KR20150078878A - 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법 - Google Patents

농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법 Download PDF

Info

Publication number
KR20150078878A
KR20150078878A KR1020130168689A KR20130168689A KR20150078878A KR 20150078878 A KR20150078878 A KR 20150078878A KR 1020130168689 A KR1020130168689 A KR 1020130168689A KR 20130168689 A KR20130168689 A KR 20130168689A KR 20150078878 A KR20150078878 A KR 20150078878A
Authority
KR
South Korea
Prior art keywords
pcr
micro
chip
reaction chamber
light
Prior art date
Application number
KR1020130168689A
Other languages
English (en)
Other versions
KR102078085B1 (ko
Inventor
김성우
이세현
김미리
Original Assignee
나노바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스 주식회사 filed Critical 나노바이오시스 주식회사
Priority to KR1020130168689A priority Critical patent/KR102078085B1/ko
Priority to PCT/KR2014/013058 priority patent/WO2015102379A1/ko
Priority to US15/109,078 priority patent/US10245590B2/en
Priority to CN201480071570.8A priority patent/CN105849283B/zh
Publication of KR20150078878A publication Critical patent/KR20150078878A/ko
Application granted granted Critical
Publication of KR102078085B1 publication Critical patent/KR102078085B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • B01L7/525Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones
    • B01L7/5255Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples with physical movement of samples between temperature zones by moving sample containers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0684Venting, avoiding backpressure, avoid gas bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Plant Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 PCR 장치, 및 이를 이용한 식중독 검출방법에 관한 것으로서, 다수의 소량의 샘플을 동시에 수용함과 동시에 열 블록과의 열 접촉 효율을 최대한 확보하여 신속한 결과를 확보할 수 있고, 더 나아가 핵산 증폭 산물로부터 발광하는 광신호를 별도의 여과 또는 가공 없이도 정확하게 측정할 수 있는 마이크로 PCR 칩을 제공할 수 있고, 아울러 이를 전제로, 복잡한 광신호 측정모듈 없이도 신뢰성이 확보된 핵산증폭 결과를 신속하게 얻을 수 있는 실시간 PCR 장치를 제공할 수 있다.

Description

농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 PCR 장치, 및 이를 이용한 식중독 검출방법{High-speed real-time PCR device based on lap-on-a-chip for detecting food-borne bacteria to agrifood, and method for detecting food-borne bacteria to agrifood using the same}
본 발명은 농식품에 대한 식중독균 검출용 프라이머 세트를 포함하는 마이크로 PCR 칩, 이를 포함하는 실시간 PCR 장치, 및 이를 이용한 식중독 검출방법에 관한 것이다.
식중독균은 주로 육류, 낙농제품, 식수, 농식품 등 음식을 통하여 전파되므로, 음식과 같은 시료에서 식중독균의 존재 여부를 신속하고 경제적으로 확인할 수 있는 방법이 요구된다. 식중독균을 검출하기 위한 통상적 방법은 선택적 배지에서 시료를 배양하여, 식중독균로 추측되는 균을 분리한 후, 이를 생화학적 또는 면역학적 방법으로 확인하는 것이다. 그러나, 항체를 이용한 면역학적인 방법은 높은 정확도로 세균의 검출이 가능하지만, 많은 양의 시료가 필요하고, 각 진단에 필요한 항체를 생산하기 위해서는 해당 세균의 단백질 순화, 생산 또는 펩타이드 제작이 필수적이며, 높은 항체 생산 비용이 요구된다. 또한, 단백질의 특성상 보관과 이용상의 어려움이 많고, 한 번에 한 종류 또는 제한된 종류의 세균 검출만이 가능하며, 세균의 배양 및 실험 단계에 있어서 긴 시간이 소모된다. 이러한 단점을 개선하기 위하여, PCR 방법을 이용한 각종 세균 검출 키트들이 연구 개발되기 시작하였다. PCR 방법을 이용한 검출 키트들은 높은 정확성과 간편성, 신속성 때문에 각종 분야에서 날로 그 수요가 증가하고 있다.
특히, 최근 많이 사용되고 있는 실시간 PCR 방법은 PCR 증폭 산물의 증가를 PCR의 매 주기마다 실시간으로 관찰하는 방법으로, PCR 증폭 산물과 반응하는 형광 물질의 검출과 정량으로 해석하는 방법이다. 이 방법은 기존의 PCR 방법이 최종 단계를 마치고 겔 상에서 염색하여 전기 영동 후 PCR 증폭 산물을 확인하는 것에 비해, 전기 영동의 추가 작업이 필요 없고, 정확도 및 민감도가 뛰어나며, 재현율이 높고, 자동화가 가능하며, 결과를 수치화할 수 있고, 신속하고 간편하며, EtBr(Ethidium Bromide)과 같은 염색제에 의한 오염 및 자외선 조사 등의 유해문제에 따른 생물학적 안전성이 뛰어나고, 자동으로 특이 유전자의 증폭 유무를 확인할 수 있다는 장점이 있다. 따라서, 실시간 PCR 방법을 통해 PCR 또는 항원/항체와 같은 정성적인 결과가 아닌 높은 특이도를 갖는 정량적인 결과를 확인할 수 있다. 또한 형광 표지 인자로 표지된 프로브를 이용하기 때문에 DNA 칩이나 항원/항체 반응에 사용되는 시료의 양 보다 적은 양의 시료로도 결과를 확인할 수 있다. 따라서, 음식물 내의 식중독균의 감염 여부를 신속하고 정확하게 진단하기 위해 실시간 PCR 방법을 이용한 식중독균의 검출방법 및 검출 키트 개발의 필요성이 요구되고 있다.
실시간 PCR(real-time Polymerase chain reaction)은 핵산 증폭 산물을 겔(gel) 상에서의 전기영동 수행 없이도 반응 순환(cycle) 동안 실시간으로 확인할 수 있다는 장점으로 근래 핵산 분석 수행에 있어서 많이 활용되고 있다. 일반적으로, 실시간 PCR을 구현하기 위한 장치는 핵산 증폭 반응을 수행하는 1 이상의 열 블록(heating block)을 구비하는 열 순환 장치(thermal cycler) 및 핵산 증폭 산물로부터 발생하는 신호를 실시간으로 측정하기 위한 신호 검출기를 포함한다. 이와 같은 신호 검출기는 핵산 증폭 산물로부터 발생하는 형광 신호를 검출하기 위한 광 검출기, 핵산 증폭 산물과 이와 상호 결합하는 매개체의 특이적 결합을 통해 발생하는 전기적 신호를 검출하기 위한 전기적 신호 검출기 등으로 예시될 수 있다.
한편, 최근 의료 분야에 있어서, 맞춤 의학을 구현하기 위한 효율적인 진단 및 치료 방법이 활발하게 개발되고 있는데, 맞춤 의학을 실질적으로 실현하기 위해서는 다수의 개체에 대한 신속하고 정확한 진단 및 치료가 필요하다. 이 경우 진단 및 치료에 있어서, 핵산 증폭 단계는 가장 기초가 되는 전제 과정이고, 이를 수행하는 일 예인 실시간 PCR은 맞춤 의학 실현에 있어서 전제되는 단계라 할 것이다. 그러나, 실시간 PCR은 복잡한 수행 과정을 전제하기 때문에 완료 단계까지 상당한 시간이 소요되고, 이를 구현하기 위한 장치는 대부분 비싸고, 대형이어서 실질적인 맞춤 의학 실현에 장애가 되고 있다. 이와 같은 문제점을 해결하고자 최근 많은 시도가 이루어지고 있다.
이와 관련하여, 한국공개특허 제10-2004-0048754호(온도 제어가 가능한 리얼타임 형광 검색 장치)는 수백에서 수천의 샘플에서 여러 파장대(Wavelength)의 형광을 수초 내에 빠르고 낮은 샘플의 농도에서도 민감하게 검색하되, 효소 반응들을 리얼타임으로 검색하고 분석할 수 있으며 경제적인 가격에 휴대 가능한 소형의 형광 검색 장치를 제공한다. 구체적으로, 상기 선행 형광 검색 장치는 생물학적 샘플에 광원을 조사한 후 상기 샘플에서 방사되는 형광을 검색하여 샘플을 분석하는 장치로서, 샘플 용기, 상기 샘플 용기를 조사하도록 위치하는 광원, 상기 샘플에서 방사되는 형광을 탐지하는 탐지기, 상기 샘플에서 방사되는 형광을 상기 탐지기로 이동시키는 형광 이동 장치, 파장 선택 장치, 및 제어부를 포함하는 형광 검색 장치에 있어서, 다수의 LED 가 순차적으로 발광되도록 배열된 LED 어레이; 샘플 용기를 삽입하기 위한 다수의 웰을 가지는 웰 체임버 블록; 상기 LED 어레이의 각 LED 발광에 의해 상기 샘플에서 방사되는 형광을 탐지하기 위한 다중 채널 PMT; 및 상기 각 샘플에서 방사되는 형광을 개별적으로 상기 다중 채널 PMT 로 이동시키기 위한 다수의 광섬유를 포함하는 것을 특징으로 한다.
또한, 한국등록특허 제10-0794703호(생화학적 반응의 실시간 모니터링 장치)는 반응 튜브 플레이트 내의 반응 시 광 검출 감도 편차를 최소화하여 다종의 시료의 반응 정도를 비교분석할 수 있는 장치를 제공한다. 구체적으로, 상기 선행 실시간 모니터링 장치는 반응 튜브에 열을 공급할 수 있는 열공급원인 열전소자와 상기 반응 튜브에 열을 전달하기 위한 열전달 블록으로 이루어진 온도 조절 블록계; 상기 반응 튜브 내의 시료에 균일한 광을 조사하기 위한 램프와 광 도파관으로 이루어진 조사 광원부; 및 광 경로를 바꾸는 반사경과 상기 조사 광원부에 의해 조사되는 광에 의해 상기 반응 튜브내의 시료에서 발생되는 형광을 수광하기 위한 수광부로 구성된 광학계를 포함한다.
또한, 한국등록특허 제10-1089045호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위한 것으로서, 여기광과 형광의 간섭을 효율적으로 분리하기 위해 편광자, 편광빔분할기, 편광변환기 등을 포함하는 생화학 반응의 실시간 모니터링 장치를 제공한다.
또한, 한국공개특허 제10-2008-0103548호(핵산 증폭 생성물의 실시간 검출장치)는 수정을 위해 사용하는 제2 형광신호를 사용하는 일 없이, 장치상의 오차 요인을 효과적으로 배제 또는 저감시킬 수 있도록, 복수의 웰에 온도 사이클을 부여하여, 각 웰에 있어서의 핵산 증폭 생성물로부터의 형광 강도를 실시간으로 검출하고, 더 나아가 웰로부터 얻어지는 형광 측정값 [DNA]raw와 이 웰 근방에 있어서의 주변의 연결벽으로부터 얻어지는 형광 측정값 [DNA]bg를 검출하고, 형광 측정값 [DNA]raw로부터 형광 측정값 [DNA]bg를 뺌으로써 당해 웰의 형광 강도 [DNA]real을 결정할 수 있는 핵산 증폭 생성물의 실시간 검출장치를 제공한다.
또한, 한국등록특허 제10-0794699호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위해 다수의 시료를 담기 위한 다수의 웰을 가지는 반응용기와 상기 반응용기를 덮기 위한 투명한 실링커버, 및 반응용기에 열원을 공급하기 위한 열전소자로 이루어지는 시료반응부; 여기광원 앞에 위치하는 선택적 투과 필터, 필터를 통과한 광을 선편광시키기 위한 선편광자로 이루어지는 발광 소자부; 발광소자부의 선편광자에 수직한 방향으로 되어 있는 선편광자, 선편광자를 통과한 광을 집광하는 집광렌즈, 집광렌즈를 통과한 광을 선택적으로 투과시키는 선택적 투과필터 및 형광감지소자로 이루어지는 수광소자부를 포함하여 구성되는 것을 특징으로 하는 핵산증폭반응산물의 실시간 모니터링 장치를 제공한다.
그러나, 상기 선행기술들은 다수의 핵산증폭 산물을 동시에 측정하기 위해 복잡하고 정교한 형광 신호 측정 모듈을 다수 추가하기 때문에 기기의 대형화 및 고비용 발생 문제가 여전히 문제되고 있다. 더 나아가, 상기 선행기술들은 다수의 소량 샘플을 동시에 측정하는 것을 목적으로 하지만, 핵산증폭 과정 중 소형 반응 용기에 수용된 소량의 샘플 용액에서 가열에 의해 발생하는 버블(bubble)에 의해 신호 감도가 현저히 감소하는 현상에 대해 해결 방법은 전혀 개시하지 않고 있다.
따라서, 다수의 소량의 핵산 증폭 산물을 동시에 측정함과 동시에 측정값의 신뢰성을 확보하고, 더 나아가 저비용으로 신속하게 핵산 증폭 산물의 실시간 모니터링이 가능한 실시간 PCR 구현 장치가 여전히 요구된다 할 것인데, 이는 복수의 식중독균을 동시에 신속하고 정확하게 검출할 수 있는 검출장치 및 이를 이용한 식중독균 검출방법에 응용 가능하다.
본 발명은 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 측정할 수 있고, 저가의 비용으로 핵산 증폭 산물을 검출하고, 더 나아가 결과의 신뢰성을 확보할 수 있는 마이크로 PCR 칩을 활용하여 농식품의 식중독 여부를 동시에 신속하고 정확하게 검출할 수 있는 식중독 검출장치 및 검출방법을 제공하는 것이다.
상기 언급된 해결하고자 하는 과제를 수행하기 위하여,
본 발명의 일 실시예는 상단 면이 개방된 PCR 반응 챔버(chamber); 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover); 를 포함하는 것으로서, 상기 PCR 반응 챔버 내에 서열번호 1의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 2의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Salmonella spp . 유전자를 검출하기 위한 프라이머 세트; 서열번호 3의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 4의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Listeria monocytogenes 유전자를 검출하기 위한 프라이머 세트; 서열번호 5의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 6의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Staphylococcus aurens 유전자를 검출하기 위한 프라이머 세트; 및 서열번호 7의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 8의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Escherichia coli 유전자를 검출하기 위한 프라이머 세트로 구성된 군으로부터 선택되는 하나 이상의 프라이머 세트를 각각 포함하는, 식중독균 검출용 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip)을 제공한다.
본 발명의 일 실시예에 따르면,
상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현될 수 있다. 이 경우, 상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용할 수 있다.
상기 광 투과부는 상기 밀폐 면의 중앙에 배치될 수 있다.
상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다.
상기 덮개는 상기 광 투과부를 관통하여 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비할 수 있다.
상기 식중독균 검출용 마이크로 PCR 칩은 평판 형상을 갖도록 구현될 수 있다.
식중독균 검출용 마이크로 PCR 칩은 평판 형상의 제1 판; 상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및 상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판을 포함할 수 있다. 이 경우, 상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함할 수 있다.
상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부를 더 포함할 수 있다.
본 발명의 다른 일 실시예는 상기 식중독균 검출용 마이크로 PCR 칩; 상기 식중독균 검출용 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및 상기 식중독균 검출용 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.
본 발명의 다른 일 실시예는 상기 식중독균 검출용 마이크로 PCR 칩; 기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록; 상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록; 상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및 상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 식중독균 검출용 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.
상기 언급된 과제 해결 수단에 따르면, 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 측정할 수 있고, 저가의 비용으로 핵산 증폭 산물을 검출하고, 더 나아가 결과의 신뢰성을 확보할 수 있는 마이크로 PCR 칩을 활용하여 농식품의 식중독 여부를 동시에 신속하고 정확하게 검출할 수 있는 식중독 검출장치 및 검출방법을 제공할 수 있다.
도 1 내지 3은 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.
도 6은 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 광 투과부의 다양한 유형에 관한 것이다.
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 상기 마이크로 PCR 칩과 열 접촉하는 열 블록, 및 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 2개의 열 블록, 상기 마이크로 PCR 칩이 장착되되 구동 수단에 의해 상기 2개의 열 블록 간에 이동 가능한 칩 홀더, 및 상기 2개의 열 블록 사이에 배치되되 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 2개의 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.
도 19는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 실제 구현 도면이다.
도 20 내지 35는 본 발명의 일 실시예에 따른 PCR 장치와 타사 PCR 장치를 비교실험하여 4종의 식중독균에 대한 검출 결과를 확인한 자료이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 이하 설명은 본 발명에 따른 실시예들을 쉽게 이해하기 위한 수단일 뿐이며, 본 발명의 보호범위를 제한하기 위한 것은 아니다.
본 발명의 실시예는 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR), 더 구체적으로, 실시간으로 핵산 증폭 반응을 모니터링하는 실시간 PCR(real-time PCR)에 관한 것이다.
PCR은 핵산을 포함하는 PCR 시료 및 시약을 반복적으로 가열 및 냉각하여 핵산의 특정 염기 서열 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 질병의 진단 및 분석 목적으로 현재 널리 사용되고 있다. PCR을 효율적으로 수행하기 위한 PCR 장치가 최근 다양하게 개발되고 있다. PCR 장치는 특정 염기 서열을 갖는 핵산을 증폭하는 PCR을 수행하기 위하여 구현된 장치를 통칭한다. 일반적으로, PCR 장치는 이중 가닥의 DNA를 포함하는 PCR 시료 및 시약을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 상기 PCR 시료 및 시약에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 PCR 시료 및 시약을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 수행하고, 상기 연장(또는 증폭) 단계를 예를 들어, 20회 내지 40회로 반복함으로써 상기 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭할 수 있도록 구현된다. 한편, 최근 PCR 장치는 상기 어닐링 단계와 상기 연장(또는 증폭) 단계를 동시에 수행할 수 있고, 이 경우 상기 PCR 장치는 상기 변성 단계에 이은 상기 어닐링 및 연장 (또는 증폭) 단계로 구성된 2 단계를 수행함으로써, 제1 순환을 완성할 수도 있다.
실시간 PCR은 PCR에 사용되는 열 순환기(thermal cycler)에 측정 장치, 예를 들어 형광 광도계 등과 같은 광학 시스템(optical system) 모듈이 적용되어 핵산 증폭 산물이 생성되는 과정을 모니터링할 수 있는 핵산 증폭 반응을 말한다. 실시간 PCR은 일반적인 PCR과는 달리, 핵산 증폭 산물의 확인을 위한 전기영동이 요구되지 않아 실시간으로 정확하고 신속하게 핵산 증폭 산물을 분석할 수 있다는 장점이 있다. 그에 따라, 최근 실시간 PCR 장치가 또한 활발하게 개발되고 있는데, 실시간 PCR 장치가 위와 같은 장점을 충분히 발휘하기 위해서는 열 순환기의 효율을 상승시키는 것뿐만 아니라 핵산 증폭 산물로부터 발생하는 광신호를 오류 없이 정확하게 측정할 수 있어야 한다.
도 1 내지 3은 종래 PCR 용기(대형) 및 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.
맞춤 의료 서비스의 실질적인 실현을 위해 최근 PCR 장치는 소형화, 휴대화, 신속성, 및 경제성을 지향하고 있다. 기존 PCR 장치는 PCR 시료 및 시약을 담는 용기뿐만 아니라 기기 그 자체도 대형이어서 사용 조작이 어렵고, 휴대하기 어려웠을 뿐만 아니라 그에 따라 PCR 시료 및 시약도 상당히 낭비되었고, 비용 또한 상당히 발생하는 문제점이 있었다. 더 나아가, 사용되는 PCR 시료 및 시약의 양이 많아서 상당히 시간이 소요되어 효율적인 PCR이 구현되기 어려웠다.
도 1에 따르면, 좌측 그림은 종래 일반적으로 사용되는 PCR 용기(대형)이고, 우측 그림은 상기 PCR 용기(대형) 대비 크기 및 액체 샘플 수용량을 극-소형화(×1/20)한 PCR 용기(소형)를 도시한다. 일반적으로, 종래 PCR 용기(대형)는 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현되며, 약 200 ㎕의 액체 샘플 수용량을 갖고, 약 20 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행되었다. 상기 PCR 용기(소형) 역시 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현될 수 있는데, 이 경우 상기 PCR 용기(소형)는 약 10 ㎕의 액체 샘플 수용량을 갖고, 약 5 내지 8 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행된다. 이와 같이, 극-소형화된 PCR 용기를 제작하는 것은 현재 공지된 기술 영역에서 용이하게 구현할 수 있다. 그러나, PCR 용기의 소형화는 핵산 증폭 산물의 측정에 있어서 아래와 같이 상당한 악영향을 미치기 때문에 쉽게 구현되기 어렵다.
도 2에 따르면, 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)로 인해 광신호 감도가 감소하는 현상을 쉽게 확인할 수 있다. 앞서 설명한 바와 같이, PCR은 열 공급 단계를 수반하므로, PCR 용기 내부는 액체 샘플의 가열에 의해 상당한 양의 버블이 발생하는데, 이러한 버블은 핵산 증폭 산물로부터 발생하는 광신호(light signal)를 차단하게 된다. 한편, 도 2에 따르면, 상기 PCR 용기(대형) 내부에서 발생하는 버블은 비록 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 감소시키지만, 버블 자체의 크기 및 개수 대비 반응 용기의 내부 공간이 충분히 크기 때문에 상기 버블은 상기 PCR 용기(대형)의 내부에서 분산되거나 상기 PCR 용기(대형)의 내벽에 군집을 형성하여 비록 광신호 감도가 떨어지기는 하지만, 광신호 측정이 불가능한 것은 아니다. 그러나, 도 2 및 도 2의 "a" 부분을 확대한 도 3에 따르면, 상기 PCR 용기(소형) 내부에서 발생하는 버블은 버블 자체 크기 및 개수 대비 반응 용기의 내부 공간이 상당히 작기 때문에 상기 버블은 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 상당하게 떨어뜨리고 불균일하게 하여 결과의 신뢰도가 떨어진다. 따라서, PCR 장치를 소형화함과 동시에 이에 장착되는 PCR 용기의 소형화를 구현하는 경우 그만큼 광신호 감도의 감소 및 불균일에 따른 결과의 신뢰성을 확보하는 방안을 충분히 고려해야 한다.
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.
도 4에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(Micro-Polymerase Chain Reaction Chip)(1)은 상단 면이 개방된 PCR 반응 챔버(chamber)(10); 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비하는 덮개(cover)(20)를 포함한다.
상기 PCR 반응 챔버(10)는 상단 면이 개방되되 하단 면 및 측 테두리 면이 밀폐되어 액체 샘플, 즉 PCR 시료 및 시약을 수용하도록 구현된다. 상기 PCR 반응 챔버(10)는 PCR 과정 중 반복적인 가열 및 냉각에 영향을 받지 않도록 구현되어야 하고, 이러한 기능을 유지할 수 있다면 특정 형상 및/또는 재질로 제한되진 않는다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 적어도 광 경로(21)에 중첩되는 부분은 광 투과성 재질로 구현되는 것이 바람직하다.
상기 덮개(20)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 역할을 수행한다. 상기 덮개(20)가 상기 PCR 반응 챔버(10)의 개방 상단 면을 밀폐함으로써, 상기 PCR 반응 챔버(10) 내부에서 반응하는 PCR 시료 및 시약은 외부로 유출되지 않으며, 상기 PCR 반응 챔버(10) 내부 온도를 유지하는 역할을 한다. 한편, 상기 덮개(20)는 위와 같은 기능을 구현할 수 있다면 다양한 형상 및/또는 재질로 구현될 수 있다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 광 투과성 재질로 구현되는 것이 바람직하다.
한편, 도 4에 따르면, 상기 덮개(20)는 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비한다. 상기 광 투과부(25)는 광 투과성 재질로 구현되고 핵산 증폭 산물의 측정을 위한 광 경로(21)를 따라 연장되도록 구현되며, 상기 PCR 반응 챔버(10) 내부의 핵산 증폭 산물로부터 발생하는 광신호가 통과하는 부분이다. 더 나아가, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 하향 돌출되도록 구현된다. 상기 광 투과부(25)의 돌출 형상은 다양할 수 있으나, 원기둥 또는 사각기둥 형상으로 구현되는 것이 바람직하다. 또한, 도 6에 따르면, 상기 광 투과부(25)의 돌출 형상은 다양하게 구현될 수 있는데, 상기 PCR 반응 챔버(10)의 하단 바닥 면에 닿도록 구현되거나(도 6의 우측), 상기 PCR 반응 챔버(10)의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다(도 6의 좌측). 즉, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10) 내부에 액체 샘플이 수용되는 경우 상기 액체 샘플 표면에 인접하거나 맞닿거나, 더 나아가 상기 액체 샘플 표면을 통과하여 상기 액체 샘플 내부에 담겨질 수도 있다. 아울러, 상기 광 투과부(25)는 광 경로를 따라 연장되도록 구현된다면, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 임의의 일부 영역에 구현될 수 있는데, 상기 밀폐 면의 중앙, 즉 상기 덮개(20)의 하단 면의 중앙 영역에 배치되는 것이 바람직하다. 한편, 상기 PCR 반응 챔버(10)의 액체 샘플 수용량은 특정 부피로 제한되진 않지만, 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현되어 5 내지 8 ㎕의 액체 샘플을 수용할 수 있도록 구현되는 것이 바람직하다.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.
PCR 과정이 진행되면서 PCR 용기 내부의 액체 샘플이 가열되어 그에 따라 버블이 발생할 수 있음은 이미 설명한 바와 같다.
도 5에 따르면, PCR 과정 중 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 액체 샘플(liquid sample), 즉 PCR 시료 및 시약이 열 공급에 의해 가열되면 버블(bubble)이 발생한다. 그러나, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 경우 상기 덮개(20)의 하단 면으로부터 돌출된, 즉 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역(도 5에 따르면, 중앙 영역)으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)에 의해 상기 PCR 반응 챔버(10)에 형성된 버블(bubble)이 상기 광 투과부(25)의 테두리 면의 주변 영역으로 밀려서 주변 공간에 압축 배치된다. 그에 따라, 상기 버블(bubble)은 상기 액체 샘플(liquid sample)에 존재하는 핵산 증폭 산물로부터 형성된 광신호 경로(광 투과부, 25)를 완전히 이탈하게 되고, 핵산 증폭 산물을 측정하기 위한 광신호 감도에 전혀 영향을 미치지 않는다. 따라서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)을 이용하여 실시간 PCR 과정 중 핵산 증폭 산물을 실시간으로 측정하는 경우 상기 PCR 반응 챔버(10) 내부에 발생한 버블(bubble)의 영향을 전혀 받지 않게 되어 광신호 감도가 상당하게 증가하게 된다. 그 결과, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)에 의하면, 종래 PCR 용기에 비해 그 액체 샘플 수용량을 예를 들어, 10 ㎕ 이하로 크게 줄일 수 있기 때문에 PCR 용기를 극-소형화할 수 있고, 동시에 광신호 감도를 상당하게 증가시킬 수 있기 때문에 PCR 용기 및 실시간 PCR 장치의 소형화 및 휴대화를 달성할 수 있고, 더 나아가 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 정확하게 측정할 수 있다.
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.
도 7 내지 9에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 덮개(20)는 상기 광 투과부(25)를 관통하여 둘러싸는 홀(hole)(45), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부(40)를 더 포함할 수 있다.
상기 플랙서블 패킹부(40)는 PCR 과정 중 상기 PCR 반응 챔버(10) 내부의 온도 상승에 의한 버블(bubble) 발생 또는 압력 상승에 의해 액체 샘플의 누수를 방지하는 역할을 한다. 상기 플랙서블 패킹부(40)는 고무(rubber) 또는 실리콘(silicon) 등 탄력성 또는 신축성을 갖는 물질로 구현되어 상기 버블(bubble) 발생 또는 압력 상승에 의한 팽창력을 완충하되 상기 PCR 반응 챔버(10)의 밀폐 상태를 유지할 수 있도록 구현된다. 한편, 상기 홀(45)은 상기 광 투과부(25)의 형상에 따라 구현되기 때문에, 비록 도 7에서는 원형으로 구현되어 있으나 이에 제한되는 것은 아니다. 한편, 도 8은 상기 플렉서블 패킹부(40)가 상기 덮개(20)에 부착되되 상기 광 투과부(25)를 관통하여 둘러싸고 있는 상태를 도시하고, 도 9는 도 8의 상태의 덮개(20)가 상기 PCR 반응 챔버(10)의 상단 면에 결합하여 상기 PCR 반응 챔버(10)의 내부 공간을 밀폐한 상태를 도시한다.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
앞서 설명한 바와 같이, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 광 투과부(25)를 구비하는 덮개(20)에 의해 광신호 감도를 상당하게 상승시키거나 영향을 미치지 않게 하면서 극-소형화가 가능하여 다수의 소량의 액체 샘플을 수용하는 멀티-챔버(multi chamber) 구조를 갖는 PCR 용기의 구현이 가능하다.
도 10에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 상기 덮개(20)로 구성된 단위 모듈(50)을 2 이상 구비할 수 있다. 예를 들어, 도 10과 같이, 상기 마이크로 PCR 칩(1)이 평판 형상으로 구현될 경우 상기 단위 모듈(50)을 일렬로 나열하거나 평판 상의 원형 공간에 집적하여 2 이상의 개수(N)로 구현할 수 있어서, 예를 들어 상기 단위 모듈(50)을 19개(19 well), 48개(48 well), 96개(96 well) 등으로 구현할 수 있다.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.
도 11에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 평판 형상의 제1 판(100); 상기 제1 판(100)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)를 구비하는 평판 형상의 제2 판(200); 및 상기 제2 판(200)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(25)를 구비하는 덮개(20) 역할을 수행하는 제3 판(300)을 포함하도록 구현될 수 있다.
상기 제1 판(100)은 평판 형상으로 구현되고, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 바닥 지지체(support) 역할을 수행한다. 상기 제1 판(100)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제1 판(100) 표면은 다양하게 구현될 수 있으나, 친수성 표면을 갖도록 처리되는 것이 바람직하다. 아울러, 상기 제1 판(100)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.
상기 제2 판(200)은 평판 형상으로 구현되되 상기 제1 판(100)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 영역을 형성하는 역할을 수행한다. 상기 제2 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제2 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다.
한편, 도 11에 따르면, 상기 제1 판(100)과 상기 제2 판(200) 사이에 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 바닥 면 공간을 형성하는 평판 형상의 추가 층(150)이 형성될 수도 있다. 이는 상기 제1 판(100)과 상기 제2 판(200) 사이의 접합 면이거나, 또는 접착제 층일 수 있다. 따라서, 상기 제1 판(100)과 상기 제2 판(200) 사이는 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법으로 접착 구현될 수 있다. 아울러, 상기 추가 층(150)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.
상기 제3 판(300)은 평판 형상으로 구현되되 상기 제2 판(200)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(50)를 구비하는 덮개(20) 역할을 수행한다. 상기 제3 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제3 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다.
한편, 도 12에 따르면, 상기 제3 판(300)은 상기 제2 판(200)과 제3 판(300) 사이에 상기 광 투과부(25)를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부(40)를 더 구비할 수 있다. 상기 플렉서블 패킹부(40)는 상기 PCR 반응 챔버(10) 내부에 수용되는 PCR 시료 및 시약의 누수 및 복수의 챔버 간 오염을 방지하기 위한 역할을 수행한다. 상기 플렉서블 패킹부(40)는 탄력성 또는 신축성이 있는 다양한 재질로 구현될 수 있으나, 예를 들어 실리콘(silicon), 텔프론(telflon) 등으로 구현되는 것이 바람직하다. 아울러, 상기 플렉서블 패킹부(40)는 바람직하게는 약 0.1 내지 2 mm로 구현될 수 있고, 더 바람직하게는 약 0.5 내지 1 mm로 구현될 수 있고, 상기 원형 홀 직경은 바람직하게는 약 1.0 mm 로 구현될 수 있다.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10)로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부(60)를 더 포함할 수 있다. 도 13에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 전체적으로 얇은 평판 형상으로, 중앙 원형 영역에 복수 개의 단위 모듈(50)이 집적되도록 구현된다. 앞서 설명된 바와 같이, PCR 과정 중 상기 단위 모듈(50) 내 PCR 반응 챔버(10) 내부에서는 고온의 열이 발생하기 때문에 기기의 내열성과 반응 안정성을 고려하여, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 중앙 원형 영역의 양 측면에 열 방출부(60)를 배치할 수 있다.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 단일 열 블록을 구비하는 실시간 PCR 장치를 도시한다.
도 14 내지 15에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 상기 마이크로 PCR 칩(1)의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록(200); 및 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(300)을 포함한다.
상기 열 블록(200)은 상기 마이크로 PCR 칩(1)에 열 접촉하여 열 교환이 가능하도록 구현된 모듈이다. 상기 열 블록(200)은 다양한 재질로 구현될 수 있고, 핵산 증폭 산물의 광신호를 측정하기 위해 전체적으로(또는 부분적으로) 광 투과성을 갖도록 구현될 수도 있다. 상기 투명 발열 소재는 광 투과성을 갖는 재질로서 전력 공급에 의해 발열성을 갖는 모든 물질을 포함할 수 있으나, 바람직하게는 인듐 주석 산화물(Indum Tin Oxcide, ITO), 전도성 고분자(conducting polymer), 탄소나노튜브(Cabon NanoTube, CNT), 그래핀(graphene), 투명 금속 산화물(Transparent Conductive Oxide, TCO), 및 산화물-금속-산화물 다층 투명 소자로 구성된 군으로부터 선택될 수 있다. 인듐 주석 산화물(Indum Tin Oxcide, ITO)은 산화 인듐(In2O3)과 산화 주석(SnO2)이 섞여져 있으며, 일반적으로 90%의 산화 인듐과 10%의 산화 주석으로 구성되며, 투명 전극 또는 ITO로 불리기도 한다. 인듐 주석 산화물은 박막(얇은 층)으로 구현되는 경우 전기 전도율이 생기고, 투명하고 색이 존재하지 않다가 덩어리 상태로 구현되면 노란 회색을 띤다. 인듐 주석 산화물은 전자빔 증착, 증기 증착, 스퍼터링 기술에 의해 다른 물질의 표면에 증착된다, 인듐 주석 산화물은 종래까지 주로 액정 디스플레이, 평판 디스플레이, 플라스마 디스플레이, 터치스크린, 전자 종이, 유기 발광 다이오드, 태양 전지, 정전기 방지 코팅, 전자 방해 차폐물에서 주로 투명한 전도성 코팅을 제조하는데 사용되었다. 전도성 고분자(conducting polymer)는 소위 전기가 통하는 플라스틱으로 불리고, 광 투과율이 우수하고, 가벼우며, 탄성력 및 전기전도성이 우수하고, 가공이 매우 쉽다는 장점이 있다. 전도성 고분자는 폴리아세틸린, 폴리파라레닐렌, 폴리페놀, 폴리아닐린 등의 물질로부터 제조되고, 최근에는 폴리스티렌술폰산 및/또는 PEDOT(poly(3,4--ethylenedioxythiophene))로부터 제조되는 경우도 있다. 탄소나노튜브(Cabon NanoTube, CNT)는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1 나노미터 크기의 미세한 분자를 말한다. 인장력이 강철보다 강하고 유연성이 뛰어나며, 가볍고, 전기전도성이 매우 높은 것으로 알려져 있다. 한편, 정제된 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SWNT)를 계면활성제를 이용하여 용매 분산하고 진공필터 장치를 이용하여 제작하면, 투명 전도체가 형성되고, 이는 투명성과 전도성을 모두 구비하게 된다. 그래핀(graphene)은 2000년대 초반, 흑연으로부터 분리된 물질로서, 탄소나노튜브, 풀러린(Fullerene)과 같이 원자번호 6번인 탄소로 구성된 나노물질이다. 그래핀은 구리보다 100배 이상 전기 전도성이 높고, 탄성력이 매우 우수한 것으로 알려져 있으며, 최근 투명 전극으로 구현되어 다양한 용도로 사용되고 있다. 투명 금속 산화물(Transparent Conductive Oxide, TCO)은 산소와 결합한 각종 금속 산화물 중 투명성을 갖는 물질을 총칭하는 것으로서, ZnO, SnO2, TiO2 등을 포함한다. 투명 금속 산화물은 높은 전도성과 투명도를 갖고, 적은 비용으로 코팅 물질로 사용될 수 있다. 산화물-금속-산화물 다층 투명 소자는 롤투롤 스퍼터 공정으로 제작되고, 금속의 유연성과 낮은 저항성, 산화물의 높은 투과도를 갖도록 구현될 수 있는 것으로서, ITO-Ag(또는 Cu)-ITO, AZO-Ag-AZO, GZO-Ag-GZO, IZO-Ag-IZO, IZTO-Ag-IZTO 등이 있다. 한편, 도 14 내지 15에 따르면, 상기 열 블록(200)은 다양한 형상으로 구현될 수 있으나, 바람직하게는 평판 형상으로 구현된다. 평판 형상의 열 블록(200)은 상기 마이크로 PCR 칩(1), 바람직하게는 평판 형상의 칩과 접촉하는 표면적이 넓어 PCR 시료 및 시약의 혼합액에 열을 고르게 제공할 수 있고, 그에 따라 PCR 단계의 각 사이클별 온도 변화가 신속하게 진행될 수 있다. 한편, 실시간 PCR 산물을 정확하게 모니터링하기 위해서 상기 광신호의 감도를 가능한 높일 필요가 있다. 상기 열 블록(200)은 전체적으로 광 투과성을 갖도록 구현될 수 있어서 광원으로부터 방출된 여기 광을 대부분 그대로 투과시켜 상기 광신호 감도를 높일 수 있다. 그러나, 상기 여기 광의 일부는 상기 열 블록(200) 상에서 반사되거나 또는 상기 열 블록(200)을 통과한 후 반사되어 광신호의 노이즈(noise)로서 작용할 수 있다. 따라서, 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하여 광 신호 감도를 더 높일 수 있다. 상기 흡광 물질은 예를 들어, 운모(mica)일 수 있으나, 광을 흡수하는 성질을 갖는 물질이라면 제한되지 않는다. 따라서, 광원으로부터 유래된 광의 일부를 상기 흡광층이 흡수하여, 광신호의 노이즈로 작용하는 반사 광의 발생을 최대한 억제할 수 있다. 또한, 대안적으로, 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 상기 광 반사 방지 물질은 예를 들어, MgF2와 같은 불화물, SiO2, Al2O3와 같은 산화물일 수 있으나, 광 반사를 방지할 수 있는 성질을 갖는 물질이라면 제한되지 않는다. 또한, 더 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하고, 동시에 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 즉, 효과적인 실시간 PCR의 모니터링을 위하여 상기 노이즈 대비 광 신호 비율은 가능한 최대 값을 가져야 하고, 상기 노이즈 대비 광 신호 비율은 상기 PCR 칩으로부터 여기 광의 반사율이 낮을수록 향상될 수 있다. 예를 들어, 일반적인 금속성 재질의 기존 열 블록의 여기 광의 반사율은 약 20 내지 80 %이지만, 상기 흡광층 또는 광반사방지층을 포함하는 상기 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 내지 4% 이내로 줄일 수 있고, 상기 흡광층(60) 및 광반사방지층(70)을 포함하는 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 이하로 줄일 수 있다.
상기 광 검출 모듈(300)은 상기 마이크로 PCR 칩(1)에 광을 제공하도록 구동가능하게 배치된 광 제공부(도시되지 않음) 및 상기 마이크로 PCR 칩(1)로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부(도시되지 않음)를 포함할 수 있다. 상기 광 제공부는 상기 마이크로 PCR 칩(1)에 광을 제공하기 위한 모듈이고, 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 수용하여 상기 마이크로 PCR 칩(1)에서 수행되는 PCR 산물을 측정하기 위한 모듈이다. 상기 광 제공부로부터 광이 방출되고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 단위 모듈(50) 내 PCR 반응 챔버를 통과하거나 반사하고, 이 경우 상기 PCR 반응 챔버 내의 핵산 증폭에 의해 발생하는 광신호를 상기 광 검출부가 검출한다. 따라서, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)에 따르면, 상기 마이크로 PCR 칩(1)에서 상기 PCR 과정이 진행되는 동안 상기 PCR 반응 챔버 내에서 (형광 물질이 결합된) 핵산 증폭 산물을 실시간으로 모니터링함으로써 초기 PCR 시료 및 시약에 포함되어 있는 표적 핵산의 증폭 여부 및 증폭 정도를 실시간으로 측정 및 분석할 수 있다. 또한, 상기 광 제공부 및 광 검출부는 상기 열 블록(200)을 중심으로 위 또는 아래에 모두 배치되거나 각각 배치될 수 있다. 다만, 상기 광 제공부 및 광 검출부의 배치는 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)의 최적의 구현을 위하여 다른 모듈과의 배치 관계를 고려하여 다양할 수 있으며, 바람직하게는 도 14 내지 15에 따라, 상기 광 제공부 및 광 검출부(광 검출 모듈, 300)가 상기 열 블록(200)의 상부에 모두 배치될 수 있다. 상기 광 제공부는 LED(Light Emitting Diode) 광원 또는 레이저 광원, 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기, 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈를 포함하고, 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 광원은 광을 방출할 수 있는 모든 광원을 포함하며, LED(Light Emitting Diode) 광원 또는 레이저 광원을 포함한다. 상기 제1 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 미리 결정된 상기 광원에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제1 광 여과기는 상기 광원으로부터 방출되는 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 제1 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)에 조사되는 광의 강도를 증가시킬 수 있다. 또한, 상기 광 제공부은 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 제1 비구면 렌즈의 배치 방향을 조정함으로써, 상기 광원으로부터 방출되는 광 범위를 확장하여 측정 가능한 영역에 도달하게 한다. 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 포집하는 제2 광 렌즈, 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기, 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 광 분석기를 포함하고, 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함하며, 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 제2 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 광의 강도를 증가시켜 광신호 검출을 용이하게 한다. 상기 제2 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광의 파장에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제2 광 여과기는 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 광 분석기는 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 모듈로서, PCR 시료 및 시약으로부터 발현 형광을 전기 신호로 전환하여 정성 및 정략적인 측정이 가능하도록 한다. 또한, 상기 광 검출부는 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함할 수 있다. 상기 제2 비구면 렌즈의 배치 방향을 조정함으로써, 상기 제2 광 여과기로부터 방출되는 광 영역을 확장하여 측정 가능한 영역에 도달하게 한다. 또한, 상기 광 검출부는 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고, 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 광다이오드 집적소자(340)를 사용함으로써, 기기의 소형화가 더욱 가능하고, 노이즈를 최소화하여 신뢰 가능한 광신호를 측정할 수 있다. 더 나아가, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)는 상기 광 제공부로부터 방출된 광이 광 검출부까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터를 더 포함할 수 있다. 상기 이색성 필터(dichroic filter)는 광을 파장에 따라 선택적으로 투과 또는 선택적으로 조절된 각도로 반사시키는 모듈이다. 상기 이색성 필터는 상기 광 제공부으로부터 방출되는 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 열 블록(200) 상에 배치된 마이크로 PCR 칩(1)에 도달하게 한다. 또한, 상기 이색성 필터는 상기 마이크로 PCR 칩(1) 및 상기 열 블록(200)으로부터 반사된 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 광 검출부에 도달하게 한다. 상기 광 검출부에 도달한 광은 광 분석기에서 전기 신호로 전환되어 핵산 증폭 여부 및 증폭 정도를 나타낼 수 있다.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 2개의 열 블록을 구비하는 실시간 PCR 장치를 도시한다.
도 16 내지 18에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 기판(400a) 상에 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제2 열 블록(200a); 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a); 및 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a)을 포함한다.
도 16에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 기판(400a) 상에 배치된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치된 제2 열 블록(200a); 및 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다.
상기 기판(400a)은 상기 제1 열 블록(100a) 및 제2 열 블록(200a)의 가열 및 온도 유지로 인해 그 물리적 및/또는 화학적 성질이 변하지 않고, 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이에서 상호 열 교환이 일어나지 않도록 하는 재질을 갖는 모든 물질을 포함한다. 예를 들어, 상기 기판(400a)은 플라스틱 등의 재질을 포함하거나 그러한 재질로 구성될 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 핵산을 증폭하기 위한 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하기 위한 것이다. 따라서 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 각 단계들에 요구되는 필요한 온도를 제공하고, 이를 유지하기 위한 다양한 모듈을 포함하거나 또는 그러한 모듈과 구동가능하게 연결될 수 있다. 따라서, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)가 상기 각 열 블록(100a, 200a)의 일 면에 접촉되는 경우 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 마이크로 PCR 칩(1)과의 접촉 면을 전체적으로 가열 및 온도 유지할 수 있어서, 상기 마이크로 PCR 칩(1) 내의 샘플 용액을 균일하게 가열 및 온도 유지할 수 있다. 종래 단일 열 블록을 사용하는 PCR 장치는 상기 단일 열 블록에서의 온도 변화율이 초당 3 내지 7℃ 범위 내에서 이루어지는데 반해, 본 발명의 다른 실시예에 따른 2개의 열 블록을 포함하는 실시간 PCR 장치(2000)는 각각의 열 블록(100a, 200a)에서의 온도 변화율이 초당 20 내지 40℃ 범위 내에서 이루어져 PCR 진행 시간을 크게 단축시킬 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 열선(도시되지 않음)이 배치될 수 있다. 상기 열선은 상기 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하도록 다양한 열원과 구동가능하게 연결될 수 있고, 상기 열선의 온도를 모니터링하기 위한 다양한 온도 센서와 구동가능하게 연결될 수 있다. 상기 열선은 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 대칭되도록 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 대칭된 열선의 배치는 다양할 수 있다. 또한, 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 박막 히터(thin film heater, 도시되지 않음)가 배치될 수도 있다. 상기 박막 히터는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 일정한 간격으로 이격 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 일정한 박막 히터의 배치는 다양할 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 동일한 면적에 대한 고른 열 분포 및 신속한 열 전달을 위해 금속 재질, 예를 들어 알루미늄 재질을 포함하거나 또는 알루미늄 재질로 구성될 수 있다.
상기 제1 열 블록(100a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)의 제1 열 블록(100a)은 50℃ 내지 100℃를 유지할 수 있고, 바람직하게는 상기 제1 열 블록(100a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제1 열 블록(100a)에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 상기 제2 열 블록(200a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 제3 실시예에 따른 PCR 장치의 제2 열 블록(200a)은 상기 제2 열 블록(200a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제2 열 블록에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 따라서, 상기 제1 열 블록(100a)은 PCR의 변성 단계 온도 (denaturing temperature)를 유지할 수 있으며, 변성 단계 온도가 90℃보다 낮으면 PCR의 주형이 되는 핵산의 변성이 일어나 효율이 떨어져 PCR 효율이 떨어지거나 반응이 일어나지 않을 수 있고, 변성 단계 온도가 100℃보다 높아지면 PCR에 이용되는 효소가 활성을 잃게 되므로, 상기 변성 단계 온도는 90℃ 내지 100℃일 수 있고, 바람직하게는 95℃일 수 있다. 또한, 상기 제2 열 블록(200a)은 PCR의 어닐링 및 연장 (혹은 증폭) 단계 온도(annealing/extension temperature)를 유지할 수 있다. 연장 (혹은 증폭) 단계 온도가 55℃보다 낮으면 PCR 산물의 특이성(specificity)이 떨어질 수 있고, 어닐링 및 연장 (혹은 증폭) 단계 온도가 74℃보다 높으면 프라이머에 의한 연장이 일어나지 않을 수 있기 때문에 PCR 효율이 떨어지게 되므로 상기 어니링 및 연장 (혹은 증폭) 단계 온도는 55℃ 내지 75℃일 수 있고, 바람직하게는 72℃일 수 있다.
상기 제1 열 블록(100a)과 제2 열 블록(200a)은 상호 열 교환이 일어나지 않도록 미리 결정된 거리로 이격 배치될 수 있다. 이에 따라, 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 열 교환이 일어나지 않기 때문에, 미세한 온도 변화에 의해서도 중대한 영향을 받을 수 있는 핵산 증폭 반응에 있어서, 상기 변성 단계와 상기 어닐링 및 연장 (혹은 증폭) 단계의 정확한 온도 제어가 가능하다.
본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다. 상기 칩 홀더(300a)는 상기 마이크로 PCR 칩(1)이 상기 실시간 PCR 장치(2000)에 장착되는 모듈이다. 상기 칩 홀더(300a)의 내벽은 상기 실시간 PCR 장치(2000)에 의해 핵산 증폭 반응이 수행되는 경우 상기 마이크로 PCR 칩(1)이 상기 칩 홀더(300a)로부터 이탈하지 않도록 상기 마이크로 PCR 칩(1)의 외벽과 고정 장착되기 위한 형상 또는 구조를 가질 수 있다. 상기 칩 홀더(300a)는 상기 구동 수단(500a)에 구동가능하게 연결된다. 또한, 상기 마이크로 PCR 칩(1)은 상기 칩 홀더(300a)에 착탈 가능할 수 있다.
상기 구동 수단(500a)은 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 좌우 및/또는 상하 이동 가능하게 하는 모든 수단을 포함한다. 상기 구동 수단(500a)의 좌우 이동에 의해, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 왕복 운동이 가능하고, 상기 구동 수단(500a)의 상하 이동에 의해, 상기 PCR 칩(10)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a)에 접촉 및 분리될 수 있다. 도 16에 도시된 실시간 PCR 장치(2000)의 구동 수단(500a)은 좌우 방향으로 연장된 레일(510a), 및 상기 레일(510a)을 통해 좌우 방향으로 슬라이딩 이동가능하게 배치되고, 상하 방향으로 슬라이딩 이동 가능한 연결 부재(520a)를 포함하고, 상기 연결 부재(520a)의 일 말단은 상기 칩 홀더가 배치된다. 상기 구동 수단(500a)의 좌우 및/또는 상하 이동은 상기 PCR 장치의 내부 또는 외부에 구동가능하게 배치된 제어 수단(도시되지 않음)에 의해 제어될 수 있고, 상기 제어 수단은 PCR의 변성 단계와 어닐링 및 연장 (혹은 증폭) 단계를 위한 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)와 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이의 접촉 및 분리를 제어할 수 있다.
도 17은 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치(2000)의 칩 홀더의 이동에 의한 핵산 증폭 반응의 각 단계를 도시한다. 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응은 하기 단계에 의한다.
먼저, 상기 마이크로 PCR 칩(1)에 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 완충액(PCR buffer)를 포함하는 샘플 용액을 도입하고, 상기 PCR 칩(10)을 상기 칩 홀더(300a)에 장착하는 단계를 수행한다. 그 후 또는 이와 동시에 상기 제1 열 블록(100a)을 변성 단계를 위한 온도, 예를 들어, 90℃ 내지 100℃로 가열 및 유지하고, 바람직하게는 95℃로 가열 및 유지하는 단계를 수행한다. 상기 제2 열 블록(200)을 어닐링 및 연장 (혹은 증폭) 단계를 위한 온도, 예를 들어, 55℃ 내지 75℃로 가열 및 유지하고, 바람직하게는 72℃로 가열 및 유지하는 단계를 수행한다. 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)에 접촉시켜 PCR의 제1 변성 단계를 수행한다(x 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)으로부터 분리시켜 PCR의 제1 변성 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로 이동시키는 단계를 수행한다(y 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)에 접촉시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 수행한다(z 단계). 마지막으로, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)으로부터 분리시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로 이동시킨 후 상기 x, y, z 단계를 반복함으로써, 핵산 증폭 반응을 수행한다(순환 단계).
도 18은 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)를 이용하여 실시간으로 핵산 증폭 반응을 관찰하는 단계를 도시한다. 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a), 구체적으로 광원(700a) 및 광 검출부(800a)를 포함한다. 즉, 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)이 배치되고, 상기 칩 홀더(300a) 위에 상기 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되거나, 또는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되고, 상기 칩 홀더(300a) 위에 광원(700a)이 배치될 수 있다. 또한, 상기 광 검출부(800a)는 상기 구동 수단(500a) 위에 배치되고, 상기 구동 수단(900a)은 상기 광원(700a)으로부터 방출되는 광을 통과시키기 위한 관통부(530a)가 배치될 수 있다.
상기 광원(700a) 및 광 검출부(800a)의 배치에 의해, 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출할 수 있도록 한다. 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 검출하기 위해서는 상기 마이크로 PCR 칩(1)에 도입되는 샘플 용액에 별도의 형광 물질을 더 첨가할 수 있다. 상기 광원(700a)은 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간에 가능한 넓게 분포하도록 배치되고, 가능한 동일한 광을 방출하도록 배치된다. 상기 광원(700a)은 상기 광원(700a)으로부터 방출되는 광을 포집하는 렌즈(도시되지 않음) 및 특정 파장대의 광을 여과하는 광 필터(도시되지 않음)와 구동가능하게 연결 배치될 수 있다.
상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출하는 단계는 아래와 같다.
상기 PCR의 제1 변성 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로부터 제2 열 블록(200a)의 위로 이동시키거나, 또는 상기 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로부터 제1 열 블록(200a)의 위로 이동시키는 경우, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간 상에 정지시키는 단계를 수행한다. 그 후, 상기 광원(700a)으로부터 광을 방출시키고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버)를 통과하고, 이 경우 상기 PCR 반응 챔버 내의 핵산의 증폭에 의해 발생하는 광신호를 상기 광 검출부(800a)가 검출한다. 이 경우 상기 광 투과성 재질의 마이크로 PCR 칩(1)을 통과한 광은 상기 구동 수단(500a), 구체적으로 상기 레일(510a)에 배치된 관통부(530a)를 통과하여 상기 광출부(800a)에 도달할 수 있다. 따라서, 상기 PCR의 각 순환 단계가 진행되는 동안 상기 반응 채널 내에서 (형광 물질이 결합된) 핵산의 증폭에 의한 반응 결과를 실시간으로 모니터링함으로써 초기 반응 샘플에 포함되어 있는 표적 핵산의 양을 실시간으로 측정 및 분석할 수 있다.
실험예 1. 마이크로 PCR 칩의 제조
도 12와 같이, 플라스틱 재질로 평판 형상의 제1 내지 제3 판(100, 200, 300)을 준비하였다. 상기 제1 판(100)은 0.5 mm의 두께로 제조하였고, 상기 제2 판(200)은 2 mm의 두께로 하되, 19개의 PCR 반응 챔버(10)를 중앙 원형 영역에 집적시켜 제조하였고, 상기 제3 판(300)은 2 mm의 두께로 하되, 그 하단 면에 상기 중앙 원형 영역에 대응하게 원형 홈을 구현하고, 상기 19개의 PCR 반응 챔버(10) 내부를 향해 돌출되도록 광 투과부(25)를 형성하여 제조하였다. 아울러, 상기 제3 판(300)의 원형 홈 및 광 투과부(50)에 대응하여 결합할 수 있는 플렉서블 패킹부(50)를 제조하여 상기 제3 판(300)의 하단 면에 부착시켰다. 그 후, 상기 제1 판(100) 상부에 양면 접착 테이프를 접착하고 상기 제2 판(200)을 상기 제1 판(100)의 상부에 부착하였다. 이 경우 상기 양면 접착 테이프 이외에 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법 등을 통해서도 상기 제1 판(100)과 상기 제2 판(200)을 부착시킬 수 있음은 물론이다. 그 후, 상기 제2 판(200)의 부착에 의해 형성된 19개의 PCR 반응 챔버(10)에 PCR 시료 및 시약을 주입하고, 상기 플렉서블 패킹부(50)가 부착된 상기 제3 판(300)을 상기 제2 판(200) 상부에 부착하여 상기 PCR 반응 챔버(10)를 밀봉하였다. 도 19에 따르면, 본 실험예에 있어서, 완성된 마이크로 PCR 칩(1)을 확인할 수 있다. 도 19의 A 그림은 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 외관이고, B 그림은 A 그림의 마이크로 PCR 칩(1)에서 제3 판(300)의 투시도가 반영된 외관이고, C 그림은 B 그림의 마이크로 PCR 칩(1)의 중앙 원형 영역에 19개의 단위 모듈(50)이 배치된 상태를 도시하는 확대 도면이다.
실험예 2. 식중독균 검출용 프라이머 세트 제작 및 합성
식중독균 4종의 실시간 검출을 위해 사용한 프라이머는 GC%를 40 내지 60%가 되도록 하고, Tm 값 65 내지 75℃의 조건이 되도록 하여 Primer 3를 통해 제작하고, 제작한 프라이머를 ㈜제노텍에 의뢰하여 합성하였다. 식중독균 4종을 특이적으로 검출하기 위한 프라이머 세트의 정방향(Forward)/역방향(Reverse) 염기서열(Sequence) 및 그에 따른 산물 크기(Product size, bp)는 하기 표 1과 같다.
Strain name Product
size(bp)
Sequence
Salmonella spp . 127 (Forward) TGT TGC GGA ACG CGC TTG ATG AGC TTT (서열번호 1)
(Reverse) CAG GAA ATT TCG CTT CCA GTT GGT CCA G (서열번호 2)
Listeria monocytogenes 221 (Forward) GCG CCA CTA CGG ACG TTT AAC CAA G (서열번호 3)
(Reverse) ACA ATC GCA TCC GCA AGC ACT GTA G (서열번호 4)
Staphylococcus aurens 127 (Forward) ATT GGT TGA TAC ACC TGA AAC AAA GCA TCC (서열번호 5)
(Reverse) AAA GCT TCG TTT ACC ATT TTT CCA TCA GCA (서열번호 6)
Escherichia coli 136 (Forward) ATG TGG CCG GGT TCG TTA ATA CGG (서열번호 7)
(Reverse) GCT GCG ACA CGT TGC AGA GTG GTA (서열번호 8)
실험예 3. PCR 수행(비교 실험)
본 발명의 일 실시예에 따른 4종의 식중독균 검출용 프라이머 세트를 전제로 타사 PCR 장치 및 본 발명의 일 실시예에 따른 실시간 PCR 장치를 이용하여 PCR을 수행했다. 상기 타사 PCR 장치로 BIO-RAD 사의 conventional PCR 장치(BIORAD CFX 3600 ConnectTM Real-time PCR)를 사용했다. 본 발명의 일 실시예에 따른 실시간 PCR 장치와 비교하면, 상기 타사 PCR 장치는 본 발명의 일 실시예에 따른 PCR 장치가 칩(chip) 타입의 PCR 용기를 사용하는 반면, 튜브(tube) 타입의 PCR 용기를 사용하고, 본 발명의 일 실시예에 따른 PCR 장치의 샘플 용량(working volume)이 12 마이크로리터(㎕)인데 반해, 더 큰 20 마이크로리터(㎕)이고, 본 발명의 일 실시예에 따른 PCR 장치의 장비 중량이 5.5 킬로그램(kg)인데 반해, 더 무거운 21 킬로그램(kg)이다.
본 발명의 일 실시예에 따른 PCR 장치에 사용된 PCR 반응조건 및 구동조건은 하기 표 2 및 표 3에 기재된 바와 같고, 상기 타사 PCR 장치에 사용된 PCR 반응조건 및 구동조건은 하기 표 4 및 표 5에 기재된 바와 같다.
No. Materials Volume(㎕)
1 NBS 2x rt-PCR Master Mix 6
2 10μM Primer F/R 1.2/1.2
3 PCR grade water 2.6
4 Template 1
Total 12
Temperature Time Cycle
95℃ 8 sec 1
95℃ 3 sec 40
68℃ 14 sec
No. Materials Volume(㎕)
1 THUNDERBIRD SYBR qPCR mix
(TOYOBO, code no. QPS201)
10
2 10μM Primer F/R 2/2
3 PCR grade water 5
4 Template 1
Total 20
Temperature Time Cycle
95℃ 30 sec 1
95℃ 5 sec 40
68℃ 30 sec
도 20 내지 35는 본 발명의 일 실시예에 따른 PCR 장치와 타사 PCR 장치의 PCR 산물에 관한 결과를 보여준다. 구체적으로, 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 제1 반응 챔버(1)에 음성 대조군(Negative control, NC) 역할을 수행하는 프라이머(IPAH-shigelle)를 도입하고, 제2 반응 챔버(2)에 4종 식중독균 중 하나(1×105 copies/㎕)를 도입하고, 제3 반응 챔버(3)에 4종의 식중독균 모두(mix sample)를 도입하여 실시간 PCR을 진행하여 주기(cycle) 대비 형광 측정을 통해 실시간 PCR 결과를 모니터링하고(Ct 값 측정), 전기영동 사진을 촬영했다.
도 20 내지 23은 Salmonella spp . 검출 및 특이성에 관한 것이다.
도 20에 따르면, 본 발명의 일 실시예에 따른 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 1 및 서열번호 2의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 22.44), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 24.67). 이와 같은 PCR 결과는 도 21의 전기영동 사진으로 재차 확인할 수 있다. 한편, 도 22에 따르면, 타사 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 1 및 서열번호 2의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 28.74), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 30.73). 이와 같은 PCR 결과는 도 23의 전기영동 사진으로 재차 확인할 수 있다.
도 24 내지 27은 Listeria monocytogenes 검출 및 특이성에 관한 것이다.
도 24에 따르면, 본 발명의 일 실시예에 따른 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 3 및 서열번호 4의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 22.44), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 24.67). 이와 같은 PCR 결과는 도 25의 전기영동 사진으로 재차 확인할 수 있다. 한편, 도 26에 따르면, 타사 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 3 및 서열번호 4의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 23.23), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 25.45). 이와 같은 PCR 결과는 도 27의 전기영동 사진으로 재차 확인할 수 있다.
도 28 내지 31은 Staphylococcus aurens 검출 및 특이성에 관한 것이다.
도 28에 따르면, 본 발명의 일 실시예에 따른 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 5 및 서열번호 6의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 19.20), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 21.22). 이와 같은 PCR 결과는 도 29의 전기영동 사진으로 재차 확인할 수 있다. 한편, 도 30에 따르면, 타사 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 5 및 서열번호 6의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 20.23), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 21.91). 이와 같은 PCR 결과는 도 31의 전기영동 사진으로 재차 확인할 수 있다.
도 32 내지 35는 Escherichia coli 검출 및 특이성에 관한 것이다.
도 32에 따르면, 본 발명의 일 실시예에 따른 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 7 및 서열번호 7의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 20.06), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 22.55). 이와 같은 PCR 결과는 도 33의 전기영동 사진으로 재차 확인할 수 있다. 한편, 도 34에 따르면, 타사 PCR 장치에서 도출된 실시간 PCR 결과 그래프로서, 제1 반응 챔버(1)의 음성 대조군(NC)은 반응이 없지만(Ct value = 0), 서열번호 7 및 서열번호 8의 프라이머 세트로 인해 제2 반응 챔버(2)에서 유효한 PCR 결과가 산출되고(Ct value = 21.48), 더 나아가 제3 반응 챔버(3)에서도 유효한 PCR 결과가 산출됨을 확인했다(Ct value = 23.83). 이와 같은 PCR 결과는 도 35의 전기영동 사진으로 재차 확인할 수 있다.
실험 결과, 총 PCR 주기(cycle) 40회에 도달한 시간은 본 발명의 일 실시예에 따른 PCR 장치는 약 22분, 상기 타사 PCR 장치는 63분이 소요되어 약 3배의 시간이 감축되었다. 아울러, 도 20 내지 35에 따르면, 4종의 식중독균에 대한 본 발명의 일 실시예에 따른 PCR 장치와 상기 타사 PCR 장치의 PCR 결과는 모두 유효한 것으로 확인되었다.
<110> NANOBIOSYS <120> High-speed real-time PCR device based on lap-on-a-chip for detecting food-borne bacteria to agrifood, and method for detecting food-borne bacteria to agrifood using the same <130> WPN128 <160> 8 <170> KopatentIn 2.0 <210> 1 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 1 tgttgcggaa cgcgcttgat gagcttt 27 <210> 2 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 2 caggaaattt cgcttccagt tggtccag 28 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 3 gcgccactac ggacgtttaa ccaag 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 4 acaatcgcat ccgcaagcac tgtag 25 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 5 attggttgat acacctgaaa caaagcatcc 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 6 aaagcttcgt ttaccatttt tccatcagca 30 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 7 atgtggccgg gttcgttaat acgg 24 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Arificail sequence <400> 8 gctgcgacac gttgcagagt ggta 24

Claims (12)

  1. 상단 면이 개방된 PCR 반응 챔버(chamber); 및
    상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover);
    를 포함하는 것으로서, 상기 PCR 반응 챔버 내에
    서열번호 1의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 2의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Salmonella spp . 유전자를 검출하기 위한 프라이머 세트;
    서열번호 3의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 4의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Listeria monocytogenes 유전자를 검출하기 위한 프라이머 세트;
    서열번호 5의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 6의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Staphylococcus aurens 유전자를 검출하기 위한 프라이머 세트; 및
    서열번호 7의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머 및 서열번호 8의 염기 서열 중 15개 이상의 연속적인 뉴클레오티드를 포함하는 프라이머로 이루어진 Escherichia coli 유전자를 검출하기 위한 프라이머 세트;
    로 구성된 군으로부터 선택되는 하나 이상의 프라이머 세트를 각각 포함하는, 식중독균 검출용 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip).
  2. 제1항에 있어서,
    상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현된 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  3. 제2항에 있어서,
    상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용하는 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  4. 제1항에 있어서,
    상기 광 투과부는 상기 밀폐 면의 중앙에 배치된 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  5. 제1항에 있어서,
    상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현된 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  6. 제1항에 있어서,
    상기 덮개는 상기 광 투과부를 관통하여 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비하는 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  7. 제1항에 있어서,
    평판 형상을 갖는 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  8. 제1항에 있어서,
    평판 형상의 제1 판;
    상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및
    상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판;
    을 포함하는 것을 특징으로 하는, 식중독균 검출용 마이크로 PCR 칩.
  9. 제8항에 있어서,
    상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함하는 것을 특징으로 하는, 식중독균 검출용 마이크로 PCR 칩.
  10. 제1항에 있어서,
    상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부를 더 포함하는 것을 특징으로 하는 식중독균 검출용 마이크로 PCR 칩.
  11. 제1항 내지 제10항 중 어느 한 항에 따른 식중독균 검출용 마이크로 PCR 칩;
    상기 식중독균 검출용 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및
    상기 식중독균 검출용 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;
    을 포함하는, 실시간 PCR 장치.
  12. 제1항 내지 제10항 중 어느 한 항에 따른 식중독균 검출용 마이크로 PCR 칩;
    기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록;
    상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록;
    상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및
    상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 식중독균 검출용 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;
    을 포함하는, 실시간 PCR 장치.
KR1020130168689A 2013-12-31 2013-12-31 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법 KR102078085B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130168689A KR102078085B1 (ko) 2013-12-31 2013-12-31 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법
PCT/KR2014/013058 WO2015102379A1 (ko) 2013-12-31 2014-12-30 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법
US15/109,078 US10245590B2 (en) 2013-12-31 2014-12-30 High-speed real-time PCR device based on lab-on-a-chip for detecting food-borne bacteria to agrifood, and methods for detecting food-borne bacteria to agrifood using the same
CN201480071570.8A CN105849283B (zh) 2013-12-31 2014-12-30 检测农业食品的食源性细菌的搭接芯片的高速实时pcr装置及利用其的食物中毒检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130168689A KR102078085B1 (ko) 2013-12-31 2013-12-31 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법

Publications (2)

Publication Number Publication Date
KR20150078878A true KR20150078878A (ko) 2015-07-08
KR102078085B1 KR102078085B1 (ko) 2020-02-17

Family

ID=53493660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130168689A KR102078085B1 (ko) 2013-12-31 2013-12-31 농식품의 식중독균 검출용 랩온어칩 기반의 초고속 실시간 pcr 장치, 및 이를 이용한 식중독 검출방법

Country Status (4)

Country Link
US (1) US10245590B2 (ko)
KR (1) KR102078085B1 (ko)
CN (1) CN105849283B (ko)
WO (1) WO2015102379A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117454A (ko) 2017-04-19 2018-10-29 주식회사 넥서스비 휴대용 실시간 pcr 측정기기
KR20210089293A (ko) 2020-01-07 2021-07-16 홍익대학교 산학협력단 Pcr 튜브 전극 장치 및 그 튜브 전극 장치를 포함한 pcr 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110452814A (zh) * 2019-07-12 2019-11-15 北京资和源医疗科技有限公司 一种pcr快速反应芯片
KR102549976B1 (ko) * 2021-05-03 2023-07-03 성균관대학교산학협력단 연속 핵산 검출 장치
AU2022319876A1 (en) * 2021-07-27 2024-01-18 Gen-Probe Incorporated Compositions and methods for detecting gastrointestinal pathogens
CN113862144B (zh) * 2021-11-05 2023-11-17 中元汇吉生物技术股份有限公司 全自动荧光定量pcr分析仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041159A (ko) * 2003-10-30 2005-05-04 삼성전자주식회사 마이크로 pcr 장치, 그를 이용한 핵산의 증폭방법 및pcr 증폭 산물의 농도를 측정하는 방법
KR20060019700A (ko) * 2004-08-28 2006-03-06 김철민 모든 세균의 감별을 위한 세균 특이적, 속 특이적 및 종특이적 올리고뉴클레오티드, 이를 포함하는 진단 키트, 및이를 이용한 검출 방법
KR20100115186A (ko) * 2009-04-17 2010-10-27 시드바이오칩스(주) 병원성 미생물 검출용 프라이머, 이를 이용한 병원성 미생물의 검출방법 및 검출키트
WO2012107559A1 (en) * 2011-02-11 2012-08-16 Fzmb Gmbh Forschungszentrum Für Medizintechnik Und Biotechnologie Process for detecting cells from a sample
KR20130065337A (ko) * 2011-12-09 2013-06-19 나노바이오시스 주식회사 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
KR20130086893A (ko) * 2012-01-26 2013-08-05 나노바이오시스 주식회사 광 투과성 열 블록을 포함하는 pcr 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100794699B1 (ko) 2002-06-18 2008-01-14 (주)바이오니아 핵산증폭반응 산물의 실시간 모니터링 장치
KR20040048754A (ko) 2002-12-04 2004-06-10 뮤앤바이오 주식회사 온도 제어가 가능한 리얼타임 형광 검색 장치
US8139210B2 (en) 2003-04-03 2012-03-20 Bioneer Corporation Real-time monitoring apparatus for biochemical reaction
JP2004350649A (ja) * 2003-05-30 2004-12-16 Asahi Kasei Corp 核酸検出用器具
CN100376683C (zh) * 2005-01-14 2008-03-26 北京大学 聚合酶链式反应芯片微系统
JP2007061061A (ja) * 2005-09-02 2007-03-15 Eiken Chem Co Ltd リステリア・モノサイトジェネス(Listeriamonocytogenes)の検出法
JP4854334B2 (ja) 2006-03-06 2012-01-18 三洋電機株式会社 核酸増幅生成物のリアルタイム検出装置
KR101089045B1 (ko) 2007-06-28 2011-12-02 (주)바이오니아 핵산증폭반응 산물의 실시간 모니터링장치
US9492825B2 (en) * 2007-09-06 2016-11-15 It-Is International Limited Thermal control apparatus for chemical and biochemical reactions
GB0719193D0 (en) * 2007-10-02 2007-11-07 Advanced Biotech Ltd A Vessel
WO2010133257A1 (en) * 2009-05-22 2010-11-25 Fondazione Parco Tecnologico Padano Method for detection and identification of bacterial strains belonging to the classes escherichia coli, salmonella, campylobacter and listeria
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041159A (ko) * 2003-10-30 2005-05-04 삼성전자주식회사 마이크로 pcr 장치, 그를 이용한 핵산의 증폭방법 및pcr 증폭 산물의 농도를 측정하는 방법
KR20060019700A (ko) * 2004-08-28 2006-03-06 김철민 모든 세균의 감별을 위한 세균 특이적, 속 특이적 및 종특이적 올리고뉴클레오티드, 이를 포함하는 진단 키트, 및이를 이용한 검출 방법
KR20100115186A (ko) * 2009-04-17 2010-10-27 시드바이오칩스(주) 병원성 미생물 검출용 프라이머, 이를 이용한 병원성 미생물의 검출방법 및 검출키트
WO2012107559A1 (en) * 2011-02-11 2012-08-16 Fzmb Gmbh Forschungszentrum Für Medizintechnik Und Biotechnologie Process for detecting cells from a sample
KR20130065337A (ko) * 2011-12-09 2013-06-19 나노바이오시스 주식회사 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
KR101456646B1 (ko) * 2011-12-09 2014-11-03 나노바이오시스 주식회사 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
KR20130086893A (ko) * 2012-01-26 2013-08-05 나노바이오시스 주식회사 광 투과성 열 블록을 포함하는 pcr 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Angewandte Chemie, Vol.124(20):4980-4984 (2012) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180117454A (ko) 2017-04-19 2018-10-29 주식회사 넥서스비 휴대용 실시간 pcr 측정기기
KR20210089293A (ko) 2020-01-07 2021-07-16 홍익대학교 산학협력단 Pcr 튜브 전극 장치 및 그 튜브 전극 장치를 포함한 pcr 장치

Also Published As

Publication number Publication date
CN105849283B (zh) 2020-02-14
CN105849283A (zh) 2016-08-10
US20170157614A1 (en) 2017-06-08
US10245590B2 (en) 2019-04-02
KR102078085B1 (ko) 2020-02-17
WO2015102379A1 (ko) 2015-07-09

Similar Documents

Publication Publication Date Title
US11966086B2 (en) Determining temperature-varying signal emissions during automated, random-access thermal cycling processes
JP7542834B2 (ja) 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
US10245590B2 (en) High-speed real-time PCR device based on lab-on-a-chip for detecting food-borne bacteria to agrifood, and methods for detecting food-borne bacteria to agrifood using the same
JP5650791B2 (ja) 熱交換を行ない光学的に検出する化学反応アセンブリ
KR101456646B1 (ko) 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
JP6087293B2 (ja) アッセイカートリッジ及びその使用方法
KR102206856B1 (ko) 중합효소 연쇄반응 시스템
KR101483493B1 (ko) 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
CN106661533B (zh) 多重pcr芯片及包含其的多重pcr装置
KR101802460B1 (ko) 유전자 진단 장치
US11529631B2 (en) Reaction processor
KR102256757B1 (ko) 중합효소 연쇄반응 시스템
WO2010047619A1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
KR101544089B1 (ko) 식중독 검출용 프라이머 세트를 포함하는 마이크로 pcr 칩, 이를 포함하는 실시간 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR101724281B1 (ko) 멀티플렉스 pcr 칩 및 이를 포함하는 멀티플렉스 pcr 장치
US20040241691A1 (en) Thermo-optical analysis system for biological reactions
KR20130086893A (ko) 광 투과성 열 블록을 포함하는 pcr 장치
KR102003784B1 (ko) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
KR102028381B1 (ko) 식중독 검출용 프라이머 세트를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR20130086894A (ko) 광 투과성 열 블록을 포함하는 pcr 칩, 및 이를 포함하는 pcr 장치
RU2800583C2 (ru) Система для полимеразной цепной реакции
KR20130081948A (ko) 인플루엔자 a 바이러스 검출용 키트 및 이를 이용한 인플루엔자 a 바이러스의 검출 방법
KR20130134040A (ko) 혈청 타입별 구제역 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 구제역 검출 방법
KR20130091026A (ko) 감염 결핵균 검출을 위한 pcr 장치 및 이를 이용한 감염 결핵균 검출 방법
KR20130085227A (ko) 구제역 검출을 위한 pcr 장치 및 이를 이용한 구제역 검출 방법

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant