴포스핀을 들 수 있다.
상기 알콕시아릴디아르알킬포스핀으로는, o-메톡시페닐디벤질포스핀, p-메톡시페닐디벤질포스핀을 들 수 있다.
상기 (디알콕시아릴)디아르알킬포스핀으로는, 2,6-디메톡시페닐디벤질포스핀을 들 수 있다.
3 급 포스핀의 사용량은, 공정 (a) 에서 사용하는 실리카 겔 1 몰에 대하여, 0.001 ∼ 0.5 몰이 바람직하고, 0.01 ∼ 0.1 몰이 보다 바람직하고, 0.02 ∼ 0.08 몰이 더욱 바람직하고, 0.025 ∼ 0.06 몰이 특히 바람직하다.
또, 공정 (a) 에서 사용하는 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과, 상기 3 급 포스핀의 사용량의 몰비 [실란 화합물/3 급 포스핀] 로는, 촉매 활성의 관점에서, 0.1 ∼ 15 가 바람직하고, 0.1 ∼ 7.5 가 보다 바람직하고, 0.1 ∼ 1.2 가 더욱 바람직하고, 0.2 ∼ 1.0 이 더욱 바람직하고, 0.3 ∼ 0.9 가 더욱 바람직하고, 0.4 ∼ 0.9 가 더욱 바람직하고, 0.4 ∼ 0.8 이 특히 바람직하다.
또, 공정 (b) 는, 용매 존재하에서 실시하는 것이 바람직하고, 그 용매로는 탄화수소 용매가 바람직하다.
상기 탄화수소 용매로는, 지방족 탄화수소 용매, 방향족 탄화수소 용매, 지환식 탄화수소 용매를 들 수 있다. 또한, 지방족 탄화수소 용매는, n-도데칸 등의 노르말파라핀계 용매, 이소도데칸 등의 이소파라핀계 용매 중 어느 것이어도 된다. 이들 용매는 1 종을 단독으로 또는 2 종 이상을 조합하여 사용해도 된다.
이들 탄화수소 용매 중에서도, 고리형 카보네이트 합성에 있어서의 부반응의 억제 및 반응 속도의 관점에서, 방향족 탄화수소 용매가 바람직하다. 그 방향족 탄화수소 용매로는, 톨루엔, 자일렌, 에틸벤젠 등을 들 수 있고, 자일렌이 보다 바람직하다. 자일렌은, o-자일렌, m-자일렌, p-자일렌, 혼합 자일렌 중 어느 것이어도 되고, 에틸벤젠을 함유하는 것이어도 된다.
또한, 상기 공정 (a) 에서 사용한 용매를 그대로 공정 (b) 의 용매로 할 수도 있고, 이로써 용매의 제거나 건조 등의 순서가 불필요해져, 보다 간편하게 우수한 촉매 활성을 나타내는 촉매를 얻을 수 있다.
상기 용매의 사용량은 특별히 한정되지 않지만, 3 급 포스핀 100 질량부에 대하여, 통상적으로 100 ∼ 2000 질량부이지만, 바람직하게는 100 ∼ 1750 질량부이고, 보다 바람직하게는 500 ∼ 1500 질량부이다.
또, 공정 (b) 의 반응 온도는 특별히 한정되지 않지만, 열에 의한 촉매 열화의 억제 및 반응 효율의 관점에서, 바람직하게는 60 ∼ 160 ℃, 보다 바람직하게는 100 ∼ 150 ℃, 더욱 바람직하게는 110 ∼ 140 ℃ 의 범위이다.
또, 공정 (b) 의 반응 시간은 특별히 한정되지 않지만, 인 함유량을 충분한 것으로 하고 또한 할로겐의 탈리량을 억제하는 관점에서, 바람직하게는 10 ∼ 100 시간, 보다 바람직하게는 15 ∼ 50 시간이다.
또한, 상기 각 공정에 있어서, 촉매 전구체 및 촉매의 단리는, 필요에 따라, 여과, 세정, 건조 등의 통상적인 수단을 적절히 조합하여 실시하면 된다.
또, 공정 (b) 에서 얻어지는 고리형 카보네이트 합성용 촉매 중의 할로겐 함유량과 인 함유량의 몰비 [할로겐/인] 로는, 촉매 활성 및 고리형 카보네이트 합성에 있어서의 부생성물 억제의 관점에서, 0.8 ∼ 1.6 이 바람직하고, 1.0 ∼ 1.6 이 보다 바람직하다.
상기 몰비 [할로겐/인] 는, 공정 (a) 에서 자일렌을 사용함으로써 조정하기 쉬워진다. 또, 할로알킬기 또는 할로아릴기를 갖는 실란 화합물이나 3 급 포스핀의 사용량이나 실리카 겔의 평균 세공 직경 등에 의해 더욱 제어하기 쉬워진다.
