KR102003784B1 - 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치 - Google Patents

마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치 Download PDF

Info

Publication number
KR102003784B1
KR102003784B1 KR1020120116873A KR20120116873A KR102003784B1 KR 102003784 B1 KR102003784 B1 KR 102003784B1 KR 1020120116873 A KR1020120116873 A KR 1020120116873A KR 20120116873 A KR20120116873 A KR 20120116873A KR 102003784 B1 KR102003784 B1 KR 102003784B1
Authority
KR
South Korea
Prior art keywords
pcr
micro
chip
reaction chamber
light
Prior art date
Application number
KR1020120116873A
Other languages
English (en)
Other versions
KR20140050446A (ko
Inventor
김성우
이동훈
김덕중
류호선
Original Assignee
주식회사 미코바이오메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 미코바이오메드 filed Critical 주식회사 미코바이오메드
Priority to KR1020120116873A priority Critical patent/KR102003784B1/ko
Priority to PCT/KR2013/009343 priority patent/WO2014062033A1/ko
Publication of KR20140050446A publication Critical patent/KR20140050446A/ko
Application granted granted Critical
Publication of KR102003784B1 publication Critical patent/KR102003784B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50853Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates with covers or lids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • B01L3/50851Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates specially adapted for heating or cooling samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/36Apparatus for enzymology or microbiology including condition or time responsive control, e.g. automatically controlled fermentors
    • C12M1/38Temperature-responsive control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres

Abstract

본 발명의 실시예는 마이크로 PCR 칩 및 이를 포함하는 실시간 PCR 장치에 관한 것으로서, 이에 따르면 다수의 소량의 샘플을 동시에 수용함과 동시에 열 블록과의 열 접촉 효율을 최대한 확보하여 신속한 결과를 확보할 수 있고, 더 나아가 핵산 증폭 산물로부터 발광하는 광신호를 별도의 여과 또는 가공 없이도 정확하게 측정할 수 있는 마이크로 PCR 칩을 제공할 수 있고, 아울러 이를 전제로, 복잡한 광신호 측정모듈 없이도 신뢰성이 확보된 핵산증폭 결과를 신속하게 얻을 수 있는 실시간 PCR 장치를 제공할 수 있다.

Description

마이크로 PCR 칩 및 이를 포함하는 실시간 PCR 장치{micro chip for polymerase chain reaction and real-time PCR device comprising the same}
본 발명은 실시간 PCR(real-time Polymerase chain reaction)을 수행하기 위한 극소형 PCR 칩 및 이를 포함하는 실시간 PCR 장치에 관한 것이다.
실시간 PCR(real-time Polymerase chain reaction)은 핵산 증폭 산물을 겔(gel) 상에서의 전기영동 수행 없이도 반응 순환(cycle) 동안 실시간으로 확인할 수 있다는 장점으로 근래 핵산 분석 수행에 있어서 많이 활용되고 있다. 일반적으로, 실시간 PCR을 구현하기 위한 장치는 핵산 증폭 반응을 수행하는 1 이상의 열 블록(heating block)을 구비하는 열 순환 장치(thermal cycler) 및 핵산 증폭 산물로부터 발생하는 신호를 실시간으로 측정하기 위한 신호 검출기를 포함한다. 이와 같은 신호 검출기는 핵산 증폭 산물로부터 발생하는 형광 신호를 검출하기 위한 광 검출기, 핵산 증폭 산물과 이와 상호 결합하는 매개체의 특이적 결합을 통해 발생하는 전기적 신호를 검출하기 위한 전기적 신호 검출기 등으로 예시될 수 있다.
한편, 최근 의료 분야에 있어서, 맞춤 의학을 구현하기 위한 효율적인 진단 및 치료 방법이 활발하게 개발되고 있는데, 맞춤 의학을 실질적으로 실현하기 위해서는 다수의 개체에 대한 신속하고 정확한 진단 및 치료가 필요하다. 이 경우 진단 및 치료에 있어서, 핵산 증폭 단계는 가장 기초가 되는 전제 과정이고, 이를 수행하는 일 예인 실시간 PCR은 맞춤 의학 실현에 있어서 전제되는 단계라 할 것이다. 그러나, 실시간 PCR은 복잡한 수행 과정을 전제하기 때문에 완료 단계까지 상당한 시간이 소요되고, 이를 구현하기 위한 장치는 대부분 비싸고, 대형이어서 실질적인 맞춤 의학 실현에 장애가 되고 있다. 이와 같은 문제점을 해결하고자 최근 많은 시도가 이루어지고 있다.
이와 관련하여, 한국공개특허 제10-2004-0048754호(온도 제어가 가능한 리얼타임 형광 검색 장치)는 수백에서 수천의 샘플에서 여러 파장대(Wavelength)의 형광을 수초 내에 빠르고 낮은 샘플의 농도에서도 민감하게 검색하되, 효소 반응들을 리얼타임으로 검색하고 분석할 수 있으며 경제적인 가격에 휴대 가능한 소형의 형광 검색 장치를 제공한다. 구체적으로, 상기 선행 형광 검색 장치는 생물학적 샘플에 광원을 조사한 후 상기 샘플에서 방사되는 형광을 검색하여 샘플을 분석하는 장치로서, 샘플 용기, 상기 샘플 용기를 조사하도록 위치하는 광원, 상기 샘플에서 방사되는 형광을 탐지하는 탐지기, 상기 샘플에서 방사되는 형광을 상기 탐지기로 이동시키는 형광 이동 장치, 파장 선택 장치, 및 제어부를 포함하는 형광 검색 장치에 있어서, 다수의 LED 가 순차적으로 발광되도록 배열된 LED 어레이; 샘플 용기를 삽입하기 위한 다수의 웰을 가지는 웰 체임버 블록; 상기 LED 어레이의 각 LED 발광에 의해 상기 샘플에서 방사되는 형광을 탐지하기 위한 다중 채널 PMT; 및 상기 각 샘플에서 방사되는 형광을 개별적으로 상기 다중 채널 PMT 로 이동시키기 위한 다수의 광섬유를 포함하는 것을 특징으로 한다.
또한, 한국등록특허 제10-0794703호(생화학적 반응의 실시간 모니터링 장치)는 반응 튜브 플레이트 내의 반응 시 광 검출 감도 편차를 최소화하여 다종의 시료의 반응 정도를 비교분석할 수 있는 장치를 제공한다. 구체적으로, 상기 선행 실시간 모니터링 장치는 반응 튜브에 열을 공급할 수 있는 열공급원인 열전소자와 상기 반응 튜브에 열을 전달하기 위한 열전달 블록으로 이루어진 온도 조절 블록계; 상기 반응 튜브 내의 시료에 균일한 광을 조사하기 위한 램프와 광 도파관으로 이루어진 조사 광원부; 및 광 경로를 바꾸는 반사경과 상기 조사 광원부에 의해 조사되는 광에 의해 상기 반응 튜브내의 시료에서 발생되는 형광을 수광하기 위한 수광부로 구성된 광학계를 포함한다.
또한, 한국등록특허 제10-1089045호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위한 것으로서, 여기광과 형광의 간섭을 효율적으로 분리하기 위해 편광자, 편광빔분할기, 편광변환기 등을 포함하는 생화학 반응의 실시간 모니터링 장치를 제공한다.
또한, 한국공개특허 제10-2008-0103548호(핵산 증폭 생성물의 실시간 검출 장치)는 수정을 위해 사용하는 제2 형광신호를 사용하는 일 없이, 장치상의 오차 요인을 효과적으로 배제 또는 저감시킬 수 있도록, 복수의 웰에 온도 사이클을 부여하여, 각 웰에 있어서의 핵산 증폭 생성물로부터의 형광 강도를 실시간으로 검출하고, 더 나아가 웰로부터 얻어지는 형광 측정값 [DNA]raw와 이 웰 근방에 있어서의 주변의 연결벽으로부터 얻어지는 형광 측정값 [DNA]bg를 검출하고, 형광 측정값 [DNA]raw로부터 형광 측정값 [DNA]bg를 뺌으로써 당해 웰의 형광 강도 [DNA]real을 결정할 수 있는 핵산 증폭 생성물의 실시간 검출 장치를 제공한다.
또한, 한국등록특허 제10-0794699호(핵산증폭반응 산물의 실시간 모니터링 장치)는 다수의 미량 시료를 중합효소연쇄반응과 같은 핵산 증폭반응을 수행하면서 반응 중에 생성되는 반응산물의 생성을 실시간으로 모니터링하기 위해 다수의 시료를 담기 위한 다수의 웰을 가지는 반응용기와 상기 반응용기를 덮기 위한 투명한 실링커버, 및 반응용기에 열원을 공급하기 위한 열전소자로 이루어지는 시료반응부; 여기광원 앞에 위치하는 선택적 투과 필터, 필터를 통과한 광을 선편광시키기 위한 선편광자로 이루어지는 발광 소자부; 발광소자부의 선편광자에 수직한 방향으로 되어 있는 선편광자, 선편광자를 통과한 광을 집광하는 집광렌즈, 집광렌즈를 통과한 광을 선택적으로 투과시키는 선택적 투과필터 및 형광감지소자로 이루어지는 수광소자부를 포함하여 구성되는 것을 특징으로 하는 핵산증폭반응산물의 실시간 모니터링 장치를 제공한다.
그러나, 상기 선행기술들은 다수의 핵산증폭 산물을 동시에 측정하기 위해 복잡하고 정교한 형광 신호 측정 모듈을 다수 추가하기 때문에 기기의 대형화 및 고비용 발생 문제가 여전히 문제되고 있다. 더 나아가, 상기 선행기술들은 다수의 소량 샘플을 동시에 측정하는 것을 목적으로 하지만, 핵산증폭 과정 중 소형 반응 용기에 수용된 소량의 샘플 용액에서 가열에 의해 발생하는 버블(bubble)에 의해 신호 감도가 현저히 감소하는 현상에 대해 해결 방법은 전혀 개시하지 않고 있다.
따라서, 다수의 소량의 핵산 증폭 산물을 동시에 측정함과 동시에 측정값의 신뢰성을 확보하고, 더 나아가 저비용으로 신속하게 핵산 증폭 산물의 실시간 모니터링이 가능한 실시간 PCR 구현 장치가 여전히 요구된다 할 것이다.
본 발명은 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 측정할 수 있고, 저가의 비용으로 핵산 증폭 산물을 검출하고, 더 나아가 결과의 신뢰성을 확보할 수 있는 실시간 PCR 장치를 제공하기 위함이다.
상기 언급된 해결하고자 하는 과제를 수행하기 위하여,
본 발명의 일 실시예는 상단 면이 개방된 PCR 반응 챔버(chamber); 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover)를 포함하는, 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip)을 제공한다.
본 발명의 일 실시예에 따른 마이크로 PCR 칩에 있어서,
상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현될 수 있다. 이 경우 상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용할 수 있다.
상기 광 투과부는 상기 밀폐 면의 중앙에 배치될 수 있다.
상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다.
상기 덮개는 상기 광 투과부를 관통하여 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비할 수 있다.
상기 마이크로 PCR 칩은 상기 PCR 반응 챔버 및 상기 덮개로 구성된 단위 모듈을 2 이상 구비할 수 있다.
상기 마이크로 PCR 칩은 평판 형상을 가질 수 있다.
상기 마이크로 PCR 칩은 평판 형상의 제1 판; 상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및 상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판을 포함할 수 있다. 이 경우 상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함할 수 있다.
상기 마이크로 PCR 칩은 상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부를 더 포함할 수 있다.
본 발명의 다른 일 실시예는 상기 마이크로 PCR 칩; 상기 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.
본 발명의 다른 일 실시예는 상기 마이크로 PCR 칩; 기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록; 상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록; 상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및 상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 실시간 PCR 장치를 제공한다.
상기 언급된 과제 해결 수단에 따르면,
다수의 소량의 핵산 증폭 산물을 동시에 수용함과 동시에 열 블록과의 열 접촉 효율을 최대한 확보하여 신속한 결과를 확보할 수 있고, 더 나아가 핵산 증폭 산물로부터 발생하는 광신호를 별도의 여과 또는 가공 없이도 정확하게 측정할 수 있는 마이크로 PCR 칩을 제공할 수 있다.
또한, 상기 마이크로 PCR 칩을 전제로, 복잡한 측정용 모듈 없이도 신뢰성이 확보된 핵산 증폭 결과를 신속하게 확보할 수 있는 실시간 PCR 장치를 제공할 수 있다.
도 1 내지 3은 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.
도 6은 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 광 투과부의 다양한 유형에 관한 것이다.
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 상기 마이크로 PCR 칩과 열 접촉하는 열 블록, 및 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩, 2개의 열 블록, 상기 마이크로 PCR 칩이 장착되되 구동 수단에 의해 상기 2개의 열 블록 간에 이동 가능한 칩 홀더, 및 상기 2개의 열 블록 사이에 배치되되 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 2개의 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈을 포함하는, 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치에 관한 것이다.
도 19는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 실제 구현 도면이다.
도 20은 도 19에 따른 마이크로 PCR 칩 및 도 18에 따른 실시간 PCR 장치를 이용하여 실시간 PCR을 수행한 후 PCR 결과에 관한 형광 사진이다.
도 21 내지 23은 도 19에 따른 마이크로 PCR 칩 및 도 18에 따른 실시간 PCR 장치를 이용하여 실시간 PCR을 수행한 후 PCR 결과를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 이하 설명은 본 발명에 따른 실시예들을 쉽게 이해하기 위한 수단일 뿐이며, 본 발명의 보호범위를 제한하기 위한 것은 아니다.
본 발명의 실시예는 중합효소 연쇄 반응(Polymerase Chain Reaction, PCR), 더 구체적으로, 실시간으로 핵산 증폭 반응을 모니터링하는 실시간 PCR(real-time PCR)에 관한 것이다.
PCR은 핵산을 포함하는 PCR 시료 및 시약을 반복적으로 가열 및 냉각하여 핵산의 특정 염기 서열 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 질병의 진단 및 분석 목적으로 현재 널리 사용되고 있다. PCR을 효율적으로 수행하기 위한 PCR 장치가 최근 다양하게 개발되고 있다. PCR 장치는 특정 염기 서열을 갖는 핵산을 증폭하는 PCR을 수행하기 위하여 구현된 장치를 통칭한다. 일반적으로, PCR 장치는 이중 가닥의 DNA를 포함하는 PCR 시료 및 시약을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 상기 PCR 시료 및 시약에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 PCR 시료 및 시약을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 수행하고, 상기 연장(또는 증폭) 단계를 예를 들어, 20회 내지 40회로 반복함으로써 상기 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭할 수 있도록 구현된다. 한편, 최근 PCR 장치는 상기 어닐링 단계와 상기 연장(또는 증폭) 단계를 동시에 수행할 수 있고, 이 경우 상기 PCR 장치는 상기 변성 단계에 이은 상기 어닐링 및 연장 (또는 증폭) 단계로 구성된 2 단계를 수행함으로써, 제1 순환을 완성할 수도 있다.
실시간 PCR은 PCR에 사용되는 열 순환기(thermal cycler)에 측정 장치, 예를 들어 형광 광도계 등과 같은 광학 시스템(optical system) 모듈이 적용되어 핵산 증폭 산물이 생성되는 과정을 모니터링할 수 있는 핵산 증폭 반응을 말한다. 실시간 PCR은 일반적인 PCR과는 달리, 핵산 증폭 산물의 확인을 위한 전기영동이 요구되지 않아 실시간으로 정확하고 신속하게 핵산 증폭 산물을 분석할 수 있다는 장점이 있다. 그에 따라, 최근 실시간 PCR 장치가 또한 활발하게 개발되고 있는데, 실시간 PCR 장치가 위와 같은 장점을 충분히 발휘하기 위해서는 열 순환기의 효율을 상승시키는 것뿐만 아니라 핵산 증폭 산물로부터 발생하는 광신호를 오류 없이 정확하게 측정할 수 있어야 한다.
도 1 내지 3은 종래 PCR 용기(대형) 및 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)에 의해 광신호 감도가 감소하는 현상에 관한 것이다.
맞춤 의료 서비스의 실질적인 실현을 위해 최근 PCR 장치는 소형화, 휴대화, 신속성, 및 경제성을 지향하고 있다. 기존 PCR 장치는 PCR 시료 및 시약을 담는 용기뿐만 아니라 기기 그 자체도 대형이어서 사용 조작이 어렵고, 휴대하기 어려웠을 뿐만 아니라 그에 따라 PCR 시료 및 시약도 상당히 낭비되었고, 비용 또한 상당히 발생하는 문제점이 있었다. 더 나아가, 사용되는 PCR 시료 및 시약의 양이 많아서 상당히 시간이 소요되어 효율적인 PCR이 구현되기 어려웠다.
도 1에 따르면, 좌측 그림은 종래 일반적으로 사용되는 PCR 용기(대형)이고, 우측 그림은 상기 PCR 용기(대형) 대비 크기 및 액체 샘플 수용량을 극-소형화(×1/20)한 PCR 용기(소형)를 도시한다. 일반적으로, 종래 PCR 용기(대형)는 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현되며, 약 200 ㎕의 액체 샘플 수용량을 갖고, 약 20 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행되었다. 상기 PCR 용기(소형) 역시 PCR 시료 및 시약을 담는 반응 챔버(reaction chamber) 및 이의 덮개(cover)로 구성되고, 상기 반응 챔버와 덮개는 광 투과성 재질로 구현될 수 있는데, 이 경우 상기 PCR 용기(소형)는 약 10 ㎕의 액체 샘플 수용량을 갖고, 약 5 내지 8 ㎕의 시료와 시약을 수용한 상태에서 PCR이 수행된다. 이와 같이, 극-소형화된 PCR 용기를 제작하는 것은 현재 공지된 기술 영역에서 용이하게 구현할 수 있다. 그러나, PCR 용기의 소형화는 핵산 증폭 산물의 측정에 있어서 아래와 같이 상당한 악영향을 미치기 때문에 쉽게 구현되기 어렵다.
도 2에 따르면, 종래 PCR 용기(대형) 대비 극-소형화된 PCR 용기(소형, ×1/20) 내부에서 PCR 과정 중 발생한 버블(bublle)로 인해 광신호 감도가 감소하는 현상을 쉽게 확인할 수 있다. 앞서 설명한 바와 같이, PCR은 열 공급 단계를 수반하므로, PCR 용기 내부는 액체 샘플의 가열에 의해 상당한 양의 버블이 발생하는데, 이러한 버블은 핵산 증폭 산물로부터 발생하는 광신호(light signal)를 차단하게 된다. 한편, 도 2에 따르면, 상기 PCR 용기(대형) 내부에서 발생하는 버블은 비록 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 감소시키지만, 버블 자체의 크기 및 개수 대비 반응 용기의 내부 공간이 충분히 크기 때문에 상기 버블은 상기 PCR 용기(대형)의 내부에서 분산되거나 상기 PCR 용기(대형)의 내벽에 군집을 형성하여 비록 광신호 감도가 떨어지기는 하지만, 광신호 측정이 불가능한 것은 아니다. 그러나, 도 2 및 도 2의 "a" 부분을 확대한 도 3에 따르면, 상기 PCR 용기(소형) 내부에서 발생하는 버블은 버블 자체 크기 및 개수 대비 반응 용기의 내부 공간이 상당히 작기 때문에 상기 버블은 핵산 증폭 산물로부터 발생하는 광신호를 차단하여 광신호 감도를 상당하게 떨어뜨리고 불균일하게 하여 결과의 신뢰도가 떨어진다. 따라서, PCR 장치를 소형화함과 동시에 이에 장착되는 PCR 용기의 소형화를 구현하는 경우 그만큼 광신호 감도의 감소 및 불균일에 따른 결과의 신뢰성을 확보하는 방안을 충분히 고려해야 한다.
도 4는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 기본 구성에 관한 단면도에 관한 것이다.
도 4에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(Micro-Polymerase Chain Reaction Chip)(1)은 상단 면이 개방된 PCR 반응 챔버(chamber)(10); 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비하는 덮개(cover)(20)를 포함한다.
상기 PCR 반응 챔버(10)는 상단 면이 개방되되 하단 면 및 측 테두리 면이 밀폐되어 액체 샘플, 즉 PCR 시료 및 시약을 수용하도록 구현된다. 상기 PCR 반응 챔버(10)는 PCR 과정 중 반복적인 가열 및 냉각에 영향을 받지 않도록 구현되어야 하고, 이러한 기능을 유지할 수 있다면 특정 형상 및/또는 재질로 제한되진 않는다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 적어도 광 경로(21)에 중첩되는 부분은 광 투과성 재질로 구현되는 것이 바람직하다.
상기 덮개(20)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 역할을 수행한다. 상기 덮개(20)가 상기 PCR 반응 챔버(10)의 개방 상단 면을 밀폐함으로써, 상기 PCR 반응 챔버(10) 내부에서 반응하는 PCR 시료 및 시약은 외부로 유출되지 않으며, 상기 PCR 반응 챔버(10) 내부 온도를 유지하는 역할을 한다. 한편, 상기 덮개(20)는 위와 같은 기능을 구현할 수 있다면 다양한 형상 및/또는 재질로 구현될 수 있다. 다만, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 핵산 증폭 산물의 실시간 광신호 측정을 전제로 하기 때문에, 광 투과성 재질로 구현되는 것이 바람직하다.
한편, 도 4에 따르면, 상기 덮개(20)는 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)를 구비한다. 상기 광 투과부(25)는 광 투과성 재질로 구현되고 핵산 증폭 산물의 측정을 위한 광 경로(21)를 따라 연장되도록 구현되며, 상기 PCR 반응 챔버(10) 내부의 핵산 증폭 산물로부터 발생하는 광신호가 통과하는 부분이다. 더 나아가, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 일부 영역으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 하향 돌출되도록 구현된다. 상기 광 투과부(25)의 돌출 형상은 다양할 수 있으나, 원기둥 또는 사각기둥 형상으로 구현되는 것이 바람직하다. 또한, 도 6에 따르면, 상기 광 투과부(25)의 돌출 형상은 다양하게 구현될 수 있는데, 상기 PCR 반응 챔버(10)의 하단 바닥 면에 닿도록 구현되거나(도 6의 우측), 상기 PCR 반응 챔버(10)의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현될 수 있다(도 6의 좌측). 즉, 상기 광 투과부(25)는 상기 PCR 반응 챔버(10) 내부에 액체 샘플이 수용되는 경우 상기 액체 샘플 표면에 인접하거나 맞닿거나, 더 나아가 상기 액체 샘플 표면을 통과하여 상기 액체 샘플 내부에 담겨질 수도 있다. 아울러, 상기 광 투과부(25)는 광 경로를 따라 연장되도록 구현된다면, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면, 즉 상기 덮개(20)의 하단 면의 임의의 일부 영역에 구현될 수 있는데, 상기 밀폐 면의 중앙, 즉 상기 덮개(20)의 하단 면의 중앙 영역에 배치되는 것이 바람직하다. 한편, 상기 PCR 반응 챔버(10)의 액체 샘플 수용량은 특정 부피로 제한되진 않지만, 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현되어 5 내지 8 ㎕의 액체 샘플을 수용할 수 있도록 구현되는 것이 바람직하다.
도 5는 본 발명의 일 실시예에 따른 마이크로 PCR 칩 내부에서 PCR 과정 중 발생한 버블에 의한 영향 없이, PCR 산물로부터 광신호가 방출되는 원리에 관한 것이다.
PCR 과정이 진행되면서 PCR 용기 내부의 액체 샘플이 가열되어 그에 따라 버블이 발생할 수 있음은 이미 설명한 바와 같다.
도 5에 따르면, PCR 과정 중 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 액체 샘플(liquid sample), 즉 PCR 시료 및 시약이 열 공급에 의해 가열되면 버블(bubble)이 발생한다. 그러나, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 경우 상기 덮개(20)의 하단 면으로부터 돌출된, 즉 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역(도 5에 따르면, 중앙 영역)으로부터 상기 PCR 반응 챔버(10)의 내부를 향해 돌출되되 광 경로(21)를 따라 연장된 광 투과성 재질의 광 투과부(25)에 의해 상기 PCR 반응 챔버(10)에 형성된 버블(bubble)이 상기 광 투과부(25)의 테두리 면의 주변 영역으로 밀려서 주변 공간에 압축 배치된다. 그에 따라, 상기 버블(bubble)은 상기 액체 샘플(liquid sample)에 존재하는 핵산 증폭 산물로부터 형성된 광신호 경로(광 투과부, 25)를 완전히 이탈하게 되고, 핵산 증폭 산물을 측정하기 위한 광신호 감도에 전혀 영향을 미치지 않는다. 따라서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)을 이용하여 실시간 PCR 과정 중 핵산 증폭 산물을 실시간으로 측정하는 경우 상기 PCR 반응 챔버(10) 내부에 발생한 버블(bubble)의 영향을 전혀 받지 않게 되어 광신호 감도가 상당하게 증가하게 된다. 그 결과, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)에 의하면, 종래 PCR 용기에 비해 그 액체 샘플 수용량을 예를 들어, 10 ㎕ 이하로 크게 줄일 수 있기 때문에 PCR 용기를 극-소형화할 수 있고, 동시에 광신호 감도를 상당하게 증가시킬 수 있기 때문에 PCR 용기 및 실시간 PCR 장치의 소형화 및 휴대화를 달성할 수 있고, 더 나아가 다수의 소량의 핵산 증폭 산물을 동시에 신속하게 정확하게 측정할 수 있다.
도 7 내지 9는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 플렉서블 패킹부에 관한 것이다.
도 7 내지 9에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 덮개(20)는 상기 광 투과부(25)를 관통하여 둘러싸는 홀(hole)(45), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부(40)를 더 포함할 수 있다.
상기 플랙서블 패킹부(40)는 PCR 과정 중 상기 PCR 반응 챔버(10) 내부의 온도 상승에 의한 버블(bubble) 발생 또는 압력 상승에 의해 액체 샘플의 누수를 방지하는 역할을 한다. 상기 플랙서블 패킹부(40)는 고무(rubber) 또는 실리콘(silicon) 등 탄력성 또는 신축성을 갖는 물질로 구현되어 상기 버블(bubble) 발생 또는 압력 상승에 의한 팽창력을 완충하되 상기 PCR 반응 챔버(10)의 밀폐 상태를 유지할 수 있도록 구현된다. 한편, 상기 홀(45)은 상기 광 투과부(25)의 형상에 따라 구현되기 때문에, 비록 도 7에서는 원형으로 구현되어 있으나 이에 제한되는 것은 아니다. 한편, 도 8은 상기 플렉서블 패킹부(40)가 상기 덮개(20)에 부착되되 상기 광 투과부(25)를 관통하여 둘러싸고 있는 상태를 도시하고, 도 9는 도 8의 상태의 덮개(20)가 상기 PCR 반응 챔버(10)의 상단 면에 결합하여 상기 PCR 반응 챔버(10)의 내부 공간을 밀폐한 상태를 도시한다.
도 10은 PCR 반응 챔버, 및 광 투과부를 구비하는 덮개를 포함하는 단위 모듈이 2 이상 반복 구현된 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
앞서 설명한 바와 같이, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 광 투과부(25)를 구비하는 덮개(20)에 의해 광신호 감도를 상당하게 상승시키거나 영향을 미치지 않게 하면서 극-소형화가 가능하여 다수의 소량의 액체 샘플을 수용하는 멀티-챔버(multi chamber) 구조를 갖는 PCR 용기의 구현이 가능하다.
도 10에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10) 및 상기 덮개(20)로 구성된 단위 모듈(50)을 2 이상 구비할 수 있다. 예를 들어, 도 10과 같이, 상기 마이크로 PCR 칩(1)이 평판 형상으로 구현될 경우 상기 단위 모듈(50)을 일렬로 나열하거나 평판 상의 원형 공간에 집적하여 2 이상의 개수(N)로 구현할 수 있어서, 예를 들어 상기 단위 모듈(50)을 19개(19 well), 48개(48 well), 96개(96 well) 등으로 구현할 수 있다.
도 11 내지 12는 본 발명의 일 실시예에 따른 마이크로 PCR 칩의 단면 분해도에 관한 것이다.
도 11에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 평판 형상의 제1 판(100); 상기 제1 판(100)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)를 구비하는 평판 형상의 제2 판(200); 및 상기 제2 판(200)의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(25)를 구비하는 덮개(20) 역할을 수행하는 제3 판(300)을 포함하도록 구현될 수 있다.
상기 제1 판(100)은 평판 형상으로 구현되고, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 바닥 지지체(support) 역할을 수행한다. 상기 제1 판(100)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제1 판(100) 표면은 다양하게 구현될 수 있으나, 친수성 표면을 갖도록 처리되는 것이 바람직하다. 아울러, 상기 제1 판(100)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.
상기 제2 판(200)은 평판 형상으로 구현되되 상기 제1 판(100)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 영역을 형성하는 역할을 수행한다. 상기 제2 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제2 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다.
한편, 도 11에 따르면, 상기 제1 판(100)과 상기 제2 판(200) 사이에 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 바닥 면 공간을 형성하는 평판 형상의 추가 층(150)이 형성될 수도 있다. 이는 상기 제1 판(100)과 상기 제2 판(200) 사이의 접합 면이거나, 또는 접착제 층일 수 있다. 따라서, 상기 제1 판(100)과 상기 제2 판(200) 사이는 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법으로 접착 구현될 수 있다. 아울러, 상기 추가 층(150)은 바람직하게는 약 0.03 내지 1.0 mm로 구현될 수 있고, 더 바람직하게는 약 0.1 내지 0.5 mm로 구현될 수 있다.
상기 제3 판(300)은 평판 형상으로 구현되되 상기 제2 판(200)의 상부에 배치되는 것으로서, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부(50)를 구비하는 덮개(20) 역할을 수행한다. 상기 제3 판(200)은 다양한 재질로 구현될 수 있으나, 비용 절감을 고려하여 플라스틱 재질, 예를 들어 폴리카보네이트(polyarbonate, PC), 폴리에틸렌 테레프탈레이트(polyethylene terephthalate, PET) 등으로 구현되고, 광 투과성 재질로 구현되는 것이 바람직하다. 아울러, 상기 제3 판(200)은 바람직하게는 약 0.5 내지 5 mm로 구현될 수 있고, 더 바람직하게는 약 1 내지 2 mm로 구현될 수 있다.
한편, 도 12에 따르면, 상기 제3 판(300)은 상기 제2 판(200)과 제3 판(300) 사이에 상기 광 투과부(25)를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버(10)의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부(40)를 더 구비할 수 있다. 상기 플렉서블 패킹부(40)는 상기 PCR 반응 챔버(10) 내부에 수용되는 PCR 시료 및 시약의 누수 및 복수의 챔버 간 오염을 방지하기 위한 역할을 수행한다. 상기 플렉서블 패킹부(40)는 탄력성 또는 신축성이 있는 다양한 재질로 구현될 수 있으나, 예를 들어 실리콘(silicon), 텔프론(telflon) 등으로 구현되는 것이 바람직하다. 아울러, 상기 플렉서블 패킹부(40)는 바람직하게는 약 0.1 내지 2 mm로 구현될 수 있고, 더 바람직하게는 약 0.5 내지 1 mm로 구현될 수 있고, 상기 원형 홀 직경은 바람직하게는 약 1.0 mm 로 구현될 수 있다.
도 13은 열 방출부를 포함하는 본 발명의 일 실시예에 따른 마이크로 PCR 칩에 관한 것이다.
본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 PCR 반응 챔버(10)로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부(60)를 더 포함할 수 있다. 도 13에 따르면, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 전체적으로 얇은 평판 형상으로, 중앙 원형 영역에 복수 개의 단위 모듈(50)이 집적되도록 구현된다. 앞서 설명된 바와 같이, PCR 과정 중 상기 단위 모듈(50) 내 PCR 반응 챔버(10) 내부에서는 고온의 열이 발생하기 때문에 기기의 내열성과 반응 안정성을 고려하여, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)은 상기 중앙 원형 영역의 양 측면에 열 방출부(60)를 배치할 수 있다.
도 14 내지 15는 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 단일 열 블록을 구비하는 실시간 PCR 장치를 도시한다.
도 14 내지 15에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 상기 마이크로 PCR 칩(1)의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록(200); 및 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(300)을 포함한다.
상기 열 블록(200)은 상기 마이크로 PCR 칩(1)에 열 접촉하여 열 교환이 가능하도록 구현된 모듈이다. 상기 열 블록(200)은 다양한 재질로 구현될 수 있고, 핵산 증폭 산물의 광신호를 측정하기 위해 전체적으로(또는 부분적으로) 광 투과성을 갖도록 구현될 수도 있다. 상기 투명 발열 소재는 광 투과성을 갖는 재질로서 전력 공급에 의해 발열성을 갖는 모든 물질을 포함할 수 있으나, 바람직하게는 인듐 주석 산화물(Indum Tin Oxcide, ITO), 전도성 고분자(conducting polymer), 탄소나노튜브(Cabon NanoTube, CNT), 그래핀(graphene), 투명 금속 산화물(Transparent Conductive Oxide, TCO), 및 산화물-금속-산화물 다층 투명 소자로 구성된 군으로부터 선택될 수 있다. 인듐 주석 산화물(Indum Tin Oxcide, ITO)은 산화 인듐(In2O3)과 산화 주석(SnO2)이 섞여져 있으며, 일반적으로 90%의 산화 인듐과 10%의 산화 주석으로 구성되며, 투명 전극 또는 ITO로 불리기도 한다. 인듐 주석 산화물은 박막(얇은 층)으로 구현되는 경우 전기 전도율이 생기고, 투명하고 색이 존재하지 않다가 덩어리 상태로 구현되면 노란 회색을 띤다. 인듐 주석 산화물은 전자빔 증착, 증기 증착, 스퍼터링 기술에 의해 다른 물질의 표면에 증착된다, 인듐 주석 산화물은 종래까지 주로 액정 디스플레이, 평판 디스플레이, 플라스마 디스플레이, 터치스크린, 전자 종이, 유기 발광 다이오드, 태양 전지, 정전기 방지 코팅, 전자 방해 차폐물에서 주로 투명한 전도성 코팅을 제조하는데 사용되었다. 전도성 고분자(conducting polymer)는 소위 전기가 통하는 플라스틱으로 불리고, 광 투과율이 우수하고, 가벼우며, 탄성력 및 전기전도성이 우수하고, 가공이 매우 쉽다는 장점이 있다. 전도성 고분자는 폴리아세틸린, 폴리파라레닐렌, 폴리페놀, 폴리아닐린 등의 물질로부터 제조되고, 최근에는 폴리스티렌술폰산 및/또는 PEDOT(poly(3,4--ethylenedioxythiophene))로부터 제조되는 경우도 있다. 탄소나노튜브(Cabon NanoTube, CNT)는 6각형 고리로 연결된 탄소들이 긴 대롱 모양을 이루는 지름 1 나노미터 크기의 미세한 분자를 말한다. 인장력이 강철보다 강하고 유연성이 뛰어나며, 가볍고, 전기전도성이 매우 높은 것으로 알려져 있다. 한편, 정제된 단일벽 탄소나노튜브(Single-Walled Carbon Nanotube, SWNT)를 계면활성제를 이용하여 용매 분산하고 진공필터 장치를 이용하여 제작하면, 투명 전도체가 형성되고, 이는 투명성과 전도성을 모두 구비하게 된다. 그래핀(graphene)은 2000년대 초반, 흑연으로부터 분리된 물질로서, 탄소나노튜브, 풀러린(Fullerene)과 같이 원자번호 6번인 탄소로 구성된 나노물질이다. 그래핀은 구리보다 100배 이상 전기 전도성이 높고, 탄성력이 매우 우수한 것으로 알려져 있으며, 최근 투명 전극으로 구현되어 다양한 용도로 사용되고 있다. 투명 금속 산화물(Transparent Conductive Oxide, TCO)은 산소와 결합한 각종 금속 산화물 중 투명성을 갖는 물질을 총칭하는 것으로서, ZnO, SnO2, TiO2 등을 포함한다. 투명 금속 산화물은 높은 전도성과 투명도를 갖고, 적은 비용으로 코팅 물질로 사용될 수 있다. 산화물-금속-산화물 다층 투명 소자는 롤투롤 스퍼터 공정으로 제작되고, 금속의 유연성과 낮은 저항성, 산화물의 높은 투과도를 갖도록 구현될 수 있는 것으로서, ITO-Ag(또는 Cu)-ITO, AZO-Ag-AZO, GZO-Ag-GZO, IZO-Ag-IZO, IZTO-Ag-IZTO 등이 있다. 한편, 도 14 내지 15에 따르면, 상기 열 블록(200)은 다양한 형상으로 구현될 수 있으나, 바람직하게는 평판 형상으로 구현된다. 평판 형상의 열 블록(200)은 상기 마이크로 PCR 칩(1), 바람직하게는 평판 형상의 칩과 접촉하는 표면적이 넓어 PCR 시료 및 시약의 혼합액에 열을 고르게 제공할 수 있고, 그에 따라 PCR 단계의 각 사이클별 온도 변화가 신속하게 진행될 수 있다. 한편, 실시간 PCR 산물을 정확하게 모니터링하기 위해서 상기 광신호의 감도를 가능한 높일 필요가 있다. 상기 열 블록(200)은 전체적으로 광 투과성을 갖도록 구현될 수 있어서 광원으로부터 방출된 여기 광을 대부분 그대로 투과시켜 상기 광신호 감도를 높일 수 있다. 그러나, 상기 여기 광의 일부는 상기 열 블록(200) 상에서 반사되거나 또는 상기 열 블록(200)을 통과한 후 반사되어 광신호의 노이즈(noise)로서 작용할 수 있다. 따라서, 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하여 광 신호 감도를 더 높일 수 있다. 상기 흡광 물질은 예를 들어, 운모(mica)일 수 있으나, 광을 흡수하는 성질을 갖는 물질이라면 제한되지 않는다. 따라서, 광원으로부터 유래된 광의 일부를 상기 흡광층이 흡수하여, 광신호의 노이즈로 작용하는 반사 광의 발생을 최대한 억제할 수 있다. 또한, 대안적으로, 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 상기 광 반사 방지 물질은 예를 들어, MgF2와 같은 불화물, SiO2, Al2O3와 같은 산화물일 수 있으나, 광 반사를 방지할 수 있는 성질을 갖는 물질이라면 제한되지 않는다. 또한, 더 바람직하게는, 상기 열 블록(200)의 하부 면에 흡광 물질을 처리하고, 동시에 상기 열 블록(200)의 상부 면에 광 반사 방지 물질을 처리하여 광신호 감도를 더 높일 수 있다. 즉, 효과적인 실시간 PCR의 모니터링을 위하여 상기 노이즈 대비 광 신호 비율은 가능한 최대 값을 가져야 하고, 상기 노이즈 대비 광 신호 비율은 상기 PCR 칩으로부터 여기 광의 반사율이 낮을수록 향상될 수 있다. 예를 들어, 일반적인 금속성 재질의 기존 열 블록의 여기 광의 반사율은 약 20 내지 80 %이지만, 상기 흡광층 또는 광반사방지층을 포함하는 상기 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 내지 4% 이내로 줄일 수 있고, 상기 흡광층(60) 및 광반사방지층(70)을 포함하는 열 블록(200)을 사용하는 경우 광 반사율을 0.2% 이하로 줄일 수 있다.
상기 광 검출 모듈(300)은 상기 마이크로 PCR 칩(1)에 광을 제공하도록 구동가능하게 배치된 광 제공부(도시되지 않음) 및 상기 마이크로 PCR 칩(1)로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부(도시되지 않음)를 포함할 수 있다. 상기 광 제공부는 상기 마이크로 PCR 칩(1)에 광을 제공하기 위한 모듈이고, 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 수용하여 상기 마이크로 PCR 칩(1)에서 수행되는 PCR 산물을 측정하기 위한 모듈이다. 상기 광 제공부로부터 광이 방출되고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 단위 모듈(50) 내 PCR 반응 챔버를 통과하거나 반사하고, 이 경우 상기 PCR 반응 챔버 내의 핵산 증폭에 의해 발생하는 광신호를 상기 광 검출부가 검출한다. 따라서, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)에 따르면, 상기 마이크로 PCR 칩(1)에서 상기 PCR 과정이 진행되는 동안 상기 PCR 반응 챔버 내에서 (형광 물질이 결합된) 핵산 증폭 산물을 실시간으로 모니터링함으로써 초기 PCR 시료 및 시약에 포함되어 있는 표적 핵산의 증폭 여부 및 증폭 정도를 실시간으로 측정 및 분석할 수 있다. 또한, 상기 광 제공부 및 광 검출부는 상기 열 블록(200)을 중심으로 위 또는 아래에 모두 배치되거나 각각 배치될 수 있다. 다만, 상기 광 제공부 및 광 검출부의 배치는 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)의 최적의 구현을 위하여 다른 모듈과의 배치 관계를 고려하여 다양할 수 있으며, 바람직하게는 도 14 내지 15에 따라, 상기 광 제공부 및 광 검출부(광 검출 모듈, 300)가 상기 열 블록(200)의 상부에 모두 배치될 수 있다. 상기 광 제공부는 LED(Light Emitting Diode) 광원 또는 레이저 광원, 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기, 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈를 포함하고, 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 광원은 광을 방출할 수 있는 모든 광원을 포함하며, LED(Light Emitting Diode) 광원 또는 레이저 광원을 포함한다. 상기 제1 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 미리 결정된 상기 광원에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제1 광 여과기는 상기 광원으로부터 방출되는 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 제1 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)에 조사되는 광의 강도를 증가시킬 수 있다. 또한, 상기 광 제공부은 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다. 상기 제1 비구면 렌즈의 배치 방향을 조정함으로써, 상기 광원으로부터 방출되는 광 범위를 확장하여 측정 가능한 영역에 도달하게 한다. 상기 광 검출부는 상기 마이크로 PCR 칩(1)으로부터 방출되는 광을 포집하는 제2 광 렌즈, 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기, 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 광 분석기를 포함하고, 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함하며, 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 제2 광 렌즈는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 광의 강도를 증가시켜 광신호 검출을 용이하게 한다. 상기 제2 광 여과기는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광의 파장에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제2 광 여과기는 상기 열 블록(200)을 통해 상기 마이크로 PCR 칩(1)으로부터 방출되는 미리 결정된 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 광 분석기는 상기 제2 광 여과기로부터 방출되는 광으로부터 광신호를 검출하는 모듈로서, PCR 시료 및 시약으로부터 발현 형광을 전기 신호로 전환하여 정성 및 정략적인 측정이 가능하도록 한다. 또한, 상기 광 검출부는 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함할 수 있다. 상기 제2 비구면 렌즈의 배치 방향을 조정함으로써, 상기 제2 광 여과기로부터 방출되는 광 영역을 확장하여 측정 가능한 영역에 도달하게 한다. 또한, 상기 광 검출부는 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고, 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다. 상기 광다이오드 집적소자(340)를 사용함으로써, 기기의 소형화가 더욱 가능하고, 노이즈를 최소화하여 신뢰 가능한 광신호를 측정할 수 있다. 더 나아가, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(1000)는 상기 광 제공부로부터 방출된 광이 광 검출부까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터를 더 포함할 수 있다. 상기 이색성 필터(dichroic filter)는 광을 파장에 따라 선택적으로 투과 또는 선택적으로 조절된 각도로 반사시키는 모듈이다. 상기 이색성 필터는 상기 광 제공부으로부터 방출되는 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 열 블록(200) 상에 배치된 마이크로 PCR 칩(1)에 도달하게 한다. 또한, 상기 이색성 필터는 상기 마이크로 PCR 칩(1) 및 상기 열 블록(200)으로부터 반사된 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 광 검출부에 도달하게 한다. 상기 광 검출부에 도달한 광은 광 분석기에서 전기 신호로 전환되어 핵산 증폭 여부 및 증폭 정도를 나타낼 수 있다.
도 16 내지 18은 본 발명의 일 실시예에 따른 마이크로 PCR 칩이 적용된 2개의 열 블록을 구비하는 실시간 PCR 장치를 도시한다.
도 16 내지 18에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 앞서 설명된 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1); 기판(400a) 상에 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치되되 상기 마이크로 PCR 칩(1)과 열 접촉하도록 구현된 제2 열 블록(200a); 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a); 및 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a)을 포함한다.
도 16에 따르면, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 기판(400a) 상에 배치된 제1 열 블록(100a); 상기 기판(400a) 상에 상기 제1 열 블록(100a)과 이격 배치된 제2 열 블록(200a); 및 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다.
상기 기판(400a)은 상기 제1 열 블록(100a) 및 제2 열 블록(200a)의 가열 및 온도 유지로 인해 그 물리적 및/또는 화학적 성질이 변하지 않고, 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이에서 상호 열 교환이 일어나지 않도록 하는 재질을 갖는 모든 물질을 포함한다. 예를 들어, 상기 기판(400a)은 플라스틱 등의 재질을 포함하거나 그러한 재질로 구성될 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 핵산을 증폭하기 위한 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하기 위한 것이다. 따라서 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 각 단계들에 요구되는 필요한 온도를 제공하고, 이를 유지하기 위한 다양한 모듈을 포함하거나 또는 그러한 모듈과 구동가능하게 연결될 수 있다. 따라서, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)가 상기 각 열 블록(100a, 200a)의 일 면에 접촉되는 경우 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 상기 마이크로 PCR 칩(1)과의 접촉 면을 전체적으로 가열 및 온도 유지할 수 있어서, 상기 마이크로 PCR 칩(1) 내의 샘플 용액을 균일하게 가열 및 온도 유지할 수 있다. 종래 단일 열 블록을 사용하는 PCR 장치는 상기 단일 열 블록에서의 온도 변화율이 초당 3 내지 7℃ 범위 내에서 이루어지는데 반해, 본 발명의 다른 실시예에 따른 2개의 열 블록을 포함하는 실시간 PCR 장치(2000)는 각각의 열 블록(100a, 200a)에서의 온도 변화율이 초당 20 내지 40℃ 범위 내에서 이루어져 PCR 진행 시간을 크게 단축시킬 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 열선(도시되지 않음)이 배치될 수 있다. 상기 열선은 상기 변성 단계, 어닐링 단계 및 연장 (혹은 증폭) 단계를 수행하기 위한 온도를 유지하도록 다양한 열원과 구동가능하게 연결될 수 있고, 상기 열선의 온도를 모니터링하기 위한 다양한 온도 센서와 구동가능하게 연결될 수 있다. 상기 열선은 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 대칭되도록 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 대칭된 열선의 배치는 다양할 수 있다. 또한, 상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 그 내부에 박막 히터(thin film heater, 도시되지 않음)가 배치될 수도 있다. 상기 박막 히터는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 내부 온도를 전체적으로 일정하게 유지하기 위해 각각의 열 블록(100a, 200a) 면의 중심점을 기준으로 상하 및/또는 좌우 방향으로 일정한 간격으로 이격 배치될 수 있다. 상기 상하 및/또는 좌우 방향으로 일정한 박막 히터의 배치는 다양할 수 있다.
상기 제1 열 블록(100a) 및 제2 열 블록(200a)은 동일한 면적에 대한 고른 열 분포 및 신속한 열 전달을 위해 금속 재질, 예를 들어 알루미늄 재질을 포함하거나 또는 알루미늄 재질로 구성될 수 있다.
상기 제1 열 블록(100a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)의 제1 열 블록(100a)은 50℃ 내지 100℃를 유지할 수 있고, 바람직하게는 상기 제1 열 블록(100a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제1 열 블록(100a)에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 상기 제2 열 블록(200a)은 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행하기 위한 적정 온도를 유지하도록 구현될 수 있다. 예를 들어, 본 발명의 제3 실시예에 따른 PCR 장치의 제2 열 블록(200a)은 상기 제2 열 블록(200a)에서 상기 변성 단계를 수행하는 경우 90℃ 내지 100℃를 유지할 수 있고, 바람직하게는 95℃를 유지할 수 있으며, 상기 제2 열 블록에서 상기 어닐링 및 연장 (혹은 증폭) 단계를 수행하는 경우에는 55℃ 내지 75℃를 유지할 수 있고, 바람직하게는 72℃를 유지할 수 있다. 다만, 상기 변성 단계, 또는 어닐링 및 연장 (혹은 증폭) 단계를 수행할 수 있는 온도라면 이에 제한되는 것은 아니다. 따라서, 상기 제1 열 블록(100a)은 PCR의 변성 단계 온도 (denaturing temperature)를 유지할 수 있으며, 변성 단계 온도가 90℃보다 낮으면 PCR의 주형이 되는 핵산의 변성이 일어나 효율이 떨어져 PCR 효율이 떨어지거나 반응이 일어나지 않을 수 있고, 변성 단계 온도가 100℃보다 높아지면 PCR에 이용되는 효소가 활성을 잃게 되므로, 상기 변성 단계 온도는 90℃ 내지 100℃일 수 있고, 바람직하게는 95℃일 수 있다. 또한, 상기 제2 열 블록(200a)은 PCR의 어닐링 및 연장 (혹은 증폭) 단계 온도(annealing/extension temperature)를 유지할 수 있다. 연장 (혹은 증폭) 단계 온도가 55℃보다 낮으면 PCR 산물의 특이성(specificity)이 떨어질 수 있고, 어닐링 및 연장 (혹은 증폭) 단계 온도가 74℃보다 높으면 프라이머에 의한 연장이 일어나지 않을 수 있기 때문에 PCR 효율이 떨어지게 되므로 상기 어니링 및 연장 (혹은 증폭) 단계 온도는 55℃ 내지 75℃일 수 있고, 바람직하게는 72℃일 수 있다.
상기 제1 열 블록(100a)과 제2 열 블록(200a)은 상호 열 교환이 일어나지 않도록 미리 결정된 거리로 이격 배치될 수 있다. 이에 따라, 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 열 교환이 일어나지 않기 때문에, 미세한 온도 변화에 의해서도 중대한 영향을 받을 수 있는 핵산 증폭 반응에 있어서, 상기 변성 단계와 상기 어닐링 및 연장 (혹은 증폭) 단계의 정확한 온도 제어가 가능하다.
본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 구동 수단(500a)에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 포함한다. 상기 칩 홀더(300a)는 상기 마이크로 PCR 칩(1)이 상기 실시간 PCR 장치(2000)에 장착되는 모듈이다. 상기 칩 홀더(300a)의 내벽은 상기 실시간 PCR 장치(2000)에 의해 핵산 증폭 반응이 수행되는 경우 상기 마이크로 PCR 칩(1)이 상기 칩 홀더(300a)로부터 이탈하지 않도록 상기 마이크로 PCR 칩(1)의 외벽과 고정 장착되기 위한 형상 또는 구조를 가질 수 있다. 상기 칩 홀더(300a)는 상기 구동 수단(500a)에 구동가능하게 연결된다. 또한, 상기 마이크로 PCR 칩(1)은 상기 칩 홀더(300a)에 착탈 가능할 수 있다.
상기 구동 수단(500a)은 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 위로 좌우 및/또는 상하 이동 가능하게 하는 모든 수단을 포함한다. 상기 구동 수단(500a)의 좌우 이동에 의해, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에서 왕복 운동이 가능하고, 상기 구동 수단(500a)의 상하 이동에 의해, 상기 PCR 칩(10)이 장착된 칩 홀더(300a)는 상기 제1 열 블록(100a)과 제2 열 블록(200a)에 접촉 및 분리될 수 있다. 도 16에 도시된 실시간 PCR 장치(2000)의 구동 수단(500a)은 좌우 방향으로 연장된 레일(510a), 및 상기 레일(510a)을 통해 좌우 방향으로 슬라이딩 이동가능하게 배치되고, 상하 방향으로 슬라이딩 이동 가능한 연결 부재(520a)를 포함하고, 상기 연결 부재(520a)의 일 말단은 상기 칩 홀더가 배치된다. 상기 구동 수단(500a)의 좌우 및/또는 상하 이동은 상기 PCR 장치의 내부 또는 외부에 구동가능하게 배치된 제어 수단(도시되지 않음)에 의해 제어될 수 있고, 상기 제어 수단은 PCR의 변성 단계와 어닐링 및 연장 (혹은 증폭) 단계를 위한 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)와 상기 제1 열 블록(100a) 및 제2 열 블록(200a) 사이의 접촉 및 분리를 제어할 수 있다.
도 17은 본 발명의 다른 일 실시예에 따른 실시간 PCR 장치(2000)의 칩 홀더의 이동에 의한 핵산 증폭 반응의 각 단계를 도시한다. 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응은 하기 단계에 의한다.
먼저, 상기 마이크로 PCR 칩(1)에 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 완충액(PCR buffer)를 포함하는 샘플 용액을 도입하고, 상기 PCR 칩(10)을 상기 칩 홀더(300a)에 장착하는 단계를 수행한다. 그 후 또는 이와 동시에 상기 제1 열 블록(100a)을 변성 단계를 위한 온도, 예를 들어, 90℃ 내지 100℃로 가열 및 유지하고, 바람직하게는 95℃로 가열 및 유지하는 단계를 수행한다. 상기 제2 열 블록(200)을 어닐링 및 연장 (혹은 증폭) 단계를 위한 온도, 예를 들어, 55℃ 내지 75℃로 가열 및 유지하고, 바람직하게는 72℃로 가열 및 유지하는 단계를 수행한다. 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)에 접촉시켜 PCR의 제1 변성 단계를 수행한다(x 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제1 열 블록(100a)으로부터 분리시켜 PCR의 제1 변성 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로 이동시키는 단계를 수행한다(y 단계). 그 후, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 하향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)에 접촉시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 수행한다(z 단계). 마지막으로, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 상향 이동시켜, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 제2 열 블록(100a)으로부터 분리시켜 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계를 종료하고, 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로 이동시킨 후 상기 x, y, z 단계를 반복함으로써, 핵산 증폭 반응을 수행한다(순환 단계).
도 18은 본 발명의 다른 실시예에 따른 실시간 PCR 장치(2000)를 이용하여 실시간으로 핵산 증폭 반응을 관찰하는 단계를 도시한다. 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 배치되되, 상기 마이크로 PCR 칩(1)이 상기 구동 수단(500a)에 의해 상기 제1 열 블록(100a)과 제2 열 블록(200a) 간 이동시 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버(10) 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈(700a, 800a), 구체적으로 광원(700a) 및 광 검출부(800a)를 포함한다. 즉, 상기 실시간 PCR 장치(2000)는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)이 배치되고, 상기 칩 홀더(300a) 위에 상기 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되거나, 또는 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이에 광원(700a)으로부터 방출되는 광을 검출하기 위한 광 검출부(800a)가 배치되고, 상기 칩 홀더(300a) 위에 광원(700a)이 배치될 수 있다. 또한, 상기 광 검출부(800a)는 상기 구동 수단(500a) 위에 배치되고, 상기 구동 수단(900a)은 상기 광원(700a)으로부터 방출되는 광을 통과시키기 위한 관통부(530a)가 배치될 수 있다.
상기 광원(700a) 및 광 검출부(800a)의 배치에 의해, 상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출할 수 있도록 한다. 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 검출하기 위해서는 상기 마이크로 PCR 칩(1)에 도입되는 샘플 용액에 별도의 형광 물질을 더 첨가할 수 있다. 상기 광원(700a)은 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간에 가능한 넓게 분포하도록 배치되고, 가능한 동일한 광을 방출하도록 배치된다. 상기 광원(700a)은 상기 광원(700a)으로부터 방출되는 광을 포집하는 렌즈(도시되지 않음) 및 특정 파장대의 광을 여과하는 광 필터(도시되지 않음)와 구동가능하게 연결 배치될 수 있다.
상기 실시간 PCR 장치(2000)에 의한 핵산 증폭 반응시 상기 마이크로 PCR 칩(1) 내에서 핵산이 증폭되는 정도를 실시간으로 검출하는 단계는 아래와 같다.
상기 PCR의 제1 변성 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제1 열 블록(100a)의 위로부터 제2 열 블록(200a)의 위로 이동시키거나, 또는 상기 PCR의 제1 어닐링 및 연장 (혹은 증폭) 단계의 종료 후 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 마이크로 PCR 칩(1)을 제2 열 블록(200a)의 위로부터 제1 열 블록(200a)의 위로 이동시키는 경우, 상기 마이크로 PCR 칩(1)이 장착된 칩 홀더(300a)를 상기 구동 수단(500a)의 연결 부재(520a)를 제어하여 상기 제1 열 블록(100a)과 제2 열 블록(200a) 사이의 이격된 공간 상에 정지시키는 단계를 수행한다. 그 후, 상기 광원(700a)으로부터 광을 방출시키고, 상기 방출된 광은 상기 마이크로 PCR 칩(1), 구체적으로 상기 마이크로 PCR 칩(1)의 PCR 반응 챔버)를 통과하고, 이 경우 상기 PCR 반응 챔버 내의 핵산의 증폭에 의해 발생하는 광신호를 상기 광 검출부(800a)가 검출한다. 이 경우 상기 광 투과성 재질의 마이크로 PCR 칩(1)을 통과한 광은 상기 구동 수단(500a), 구체적으로 상기 레일(510a)에 배치된 관통부(530a)를 통과하여 상기 광출부(800a)에 도달할 수 있다. 따라서, 상기 PCR의 각 순환 단계가 진행되는 동안 상기 반응 채널 내에서 (형광 물질이 결합된) 핵산의 증폭에 의한 반응 결과를 실시간으로 모니터링함으로써 초기 반응 샘플에 포함되어 있는 표적 핵산의 양을 실시간으로 측정 및 분석할 수 있다.
구현예
1. 마이크로 PCR 칩의 제조
도 12와 같이, 플라스틱 재질로 평판 형상의 제1 내지 제3 판(100, 200, 300)을 준비하였다. 상기 제1 판(100)은 0.5 mm의 두께로 제조하였고, 상기 제2 판(200)은 2 mm의 두께로 하되, 19개의 PCR 반응 챔버(10)를 중앙 원형 영역에 집적시켜 제조하였고, 상기 제3 판(300)은 2 mm의 두께로 하되, 그 하단 면에 상기 중앙 원형 영역에 대응하게 원형 홈을 구현하고, 상기 19개의 PCR 반응 챔버(10) 내부를 향해 돌출되도록 광 투과부(25)를 형성하여 제조하였다. 아울러, 상기 제3 판(300)의 원형 홈 및 광 투과부(50)에 대응하여 결합할 수 있는 플렉서블 패킹부(50)를 제조하여 상기 제3 판(300)의 하단 면에 부착시켰다. 그 후, 상기 제1 판(100) 상부에 양면 접착 테이프를 접착하고 상기 제2 판(200)을 상기 제1 판(100)의 상부에 부착하였다. 이 경우 상기 양면 접착 테이프 이외에 열 접합, 초음파 접합, 자외선 접합, 용매 접합 방법 등을 통해서도 상기 제1 판(100)과 상기 제2 판(200)을 부착시킬 수 있음은 물론이다. 그 후, 상기 제2 판(200)의 부착에 의해 형성된 19개의 PCR 반응 챔버(10)에 PCR 시료 및 시약을 주입하고, 상기 플렉서블 패킹부(50)가 부착된 상기 제3 판(300)을 상기 제2 판(200) 상부에 부착하여 상기 PCR 반응 챔버(10)를 밀봉하였다. 도 19에 따르면, 본 구현예에 있어서, 완성된 마이크로 PCR 칩(1)을 확인할 수 있다. 도 19의 A 그림은 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1)의 외관이고, B 그림은 A 그림의 마이크로 PCR 칩(1)에서 제3 판(300)의 투시도가 반영된 외관이고, C 그림은 B 그림의 마이크로 PCR 칩(1)의 중앙 원형 영역에 19개의 단위 모듈(50)이 배치된 상태를 도시하는 확대 도면이다.
2. 실시간 PCR 수행
상기 PCR 시료 및 시약은 인플루엔자 A 바이러스 (New Influenza A virus)에 관한 것으로서, 인플루엔자 A 바이러스 (New Influenza A virus)의 게놈 RNA는 질병관리본부로부터 분양받았다. 분양받은 게놈 RNA와 함께 Invitrogen 사의 SupterScriptⅢ First-strand Synthesis System for RT-PCR kit를 사용하여 역전사 반응액을 조성하고, 역전사 반응을 진행한 다음, cDNA를 합성하였다. 역전사 반응에 사용된 역전사 반응액의 조성 및 cDNA 합성 조건을 하기 표 1 및 표 2에 기재하였다.
표 1.
Figure 112012085428352-pat00001
표 2.
Figure 112012085428352-pat00002

그 후, 상기 인플루엔자 A 바이러스 검출을 위해 사용되는 프라이머는 GC%를 40 내지 60%가 되도록 하고, Tm 값 65 내지 75℃ 조건이 되도록 하여 Primer 3를 통해 제작하고, 제작한 프라이머를 제노텍(주)에 의뢰하여 합성하였다. 그 후, 상기 인플루엔자 A 바이러스에 대한 프라이머의 검출의 확인을 위해, 상기 합성 인플루엔자 A 바이러스의 cDNA를 주형으로 하여 PCR을 수행하였다. 하기 표 3 및 표 4에 상기 PCR에 사용한 PCR 시료 및 시약의 조성 및 수행한 PCR 조건을 나타냈다. 각각의 PCR 시료 및 시약은 아래 표의 조성에 따르고, 총 부피 16 ㎕가 되도록 하였다.
표 3.
Figure 112012085428352-pat00003
표 4.
Figure 112012085428352-pat00004
3. 결과
PCR 수행 결과는 도 20에 따른 PCR 결과의 형광 사진 및 도 21 내지 23에 따른 실시간 PCR 결과 그래프(X축: cycle 수, Y축: 형광도)를 통해 확인했다. 도 20에 따르면, 상기 마이크로 PCR 칩(1)의 단위 모듈(50)별 형광 신호가 흰 점으로 선명하게 확인된다. 이 경우, 도 20의 마이크로 PCR 칩(1)의 제1 영역(①)은 도 21의 그래프, 제2 영역(②)은 도 22의 그래프, 제3 영역(③)은 도 23의 그래프와 대응된다. 그 결과, 본 발명의 일 실시예에 따른 마이크로 PCR 칩(1) 및 실시간 PCR 장치(2000)를 이용하면 실시간 PCR 결과가 정확하고 신속하게 측정될 수 있음을 확인할 수 있다.

Claims (13)

  1. 상단 면이 개방된 PCR 반응 챔버(chamber); 및
    상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하고, 상기 개방 상단 면에 맞닿는 밀폐 면 중 일부 영역으로부터 상기 PCR 반응 챔버의 내부를 향해 돌출되되 광 경로를 따라 연장된 광 투과성 재질의 광 투과부를 구비하는 덮개(cover);
    를 포함하는, 마이크로 PCR 칩(Micro-Polymerase Chain Reaction chip).
  2. 제1항에 있어서,
    상기 PCR 반응 챔버는 10 ㎕ 이하의 액체 샘플 수용량을 갖도록 구현된 것을 특징으로 하는 마이크로 PCR 칩.
  3. 제2항에 있어서,
    상기 PCR 반응 챔버는 5 내지 8 ㎕의 액체 샘플을 수용하는 것을 특징으로 하는 마이크로 PCR 칩.
  4. 제1항에 있어서,
    상기 광 투과부는 상기 밀폐 면의 중앙에 배치된 것을 특징으로 하는 마이크로 PCR 칩.
  5. 제1항에 있어서,
    상기 광 투과부는 상기 PCR 반응 챔버의 하단 바닥 면에 닿거나, 상기 PCR 반응 챔버의 하단 바닥 면으로부터 상향으로 일부 이격된 위치까지 구현된 것을 특징으로 하는 마이크로 PCR 칩.
  6. 제1항에 있어서,
    상기 덮개는 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블(flexible) 패킹부를 더 구비할 수 있으며,
    상기 플렉서블 패킹부는 상기 덮개로부터 돌출된 상기 광 투과부를 둘러싸도록 관통 형성되는 홀(hole)을 포함하는 것을 특징으로 하는 마이크로 PCR 칩.
  7. 제1항에 있어서,
    상기 PCR 반응 챔버 및 상기 덮개로 구성된 단위 모듈을 2 이상 구비하는 것을 특징으로 하는 마이크로 PCR 칩.
  8. 제1항에 있어서,
    평판 형상을 갖는 것을 특징으로 하는 마이크로 PCR 칩.
  9. 제1항에 있어서,
    평판 형상의 제1 판;
    상기 제1 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버를 구비하는 평판 형상의 제2 판; 및
    상기 제2 판의 상부에 배치되는 것으로서, 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하되, 상기 광 투과부를 구비하는 덮개 역할을 수행하는 제3 판;
    을 포함하는 것을 특징으로 하는 마이크로 PCR 칩.
  10. 제9항에 있어서,
    상기 제2 판과 제3 판 사이에 상기 광 투과부를 관통하도록 둘러싸는 홀(hole), 및 상기 PCR 반응 챔버의 개방 상단 면에 맞닿아 상기 개방 상단 면을 밀폐하는 플렉서블 패킹부를 더 포함하는 것을 특징으로 하는, 마이크로 PCR 칩.
  11. 제1항에 있어서,
    상기 PCR 반응 챔버로부터 발생하는 열을 외부로 방출하도록 구현된 열 방출부(60)를 더 포함하는 것을 특징으로 하는 마이크로 PCR 칩.
  12. 제1항 내지 제10항 중 어느 한 항에 따른 마이크로 PCR 칩;
    상기 마이크로 PCR 칩의 적어도 일 면에 열 접촉하도록 구현된 1 이상의 열 블록; 및
    상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;
    을 포함하는, 실시간 PCR 장치.
  13. 제1항 내지 제10항 중 어느 한 항에 따른 마이크로 PCR 칩;
    기판 상에 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제1 열 블록;
    상기 기판 상에 상기 제1 열 블록과 이격 배치되되 상기 마이크로 PCR 칩과 열 접촉하도록 구현된 제2 열 블록;
    상기 제1 열 블록 및 제2 열 블록 위로 구동 수단에 의해 좌우 및/또는 상하 이동 가능하고, 상기 마이크로 PCR 칩이 장착된 칩 홀더; 및
    상기 제1 열 블록과 제2 열 블록 사이에 배치되되, 상기 마이크로 PCR 칩이 상기 구동 수단에 의해 상기 제1 열 블록과 제2 열 블록 간 이동시 상기 마이크로 PCR 칩의 PCR 반응 챔버 내부의 PCR 증폭 산물로부터 발생하는 광신호를 검출하도록 구현된 광 검출 모듈;
    을 포함하는, 실시간 PCR 장치.
KR1020120116873A 2012-10-19 2012-10-19 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치 KR102003784B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120116873A KR102003784B1 (ko) 2012-10-19 2012-10-19 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
PCT/KR2013/009343 WO2014062033A1 (ko) 2012-10-19 2013-10-18 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120116873A KR102003784B1 (ko) 2012-10-19 2012-10-19 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치

Publications (2)

Publication Number Publication Date
KR20140050446A KR20140050446A (ko) 2014-04-29
KR102003784B1 true KR102003784B1 (ko) 2019-07-25

Family

ID=50488517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120116873A KR102003784B1 (ko) 2012-10-19 2012-10-19 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치

Country Status (2)

Country Link
KR (1) KR102003784B1 (ko)
WO (1) WO2014062033A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423723B1 (ko) * 2020-08-27 2022-07-21 성균관대학교산학협력단 플라즈모닉 우물 기반 핵산 검출장치 및 롤투롤 공정을 이용한 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239742A (ja) 2010-05-20 2011-12-01 Seiko Epson Corp マイクロ流体チップ、マイクロ流体チップセット及び核酸分析キット

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU698953B2 (en) * 1994-04-29 1998-11-12 Applied Biosystems, Llc System for real time detection of nucleic acid amplification products
US6818437B1 (en) * 1998-05-16 2004-11-16 Applera Corporation Instrument for monitoring polymerase chain reaction of DNA
KR100794699B1 (ko) * 2002-06-18 2008-01-14 (주)바이오니아 핵산증폭반응 산물의 실시간 모니터링 장치
KR101368463B1 (ko) * 2010-04-23 2014-03-03 나노바이오시스 주식회사 2개의 열 블록을 포함하는 pcr 장치
WO2012015165A2 (ko) * 2010-07-30 2012-02-02 나노바이오시스(주) 광 투과성 열 블록을 포함하는 pcr 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239742A (ja) 2010-05-20 2011-12-01 Seiko Epson Corp マイクロ流体チップ、マイクロ流体チップセット及び核酸分析キット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microfluidic Nanofluid (2007) 3:177-187

Also Published As

Publication number Publication date
WO2014062033A1 (ko) 2014-04-24
KR20140050446A (ko) 2014-04-29

Similar Documents

Publication Publication Date Title
US20180201978A1 (en) Apparatus for high throughput chemical reactions
JP4308325B2 (ja) 熱交換を行ない光学的に検出する化学反応アセンブリ
US9651492B2 (en) Optical detector
CN106661533B (zh) 多重pcr芯片及包含其的多重pcr装置
US20130034857A1 (en) Optical analysis apparatus and optical analysis method
CN105849283B (zh) 检测农业食品的食源性细菌的搭接芯片的高速实时pcr装置及利用其的食物中毒检测方法
EA018889B1 (ru) Способ определения нуклеиновых кислот методом полимеразно-цепной реакции в режиме реального времени и устройство для его осуществления
KR20160082356A (ko) 반복 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
KR101456646B1 (ko) 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
JP5633133B2 (ja) 遺伝子解析装置
KR20120137054A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 칩 및 이를 포함하는 pcr 장치
KR20130086893A (ko) 광 투과성 열 블록을 포함하는 pcr 장치
KR20030096877A (ko) 핵산증폭반응 산물의 실시간 모니터링 장치
KR102003784B1 (ko) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
US11602752B2 (en) Apparatus for amplificating nucleic acid and fluorescence-detecting device
KR101544089B1 (ko) 식중독 검출용 프라이머 세트를 포함하는 마이크로 pcr 칩, 이를 포함하는 실시간 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR20120139205A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 장치
KR20130086894A (ko) 광 투과성 열 블록을 포함하는 pcr 칩, 및 이를 포함하는 pcr 장치
KR102028381B1 (ko) 식중독 검출용 프라이머 세트를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR20130081948A (ko) 인플루엔자 a 바이러스 검출용 키트 및 이를 이용한 인플루엔자 a 바이러스의 검출 방법
KR20150127762A (ko) 광 노이즈 제거 수단이 구현된 실시간 pcr 칩 및 이를 포함하는 pcr 장치
KR20130088927A (ko) 광 노이즈 제거 수단이 구현된 pcr 장치
KR20130091026A (ko) 감염 결핵균 검출을 위한 pcr 장치 및 이를 이용한 감염 결핵균 검출 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right