또, 고리형 카보네이트 합성용 촉매에 있어서의 할로겐 함유량으로는, 촉매 활성 및 고리형 카보네이트 합성에 있어서의 부생성물 억제의 관점에서, 촉매 1 g 당 0.25 ∼ 0.8 m㏖ 이 바람직하고, 0.3 ∼ 0.8 m㏖ 이 보다 바람직하다.
상기 할로겐 함유량은, 공정 (a) 에서 자일렌을 사용함으로써 조정하기 쉬워진다. 또, 할로알킬기 또는 할로아릴기를 갖는 실란 화합물의 사용량이나 실리카 겔의 평균 세공 직경의 조정, 혹은 상기 흡착 수분량 1 질량% 이하로 조제된 실리카 겔의 사용에 의해 더욱 제어하기 쉬워진다.
또, 고리형 카보네이트 합성용 촉매에 있어서의 인 함유량으로는, 촉매 활성의 관점에서, 촉매 1 g 당 0.25 ∼ 0.6 m㏖ 이 바람직하고, 0.3 ∼ 0.6 m㏖ 이 보다 바람직하다.
상기 인 함유량은, 공정 (a) 에서 자일렌을 사용함으로써 조정하기 쉬워진다. 또, 3 급 포스핀의 사용량의 조정이나 실리카 겔의 평균 세공 직경을 3.5 ∼ 25 ㎚ 의 범위로 함으로써 더욱 제어하기 쉬워진다.
또, 고리형 카보네이트 합성용 촉매는, 불균일계 촉매 (고체 촉매) 이고, 세공을 갖는다. 그 평균 세공 직경으로는, 촉매 활성의 관점에서, 1 ㎚ ∼ 50 ㎚ 의 범위가 바람직하고, 3 ∼ 20 ㎚ 의 범위가 보다 바람직하고, 3.5 ∼ 15 ㎚ 의 범위가 더욱 바람직하고, 5 ∼ 15 ㎚ 의 범위가 더욱 바람직하고, 6 ∼ 15 ㎚ 의 범위가 더욱 바람직하다.
또, 고리형 카보네이트 합성용 촉매의 비표면적으로는, 80 ∼ 2000 ㎡/g 의 범위가 바람직하고, 100 ∼ 1000 ㎡/g 의 범위가 보다 바람직하다.
상기 할로겐이나 인의 함유량, 평균 세공 직경, 비표면적은, 나중에 기재하는 실시예와 동일하게 하여 측정하면 된다.
그리고, 본 발명의 제조 방법에 의하면, 고전화율, 고선택률 또한 고수율로 고리형 카보네이트를 합성할 수 있고 우수한 촉매 활성을 나타내는 불균일계 촉매를, 실란 화합물의 사용량이 소량인 경우나 반응 시간이 짧은 경우였다고 해도 간편하게 또한 저비용으로 제조할 수 있다. 또, 이러한 제조 방법으로 얻어지는 촉매를 사용하여 고리형 카보네이트를 합성했을 경우, 브로모프로판올이나 브로모에탄올과 같은 부생성물의 생성도 적다.
본 발명의 촉매는, 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용하는 촉매로서 유용하다.
<고리형 카보네이트의 합성 방법>
본 발명의 고리형 카보네이트의 합성 방법은, 상기 제조 방법으로 얻어진 촉매의 존재하에서, 에폭사이드와 이산화탄소를 반응시키는 것이다. 그 합성 방법은, 상기 촉매를 사용하는 것 이외에는 통상적인 방법에 따라 실시하면 된다.
상기 촉매의 사용량은 적절히 조정하면 되지만, 에폭사이드 100 질량부에 대하여, 통상적으로 0.01 ∼ 106 질량부이고, 바람직하게는 0.1 ∼ 105 질량부, 보다 바람직하게는 1 ∼ 104 질량부이다.
또, 상기 에폭사이드로는, 에폭시 고리 (탄소 원자 2 개와 산소 원자 1 개로 이루어지는 3 원자 고리) 를 구조식 중에 적어도 하나 함유하는 화합물이면 특별히 한정되지 않지만, 예를 들어, 에틸렌옥사이드, 프로필렌옥사이드, 부틸렌옥사이드, 이소부틸렌옥사이드, 비닐에틸렌옥사이드, 트리플루오로메틸에틸렌옥사이드, 시클로헥센옥사이드, 스티렌옥사이드, 부타디엔모노옥사이드, 부타디엔디옥사이드, 2-메틸-3-페닐부텐옥사이드, 피넨옥사이드, 테트라시아노에틸렌옥사이드 등을 들 수 있다.
이와 같은 에폭사이드 중에서도, 하기 식 (3) 으로 나타내는 것이 바람직하다.
[화학식 3]
Figure pct00003
[식 (3) 중, R6 및 R7 은 각각 독립적으로 수소 원자, 탄소수 1 ∼ 6 의 알킬기, 탄소수 1 ∼ 6 의 할로알킬기, 탄소수 2 ∼ 6 의 알케닐기, 또는 탄소수 2 ∼ 6 의 할로알케닐기를 나타낸다]
상기 R6 및 R7 로 나타내는 알킬기, 할로알킬기의 탄소수는, 바람직하게는 1 ∼ 4 이다. 그 알킬기로는 예를 들어, 상기 R2 와 동일한 것을 들 수 있다. 할로알킬기에 있어서의 할로겐 원자는 상기 X 와 동일한 것을 들 수 있다.
이와 같은 식 (3) 으로 나타내는 것 중에서도, 에틸렌옥사이드, 프로필렌옥사이드가 바람직하다.
본 발명의 고리형 카보네이트의 합성 방법은, 용매 존재하 및 비존재하 중 어느 것으로도 실시할 수 있다. 용매를 사용하는 경우, 목적 화합물인 고리형 카보네이트 외에, 펜탄, 헥산, 헵탄 등의 지방족 탄화수소류 ; 벤젠, 톨루엔 등의 방향족 탄화수소류 ; 메탄올, 에탄올 등의 알코올류 ; 아세톤, 메틸에틸케톤 등의 케톤류 ; 디에틸에테르, 메틸-tert-부틸에테르, 테트라하이드로푸란, 디옥산 등의 에테르류 ; 디메틸포름아미드, 디메틸아세트아미드 등의 아미드류 ; 아세트산에틸 등의 에스테르류 ; 트리에틸아민, 피리딘, 메틸피리다진, N,N'-디메틸피리다지논 등의 제 3 급 아민류 ; 디부틸술파이드 등의 술파이드류 ; 트리부틸포스핀 등의 포스핀류 등을 사용하면 되고, 이들을 1 종 단독으로 또는 2 종 이상을 조합하여 사용해도 된다.
또, 본 발명의 고리형 카보네이트의 합성 방법의 반응 온도는, 반응 효율의 관점에서, 바람직하게는 20 ∼ 160 ℃, 보다 바람직하게는 50 ∼ 150 ℃, 더욱 바람직하게는 80 ∼ 140 ℃ 의 범위이다.
또, 반응 압력은 특별히 한정되지 않지만, 바람직하게는 0.1 ∼ 100 ㎫, 보다 바람직하게는 0.5 ∼ 50 ㎫, 더욱 바람직하게는 1.0 ∼ 25 ㎫ 의 범위이다.
또, 반응 시간은 특별히 한정되지 않지만, 통상적으로 0.1 ∼ 10 시간이고, 바람직하게는 0.5 ∼ 5 시간이다.
또, 본 발명의 고리형 카보네이트의 합성 방법은, 반응 양식으로서, 교반식이나 고정상식 (固定床式) 등의 일반적으로 사용되는 수법을 채용할 수 있고, 또, 배치식, 세미 배치식, 연속 유통식 중 어느 방법이어도 된다.
배치식은, 예를 들어 다음과 같이 하여 실시된다. 교반 장치를 구비한 오토클레이브에, 에폭사이드 및 촉매를 주입한 후, 이산화탄소를 충전하여 밀봉한다. 그 후, 오토클레이브 내를 교반하면서 소정 온도까지 가열하고, 이산화탄소를 추가로 충전함으로써 내압을 소정압으로 조제하고, 소정 시간 반응시킨 후, 생성하는 고리형 카보네이트를 원하는 수단으로 분리한다.
연속 유통식은, 예를 들어 도 1 에 나타내는 바와 같은, 고압 유체 송액 펌프 (A, B), 유체 혼합기 (C), 반응관 (D), 압력 제어 장치 (E), 온도 제어 장치 (F) 등을 결합한 유통 반응 장치 (도 1) 를 사용하여, 에폭사이드와 이산화탄소를 혼합한 후, 촉매를 충전한 반응관 내 (D) 에서 가열하여, 연속적으로 반응시키면 된다. 또 원료가 되는 에폭사이드와 이산화탄소 이외의 용매가 되는 물질을 공존시켜 유통시켜도 된다.
또한, 촉매의 전처리는 특별히 필요로 하지 않지만, 반응 전에 20 ∼ 140 ℃, 바람직하게는 50 ∼ 120 ℃ 에서 진공 배기, 혹은 헬륨, 아르곤, 질소, 이산화탄소 등의 불활성 가스 기류 중에서 처리함으로써, 고리형 카보네이트의 수율을 향상시킬 수 있다.
또, 본 발명의 고리형 카보네이트의 합성 방법에 의하면, 상기 에폭사이드의 에폭시 고리가 카보네이트 고리 (O-CO-O 결합을 갖는 5 원자 고리) 로 변환된 고리형 카보네이트를 합성할 수 있다. 이와 같은 고리형 카보네이트로는, 예를 들어, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 이소부틸렌카보네이트, 트리플루오로메틸에틸렌카보네이트, 비닐에틸렌카보네이트, 시클로헥센카보네이트, 스티렌카보네이트, 부타디엔모노카보네이트, 부타디엔디카보네이트, 클로로메틸카보네이트, 피넨카보네이트, 테트라시아노에틸렌카보네이트 등을 들 수 있다.
그리고, 이들 본 발명의 고리형 카보네이트의 합성 방법에 의하면, 고전화율, 고선택률 또한 고수율로 고리형 카보네이트를 합성할 수 있다. 또, 그 합성 방법은 브로모프로판올이나 2-브로모에탄올과 같은 부생성물의 생성도 적다.
실시예
이하, 실시예를 들어 본 발명을 상세하게 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다. 또한, 실리카 겔의 평균 세공 직경, 비표면적 및 입경 (또는 입도) 은 메이커 공칭값이다.
또, 각 실시예 및 비교예에 있어서 사용한 분석 방법은 이하와 같다.
(1) 촉매의 제조에 있어서, 브롬 및 인 수식량의 측정에는 형광 X 선 분석을 사용하였다 (장치 : 제품명 「System3270」 (리가쿠 전기 공업사 제조), 측정 조건 : Rh 관구, 관 전압 50 ㎸, 관 전류 50 ㎷, 진공 분위기, 검출기 : SC, F-PC).
(2) 고리형 카보네이트의 합성에 있어서, 반응액의 조성 분석에는 가스 크로마토그래피를 사용하였다. 분석 조건은 이하와 같다.
장치 : 제품명 「GC-2010Plus」 (시마즈 제작소사 제조)
검출기 : FID
INJ 온도 : 150 ℃
DET 온도 : 260 ℃
샘플량 : 0.3 ㎕
스플릿비 : 5
칼럼 : DB-624 (60 m, 0.32 ㎜ID, 1.8 ㎛, Agilent 사 제조)
칼럼 온도 : 70 ℃, 3 분 - 5 ℃/분 - 120 ℃ - 10 ℃/분 -250 ℃, 5 분 (합계 31 분)
제조예 1-1 : 촉매 전구체 X-1 의 제조
비즈상 실리카 겔 (후지 실리시아 화학 제조 CARiACT Q-10 (평균 세공 직경 10 ㎚, 입경 1.2 ∼ 2.4 ㎜, 비표면적 300 ㎡/g)) 10 g 과 자일렌 25 ㎖ 를 딘스탁 트랩을 구비한 50 ㎖ 플라스크에 주입하고, 140 ℃ 환류하, 2 시간 자일렌-물의 공비 탈수를 실시하여 실리카 겔 중의 수분을 제거하였다. 이어서, 50 ㎖ 플라스크로부터 딘스탁 트랩을 떼어내고, 플라스크 내를 질소로 치환한 후, 3-브로모프로필트리메톡시실란을 1.1 g (4.5 m㏖, 실리카 겔 1 g 에 대하여 0.45 m㏖) 적하하였다. 이것을 그대로 135 ℃ 에서 7 시간 가열 환류함으로써, 실란화 반응을 실시하였다.
이어서 얻어진 반응물을 여과에 의해 분리하고, 아세톤으로 충분히 세정을 실시하였다. 또한, 세정 후의 액체에 함유되는 3-브로모프로필트리메톡시실란이 50 ppm 미만인 것을 가스 크로마토그래프 분석에 의해 확인하였다. 얻어진 반응물을 50 ㎖ 플라스크에 넣고, 120 ℃ 에서 2 시간 감압 건조를 실시하여, 촉매 전구체 X-1 (브로모프로필화 실리카 겔) 을 얻었다. 분석 결과를 표 1 에 나타낸다.
제조예 1-2 : 촉매 전구체 X-2 의 제조
가열 시간을 7 시간으로부터 26 시간으로 변경한 것 이외에는 제조예 1-1 과 동일한 순서로 촉매 전구체 X-2 를 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 1-3 : 촉매 전구체 X-3 의 제조
가열 온도를 135 ℃ 에서부터 110 ℃ 로, 가열 시간을 7 시간으로부터 8 시간으로 각각 변경한 것 이외에는 제조예 1-1 과 동일한 순서로 촉매 전구체 X-3 을 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 1-4 : 촉매 전구체 X-4 의 제조
가열 시간을 8 시간으로부터 26 시간으로 변경한 것 이외에는 제조예 1-3 과 동일한 순서로 촉매 전구체 X-4 를 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 2-1 : 촉매 전구체 T-1 의 제조
반응 용매를 자일렌으로부터 톨루엔으로, 가열 온도를 135 ℃ 에서부터 110 ℃ (환류) 로, 가열 시간을 7 시간으로부터 8 시간으로, 각각 변경한 것 이외에는 제조예 1-1 과 동일한 순서로 촉매 전구체 T-1 을 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 2-2 : 촉매 전구체 T-2 의 제조
가열 시간을 8 시간으로부터 26 시간으로 변경한 것 이외에는 제조예 2-1 과 동일한 순서로 촉매 전구체 T-2 를 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 2-3 : 촉매 전구체 T-3 의 제조
가열 시간을 8 시간으로부터 49 시간으로 변경한 것 이외에는 제조예 2-1 과 동일한 순서로 촉매 전구체 T-3 을 제조하였다. 분석 결과를 표 1 에 나타낸다.
제조예 2-4 : 촉매 전구체 T-4 의 제조
3-브로모프로필트리메톡시실란의 적하량을 2.4 g (9.9 m㏖, 실리카 겔 1 g 에 대하여 0.99 m㏖) 으로 변경한 것 이외에는 제조예 2-1 과 동일한 순서로 촉매 전구체 T-4 를 제조하였다. 분석 결과를 표 1 에 나타낸다.
Figure pct00004
표 1 에 나타내는 바와 같이, 실란화 반응의 용매로서 자일렌을 사용함으로써, 할로알킬기 또는 할로아릴기 함유 실란 화합물의 사용량이 소량이고 또한 반응 시간이 단시간이어도, 충분한 양의 할로겐을 담지시킬 수 있었다. 실란화 반응의 용매로서 톨루엔을 사용한 경우, 소량의 실란 화합물로 충분한 양의 할로겐을 담지시키기 위해서는, 장시간의 반응이 필요하고 (제조예 2-3), 또, 단시간에 충분한 양의 할로겐을 담지시키기 위해서는, 실제로 담지되는 할로겐의 양보다 대과잉의 할로알킬기 또는 할로아릴기 함유 실란 화합물을 사용할 필요가 있다 (제조예 2-4).
실시예 1 : 촉매 XX-1 의 제조
제조예 1-1 에서 얻어진 촉매 전구체 X-1 을 9 g 과 자일렌 30 ㎖ 를 50 ㎖ 플라스크에 주입하고, 플라스크 내를 질소 치환한 후, 트리-n-부틸포스핀 1.8 g 을 적하하였다. 이것을 그대로 135 ℃ 에서 24 시간 가열 환류함으로써, 4 급 포스포늄화 반응을 실시하였다. 반응 후, 여과에 의해 반응물을 분리하고, 아세톤으로 충분히 세정하였다. 또한, 세정 후의 액체에 함유되는 트리-n-부틸포스핀이 50 ppm 미만인 것을 가스 크로마토그래프 분석에 의해 확인하였다. 얻어진 반응물을 50 ㎖ 플라스크에 넣고, 120 ℃ 에서 2 시간 감압 건조를 실시하여, 목적으로 하는 촉매 XX-1 (트리부틸포스포늄브로마이드 표면 수식 실리카 겔) 을 얻었다. 분석 결과를 표 2 에 나타낸다.
실시예 2 : XX-2 의 제조
촉매 전구체 X-1 을 촉매 전구체 X-2 로 변경한 것 이외에는 실시예 1 과 동일한 순서로 촉매 XX-2 를 제조하였다. 분석 결과를 표 2 에 나타낸다.
비교예 1 및 2 : 촉매 TX-1, TX-3 의 제조
촉매 전구체 X-1 을 촉매 전구체 T-1, T-3 으로 각각 변경한 것 이외에는 실시예 1 과 동일한 순서로 촉매 TX-1, TX-3 을 제조하였다. 분석 결과를 표 2 에 나타낸다.
실시예 3 : 프로필렌카보네이트의 합성
이하의 배치식 방법에 의해 프로필렌카보네이트의 합성을 실시하여 촉매 활성을 평가하였다.
교반자를 넣은 50 ㎖ 의 오토클레이브에, 실시예 1 에서 조제한 촉매 XX-1 을 800 ㎎ 주입하고, 120 ℃ 에서 1 시간 감압 건조를 실시하였다. 오토클레이브를 질소로 대기압, 실온으로 되돌린 후, 프로필렌옥사이드 3.5 g (60 m㏖) 을 주입하였다. 이어서, 이산화탄소를 1.5 ㎫ 까지 가충전하고, 그 후, 오토클레이브 내를 회전자에 의해 1000 rpm 으로 교반하면서 100 ℃ 까지 가열하고, 이산화탄소를 추가로 충전함으로써, 내압을 3 ㎫ 로 조정하고, 1 시간 반응시켰다. 냉각 후, 잔존하는 이산화탄소를 방출하고, 오토클레이브 내를 탈압하였다. 얻어지는 반응액을 가스 크로마토그래프에 의해 분석하였다. 결과를 표 2 에 나타낸다.
또한, 반응 불순물로서, 프로필렌글리콜, 2-브로모프로판올 및 1-브로모-2-프로판올이 검출되었다. 표 2 에는 이들 브로모프로판올의 검출량도 아울러 나타냈다.
실시예 4 : 프로필렌카보네이트의 합성
촉매 XX-1 을 촉매 XX-2 로 변경한 것 이외에는 실시예 3 과 동일한 순서로 배치식 반응에 의해 프로필렌카보네이트를 합성하여 촉매 활성의 평가를 실시하였다. 결과를 표 2 에 나타낸다.
비교예 3 및 4 : 프로필렌카보네이트의 합성
촉매 XX-1 을 촉매 TX-1, TX-3 으로 변경한 것 이외에는 실시예 3 과 동일한 순서로 배치식 반응에 의해 프로필렌카보네이트를 합성하여 촉매 활성의 평가를 실시하였다. 결과를 표 2 에 나타낸다.
Figure pct00005
실시예 5 : 촉매 XX-5 의 제조
(촉매 전구체의 제조)
비즈상 실리카 겔 (후지 실리시아 화학 제조 CARiACT Q-10 (평균 세공 직경 10 ㎚, 입경 1.2 ∼ 2.4 ㎜, 비표면적 300 ㎡/g)) 2000 g 과 자일렌 5000 ㎖ 를, 딘스탁 트랩을 구비한 10 ℓ 교반 날개가 부착된 3 구 플라스크에 주입하고, 140 ℃ 환류하, 2 시간 자일렌-물의 공비 탈수를 실시하여, 실리카 겔 중의 수분을 제거하였다. 또한, 이 때의 자일렌 용매 중의 수분량은 14 ppm 이었다. 이어서, 딘스탁 트랩을 떼어내고, 플라스크 내를 질소로 치환한 후, 3-브로모프로필트리메톡시실란 219 g (0.846 ㏖) 을 적하하였다. 이것을 그대로 135 ℃ 에서 7 시간 가열 환류함으로써, 실란화 반응을 실시하였다.
이어서 얻어진 반응물을 여과에 의해 분리하고, 자일렌으로 2 회 세정을 실시하여, 자일렌을 함유하는 촉매 전구체 X-5 (브로모프로필화 실리카 겔) 3810 g 을 얻었다.
또한, 2 회 세정 후의 액체에 함유되는 3-브로모프로필트리메톡시실란이 50 ppm 미만인 것을 가스 크로마토그래프 분석에 의해 확인하였다. 얻어진 촉매 전구체의 형광 X 선 분석에 의한 Br 수식량 측정 결과는 0.38 m㏖/g 이었다. 또, 자일렌의 함유율은 57 질량% 이고, 얻어진 전구체는 대략 2170 g 인 것으로 추측되었다.
(촉매의 제조)
얻어진 촉매 전구체 X-5 와 자일렌 5000 ㎖ 를 10 ℓ 교반 날개가 부착된 3 구 플라스크에 주입하고, 플라스크 내를 질소 치환한 후, 트리-n-부틸포스핀 453 g 을 적하하였다. 이것을 그대로 120 ℃ 에서 25 시간 가열함으로써, 4 급 포스포늄화 반응을 실시하였다. 반응 후, 여과에 의해 반응물을 분리하고, 아세톤으로 6 회 세정을 실시하였다. 또한, 6 회 세정 후의 세정액에 함유되는 트리-n-부틸포스핀이 50 ppm 미만인 것을 가스 크로마토그래프 분석에 의해 확인하였다. 얻어진 반응물을, 질소 기류하, 120 ℃ 에서 5 시간 감압 건조를 실시하여, 목적으로 하는 촉매 XX-5 (트리부틸포스포늄브로마이드 표면 수식 실리카 겔) 2328 g 을 얻었다. 촉매의 분석 결과를 표 3 에 나타낸다.
Figure pct00006
실시예 6 : 에틸렌카보네이트의 합성
이하의 배치식 방법에 의해 에틸렌카보네이트의 합성을 실시하여, 촉매 XX-5 의 촉매 활성을 평가하였다.
교반자를 넣은 50 ㎖ 의 오토클레이브에, 실시예 5 에서 조제한 촉매 XX-5 를 800 ㎎ 주입하고, 120 ℃ 에서 1 시간 감압 건조를 실시하였다. 이어서, 오토클레이브를 질소로 대기압, 실온으로 되돌리고, 에틸렌옥사이드 2.8 g (60 m㏖) 을 주입하였다. 이산화탄소를 1.5 ㎫ 까지 가충전하고, 그 후, 오토클레이브 내를 회전자에 의해 1000 rpm 으로 교반하면서 100 ℃ 까지 가열하고, 이산화탄소를 추가로 충전함으로써, 내압을 5.0 ㎫ 로 조정하고, 1 시간 반응시켰다. 냉각 후, 잔존하는 이산화탄소를 방출하고, 오토클레이브 내를 탈압하였다. 얻어진 에틸렌카보네이트는 융점 36 ℃ 이기 때문에, 오토클레이브에 아세토니트릴 용매를 4 g 첨가하고, 반응액을 용해시켰다. 얻어진 반응액을 가스 크로마토그래프에 의해 분석하여, 에틸렌옥사이드 전화율, 에틸렌카보네이트 선택률, 수율 및 외관의 1 차 반응 속도 계수 k 를 구하였다. 결과를 표 4 에 나타낸다.
또한, 외관의 1 차 반응 속도 계수 k 는 하기 식에 의해 구해진다.
k = -ln(1 - X/100)/t
식 중, X 는 전화율 (%), t 는 반응 시간 (hr) 이다.
또한, 가스 크로마토그래프에서는, 반응 불순물로서 에틸렌글리콜, 디에틸렌글리콜, 2-브로모에탄올이 검출되었다. 표 4 에는 2-브로모에탄올의 검출량도 아울러 나타냈다.
실시예 7 : 에틸렌카보네이트의 합성
촉매 XX-5 를 유발로 분쇄하고, 얻어진 분말을 체로 쳐서 입경이 200 - 400 mesh 인 것을 회수하고 나서 사용한 것 이외에는 실시예 6 과 동일한 순서로, 배치식 반응에 의해 에틸렌카보네이트를 합성하여 촉매 활성의 평가를 실시하였다. 결과를 표 4 에 나타낸다.
Figure pct00007
상기 실시예에 나타낸 바와 같이, 본 발명의 제조 방법에 의해 얻어진 촉매를 사용하면 높은 전화율 및 수율로 고리형 카보네이트를 합성할 수 있고, 또, 브로모프로판올이나 2-브로모에탄올 등의 불순물의 생성을 억제할 수 있다.

Claims (10)

  1. 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매의 제조 방법으로서, 하기 공정 (a) 및 (b) 를 포함하는 제조 방법.
    (a) 할로알킬기 또는 할로아릴기를 갖는 실란 화합물과 실리카 겔을 자일렌 존재하에서 반응시켜, 할로알킬기 또는 할로아릴기를 갖는 촉매 전구체를 얻는 공정
    (b) 공정 (a) 에서 얻어진 촉매 전구체와 3 급 포스핀을 반응시켜 고리형 카보네이트 합성용 촉매를 얻는 공정
  2. 제 1 항에 있어서,
    할로알킬기 또는 할로아릴기를 갖는 실란 화합물의 사용량이, 실리카 겔 1 몰에 대하여 0.01 ∼ 0.1 몰인 제조 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    공정 (a) 의 반응 시간이 1 ∼ 30 시간인 제조 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    공정 (a) 의 반응 온도가 50 ∼ 160 ℃ 인 제조 방법.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    공정 (b) 를 탄화수소 용매 존재하에서 실시하는 제조 방법.
  6. 제 5 항에 있어서,
    탄화수소 용매가 자일렌인 제조 방법.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    공정 (a) 에서 사용하는 실리카 겔의 흡착 수분량이 1 질량% 이하인 제조 방법.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 기재된 제조 방법으로 얻어진, 에폭사이드와 이산화탄소를 반응시켜 고리형 카보네이트를 합성하기 위해서 사용되는 촉매.
  9. 제 8 항에 기재된 촉매의 존재하에서, 에폭사이드와 이산화탄소를 반응시키는 고리형 카보네이트의 합성 방법.
  10. 제 9 항에 있어서,
    에폭사이드가 에틸렌옥사이드 및 프로필렌옥사이드에서 선택되는 1 종 이상인 합성 방법.
KR1020157030128A 2013-04-23 2014-04-22 고리형 카보네이트 합성용 촉매의 제조 방법 KR102156460B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013090239 2013-04-23
JPJP-P-2013-090239 2013-04-23
PCT/JP2014/061279 WO2014175263A1 (ja) 2013-04-23 2014-04-22 環状カーボネート合成用触媒の製造方法

Publications (2)

Publication Number Publication Date
KR20160003665A true KR20160003665A (ko) 2016-01-11
KR102156460B1 KR102156460B1 (ko) 2020-09-15

Family

ID=51791835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157030128A KR102156460B1 (ko) 2013-04-23 2014-04-22 고리형 카보네이트 합성용 촉매의 제조 방법

Country Status (8)

Country Link
US (1) US10011621B2 (ko)
EP (1) EP2990112B1 (ko)
JP (1) JP6371277B2 (ko)
KR (1) KR102156460B1 (ko)
CN (1) CN105163853B (ko)
ES (1) ES2782948T3 (ko)
TW (1) TWI618702B (ko)
WO (1) WO2014175263A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634949B (zh) * 2013-04-23 2018-09-11 獨立行政法人產業技術綜合研究所 Method for producing catalyst for cyclic carbonate synthesis
CN113426440B (zh) * 2021-07-13 2023-01-20 中国科学院山西煤炭化学研究所 一种环状碳酸酯合成用催化剂的预处理方法及其应用
CN115155656B (zh) * 2022-06-27 2023-07-11 深圳新宙邦科技股份有限公司 一种用于合成环状碳酸酯的催化剂及环状碳酸酯的合成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145623A (en) 1979-05-02 1980-11-13 Showa Denko Kk Preparation of alkylene glycol
JPS6317072A (ja) 1986-07-08 1988-01-25 Sharp Corp 熱転写プリンタにおける印字消去方法
WO2005084801A1 (ja) 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology 環状カーボネート製造用触媒
JP2007209926A (ja) * 2006-02-10 2007-08-23 National Institute Of Advanced Industrial & Technology 環状カーボネート合成用触媒
US20080214386A1 (en) * 2004-03-01 2008-09-04 Toshikazu Takahashi Catalyst for Cyclic Carbonate Synthesis
CN101318949A (zh) * 2008-07-23 2008-12-10 中国科学院过程工程研究所 一种固载离子液体催化剂催化合成环状碳酸酯的方法
JP2008296066A (ja) 2007-05-29 2008-12-11 Okayama Univ 環状炭酸エステルの合成のための固定化触媒に用いる触媒架橋剤の製造方法、及びその固定化触媒の製造方法、及びその固定化触媒に用いる触媒架橋剤、及びその固定化触媒
WO2014175261A1 (ja) * 2013-04-23 2014-10-30 独立行政法人産業技術総合研究所 環状カーボネート合成用触媒の製造方法
WO2015008853A1 (ja) * 2013-07-19 2015-01-22 丸善石油化学株式会社 環状カーボネートの連続的製造方法
WO2015008854A1 (ja) * 2013-07-19 2015-01-22 独立行政法人産業技術総合研究所 環状カーボネートの製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4314945A (en) 1977-12-22 1982-02-09 Union Carbide Corporation Alkylene carbonate process
US9416093B2 (en) * 2012-05-16 2016-08-16 China Petroleum & Chemical Corporation Supported quaternary phosphonium catalyst, preparation and use thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145623A (en) 1979-05-02 1980-11-13 Showa Denko Kk Preparation of alkylene glycol
JPS6317072A (ja) 1986-07-08 1988-01-25 Sharp Corp 熱転写プリンタにおける印字消去方法
US20080214386A1 (en) * 2004-03-01 2008-09-04 Toshikazu Takahashi Catalyst for Cyclic Carbonate Synthesis
WO2005084801A1 (ja) 2004-03-04 2005-09-15 National Institute Of Advanced Industrial Science And Technology 環状カーボネート製造用触媒
JP2007209926A (ja) * 2006-02-10 2007-08-23 National Institute Of Advanced Industrial & Technology 環状カーボネート合成用触媒
JP2008296066A (ja) 2007-05-29 2008-12-11 Okayama Univ 環状炭酸エステルの合成のための固定化触媒に用いる触媒架橋剤の製造方法、及びその固定化触媒の製造方法、及びその固定化触媒に用いる触媒架橋剤、及びその固定化触媒
CN101318949A (zh) * 2008-07-23 2008-12-10 中国科学院过程工程研究所 一种固载离子液体催化剂催化合成环状碳酸酯的方法
WO2014175261A1 (ja) * 2013-04-23 2014-10-30 独立行政法人産業技術総合研究所 環状カーボネート合成用触媒の製造方法
WO2015008853A1 (ja) * 2013-07-19 2015-01-22 丸善石油化学株式会社 環状カーボネートの連続的製造方法
WO2015008854A1 (ja) * 2013-07-19 2015-01-22 独立行政法人産業技術総合研究所 環状カーボネートの製造方法

Also Published As

Publication number Publication date
CN105163853A (zh) 2015-12-16
WO2014175263A1 (ja) 2014-10-30
US20160108071A1 (en) 2016-04-21
TWI618702B (zh) 2018-03-21
JPWO2014175263A1 (ja) 2017-02-23
US10011621B2 (en) 2018-07-03
ES2782948T3 (es) 2020-09-16
CN105163853B (zh) 2018-06-12
EP2990112A1 (en) 2016-03-02
EP2990112B1 (en) 2020-03-25
EP2990112A4 (en) 2016-12-21
TW201500352A (zh) 2015-01-01
KR102156460B1 (ko) 2020-09-15
JP6371277B2 (ja) 2018-08-08

Similar Documents

Publication Publication Date Title
KR20160002800A (ko) 고리형 카보네이트 합성용 촉매의 제조 방법
KR102239682B1 (ko) 고리형 카보네이트의 연속적 제조 방법
EP3023418B1 (en) Method for manufacturing cyclic carbonate
JP6788253B2 (ja) アルケニルリン化合物の製造方法
KR20160002801A (ko) 고리형 카보네이트 합성용 촉매의 제조 방법
KR20160003665A (ko) 고리형 카보네이트 합성용 촉매의 제조 방법
Piskunov et al. The synthetic aspects in o-quinonato and o-iminoquinonato coordination chemistry of non-transition metals
US20220212177A1 (en) Complex compound and method for manufacturing the same
JP7144259B2 (ja) 有機リン化合物の製造方法
Milewski et al. Carboranylphosphines: B9‐Substituted Derivatives with Enhanced Reactivity for the Anchoring to Dendrimers
Knopf et al. A family of cis-macrocyclic diphosphines: modular, stereoselective synthesis and application in catalytic CO {subscript 2]/ethylene coupling
JP2005232065A (ja) 含リンブタジエン化合物の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant