WO2012015165A2 - 광 투과성 열 블록을 포함하는 pcr 장치 - Google Patents

광 투과성 열 블록을 포함하는 pcr 장치 Download PDF

Info

Publication number
WO2012015165A2
WO2012015165A2 PCT/KR2011/004395 KR2011004395W WO2012015165A2 WO 2012015165 A2 WO2012015165 A2 WO 2012015165A2 KR 2011004395 W KR2011004395 W KR 2011004395W WO 2012015165 A2 WO2012015165 A2 WO 2012015165A2
Authority
WO
WIPO (PCT)
Prior art keywords
light
pcr
disposed
chip
plate
Prior art date
Application number
PCT/KR2011/004395
Other languages
English (en)
French (fr)
Other versions
WO2012015165A3 (ko
Inventor
김성우
류호선
김덕중
이동훈
김선진
임기주
Original Assignee
나노바이오시스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노바이오시스(주) filed Critical 나노바이오시스(주)
Publication of WO2012015165A2 publication Critical patent/WO2012015165A2/ko
Publication of WO2012015165A3 publication Critical patent/WO2012015165A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/168Specific optical properties, e.g. reflective coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples

Definitions

  • the present invention relates to a polymerase chain reaction (PCR) apparatus used for a polymerase chain reaction.
  • PCR polymerase chain reaction
  • PCR Polymerase chain reaction
  • the PCR device refers to a device implemented to perform PCR for amplifying a nucleic acid having a specific base sequence.
  • a PCR device is a denaturing step of separating a double-stranded DNA into a single-stranded DNA by heating a sample solution containing the double-stranded DNA to a specific temperature, for example about 95 ° C., the sample An oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified in a solution is provided, and cooled together with the separated single stranded DNA to a specific temperature, for example, 55 ° C., of the single stranded DNA.
  • An annealing step of binding the primer to a specific base sequence to form a partial DNA-primer complex and after the annealing step, the sample solution is maintained at an activity temperature of DNA polymerase, eg, 72 ° C.
  • Extension (or amplification) to form double stranded DNA based on the primers of the partial DNA-primer complex by polymerase Perform system (extension step), and, for example, the extension (or amplification) step, is implemented to amplify DNA having the said specific nucleotide sequence exponentially, by repeating 20 times to 40 circuit.
  • the PCR device may perform the annealing step and the extension (or amplification) at the same time, in which case the PCR device performs two steps consisting of the annealing and extension (or amplification) steps following the denaturation step.
  • the first cycle may be completed.
  • Conventional PCR apparatus is a temperature control module for performing the denaturation step, annealing step and extension (or amplification) step, ignition heater using a silicon carbide (SiC) material, a ceramic heater using a hot wire of a high thermal conductivity metal and Metal heaters and the like were used.
  • the heaters are capable of temperature control at about 80 ° C. or less through thermal convection by radiation through far infrared radiation or heating of ambient air.
  • the heaters have a problem in that when the temperature rises significantly due to the material property, there is a high possibility of disconnection, and thus the stability of the temperature control is decreased, and the oxidation and corrosion frequently occur due to the nature of the metal material, thereby greatly reducing durability.
  • the present invention proposes a PCR apparatus capable of miniaturization, minimizing PCR reaction time, monitoring the PCR reaction step in real time, and obtaining a reliable PCR reaction yield.
  • the present invention is to provide a PCR device that can exhibit excellent performance and convenience in performing the nucleic acid amplification reaction.
  • One embodiment of the present invention is a light-transmitting heat block having a substrate, a heat generating layer including conductive nanoparticles disposed on the substrate, an insulating protective layer disposed on the heat generating layer and an electrode disposed in connection with the heat generating layer.
  • a top surface of the light transmissive thermal block comprises a contact portion of a polymerase chain reaction (PCR) chip in at least a portion of the region.
  • PCR polymerase chain reaction
  • the substrate is a light-transmissive glass or plastic material
  • the conductive nanoparticles included in the heat generating layer is an oxide semiconductor material or the oxide semiconductor material In, Sb, Al, Ga, C and Sn
  • the impurity is added to the material selected from the group consisting of
  • the insulating protective layer is selected from the group consisting of dielectric oxide, perylene, nanoparticles and polymer film
  • the electrode is a metal material, conductive epoxy, conductive paste, solder and It may be selected from the group consisting of a conductive film.
  • the lower surface of the substrate of the light-transmissive thermal block is a light absorbing layer containing a light absorbing material is disposed in contact, or the upper surface of the insulating protective layer of the light-transmissive thermal block is an antireflective material This included anti-reflective layer may be disposed in contact.
  • the PCR device is adapted to receive light emitted from a light providing portion operably arranged to provide light to a PCR chip disposed on the chip contact portion and a PCR chip disposed on the chip contact portion.
  • the apparatus may further include a light detector configured to be driven.
  • the light providing unit and the light detecting unit may be disposed above the light transmitting thermal block.
  • the light providing unit includes a light emitting diode (LED) light source or a laser light source, a first light filter for selecting light having a predetermined wavelength from light emitted from the light source, and the first light It may include a first optical lens for collecting light emitted from the filter.
  • LED light emitting diode
  • the first light filter for selecting light having a predetermined wavelength from light emitted from the light source, and the first light It may include a first optical lens for collecting light emitted from the filter.
  • the light providing unit may further include a first aspherical lens disposed to spread light between the light source and the first light filter.
  • the light detector may further include a second aspherical lens disposed between the second light filter and the light analyzer to integrate light emitted from the second light filter.
  • the light detector removes noise emitted from the second aspherical lens between the second aspherical lens and the optical analyzer and removes the light emitted from the second aspherical lens.
  • the device may further include a photodiode integrated circuit (PDIC) arranged to amplify.
  • PDIC photodiode integrated circuit
  • the PCR device is one or more dichroic to adjust the direction of the light so that the light emitted from the light providing unit reaches the light detection unit, and to separate the light having a predetermined wavelength It may further include a filter.
  • Another embodiment of the present invention provides a light transmissive PCR chip, which is disposed on a chip contact portion included in the light transmissive heat block of the PCR device, and can accommodate a sample solution containing a nucleic acid to be amplified. .
  • the PCR chip may be a light transmissive plastic material.
  • the light transmissive PCR chip comprises: a first plate; A second plate disposed on the first plate and having a through opening channel; And a third plate disposed on the second plate and having a through opening inlet formed in one region on the through opening channel and a through opening outlet formed in the other region.
  • the first plate and the third plate is polydimethylsiloxane (PDMS), cyclo olefin copolymer (cycle olefin copolymer (COC), polymethyl methacrylate (polymethylmetharcylate, PMMA) ), Polycarbonate (PC), polypropylene carbonate (PPC), polyether sulfone (PES), and polyethylene terephthalate (PET), and combinations thereof It may include a material to be.
  • PDMS polydimethylsiloxane
  • COC cycle olefin copolymer
  • PC polymethyl methacrylate
  • PMMA polymethylmetharcylate
  • PC Polycarbonate
  • PC polypropylene carbonate
  • PES polyether sulfone
  • PET polyethylene terephthalate
  • the through opening inlet of the third plate may be selected from 1.0 mm to 3.0 mm in diameter, and the through opening outlet may be selected from 1.0 mm to 1.5 mm in diameter.
  • the thickness of the third plate may be selected from 0.1 mm to 2.0 mm.
  • the second plate is polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (cycloolefin copolymer, COC), polyamide (polyamide, PA), polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE), polystyrene (PS), polyoxymethylene (POM), polyether ether ketone ( polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (PBT), fluorinated ethylene Thermoplastic selected from the group consisting of propylene (fluorinated ethylenepropylene, FEP), perfluoralkoxyalkane (PFA), and combinations thereof Paper or may include a thermosetting resin material.
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • cycloolefin copolymer cycl
  • the thickness of the second plate is selected from 100 ⁇ m to 200 ⁇ m
  • the width of the through opening channel is selected from 0.5 mm to 3 mm
  • the length of the through opening channel is 20 may be selected from mm to 40 mm.
  • a double-sided adhesive or a thermoplastic resin may be treated between the third plate and the second plate and between the second plate and the first plate.
  • the top surface of the first plate may be treated with a hydrophilic material (922).
  • the hydrophilic material may be selected from the group consisting of carboxyl group (-COOH), amine group (-NH2), hydroxy group (-OH), and sulfone group (-SH).
  • the inner wall of the transparent plastic material is coated with a material such as silane (silane), Bovine Serum Albumin (BSA) to prevent the adsorption of DNA or protein (protein) It is preferred and can be carried out according to methods known in the art.
  • silane silane
  • BSA Bovine Serum Albumin
  • the through-opening inlet and the through-opening outlet of the third plate, and the through-opening channel of the second plate are injection molding, hot-embossing, casting ), And a processing method selected from the group consisting of laser ablation.
  • the hydrophilic material may be treated by a method selected from the group consisting of oxygen and argon plasma treatment, corona discharge treatment, and surfactant application.
  • the lower surface of the third plate and the upper surface of the second plate, and the lower surface of the second plate and the upper surface of the first plate may be thermally bonded, ultrasonically fused, or solventd. It can be bonded by a bonding process.
  • a PCR device comprising a light transmitting thermal block according to the present invention, it is possible to efficiently and quickly perform a nucleic acid amplification reaction, to increase the efficiency of real-time measurement and analysis of nucleic acid amplification reaction, durable and commercially portable PCR devices can be implemented.
  • FIG. 1 illustrates a light transmissive thermal block included in a PCR device according to an embodiment of the present invention.
  • Figure 2a shows the heat distribution of the heat block included in the conventional PCR apparatus.
  • Figure 2b shows the heat distribution of the light transmitting thermal block included in the PCR device according to an embodiment of the present invention.
  • Figure 2c shows the temperature change with time of the light transmitting thermal block included in the PCR device according to an embodiment of the present invention.
  • FIG. 3A illustrates a light transmissive thermal block included in a PCR device according to an exemplary embodiment in which a light absorbing layer is disposed in contact with a lower surface of a substrate
  • FIG. 3B shows a light reflecting prevention layer in contact with an upper surface of an insulating protective layer
  • 3 shows a light transmitting thermal block included in a PCR device according to an embodiment of the present invention
  • FIG. 3C illustrates a light absorbing layer disposed on a lower surface of a substrate to prevent light reflection due to contact between an external air layer and an insulating protective layer.
  • a light transmissive thermal block is included in a PCR device according to an embodiment of the present invention, in which a light reflection prevention layer is disposed in contact with an upper portion of the insulating protective layer.
  • Figure 4 shows that the PCR chip is disposed on the light transmitting heat block of the PCR device according to an embodiment of the present invention including a light providing unit and a light detecting unit.
  • Figure 5 shows in more detail the light providing unit of the PCR apparatus according to an embodiment of the present invention.
  • Figure 6 shows in more detail the light detector of the PCR device according to an embodiment of the present invention.
  • Figure 7 shows the optical path by the dichroic filter included in the PCR device according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a light transmissive PCR chip according to another embodiment of the present invention.
  • Figure 9 shows a cross section of a light transmissive PCR chip according to another embodiment of the present invention treated with a double-sided adhesive or thermoplastic resin.
  • Figure 10a shows a PCR result over time using a PCR device according to an embodiment of the present invention
  • Figure 10b is an electrophoretic picture comparing the PCR results according to Figure 10a with PCR results using other companies' PCR device Illustrated.
  • Figure 11a shows a PCR result over time using a PCR device according to an embodiment of the present invention
  • Figure 11b is an electrophoretic picture comparing the PCR results according to Figure 11a with PCR results using other companies' PCR devices Illustrated.
  • FIG. 1 illustrates a light transmitting thermal block 100 included in a PCR device according to an embodiment of the present invention.
  • a PCR device includes a substrate 10, a heating layer 20 including conductive nanoparticles disposed on the substrate 10, and an insulating protective layer 30 disposed on the heating layer. And a light transmissive thermal block 100 having an electrode 40 connected to the heating layer, wherein an upper surface of the light transmissive thermal block includes a contact portion 50 of a PCR chip in at least a portion of the region.
  • the substrate 10 is a plate of a light transmissive material, and may be a light transmissive glass or a light transmissive plastic material.
  • the substrate 10 is shown in a planar shape according to FIG. 1, the substrate 10 may have various shapes such as a semi-cylindrical shape and a hemispherical shape.
  • the substrate 10 serves to support the heating layer 20.
  • the heating layer 20 serves as a heat source of the light transmitting thermal block 100 for performing the denaturation step, annealing step and extension (or amplification) step of PCR.
  • the heating layer 20 is disposed on the substrate 10 and includes conductive nanoparticles (not shown).
  • the conductive nanoparticle may be an oxide semiconductor material or a material to which an impurity selected from the group consisting of In, Sb, Al, Ga, C, and Sn is added to the oxide semiconductor material.
  • the heat generating layer 20 may have a loose texture structure in which the conductive nanoparticles are physically linked to each other, and may generate a close-packed texture according to heat treatment conditions of a manufacturing process. It may also have a complete film state.
  • the conductive nanoparticles are present in a dispersed state in a solvent, the conductive nanoparticles can be easily stacked on the substrate 10, so that the thickness of the heat generating layer 20 can be easily adjusted by controlling the number of stacked layers. Can be.
  • the conductivity of the heating layer 20 may be easily adjusted by adjusting the concentration of the dispersion liquid containing the conductive nanoparticles.
  • an adhesion reinforcing layer (not shown) may be formed between the substrate 10 and the heating layer 20 to strongly fix the heating layer 20 to the substrate 10.
  • the adhesion reinforcing layer may be formed of silica or a polymer, may include conductive nanoparticles may also play the same role as the heating layer.
  • the heating layer 20 may be transparent.
  • the wavelength of visible light is 400 to 700 nm, and when a heat generating layer including conductive nanoparticles is formed to have a thickness of 1/4 or less of such wavelength, for example, about 100 nm or less, light transmittance may be obtained. Can be.
  • the insulating protective layer 30 is for physically and / or electrically protecting the heating layer 20 and may include an insulating material.
  • the insulating material may be selected from the group consisting of dielectric oxides, perylenes, nanoparticles, and polymer films.
  • the insulating protective layer 30 may be transparent.
  • the electrode 40 is directly or indirectly connected to the heat generating layer 20 to supply power to the heat generating layer 20.
  • the electrode 40 may be a variety of materials capable of supplying power, and may be selected from the group consisting of metal materials, conductive epoxy, conductive pastes, solders, and conductive films, for example. According to FIG. 1, the electrodes 40 may be connected to both sides of the heat generating layer 20, but may be connected to be arranged at various operable positions if power can be supplied to the heat generating layer 20. In addition, the electrode 40 may be included in the PCR device or electrically connected to an externally arranged power source. For example, the electrode 40 directly contacts the heating layer 20, connects the heating layer 20 to an external circuit (not shown) through a wiring (not shown), and the wiring is The terminal may be disposed to be stably fixed to the electrode 40.
  • the light transmissive thermal block 100 includes a chip contact portion 50 to which a PCR chip (not shown) contacts at least a portion of an upper surface thereof.
  • the PCR chip may be heated or cooled according to the heat supply or recovery of the light transmissive thermal block 100 by contacting the chip contact part 50 to perform each reaction step of PCR.
  • the PCR chip may directly or indirectly contact the chip contact 50.
  • the PCR device according to an embodiment of the present invention may further include modules for performing other PCR including the light transmissive thermal block, and detailed modules not described herein are obvious in the art. It is assumed that all are provided in range.
  • the PCR device including the light-transmissive heat block 100 has many advantages over the conventional PCR device using a heat heater, a ceramic heater, or a metal heater as a heat block.
  • a heat heater for example, a heat heater, a ceramic heater, or a metal heater.
  • the conductive nanoparticles are used as the heat source, there is no fear of disconnection of the heating layer, and since the conductive nanoparticles are directly heated, high thermal efficiency and low power consumption can be obtained (for example, the light transmittance If the heat block is about 2X2 cm size, it can generate heat with a voltage of about 12V.) Since it is not a metal material, it hardly oxidizes and corrodes, so it has excellent durability.
  • the substrate 10, the heat generating layer 20, and the insulating layer may be included in the sample solution when implemented together with the light providing unit and the light detecting unit. Real-time monitoring of PCR with the fluorescent material is possible.
  • the thickness of the substrate 10, the heat generating layer 20, and the insulating protective layer 30 may be easily adjusted, the light transmitting thermal block 100 may be slimmed, thereby allowing the light transmitting thermal block 100 to be reduced. It is possible to miniaturize the PCR device including the).
  • FIG. 2a shows the heat distribution of the heat block included in the conventional PCR device
  • Figure 2b shows the heat distribution of the light transmitting heat block 100 included in the PCR device according to an embodiment of the present invention
  • Figure 2c Shows a temperature change with time of the light transmissive thermal block 100 included in the PCR apparatus according to the embodiment of the present invention.
  • the temperature distribution is observed by applying electric power to the calcite heater, the ceramic heater, or the metal heater used as the thermal block in the conventional PCR apparatus, and the electrode 40 is applied to the light transmitting thermal block 100 according to the embodiment of the present invention.
  • the temperature distribution was observed by applying power.
  • FIG. 2A the temperature distribution on the existing heater is not uniform throughout the heater surface, but according to FIG. 2B, the temperature distribution on the light transmissive thermal block 100 is observed to be overall uniform compared to FIG. 2A. It became.
  • the electrode 40 by applying power to the light transmitting thermal block 100 according to an embodiment of the present invention through the electrode 40, the temperature change of the light transmitting thermal block 100 with time was observed.
  • the temperature rise was shown to be up to 17 °C / sec, which indicates that the temperature rise of the typical conventional heaters (for example, Bio-Rad's CFX96) is significantly higher than the maximum rise of 5 °C / sec. Can be.
  • FIG. 3A illustrates a light transmissive thermal block 100 included in a PCR device according to an exemplary embodiment in which a light absorbing layer 60 is disposed in contact with a bottom surface of a substrate 10, and FIG. 3B illustrates an insulating protective layer ( 30)
  • the layer 60 is disposed in contact and an antireflective layer 70 is disposed in contact with the upper portion of the insulating protective layer 30 to prevent light reflection due to the contact between the external air layer and the insulating protective layer 30.
  • a light transmissive thermal block 100 included in a PCR device according to an embodiment of the present invention is shown.
  • PCR In general, it is possible to measure and analyze the occurrence and extent of PCR products in real time using a fluorescent material while performing a PCR.
  • PCR is called real time PCR.
  • a fluorescent material as well as a reagent required for a PCR reaction is added to a PCR chip, and the fluorescent material emits light by light of a specific wavelength according to the generation of a PCR product, thereby inducing a measurable optical signal. Therefore, in order to accurately monitor the PCR product in real time, it is necessary to increase the sensing efficiency of the optical signal as much as possible.
  • the excitation light derived from the light source may be transmitted as it is, thereby increasing the sensing efficiency of the optical signal.
  • some of the excitation light may be reflected on the light transmissive heat block 100 or reflected after passing through the light transmissive heat block 100 to act as noise of an optical signal. Therefore, preferably, the light absorbing material may be treated on the lower surface of the light transmissive thermal block 100 to further increase the sensing efficiency.
  • a light absorbing layer 60 is disposed in contact with a lower surface of the substrate 10, and the light absorbing layer 60 includes a light absorbing material.
  • the light absorbing material may be, for example, mica, but is not limited to a material having a property of absorbing light. Therefore, the light absorbing layer 60 absorbs a part of the light derived from the light source, and the generation of reflected light acting as noise of the optical signal can be suppressed as much as possible.
  • the light reflection preventing material may be treated on the upper surface of the light transmissive thermal block 100 to further increase the sensing efficiency.
  • a light reflection prevention layer 70 is disposed in contact with the upper surface of the insulation protection layer 30, and the light reflection prevention layer 70 is combined with the insulation protection layer 30 to provide insulation protection and light reflection. Performs a protective function and includes an antireflective material.
  • the anti-reflective material may be, for example, a fluoride such as MgF 2, an oxide such as SiO 2 or Al 2 O 3, but is not limited as long as the material has a property of preventing light reflection.
  • a fluoride such as MgF 2
  • an oxide such as SiO 2 or Al 2 O 3
  • the ratio of the optical signal to the noise should have the maximum possible value, and the ratio of the optical signal to the noise may be improved as the reflectance of the excitation light from the PCR chip is lower.
  • the reflectance of the excitation light of conventional heaters of a general metallic material is about 20 to 80%
  • the light according to the present invention including the light absorbing layer 60 or the anti-reflective layer 70 according to FIG. 3a or 3b.
  • the transmissive heat block 100 the light reflectance can be reduced to within 0.2% to 4%
  • the light transmissive heat according to the present invention including the light absorbing layer 60 and the antireflective layer 70 according to FIG. 3C.
  • the block 100 the light reflectance can be reduced to 0.2% or less.
  • Figure 4 shows that the PCR chip is disposed on the light transmitting heat block of the PCR device according to an embodiment of the present invention including a light providing unit and a light detecting unit.
  • the PCR apparatus includes a light providing unit 200 operably arranged to provide light to a PCR chip 900 disposed at the chip contact unit 50 and a PCR disposed at the chip contact unit 50.
  • the apparatus may further include a light detector 300 which is operably arranged to receive light emitted from the chip 900.
  • the light providing unit 200 is a module for providing light to the PCR chip 900, the light detector 300 receives the light emitted from the PCR chip 900 in the PCR chip 900 Module for measuring the PCR reaction performed.
  • Light is emitted from the light providing unit 200, and the emitted light passes or reflects through the PCR chip 900, specifically, a reaction chamber (or channel) (not shown) of the PCR chip 900.
  • the light detector 300 detects an optical signal generated by nucleic acid amplification in the reaction chamber (or channel). Therefore, according to the PCR device according to an embodiment of the present invention, the nucleic acid (with a fluorescent material bound) in the reaction chamber (or channel) during each cyclic step of the PCR in the PCR chip (900) By monitoring the result of the amplification reaction in real time, it is possible to measure and analyze in real time whether the target nucleic acid contained in the initial sample solution and the degree of amplification.
  • the light providing unit 200 and the light detecting unit 300 may be disposed above or below the light transmitting thermal block 900, or may be disposed respectively.
  • the arrangement of the light providing unit 200 and the light detecting unit 300 may be varied in consideration of the arrangement relationship with other modules for optimal implementation of the PCR apparatus according to the present invention. Accordingly, the light providing unit 200 and the light detecting unit 300 may be disposed above the light transmitting thermal block.
  • Figure 5 shows in more detail the light providing unit 200 of the PCR apparatus according to an embodiment of the present invention.
  • the light providing unit 200 may include a light emitting diode (LED) light source or a laser light source 210 and a first light filter 230 that selects light having a predetermined wavelength from light emitted from the light source. And a first aspherical surface including a first optical lens 240 for collecting light emitted from the first light filter, and arranged to spread light between the light source 210 and the first light filter 230.
  • the lens 220 further includes.
  • the light source 210 includes all light sources capable of emitting light, and according to an embodiment of the present invention, includes a light emitting diode (LED) light source or a laser light source.
  • the first light filter 230 selects and emits light having a specific wavelength among incident light having various wavelength bands, and may be variously selected according to the predetermined light source 210. For example, the first light filter 230 may pass only light having a wavelength of 500 nm or less among the light emitted from the light source 210.
  • the first optical lens 240 collects the incident light and increases the intensity of the emitted light. The first optical lens 240 may increase the intensity of light irradiated onto the PCR chip through the light transmitting thermal block 100.
  • the light providing unit 200 further includes a first aspherical lens 220 disposed to spread light between the light source 210 and the first light filter 230. By adjusting the arrangement direction of the first aspherical lens 220, the light range emitted from the light source 210 is extended to reach the measurable area.
  • FIG. 6 illustrates the light detector 300 of the PCR device according to an embodiment of the present invention in more detail.
  • the light detector 300 has a second optical lens 310 for collecting light emitted from a PCR chip disposed at the chip contact portion, and has a predetermined wavelength in light emitted from the second optical lens.
  • a second optical filter 320 for selecting light, and an optical analyzer 350 for detecting an optical signal from light emitted from the second optical filter, wherein the second optical filter 320 and the optical analyzer ( And further comprising a second aspherical lens 330 disposed between the second light filters 320 to accumulate the light emitted from the second light filter 320, and between the second aspherical lens 330 and the optical analyzer 350.
  • a photodiode integrated circuit (PDIC) 340 disposed to remove noise of light emitted from the second aspherical lens 330 and amplify the light emitted from the second aspherical lens 330. More).
  • the second optical lens 310 collects the incident light and increases the intensity of the emitted light.
  • the second optical lens 310 increases the intensity of light emitted from the PCR chip through the light transmitting thermal block 100 to detect the optical signal.
  • the second light filter 320 selects and emits light having a specific wavelength among incident light having various wavelength bands, and variously selects the light according to a predetermined wavelength of light emitted from the PCR chip through the light transmitting thermal block 100. Can be.
  • the second light filter 320 may pass only light in a wavelength band of 500 nm or less among predetermined light emitted from the PCR chip through the light transmitting thermal block 100.
  • the optical analyzer 350 is a module that detects an optical signal from the light emitted from the second optical filter 320, and converts the fluorescent light expressed from the sample solution into an electrical signal to enable qualitative and quantitative measurement.
  • the light detector 300 includes a second aspherical lens 330 disposed between the second light filter 320 and the light analyzer 350 to integrate light emitted from the second light filter 320. It may further include. By adjusting the arrangement direction of the second aspherical lens 330, the light range emitted from the second light filter 320 is extended to reach the measurable area.
  • the light detector 300 removes noise of light emitted from the second aspherical lens 330 between the second aspherical lens 330 and the optical analyzer 350, and removes the second aspherical surface.
  • the device may further include a photodiode integrated circuit (PDIC) 340 disposed to amplify the light emitted from the lens 330.
  • PDIC photodiode integrated circuit
  • FIG. 7 illustrates an optical path by a dichroic filter 400 included in a PCR device according to an embodiment of the present invention.
  • the PCR apparatus may adjust one or more directions of light so that the light emitted from the light providing unit 200 reaches the light detecting unit 300, and at least one for separating light having a predetermined wavelength.
  • the dichroic filter 400 further includes.
  • the dichroic filter 400 is a module that reflects light at an angle that is selectively transmitted or selectively adjusted according to the wavelength.
  • the dichroic filter 400a is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light emitted from the light providing unit 200, and selectively transmits the light according to its wavelength and transmits the short wavelength component. Is reflected at right angles to reach the PCR chip 900 disposed on the light transmissive thermal block 100.
  • the dichroic filter 400b is disposed to be inclined at an angle of about 45 degrees with respect to the optical axis of the light reflected from the PCR chip 900 and the light transmitting thermal block 100, and selectively shortens the light according to its wavelength. And the long wavelength component is reflected at right angles to reach the photo detector 300. The light reaching the light detector 300 is converted into an electric signal in the optical analyzer to indicate whether the nucleic acid is amplified and the degree of amplification.
  • FIG. 8 shows a cross section of a light transmissive PCR chip 900 according to another embodiment of the invention.
  • the light transmissive PCR chip 900 is disposed on the chip contact 50 included in the light transmissive heat block 100 of the PCR device according to the embodiment of the present invention described above, and the nucleic acid to be amplified. It may contain a sample solution comprising a.
  • the light transmissive PCR chip 900 may be a light transmissive plastic material.
  • the light transmissive PCR chip comprises a first plate (910); A second plate 920 disposed on the first plate 910 and having a through opening channel 921; And a third opening disposed on the second plate 920 and having a through opening inlet 931 formed in one region on the through opening channel 921 and a through opening outlet 932 formed in the other region. Plate 930.
  • the PCR chip 900 is a nucleic acid, such as double-stranded DNA, oligonucleotide primer having a sequence complementary to a specific base sequence to be amplified, DNA polymerase, deoxyribonucleotide triphosphates (dNTP), PCR Sample solution comprising a PCR reaction buffer.
  • the PCR chip 900 includes an inlet portion 931 for introducing the sample solution, an outlet portion 932 for discharging the sample solution having completed the nucleic acid amplification reaction, and a sample solution containing the nucleic acid to be amplified.
  • the PCR reaction chamber (or channel) 921 may be included.
  • the heat of the light transmissive heat block 100 is transferred to the PCR chip 900, and the PCR reaction chamber of the PCR chip 900 is provided.
  • the sample solution included in the (or channel) 921 may be heated or cooled to maintain a constant temperature.
  • the PCR chip 900 may have a planar shape as a whole, but is not limited thereto.
  • the PCR chip 900 may be indirectly disposed in contact with the light transmissive thermal block 100 while being mounted in a separate chip holder (not shown).
  • the PCR chip 900 is disposed in the chip contact portion 50 of the light transmitting thermal block 100 is that the PCR chip 900 is mounted on a separate chip holder And in contact with the light transmissive thermal block 100 in a state.
  • the PCR chip 900 may be implemented with a light transmissive material, and preferably includes a light transmissive plastic material.
  • the PCR chip 900 may use a plastic material to increase the heat transfer efficiency only by adjusting the thickness of the plastic, and the manufacturing process may be simplified to reduce the manufacturing cost.
  • the PCR chip 900 since the PCR chip 900 has a light transmitting property as a whole, light can be directly irradiated to the PCR chip in a state in which the PCR chip 900 is disposed at the chip contact portion 50 of the light transmitting thermal block 100, and thus nucleic acid amplification in real time. And the degree of amplification can be measured and analyzed.
  • the first plate 910 is disposed on the second plate 920. As the first plate 910 is adhesively disposed on the lower surface of the second plate 920, the through opening channel 921 forms a kind of PCR reaction chamber.
  • the first plate 910 may be implemented with various materials, but preferably, polydimethylsiloxane (PDMS), cycloolefin copolymer (COC), polymethylmethacrylate (polymethylmetharcylate) , PMMA), polycarbonate (PC), polypropylene carbonate (PPC), polyether sulfone (PES), and polyethylene terephthalate (PET), and combinations thereof It may be a material selected from.
  • the upper surface of the first plate 910 may be treated with a hydrophilic material 922 to smoothly perform PCR.
  • a hydrophilic material 922 By treating the hydrophilic material 922, a single layer including a hydrophilic material 922 may be formed on the first plate 910.
  • the hydrophilic material may be a variety of materials, but preferably may be selected from the group consisting of carboxyl group (-COOH), amine group (-NH2), hydroxy group (-OH), and sulfone group (-SH), Treatment of the hydrophilic material can be carried out according to methods known in the art.
  • the second plate 920 is disposed on the first plate 910.
  • the second plate 920 includes a through opening channel 921.
  • the through opening channel 921 is connected to a portion corresponding to the through opening inlet 931 and the through opening outlet 932 formed in the third plate 910 to form a kind of PCR reaction chamber. Therefore, a PCR reaction is performed after the sample solution to be amplified is introduced into the through opening channel 921.
  • the through opening channel 921 may be present in two or more according to the purpose and scope of use of the PCR apparatus according to an embodiment of the present invention. Referring to FIG. 8, six through opening channels 921 are illustrated. .
  • the second plate 920 may be formed of various materials, but preferably, polymethylmethacrylate (PMMA), polycarbonate (PC), cycloolefin copolymer (cycloolefin copolymer, COC) , Polyamide (PA), polyethylene (PE), polypropylene (PP), polyphenylene ether (PPE), polystyrene (PS), polyoxymethylene (POM) Polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polybutylene terephthalate (polybutylene terephthalate) , PBT), fluorinated ethylenepropylene (FEP), perfluoroalkoxyalkane (PFA), and combinations thereof Is a thermoplastic resin or a thermosetting resin material is chosen number of days.
  • PMMA polymethylmethacrylate
  • PC polycarbonate
  • the thickness of the second plate 920 may vary, but may be selected from 100 ⁇ m to 200 ⁇ m.
  • the width and length of the through opening channel 921 may vary, but preferably, the width of the through opening channel 921 is selected from 0.5 mm to 3 mm, and the length of the through opening channel 921 is selected. Can be selected from 20 mm to 40 mm.
  • the inner wall of the second plate 920 may be coated with a material such as silane-based and Bovine Serum Albumin (BSA) to prevent DNA and protein adsorption. The treatment of can be carried out according to methods known in the art.
  • BSA Bovine Serum Albumin
  • the third plate 930 is disposed on the second plate 920.
  • the third plate 930 includes a through opening inlet 931 formed in one region on the through opening channel 921 formed in the second plate 920 and a through opening outlet 932 formed in the other region. do.
  • the through opening inlet 931 is a portion into which a sample solution containing a nucleic acid to be amplified is introduced.
  • the through opening outlet 932 is a portion where the sample solution 932 flows out after the PCR reaction is completed. Accordingly, the third plate 930 covers the through-opening channel 921 formed in the second plate 920 to be described below, wherein the through-opening inlet 931 and the through-opening outlet 932 are the through-holes.
  • the third plate 930 may be made of various materials, but preferably, polydimethylsiloxane (PDMS), cycloolefin copolymer (CCO), polymethylmethacrylate (polymethylmetharcylate) , PMMA), polycarbonate (PC), polypropylene carbonate (PPC), polyether sulfone (PES), and polyethylene terephthalate (PET), and combinations thereof It may be a material selected from.
  • the through opening inlet 931 may have various sizes, but preferably may be selected from a diameter of 1.0 mm to 3.0 mm.
  • the through-opening outlet 932 may have various sizes, but preferably may be selected from a diameter of 1.0 mm to 1.5 mm.
  • the through-opening inlet 931 and the through-opening outlet 932 are provided with separate cover means (not shown), so that the PCR reaction with respect to the sample solution in the through-opening channel 921 proceeds. The sample solution can be prevented from leaking.
  • the cover means may be implemented in various shapes, sizes or materials.
  • the thickness of the third plate may vary, but preferably may be selected from 0.1 mm to 2.0 mm.
  • two or more through opening inlets 931 and through opening outlets 932 may be present.
  • FIG. 9 shows a light transmissive PCR chip according to another embodiment of the present invention in which a double-sided adhesive or thermoplastic resin 500 has been treated.
  • the PCR chip according to FIG. 9 may be manufactured by a method comprising the following steps.
  • the light transmissive PCR chip (100) to form a through-opening inlet (931) and through-opening outlet (932) through mechanical processing to provide a third plate (930);
  • the through opening outlet of the third plate 930 from a portion corresponding to the through opening inlet 931 of the third plate 930 on a plate having a size corresponding to the bottom surface of the third plate 930.
  • the through opening inlet 931 and the through opening outlet 932 of the third plate 930 and the through opening channel 921 of the second plate 920 are injection molded, hot-embossing.
  • the hydrophilic material 922 on the surface of the first plate 910 may be treated by a method selected from the group consisting of oxygen and argon plasma treatment, corona discharge treatment, and surfactant application and are known in the art.
  • the lower surface of the third plate 930 and the upper surface of the second plate 920, the lower surface of the second plate 920 and the upper surface of the first plate 910 may be thermally bonded, It can be adhered by ultrasonic fusion, solvent bonding process and can be carried out according to methods known in the art.
  • the double-sided adhesive or the thermoplastic resin 500 may be processed between the third plate 930 and the second plate 920 and between the second plate 920 and the third plate 910.
  • Figure 10a shows a PCR result over time using a PCR device according to an embodiment of the present invention
  • Figure 10b is an electrophoretic picture comparing the PCR results according to Figure 10a with PCR results using other companies' PCR device Illustrated.
  • PCR was performed using a PCR device according to an embodiment of the present invention according to FIG. 7 and a PCR chip according to an embodiment of the present invention according to FIG. 8, and PCR results were confirmed in real time during the PCR process.
  • the PCR was performed using a PCR solution containing 2X TaKaRa SYBR Green Kit and Primer Forward, Primer Reverse (Final Concentration: 1 pmole), BSA 1ug / 1ul, Hot start taq polymerase (2.8U).
  • two food poisoning bacteria were used as samples to ensure the reliability of the results (E. coli 0157: H7 and Salmonella enterica Typhimurium).
  • About 8ul of PCR solution and sample solution were introduced into the PCR chip, and the denaturation step, annealing step and extension (or amplification) step were performed 30 times in the PCR device.
  • the graph shown in FIG. 10A shows the PCR result against time.
  • the X axis represents time in minutes and seconds, and the Y axis represents fluorescence intensity.
  • PCR was terminated after about 25 minutes had elapsed, and the fluorescence degree over time showed a pattern similar to the expected PCR result.
  • the x curve is for E. coli 0157: H7, and the y and z curves are for Salmonella enterica Typhimurium.
  • FIG. 10b is an electrophoresis picture showing the results of performing the PCR using the PCR device according to the Roche PCR device and an embodiment of the present invention (Gel Loading amount is about 2 ul).
  • NC is a negative control, using only the SYBR Green Mixture of 2X TaKaRa SYBR Green Kit, abbreviated SE for Salmonella enterica Typhimurium, abbreviated EC for E. coli O157: H7
  • SE Salmonella enterica Typhimurium
  • EC E. coli O157: H7
  • S.E is performed twice for reliability of the result.
  • Figure 11a shows a PCR result over time using a PCR device according to an embodiment of the present invention
  • Figure 11b is an electrophoretic picture comparing the PCR results according to Figure 11a with PCR results using other companies' PCR devices Illustrated.
  • Example and Comparative Example 2 two kinds of food poisoning bacteria were used as samples (Listeria monocytogenes and Staphyloccus aureus).
  • PCR was terminated after about 25 minutes had elapsed, and the fluorescence degree over time showed a pattern similar to the expected PCR result.
  • the x 'and y' curves are for Listeria monocytogenes, and the z 'curves are for Staphyloccus aureus.
  • FIG. 11b is an electrophoresis picture showing the results of performing the PCR using a PCR device according to the Roche PCR device and an embodiment of the present invention (Gel Loading amount is about 2 ul).
  • the abbreviation NC is a negative control, using only the SYBR Green Mixture of 2X TaKaRa SYBR Green Kit. to be.
  • the abbreviation S.E is for Staphyloccus aureus and the abbreviation Listeria is for Listeria monocytogenes (Listeria is performed twice for reliability).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명에 따르면, 광 투과성 열 블록을 포함하는 PCR 장치가 개시된다. 본 발명에 따른 PCR 장치에 의하면, 핵산 증폭 반응을 신속하게 수행하고, 실시간으로 측정할 수 있으며, 분석 효율을 높힐 수 있고, 소형화 및 내구성이 높은 휴대용 PCR 장치를 구현할 수 있다.

Description

광 투과성 열 블록을 포함하는 PCR 장치
본 발명은 중합효소 연쇄 반응에 사용되는 PCR(Polymerase Chain Reaction) 장치에 관한 것이다.
중합효소 연쇄 반응(Polymerase Chain Reaction, 이하 PCR이라 통칭한다)은 핵산을 포함하는 샘플 용액을 반복적으로 가열 및 냉각하여 상기 핵산의 특정 염기 서열을 갖는 부위를 연쇄적으로 복제하여 그 특정 염기 서열 부위를 갖는 핵산을 기하급수적으로 증폭하는 기술로써, 생명과학, 유전공학 및 의료 분야 등에서 분석 및 진단 목적으로 널리 사용되고 있다. 따라서, 최근 PCR을 효율적으로 수행하기 위한 장치가 다양하게 개발되고 있다.
상기 PCR 장치는 특정 염기 서열을 갖는 핵산을 증폭하는 PCR을 수행하기 위하여 구현된 장치를 말한다. 일반적으로, PCR 장치는 이중 가닥의 DNA를 포함하는 샘플 용액을 특정 온도, 예를 들어 약 95℃로 가열하여 상기 이중 가닥의 DNA를 단일 가닥의 DNA로 분리하는 변성 단계(denaturing step), 상기 샘플 용액에 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드(oligonucleotide) 프라이머를 제공하고, 상기 분리된 단일 가닥의 DNA와 함께 특정 온도, 예를 들어 55℃로 냉각하여 상기 단일 가닥의 DNA의 특정 염기 서열에 상기 프라이머를 결합시켜 부분적인 DNA-프라이머 복합체를 형성하는 어닐링 단계(annealing step), 및 상기 어닐링 단계 이후 상기 샘플 용액을 DNA 중합효소의 활성온도, 예를 들어 72℃로 유지하여 DNA 중합효소(polymerase)에 의해 상기 부분적인 DNA-프라이머 복합체의 프라이머를 기초로 이중 가닥의 DNA를 형성하는 연장(또는 증폭) 단계(extension step)를 수행하고, 상기 연장(또는 증폭) 단계를 예를 들어, 20회 내지 40회로 반복함으로써 상기 특정 염기 서열을 갖는 DNA를 기하급수적으로 증폭할 수 있도록 구현된다. 또한, PCR 장치는 상기 어닐링 단계와 상기 연장(또는 증폭) 단계를 동시에 수행할 수 있고, 이 경우 상기 PCR 장치는 상기 변성 단계에 이은 상기 어닐링 및 연장 (또는 증폭) 단계로 구성된 2 단계를 수행함으로써, 제1 순환을 완성할 수도 있다.
종래 PCR 장치는 상기 변성 단계, 어닐링 단계 및 연장(또는 증폭) 단계를 수행하기 위하여 온도 제어 모듈로서, 탄화규소(SiC) 소재를 이용한 석열 히터, 열 전도성이 높은 금속 소재의 열선을 이용한 세라믹 히터 및 금속 히터 등을 사용하였다. 상기 히터들은 원적외선을 통한 복사 또는 주변 공기의 가열에 의한 열 대류를 통해 약 80 ℃ 이하에서 온도 제어가 가능하다. 그러나, 상기 히터들은 소재 특성상 온도가 크게 상승할 경우 단선의 우려가 높아 온도 제어의 안정성이 떨어지고, 금속 소재의 특성상 산화 및 부식이 빈번하게 발생하여 내구성이 크게 떨어지는 문제점이 있었다. 이와 같은 문제점은 PCR 장치의 결과 신뢰성을 크게 떨어뜨리고, 에너지 효율을 감소시키는 결과를 야기하였다. 또한, 최근 맞춤 의학 및 원격 진단 시스템의 도입 추세에 따라, 생화학적 진단기기의 소형화의 필요성이 대두되고 있음에도 불구하고, 상기 히터들을 이용한 PCR 장치는 그 소재의 특성상 소형화가 불가능한 문제점이 있다. 따라서, 이러한 문제점을 해결하고자 소형화가 가능하고, PCR 반응 시간을 최소화하며, PCR 반응 단계를 실시간으로 모니터링할 수 있을 뿐만 아니라 신뢰할 수 있는 PCR 반응 수율을 얻을 수 있는 PCR 장치를 이하 제안한다.
본 발명은 핵산 증폭 반응을 수행함에 있어서, 탁월한 성능 및 편리성을 발휘할 수 있는 PCR 장치를 제공하고자 한다.
본 발명의 일 구체예는 기판, 상기 기판 상에 배치된 도전성 나노 입자를 포함하는 발열층, 상기 발열층 상에 배치된 절연 보호층 및 상기 발열층과 연결 배치된 전극을 구비하는 광 투과성 열 블록을 포함하고, 상기 광투과성 열 블록의 상부 면은 적어도 일부 영역에 중합효소 연쇄 반응(PCR, Polymerase Chain Reaction) 칩의 접촉부를 포함하는 것을 특징으로 하는 PCR 장치를 제공한다.
본 발명의 일 구체예에 따르면, 상기 기판은 광 투과성 유리 또는 플라스틱 재질이고, 상기 발열층에 포함된 도전성 나노 입자는 산화물 반도체 물질 또는 상기 산화물 반도체 물질에 In, Sb, Al, Ga, C 및 Sn로 구성된 군으로부터 선택된 불순물이 첨가된 물질이고, 상기 절연 보호층은 유전체 산화물, 페릴린, 나노 입자 및 고분자 필름으로 구성된 군으로부터 선택되는 것이고, 상기 전극은 금속 물질, 전도성 에폭시, 전도성 페이스트, 솔더 및 전도성 필름으로 구성된 군으로부터 선택될 수 있다.
본 발명의 일 구체예에 따르면, 상기 광투과성 열 블록의 기판의 하부 면은 흡광 물질이 포함된 흡광층이 접촉 배치되거나, 또는 상기 광투과성 열 블록의 절연 보호층의 상부 면은 광반사 방지 물질이 포함된 광반사방지층이 접촉 배치될 수 있다.
본 발명의 일 구체예에 따르면, 상기 PCR 장치는 상기 칩 접촉부에 배치되는 PCR 칩에 광을 제공하도록 구동가능하게 배치된 광 제공부 및 상기 칩 접촉부에 배치되는 PCR 칩으로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부를 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 제공부 및 광 검출부는 상기 광 투과성 열 블록의 상부에 배치될 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 제공부는 LED(Light Emitting Diode) 광원 또는 레이저 광원, 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기, 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈를 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 검출부는 상기 칩 접촉부에 배치되는 PCR 칩으로부터 방출되는 광을 포집하는 제2 광 렌즈, 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기, 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광 신호를 검출하는 광 분석기를 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 제공부는 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 검출부는 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 광 검출부는 상기 제2 비구면 렌즈와 상기 광 분석기 사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 PCR 장치는 상기 광 제공부로부터 방출된 광이 광 검출부까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터를 더 포함할 수 있다.
본 발명의 다른 일 구체예는 상기 PCR 장치의 광 투과성 열 블록에 포함된 칩 접촉부에 배치되고, 증폭하고자 하는 핵산을 포함하는 샘플 용액을 수용할 수 있는 것을 특징으로 하는 광 투과성 PCR 칩을 제공한다.
본 발명의 다른 일 구체예에 따르면, 상기 PCR 칩은 광 투과성 플라스틱 재질일 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 광 투과성 PCR 칩은 제1 판; 상기 제1 판 상에 배치되고, 관통 개구 채널을 구비하는 제2 판; 및 상기 제2 판 상에 배치되고, 상기 관통 개구 채널 상의 일 영역에 형성된 관통 개구 유입부 및 다른 일 영역에 형성된 관통 개구 유출부를 구비하는 제3 판을 포함할 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제1 판 및 제3 판은 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질을 포함할 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제3 판의 관통 개구 유입부는 지름 1.0 mm 내지 3.0 mm에서 선택되고, 상기 관통 개구 유출부는 지름 1.0 mm 내지 1.5 mm에서 선택될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제3 판의 두께는 0.1 mm 내지 2.0 mm에서 선택될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제2 판은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene, POM), 폴리에테르에테르케톤(polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP), 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA), 및 그의 조합물로 구성된 군으로부터 선택되는 열 가소성 수지 또는 열 경화성 수지 재질을 포함할 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제2 판의 두께는 100 ㎛ 내지 200 ㎛에서 선택되고, 상기 관통 개구 채널의 폭은 0.5 mm 내지 3 mm에서 선택되고, 상기 관통 개구 채널의 길이는 20 mm 내지 40 mm에서 선택될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제3 판과 제2 판 사이 및 상기 제2 판과 제1 판 사이는 양면 접착제 또는 열가소성 수지가 처리될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제1 판의 상단 면은 친수성 물질(922)이 처리될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 친수성 물질은 카르복시기(-COOH), 아민기(-NH2), 히드록시기(-OH), 및 술폰기(-SH)로 구성된 군으로부터 선택될 수 있다.
본 발명의 일 구체예에 따르면, 상기 광투과성 플라스틱 재질 내벽은 DNA나 단백질(protein) 흡착을 방지하기 위해 실란(silane)계열, 보바인 시럼 알부민(Bovine Serum Albumin, BSA) 등의 물질로 코팅하는 것이 바람직하고 당업계에 공지된 방법에 따라 수행 할 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제3 판의 관통 개구 유입부 및 관통 개구 유출부, 및 상기 제2 판의 관통 개구 채널은 사출 성형, 핫-엠보싱(hot-embossing), 캐스팅(casting), 및 레이저 어블레이션(laser ablation)으로 구성된 군으로부터 선택되는 가공 방법에 의해 형성될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 친수성 물질은 산소 및 아르곤 플라즈마 처리, 코로나 방전 처리, 및 계면 활성제 도포로 구성된 군으로부터 선택되는 방법에 의해 처리될 수 있다.
본 발명의 다른 일 구체예에 따르면, 상기 제3 판의 하부 면과 상기 제2 판의 상부 면, 및 상기 제2 판의 하부 면과 상기 제1 판의 상부 면은 열 접합, 초음파 융착 또는 용매 접합 공정에 의해 접착될 수 있다.
본 발명에 따른 광 투과성 열 블록을 포함하는 PCR 장치를 제공함으로써, 핵산 증폭 반응을 효율적이고 신속하게 수행할 수 있고, 핵산 증폭 반응의 실시간 측정 및 분석 효율을 높힐 수 있으며, 내구성 및 상업성이 높은 휴대용 PCR 장치를 구현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록을 도시한다.
도 2a는 종래 PCR 장치에 포함된 열 블록의 열 분포를 도시한다.
도 2b는 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록의 열 분포를 도시한다.
도 2c는 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록의 시간에 따른 온도 변화를 도시한다.
도 3a는 기판 하부 면에 흡광층이 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록을 도시하고, 도 3b는 절연 보호층 상부 면에 광반사방지층이 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록을 도시하고, 도 3c는 기판 하부면에 흡광층이 접촉 배치되고, 외부 공기층과 절연보호층의 접촉에 의한 광 반사를 방지하기 위한 광반사방지층이 상기 절연보호층의 상부에 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록을 도시한다.
도 4는 광 제공부 및 광 검출부를 포함하는 본 발명의 일 실시예에 따른 PCR 장치의 광 투과성 열 블록 상에 PCR 칩이 배치된 것을 도시한다.
도 5는 본 발명의 일 실시예에 따른 PCR 장치의 광 제공부를 보다 상세하게 도시한다.
도 6은 본 발명의 일 실시예에 따른 PCR 장치의 광 검출부를 보다 상세하게 도시한다.
도 7은 본 발명의 일 실시예에 따른 PCR 장치에 포함된 이색성 필터에 의해 광 경로를 도시한다.
도 8은 본 발명의 다른 일 실시예에 따른 광 투과성 PCR 칩의 단면을 도시한다.
도 9는 양면 접착제 또는 열 가소성 수지가 처리된 본 발명의 다른 일 실시예에 따른 광 투과성 PCR 칩의 단면을 도시한다.
도 10a는 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 시간에 따른 PCR 결과를 도시하고, 도 10b는 도 10a에 따른 PCR 결과를 타사의 PCR 장치를 이용한 PCR 결과와 비교한 전기영동 사진을 도시한다.
도 11a는 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 시간에 따른 PCR 결과를 도시하고, 도 11b는 도 11a에 따른 PCR 결과를 타사의 PCR 장치를 이용한 PCR 결과와 비교한 전기영동 사진을 도시한다.
이하, 도면을 참조하여 실시예들을 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)을 도시한다.
본 발명의 일 실시예에 따른 PCR 장치는 기판(10), 상기 기판(10) 상에 배치된 도전성 나노 입자를 포함하는 발열층(20), 상기 발열층 상에 배치된 절연 보호층(30) 및 상기 발열층과 연결 배치된 전극(40)을 구비하는 광 투과성 열 블록(100)을 포함하고, 상기 광투과성 열 블록의 상부 면은 적어도 일부 영역에 PCR 칩의 접촉부(50)를 포함한다.
상기 기판(10)은 광 투과성 재질의 판재로서, 광 투과성 유리 또는 광 투과성 플라스틱 재질일 수 있다. 또한, 상기 기판(10)은 도 1에 따르면, 평판형으로 도시되어 있지만, 반원통형, 반구면형 등의 다양한 형상을 가질 수 있다. 또한, 상기 기판(10)은 상기 발열층(20)을 지지하는 역할을 수행한다.
상기 발열층(20)은 PCR의 변성 단계, 어닐링 단계 및 연장(또는 증폭) 단계를 수행하기 위한 상기 광 투과성 열 블록(100)의 열원 역할을 수행한다. 상기 발열층(20)은 상기 기판(10) 상에 배치되고, 도전성 나노 입자(도시되지 않음)를 포함한다. 상기 도전성 나노 입자는 산화물 반도체 물질 또는 상기 산화물 반도체 물질에 In, Sb, Al, Ga, C 및 Sn로 구성된 군으로부터 선택된 불순물이 첨가된 물질일 수 있다. 또한, 상기 발열층(20)은 상기 도전성 나노 입자가 물리적으로 연계(necking)된 성긴 조직(loose texture) 구조를 가질 수 있고, 제조 공정의 열 처리 조건에 따라 치밀한 조직(close-packed texture)을 가질 수 있으며, 또한 완전한 막 상태로 구현될 수도 있다. 또한, 상기 도전성 나노 입자는 용매에 분산된 상태로 존재하므로, 상기 기판(10) 상에 용이하게 적층할 수 있기 때문에, 그 적층 수를 조절하여 상기 발열층(20)의 두께 조절을 용이하게 할 수 있다. 또한, 상기 도전성 나노 입자를 포함하는 분산액의 농도를 조절함으로써 상기 발열층(20)의 도전성을 용이하게 조절할 수도 있다. 또한, 상기 발열층(20)을 상기 기판(10)에 강하게 고정하기 위하여 상기 기판(10)과 발열층(20) 사이에 접착력 강화층(도시되지 않음)이 형성될 수 있다. 상기 접착력 강화층은 실리카 또는 폴리머로 형성될 수 있고, 도전성 나노 입자를 포함할 수 있어 발열층과 동일한 역할을 또한 수행할 수도 있다. 또한, 상기 발열층(20)은 투명할 수 있다. 예를 들어, 가시광선의 파장은 400 내지 700 nm이고, 도전성 나노 입자를 포함하는 발열층을 이러한 파장의 1/4 이하의 두께, 예를 들어 약 100 nm 이하가 되도록 형성하는 경우 광 투과성을 획득할 수 있다.
상기 절연 보호층(30)은 상기 발열층(20)을 물리적 및/또는 전기적으로 보호하기 위한 것으로서, 절연성 물질을 포함할 수 있다. 예를 들어, 상기 절연성 물질은 유전체 산화물, 페릴린, 나노 입자 및 고분자 필름으로 구성된 군으로부터 선택될 수 있다. 한편, 상기 절연 보호층(30)은 투명할 수 있다.
상기 전극(40)은 상기 발열층(20)과 직접 또는 간접적으로 연결 배치되어 상기 발열층(20)에 전력을 공급하는 것이다. 상기 전극(40)은 전력을 공급할 수 있는 다양한 물질이 사용될 수 있고, 예를 들어 금속 물질, 전도성 에폭시, 전도성 페이스트, 솔더 및 전도성 필름으로 구성된 군으로부터 선택될 수 있다. 도 1에 따르면, 상기 전극(40)은 상기 발열층(20)의 양 측면에 연결 배치되지만, 상기 발열층(20)에 전력을 공급할 수 있다면 다양하게 작동가능한 위치에서 연결 배치될 수 있다. 또한, 상기 전극(40)은 상기 PCR 장치에 포함되거나 또는 외부 배치된 전원과 전기적으로 연결될 수도 있다. 예를 들어, 상기 전극(40)은 상기 발열층(20)에 직접 접촉하고, 배선(도시되지 않음)을 통해 외부 회로(도시되지 않음)에 상기 발열층(20)을 연결하며, 상기 배선이 전극(40)에 안정적으로 고정되도록 단자가 배치될 수 있다.
상기 광 투과성 열 블록(100)은 그 상부 면의 적어도 일부 영역에 PCR 칩(도시되지 않음)이 접촉하는 칩 접촉부(50)를 포함한다. 상기 PCR 칩은 상기 칩 접촉부(50)에 접촉함으로써, 상기 광 투과성 열 블록(100)의 열 공급 또는 회수에 따라 가열 또는 냉각되어 PCR의 각 반응 단계를 수행할 수 있다. 또한, 상기 PCR 칩은 상기 칩 접촉부(50)에 직접 또는 간접적으로 접촉할 수 있다. 한편, 본 발명의 일 실시예에 따른 PCR 장치는 상기 광 투과성 열 블록을 포함하는 기타 PCR을 수행하기 위한 모듈들을 추가적으로 포함할 수 있고, 본 명세서에 기재되지 아니한 세부적인 모듈들은 종래 기술 중 자명한 범위 안에서 모두 구비하고 있는 것을 전제로 한다.
상기 광 투과성 열 블록(100)을 포함하는 PCR 장치는 종래 기존 석열 히터, 세라믹 히터 또는 금속 히터를 열 블록으로 이용하는 PCR 장치에 비해 많은 장점을 갖는다. 먼저, 열원으로서 도전성 나노 입자를 이용하기 때문에 발열층의 단선의 우려가 없고, 상기 도전성 나노 입자를 직접적으로 가열하기 때문에 높은 열 효율 및 낮은 소비 전력을 획득할 수 있으며(예를 들어, 상기 광투과성 열 블록이 약 2X2 ㎝의 규격일 경우 약 12V의 전압으로 발열이 가능함), 금속 재질이 아니므로 산화, 부식이 거의 일어나지 않아 내구성이 뛰어나다. 또한, 상기 기판(10), 발열층(20) 및 절연 보호층(30)의 제조시 광 투과성을 획득할 수 있기 때문에, 이하 설명될 광 제공부 및 광 검출부와 함께 구현될 경우 샘플 용액에 포함된 형광 물질에 의한 PCR의 실시간 모니터링이 가능하다. 또한, 상기 기판(10), 발열층(20) 및 절연 보호층(30)의 제조시 그 두께 조절이 용이하기 때문에 상기 광 투과성 열 블록(100)의 슬림화가 가능하여 상기 광 투과성 열 블록(100)을 포함하는 PCR 장치의 소형화가 가능하다. 또한, 상기 도전성 나노 입자가 상기 발열층(20)에 균일하게 분포되어 상기 광 투과성 열 블록(100)의 균일한 열 분포 및 신속한 온도 제어가 가능하기 때문에 PCR 결과의 검출 효율이 높고, PCR 결과를 신속하게 얻을 수 있다. 상기 광 투과성 열 블록(100)의 열 분포의 균일성 및 온도 제어의 신속성은 도 2에 따른 실험 결과로서 확인할 수 있다. 도 2a는 종래 PCR 장치에 포함된 열 블록의 열 분포를 도시하고, 도 2b는 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)의 열 분포를 도시하며, 도 2c는 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)의 시간에 따른 온도 변화를 도시한다. 기존 PCR 장치에서 열 블록으로 사용된 석열 히터, 세라믹 히터 또는 금속 히터에 전력을 인가하여 온도 분포를 관찰하고, 본 발명의 일 실시예에 따른 광 투과성 열 블록(100)에 상기 전극(40)을 통해 전력을 인가하여 온도 분포를 관찰하였다. 그 결과, 도 2a에 따르면, 기존 히터 상의 온도 분포는 히터 표면 전체에 걸쳐서 균일하지 않지만, 도 2b에 따르면, 상기 광 투과성 열 블록(100) 상의 온도 분포는 상기 도 2a에 비해 전체적으로 균일한 것으로 관찰되었다. 또한, 본 발명의 일 실시예에 따른 광 투과성 열 블록(100)에 상기 전극(40)을 통해 전력을 인가하여 시간에 따른 상기 광 투과성 열 블록(100)의 온도 변화를 관찰하였다. 그 결과, 온도 상승 폭은 최대 17 ℃/sec으로 나타났고, 이는 대표적인 기존 히터들(예를 들어, Bio-Rad사의 CFX96)의 온도 상승 폭이 최대 5 ℃/sec인 것에 비해 상당히 높은 수치임을 확인할 수 있다.
도 3a는 기판(10) 하부 면에 흡광층(60)이 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)을 도시하고, 도 3b는 절연 보호층(30) 상부 면에 광반사방지층(70)이 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)을 도시하고, 도 3c는 기판(10) 하부면에 흡광층(60)이 접촉 배치되고, 외부 공기층과 절연보호층(30)의 접촉에 의한 광 반사를 방지하기 위한 광반사방지층(70)이 상기 절연보호층(30)의 상부에 접촉 배치된 본 발명의 일 실시예에 따른 PCR 장치에 포함된 광 투과성 열 블록(100)을 도시한다.
일반적으로, PCR을 수행함과 동시에 형광물질을 이용하여 PCR 산물의 발생 유무 및 정도를 실시간으로 측정 및 분석할 수 있다. 이와 같은 PCR을 소위 실시간 중합효소 연쇄반응(Real time PCR)이라고 한다. 상기 반응은 PCR 칩에 PCR 반응에 필요한 시약뿐만 아니라 형광물질이 첨가되고, PCR 산물의 생성에 따라 상기 형광물질이 특정 파장의 광에 의해 발광함으로써 측정 및 분석 가능한 광 신호를 유발하게 된다. 따라서, 실시간으로 PCR 산물을 정확하게 모니터링하기 위해서는 상기 광 신호의 센싱 효율을 가능한 높힐 필요가 있다. 상기 광 투과성 열 블록(100)은 전체적으로 광 투과성을 갖기 때문에 광원으로부터 유래된 여기 광을 대부분 그대로 투과시켜 상기 광 신호의 센싱 효율을 높힐 수 있다. 그러나, 상기 여기 광의 일부는 상기 광 투과성 열 블록(100) 상에서 반사되거나 또는 상기 광 투과성 열 블록(100)을 통과한 후 반사되어 광 신호의 노이즈(noise)로서 작용할 수 있다. 따라서, 바람직하게는, 상기 광 투과성 열 블록(100)의 하부 면에 흡광 물질을 처리하여 센싱 효율을 더욱 높힐 수 있다. 도 3a에 따르면, 흡광층(60)이 상기 기판(10)의 하부 면에 접촉 배치되고, 상기 흡광층(60)은 흡광 물질을 포함한다. 상기 흡광 물질은 예를 들어, 운모(mica)일 수 있으나, 광을 흡수하는 성질을 갖는 물질이라면 제한되지 않는다. 따라서, 광원으로부터 유래된 광의 일부를 상기 흡광층(60)이 흡수하여, 광 신호의 노이즈로 작용하는 반사 광의 발생을 최대한 억제할 수 있다. 또한, 대안적으로, 상기 광 투과성 열 블록(100)의 상부 면에 광반사방지 물질을 처리하여 센싱 효율을 더욱 높힐 수 있다. 도 3b에 따르면, 광반사방지층(70)이 상기 절연 보호층(30)의 상부 면에 접촉 배치되고, 상기 광반사방지층(70)은 절연보호층 (30)과 조합하여 절연보호 기능 및 광반사방지 기능을 수행하며, 광반사방지 물질을 포함한다. 상기 광반사방지 물질은 예를 들어, MgF2와 같은 불화물, SiO2, Al2O3와 같은 산화물일 수 있으나, 광반사를 방지할 수 있는 성질을 갖는 물질이라면 제한되지 않는다. 또한, 더 바람직하게는, 상기 광 투과성 열 블록(100)의 하부 면에 흡광 물질을 처리하고, 동시에 상기 광 투과성 열 블록(100)의 상부 면에 광반사방지 물질을 처리하여 센싱 효율을 더욱 높힐 수 있다. 즉, 효과적인 실시간 PCR의 모니터링을 위하여 상기 노이즈 대비 광 신호 비율은 가능한 최대값을 가져야 하고, 상기 노이즈 대비 광 신호 비율은 상기 PCR 칩으로부터 여기 광의 반사율이 낮을수록 향상될 수 있다. 예를 들어, 일반적인 금속성 재질의 기존 히터들의 여기 광의 반사율은 약 20 내지 80 %이지만, 상기 도 3a 또는 도 3b에 따른 흡광층(60) 또는 광반사방지층(70)을 포함하는 본 발명에 따른 광 투과성 열 블록(100)을 사용하는 경우 광 반사율을 0.2% 내지 4% 이내로 줄일 수 있고, 상기 도 3c에 따른 흡광층(60) 및 광반사방지층(70)을 포함하는 본 발명에 따른 광 투과성 열 블록(100)을 사용하는 경우 광 반사율을 0.2% 이하로 줄일 수 있다.
도 4는 광 제공부 및 광 검출부를 포함하는 본 발명의 일 실시예에 따른 PCR 장치의 광 투과성 열 블록 상에 PCR 칩이 배치된 것을 도시한다.
도 4에 따르면, 상기 PCR 장치는 상기 칩 접촉부(50)에 배치되는 PCR 칩(900)에 광을 제공하도록 구동가능하게 배치된 광 제공부(200) 및 상기 칩 접촉부(50)에 배치되는 PCR 칩(900)으로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부(300)를 더 포함한다. 상기 광 제공부(200)는 상기 PCR 칩(900)에 광을 제공하기 위한 모듈이고, 상기 광 검출부(300)는 상기 PCR 칩(900)으로부터 방출되는 광을 수용하여 상기 PCR 칩(900)에서 수행되는 PCR 반응을 측정하기 위한 모듈이다. 상기 광 제공부(200)로부터 광이 방출되고, 상기 방출된 광은 상기 PCR 칩(900), 구체적으로 상기 PCR 칩(900)의 반응 챔버(또는 채널)(도시되지 않음)를 통과하거나 반사하고, 이 경우 상기 반응 챔버(또는 채널) 내의 핵산 증폭에 의해 발생하는 광 신호를 상기 광 검출부(300)가 검출한다. 따라서, 본 발명의 일 실시예에 따른 PCR 장치에 따르면, 상기 PCR 칩(900)에서 상기 PCR의 각 순환 단계가 진행되는 동안 상기 반응 챔버(또는 채널) 내에서 (형광 물질이 결합된) 핵산의 증폭에 의한 반응 결과를 실시간으로 모니터링함으로써 초기 샘플 용액에 포함되어 있는 표적 핵산의 증폭 여부 및 증폭 정도를 실시간으로 측정 및 분석할 수 있다. 또한, 상기 광 제공부(200) 및 광 검출부(300)는 상기 광 투과성 열 블록(900)을 중심으로 위 또는 아래에 모두 배치되거나 각각 배치될 수 있다. 다만, 상기 광 제공부(200) 및 광 검출부(300)의 배치는 본 발명에 따른 PCR 장치의 최적의 구현을 위하여 다른 모듈과의 배치 관계를 고려하여 다양할 수 있으며, 바람직하게는 도 4에 따라, 상기 광 제공부(200) 및 광 검출부(300)은 상기 광 투과성 열 블록의 상부에 배치될 수 있다.
도 5는 본 발명의 일 실시예에 따른 PCR 장치의 광 제공부(200)를 보다 상세하게 도시한다.
도 5에 따르면, 상기 광 제공부(200)는 LED(Light Emitting Diode) 광원 또는 레이저 광원(210), 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기(230), 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈(240)를 포함하고, 상기 광원(210)과 상기 제1 광 여과기(230) 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈(220)를 더 포함한다. 상기 광원(210)은 광을 방출할 수 있는 모든 광원을 포함하며, 본 발명의 일 실시예에 따르면, LED(Light Emitting Diode) 광원 또는 레이저 광원을 포함한다. 상기 제1 광 여과기(230)는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 미리 결정된 상기 광원(210)에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제1 광 여과기(230)는 상기 광원(210)으로부터 방출되는 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 제1 광 렌즈(240)는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 광 투과성 열 블록(100)을 통해 PCR 칩에 조사되는 광의 강도를 증가시킬 수 있다. 또한, 상기 광 제공부(200)은 상기 광원(210)과 상기 제1 광 여과기(230) 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈(220)를 더 포함한다. 상기 제1 비구면 렌즈(220)의 배치 방향을 조정함으로써, 상기 광원(210)으로부터 방출되는 광 범위를 확장하여 측정 가능한 영역에 도달하게 한다.
도 6은 본 발명의 일 실시예에 따른 PCR 장치의 광 검출부(300)를 보다 상세하게 도시한다.
도 6에 따르면, 상기 광 검출부(300)는 상기 칩 접촉부에 배치되는 PCR 칩으로부터 방출되는 광을 포집하는 제2 광 렌즈(310), 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기(320), 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광 신호를 검출하는 광 분석기(350)를 포함하고, 상기 제2 광 여과기(320)와 상기 광 분석기(350) 사이에 상기 제2 광 여과기(320)로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈(330)를 더 포함하며, 상기 제2 비구면 렌즈(330)와 상기 광 분석기(350) 사이에 상기 제2 비구면 렌즈(330)로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로(330)부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)(340)를 더 포함한다. 상기 제2 광 렌즈(310)는 그 입사광을 포집하여 그 방출광의 강도를 증가시키는 역할을 수행하는 것으로, 상기 광 투과성 열 블록(100)을 통해 PCR 칩으로부터 방출되는 광의 강도를 증가시켜 광 신호 검출을 용이하게 한다. 상기 제2 광 여과기(320)는 다양한 파장대를 갖는 입사광 중 특정 파장의 광을 선택하여 방출하는 것으로, 상기 광 투과성 열 블록(100)을 통해 PCR 칩으로부터 방출되는 미리 결정된 광의 파장에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 제2 광 여과기(320)는 상기 광 투과성 열 블록(100)을 통해 PCR 칩으로부터 방출되는 미리 결정된 광 중 500 nm 이하 파장대의 광만을 통과시킬 수 있다. 상기 광 분석기(350)는 상기 제2 광 여과기(320)로부터 방출되는 광으로부터 광 신호를 검출하는 모듈로서, 샘플 용액으로부터 발현 형광된 광을 전기 신호로 전환하여 정성 및 정략적인 측정이 가능하도록 한다. 또한, 상기 광 검출부(300)는 상기 제2 광 여과기(320)와 상기 광 분석기(350) 사이에 상기 제2 광 여과기(320)로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈(330)를 더 포함할 수 있다. 상기 제2 비구면 렌즈(330)의 배치 방향을 조정함으로써, 상기 제2 광 여과기(320)로부터 방출되는 광 범위를 확장하여 측정 가능한 영역에 도달하게 한다. 또한, 상기 광 검출부(300)는 상기 제2 비구면 렌즈(330)와 상기 광 분석기(350) 사이에 상기 제2 비구면 렌즈(330)로부터 방출되는 광의 노이즈(noise)를 제거하고, 상기 제2 비구면 렌즈(330)로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)(340)를 더 포함할 수 있다. 상기 광다이오드 집적소자(340)를 사용함으로써, 상기 PCR 장치의 소형화가 더욱 가능하고, 노이즈를 최소화하여 신뢰 가능한 광 신호를 측정할 수 있다.
도 7은 본 발명의 일 실시예에 따른 PCR 장치에 포함된 이색성 필터(400)에 의해 광 경로를 도시한다.
도 7에 따르면, 상기 PCR 장치는 상기 광 제공부(200)로부터 방출된 광이 광 검출부(300)까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터(400)를 더 포함한다. 상기 이색성 필터(dichroic filter)(400)는 광을 파장에 따라 선택적으로 투과 또는 선택적으로 조절된 각도로 반사시키는 모듈이다. 도 7에 따르면, 이색성 필터(400a)는 광 제공부(200)으로부터 방출되는 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 광 투과성 열 블록(100) 상에 배치된 PCR 칩(900)에 도달하게 한다. 또한, 이색성 필터(400b)는 상기 PCR 칩(900) 및 광 투과성 열 블록(100)으로부터 반사된 광의 광축에 대하여 약 45도 각도로 경사지게 배치되고, 상기 광을 그 파장에 따라 선택적으로 단파장 성분을 투과시키고 장파장 성분을 직각으로 반사시켜 상기 광 검출부(300)에 도달하게 한다. 상기 광 검출부(300)에 도달한 광은 광 분석기에서 전기 신호로 전환되어 핵산 증폭 여부 및 증폭 정도를 나타내게 된다.
도 8은 본 발명의 다른 일 실시예에 따른 광 투과성 PCR 칩(900)의 단면을 도시한다.
도 8에 따르면, 광 투과성 PCR 칩(900)은 상기 설명된 본 발명의 일 실시예에 따른 PCR 장치의 광 투과성 열 블록(100)에 포함된 칩 접촉부(50)에 배치되고, 증폭하고자 하는 핵산을 포함하는 샘플 용액을 수용할 수 있다. 또한, 상기 광투과성 PCR 칩(900)은 광 투과성 플라스틱 재질일 수 있다. 또한, 상기 광 투과성 PCR 칩은 제1 판(910); 상기 제1 판(910) 상에 배치되고, 관통 개구 채널(921)을 구비하는 제2 판(920); 및 상기 제2 판(920) 상에 배치되고, 상기 관통 개구 채널(921) 상의 일 영역에 형성된 관통 개구 유입부(931) 및 다른 일 영역에 형성된 관통 개구 유출부(932)를 구비하는 제3 판(930)을 포함한다.
상기 PCR 칩(900)은 핵산, 예를 들어 이중 가닥 DNA, 증폭하고자 하는 특정 염기 서열과 상보적인 서열을 갖는 올리고뉴클레오티드 프라이머, DNA 중합효소, 삼인산화데옥시리보뉴클레오티드(deoxyribonucleotide triphosphates, dNTP), PCR 반응 완충액 (PCR reaction buffer)를 포함하는 샘플 용액을 포함할 수 있다. 상기 PCR 칩(900)은 상기 샘플 용액을 도입하기 위한 유입부(931), 핵산 증폭 반응을 완료한 샘플 용액을 배출하기 위한 유출부(932) 및 증폭하고자 하는 핵산을 포함하는 샘플 용액이 수용된 하나 이상의 PCR 반응 챔버(또는 채널)(921)를 포함할 수 있다. 상기 PCR 칩(900)이 상기 광 투과성 열 블록(100)에 접촉하는 경우 상기 광 투과성 열 블록(100)의 열은 상기 PCR 칩(900)에 전달되고, 상기 PCR 칩(900)의 PCR 반응 챔버(또는 채널)(921)에 포함된 샘플 용액은 가열되거나 냉각되어 일정 온도가 유지될 수 있다. 또한, 상기 PCR 칩(900)은 전체적으로 평면 형상을 가질 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 PCR 칩(900)은 별도의 칩 홀더(도시되지 않음)에 장착된 상태로 상기 광 투과성 열 블록(100)에 간접적으로 접촉 배치될 수도 있다. 따라서, 본 발명의 일 실시예에 있어서, 상기 PCR 칩(900)이 상기 광 투과성 열 블록(100)의 칩 접촉부(50)에 배치된다는 것은 상기 PCR 칩(900)이 별도의 칩 홀더에 장착된 상태로 상기 광 투과성 열 블록(100)에 접촉 배치되는 것을 포함한다. 또한, 상기 PCR 칩(900)은 광 투과성 재질로 구현될 수 있고, 바람직하게는 광 투과성 플라스틱 재질을 포함한다. 상기 PCR 칩(900)은 플라스틱 재질을 사용하여, 플라스틱 두께 조절만으로 열 전달 효율을 증대시킬 수 있고, 제작 공정이 단순하여 제조 비용을 절감할 수 있다. 또한 상기 PCR 칩(900)은 전체적으로 광 투과적인 성질을 갖기 때문에 상기 광 투과성 열 블록(100)의 칩 접촉부(50)에 배치된 상태에서 PCR 칩에 직접적으로 광 조사가 가능하여 실시간으로 핵산 증폭 여부 및 증폭 정도를 측정 및 분석할 수 있다.
상기 제1 판(910)은 상기 제2 판(920) 상에 배치된다. 상기 제1 판(910)이 상기 제2 판(920)의 하부면에 접착 배치됨으로써 상기 관통 개구 채널(921)은 일종의 PCR 반응 챔버를 형성한다. 또한, 상기 제1 판(910)은 다양한 재질로 구현될 수 있으나, 바람직하게는 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질일 수 있다. 또한, 상기 제1 판(910)의 상단 면은 친수성 물질(922)이 처리되어 PCR을 원활하게 수행할 수 있다. 상기 친수성 물질(922)의 처리에 의해 상기 제1 판(910) 상에 친수성 물질(922)을 포함하는 단일층이 형성될 수 있다. 상기 친수성 물질은 다양한 물질일 수 있으나, 바람직하게는 카르복시기(-COOH), 아민기(-NH2), 히드록시기(-OH), 및 술폰기(-SH)로 구성된 군으로부터 선택되는 것일 수 있고, 상기 친수성 물질의 처리는 당업계에 공지된 방법에 따라 수행할 수 있다.
상기 제2 판(920)은 상기 제1 판(910) 상에 배치된다. 상기 제2 판(920)은 관통 개구 채널(921)을 포함한다. 상기 관통 개구 채널(921)은 상기 제3 판(910)에 형성된 관통 개구 유입부(931)과 관통 개구 유출부(932)에 대응되는 부분과 연결되어 일종의 PCR 반응 챔버를 형성한다. 따라서, 상기 관통 개구 채널(921)에 증폭하고자 하는 샘플 용액이 도입된 후 PCR 반응이 진행된다. 또한, 상기 관통 개구 채널(921)은 본 발명의 일 실시예에 따른 PCR 장치의 사용 목적 및 범위에 따라 2 이상 존재할 수 있고, 도 8에 따르면, 6개의 관통 개구 채널(921)이 예시되고 있다. 또한, 상기 제2 판(920)은 다양한 재질로 구현될 수 있으나, 바람직하게는 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene, POM), 폴리에테르에테르케톤(polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP), 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA), 및 그의 조합물로 구성된 군으로부터 선택되는 열 가소성 수지 또는 열 경화성 수지 재질일수 있다. 또한, 상기 제2 판(920)의 두께는 다양할 수 있으나, 100 ㎛ 내지 200 ㎛에서 선택될 수 있다. 또한, 상기 관통 개구 채널(921)의 폭과 길이는 다양할 수 있으나, 바람직하게는 상기 관통 개구 채널(921)의 폭은 0.5 mm 내지 3 mm에서 선택되고, 상기 관통 개구 채널(921)의 길이는 20 mm 내지 40 mm에서 선택될 수 있다. 또한, 상기 제2 판(920) 내벽은 DNA, 단백질(protein) 흡착을 방지하기 위해 실란(silane) 계열, 보바인 시럼 알부민(Bovine Serum Albumin, BSA) 등의 물질로 코팅할 수 있고, 상기 물질의 처리는 당업계에 공지된 방법에 따라 수행 할 수 있다.
상기 제3 판(930)은 상기 제2 판(920) 상에 배치된다. 상기 제3 판(930)은 상기 제2 판(920)에 형성된 관통 개구 채널(921) 상의 일 영역에 형성된 관통 개구 유입부(931) 및 다른 일 영역에 형성된 관통 개구 유출부(932)를 구비한다. 상기 관통 개구 유입부(931)는 증폭하고자 하는 핵산을 포함하는 샘플 용액이 유입되는 부분이다. 상기 관통 개구 유출부(932)는 PCR 반응이 종료된 후 상기 샘플 용액(932)이 유출되는 부분이다. 따라서, 상기 제3 판(930)은 이하 언급할 제2 판(920)에 형성된 관통 개구 채널(921)을 커버하되, 상기 관통 개구 유입부(931) 및 관통 개구 유출부(932)는 상기 관통 개구 채널(921)의 유입부 및 유출부 역할을 수행하게 된다. 또한, 상기 제3 판(930)은 다양한 재질로 구현될 수 있지만, 바람직하게는 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질일 수 있다. 또한, 상기 관통 개구 유입부(931)은 다양한 크기를 구비할 수 있으나, 바람직하게는 지름 1.0 mm 내지 3.0 mm에서 선택될 수 있다. 또한, 상기 관통 개구 유출부(932)는 다양한 크기를 구비할 수 있으나, 바람직하게는 지름 1.0 mm 내지 1.5 mm에서 선택될 수 있다. 또한, 상기 관통 개구 유입부(931) 및 관통 개구 유출부(932)는 별도의 커버 수단(도시되지 않음)을 구비하여, 상기 관통 개구 채널(921) 내에서 샘플 용액에 대한 PCR 반응이 진행될 때 샘플 용액이 누출되는 것을 방지할 수 있다. 상기 커버 수단은 다양한 형상, 크기 또는 재질로서 구현될 수 있다. 또한, 상기 제3 판의 두께는 다양할 수 있으나, 바람직하게는 0.1 mm 내지 2.0 mm에서 선택될 수 있다. 또한, 상기 관통 개구 유입부(931) 및 관통 개구 유출부(932)는 2 이상 존재할 수 있다.
도 9는 양면 접착제 또는 열 가소성 수지(500)가 처리된 본 발명의 다른 일 실시예에 따른 광 투과성 PCR 칩을 도시한다. 구체적으로, 도 9에 따른 PCR 칩은 하기 단계를 포함하는 방법에 의해 제조될 수 있다.
상기 광 투과성 PCR 칩(100)은 기계적 가공을 통해 관통 개구 유입부(931) 및 관통 개구 유출부(932)를 형성하여 제3 판(930)을 제공하는 단계; 상기 제3 판(930)의 하부면과 대응되는 크기를 갖는 판재에 상기 제3 판(930)의 관통 개구 유입부(931)와 대응되는 부분으로부터 상기 제3 판(930)의 관통 개구 유출부(932)에 대응되는 부분까지 기계적 가공을 통해 관통 개구 채널(921)을 형성하여 제2 판(920)을 제공하는 단계; 상기 제2 판(920)의 하부면과 대응되는 크기를 갖는 판재의 상부면에 표면 처리 가공을 통해 친수성 물질(922)로 구현된 표면을 형성하여 제1 판(910)을 제공하는 단계; 및 상기 제3 판(930)의 하부면을 상기 제2 판(920)의 상부면에 접합 공정을 통해 접합하고, 상기 제2 판(920)의 하부면을 상기 제1 판(910)의 상부면에 접합 공정을 통해 접합하는 단계를 포함하는 방법에 의해 용이하게 제조될 수 있다.
상기 제3 판(930)의 관통 개구 유입부(931) 및 관통 개구 유출부(932), 및 상기 제2 판(920)의 관통 개구 채널(921)은 사출성형, 핫-엠보싱(hot-embossing), 캐스팅(casting), 및 레이저 어블레이션(laser ablation)으로 구성된 군으로부터 선택되는 가공 방법에 의해 형성될 수 있다. 또한, 상기 제1 판(910) 표면의 친수성 물질(922)은 산소 및 아르곤 플라즈마 처리, 코로나 방전 처리, 및 계면 활성제 도포로 구성된 군으로부터 선택되는 방법에 의해 처리될 수 있고 당업계에 공지된 방법에 따라 수행 할 수 있다. 또한, 상기 제3 판(930)의 하부면과 상기 제2 판(920)의 상부면, 및 상기 제2 판(920)의 하부면과 상기 제1 판(910)의 상부면은 열 접합, 초음파 융착, 용매 접합 공정에 의해 접착될 수 있고 당업계에 공지된 방법에 따라 수행 할 수 있다. 상기 제3 판(930)과 제2 판(920) 사이 및 상기 제2 판(920)과 제3 판(910) 사이에는 양면 접착제 또는 열가소성 수지(500)가 처리될 수 있다.
실시 및 비교예 1
도 10a는 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 시간에 따른 PCR 결과를 도시하고, 도 10b는 도 10a에 따른 PCR 결과를 타사의 PCR 장치를 이용한 PCR 결과와 비교한 전기영동 사진을 도시한다.
도 7에 따른 본 발명의 일 실시예에 따른 PCR 장치 및 도 8에 따른 본 발명의 일 실시예에 따른 PCR 칩을 이용하여 PCR을 수행하고, 상기 PCR 과정 중에 실시간으로 PCR 결과를 확인하였다. 상기 PCR은 2X TaKaRa SYBR Green Kit 및 Primer Forward, Primer Reverse(Final Concentration: 1 pmole), BSA 1ug/1ul, Hot start taq polymerase(2.8U)을 포함하는 PCR 용액을 사용하여 수행하였다. 또한, 결과의 신뢰성을 확보하기 위하여 2종의 식중독균을 샘플로 사용하였다(E.coli O157:H7 및 Salmonella enterica Typhimurium). 상기 PCR 칩에 약 8ul의 PCR 용액 및 샘플 용액을 도입하고, 상기 PCR 장치에서 변성 단계, 어닐링 단계 및 연장(또는 증폭) 단계를 30 회(cycle) 진행하였다.
도 10a에 도시된 그래프는 시간 대비 상기 PCR 결과를 나타낸다. X축은 분과 초 단위로 시간을 나타내고, Y축은 형광 강도를 나타낸다. 도 10a에 따르면, 약 25분이 경과한 후 PCR을 종료하였고, 시간에 따른 형광 정도가 예상되는 PCR 결과와 유사한 패턴을 나타낸다. x곡선은 E.coli O157:H7에 관한 결과이고, y곡선 및 z곡선은 Salmonella enterica Typhimurium에 관한 결과이다.
또한, 동일한 2종의 식중독균 샘플을 Roche사의 capillary tube에 약 25ul를 도입하고, Roche사의 LightCycler 1.5 PCR 장치를 이용하여 상기 PCR 장치에서 변성 단계, 어닐링 단계 및 연장(또는 증폭) 단계를 30 회(cycle) 진행하였다. 도 10b는 Roche사의 PCR 장치와 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 PCR을 수행한 결과를 나타내는 전기영동 사진이다(Gel Loading량은 약 2 ul임). 사진의 좌측 Roche사의 결과에서 약칭 N.C는 음성 대조군으로서, 2X TaKaRa SYBR Green Kit의 SYBR Green Mixture만을 사용한 결과이고, 약칭 S.E는 Salmonella enterica Typhimurium에 관한 결과이며, 약칭 E.C는 E.coli O157:H7에 관한 결과이다. 한편, 사진의 우측 자사의 결과에서 약칭 S.E는 Salmonella enterica Typhimurium에 관한 결과이며, 약칭 E.C는 E.coli O157:H7에 관한 결과이다(결과의 신뢰성을 위해 S.E는 두 번 수행함). 확인 결과, 상용되는 타사의 PCR 장치와 본 발명의 일 실시예에 따른 PCR 장치의 PCR 결과는 실질적으로 동일하거나 큰 차이가 없음을 알 수 있다.
실시 및 비교예 2
도 11a는 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 시간에 따른 PCR 결과를 도시하고, 도 11b는 도 11a에 따른 PCR 결과를 타사의 PCR 장치를 이용한 PCR 결과와 비교한 전기영동 사진을 도시한다.
결과의 신뢰성을 위해 상기 실시 및 비교예 1과 동일한 방법으로 샘플을 달리하여 PCR 결과를 확인하였다. 실시 및 비교예 2에서는 2종의 식중독균을 샘플로 사용하였다(Listeria monocytogenes 및 Staphyloccus aureus).
도 11a에 따르면, 약 25분이 경과한 후 PCR을 종료하였고, 시간에 따른 형광 정도가 예상되는 PCR 결과와 유사한 패턴을 나타낸다. x'곡선 및 y'곡선은 Listeria monocytogenes에 관한 결과이고, z'곡선은 Staphyloccus aureus에 관한 결과이다.
또한, 동일한 2종의 식중독균 샘플을 Roche사의 capillary tube에 약 25ul를 도입하고, Roche사의 LightCycler 1.5 PCR 장치를 이용하여 상기 PCR 장치에서 변성 단계, 어닐링 단계 및 연장(또는 증폭) 단계를 30 회(cycle) 진행하였다. 도 11b는 Roche사의 PCR 장치와 본 발명의 일 실시예에 따른 PCR 장치를 이용하여 PCR을 수행한 결과를 나타내는 전기영동 사진이다(Gel Loading량은 약 2 ul임). 사진의 좌측 Roche사의 결과에서 약칭 N.C는 음성 대조군으로서, 2X TaKaRa SYBR Green Kit의 SYBR Green Mixture만을 사용한 결과이고, 약칭 Listeria는 Listeria monocytogenes에 관한 결과이며, 약칭 S.A는 E.coli O157:H7에 관한 결과이다. 한편, 사진의 우측 자사의 결과에서 약칭 S.E는 Staphyloccus aureus에 관한 결과이며, 약칭 Listeria는 Listeria monocytogenes에 관한 결과이다(결과의 신뢰성을 위해 Listeria는 두 번 수행함). 확인 결과, 상용되는 타사의 PCR 장치와 본 발명의 일 실시예에 따른 PCR 장치의 PCR 결과는 실질적으로 동일하거나 큰 차이가 없음을 알 수 있다.

Claims (16)

  1. 기판, 상기 기판 상에 배치된 도전성 나노 입자를 포함하는 발열층, 상기 발열층 상에 배치된 절연 보호층 및 상기 발열층과 연결 배치된 전극을 구비하는 광 투과성 열 블록을 포함하고, 상기 광투과성 열 블록의 상부 면은 적어도 일부 영역에 중합효소 연쇄 반응(PCR, Polymerase Chain Reaction) 칩의 접촉부를 포함하는 것을 특징으로 하는 PCR 장치.
  2. 제1항에 있어서, 상기 기판은 광 투과성 유리 또는 플라스틱 재질이고, 상기 발열층에 포함된 도전성 나노 입자는 산화물 반도체 물질 또는 상기 산화물 반도체 물질에 In, Sb, Al, Ga, C 및 Sn로 구성된 군으로부터 선택된 불순물이 첨가된 물질이고, 상기 절연 보호층은 유전체 산화물, 페릴린, 나노 입자 및 고분자 필름으로 구성된 군으로부터 선택되는 것이고, 상기 전극은 금속 물질, 전도성 에폭시, 전도성 페이스트, 솔더 및 전도성 필름으로 구성된 군으로부터 선택되는 것을 특징으로 하는 PCR 장치.
  3. 제1항에 있어서, 상기 광투과성 열 블록의 기판의 하부 면은 흡광 물질이 포함된 흡광층이 접촉 배치되거나, 또는 상기 광투과성 열 블록의 절연 보호층의 상부 면은 광반사 방지 물질이 포함된 광반사방지층이 접촉 배치된 것을 특징으로 하는 PCR 장치.
  4. 제1항에 있어서, 상기 PCR 장치는 상기 칩 접촉부에 배치되는 PCR 칩에 광을 제공하도록 구동가능하게 배치된 광 제공부 및 상기 칩 접촉부에 배치되는 PCR 칩으로부터 방출되는 광을 수용하도록 구동가능하게 배치된 광 검출부를 더 포함하는 것을 특징으로 하는 PCR 장치.
  5. 제4항에 있어서, 상기 광 제공부 및 광 검출부는 상기 광 투과성 열 블록의 상부에 배치된 것을 특징으로 하는 PCR 장치.
  6. 제4항에 있어서, 상기 광 제공부는 LED(Light Emitting Diode) 광원 또는 레이저 광원, 상기 광원으로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제1 광 여과기, 및 상기 제1 광 여과기로부터 방출되는 광을 포집하는 제1 광 렌즈를 포함하는 것을 특징으로 하는 PCR 장치.
  7. 제4항에 있어서, 상기 광 검출부는 상기 칩 접촉부에 배치되는 PCR 칩으로부터 방출되는 광을 포집하는 제2 광 렌즈, 상기 제2 광 렌즈로부터 방출되는 광에서 미리 결정된 파장을 갖는 광을 선택하는 제2 광 여과기, 및 상기 제2 광 여과기로부터 방출되는 광으로부터 광 신호를 검출하는 광 분석기를 포함하는 것을 특징으로 하는 PCR 장치.
  8. 제6항에 있어서, 상기 광 제공부는 상기 광원과 상기 제1 광 여과기 사이에 빛을 퍼지게 하도록 배치된 제1 비구면 렌즈를 더 포함하는 것을 특징으로 하는 PCR 장치.
  9. 제7항에 있어서, 상기 광 검출부는 상기 제2 광 여과기와 상기 광 분석기 사이에 상기 제2 광 여과기로부터 방출되는 광을 집적하도록 배치된 제2 비구면 렌즈를 더 포함하는 것을 특징으로 하는 PCR 장치.
  10. 제9항에 있어서, 상기 광 검출부는 상기 제2 비구면 렌즈와 상기 광 분석기사이에 상기 제2 비구면 렌즈로부터 방출되는 광의 노이즈(noise)를 제거하고 상기 제2 비구면 렌즈로부터 방출되는 광을 증폭하도록 배치된 광다이오드 집적소자(photodiode integrated circuit, PDIC)를 더 포함하는 것을 특징으로 하는 PCR 장치.
  11. 제4항에 있어서, 상기 PCR 장치는 상기 광 제공부로부터 방출된 광이 광 검출부까지 도달할 수 있도록 광의 진행 방향을 조절하고, 미리 결정된 파장을 갖는 광을 분리하기 위한 하나 이상의 이색성 필터를 더 포함하는 것을 특징으로 하는 PCR 장치.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 PCR 장치의 광 투과성 열 블록에 포함된 칩 접촉부에 배치되고, 증폭하고자 하는 핵산을 포함하는 샘플 용액을 수용할 수 있는 것을 특징으로 하는 광 투과성 PCR 칩.
  13. 제12항에 있어서, 상기 PCR 칩은 광 투과성 플라스틱 재질인 것을 특징으로 하는 PCR용 칩.
  14. 제12항에 있어서, 상기 광 투과성 PCR 칩은 제1 판; 상기 제1 판 상에 배치되고, 관통 개구 채널을 구비하는 제2 판; 및 상기 제2 판 상에 배치되고, 상기 관통 개구 채널 상의 일 영역에 형성된 관통 개구 유입부 및 다른 일 영역에 형성된 관통 개구 유출부를 구비하는 제3 판을 포함하는 것을 특징으로 하는 PCR 칩.
  15. 제14항에 있어서, 상기 제1 판 및 제3 판은 폴리디메틸실옥산(polydimethylsiloxane, PDMS), 사이클로올레핀코폴리머(cycle olefin copolymer, COC), 폴리메틸메타크릴레이트(polymethylmetharcylate, PMMA), 폴리카보네이트(polycarbonate, PC), 폴리프로필렌카보네이트(polypropylene carbonate, PPC), 폴리에테르설폰(polyether sulfone, PES), 및 폴리에틸렌텔레프탈레이트(polyethylene terephthalate, PET), 및 그의 조합물로 구성된 군으로부터 선택되는 재질을 포함하고, 상기 제2 판은 폴리메틸메타크릴레이트(polymethylmethacrylate, PMMA), 폴리카보네이트(polycarbonate, PC), 사이클로올레핀 코폴리머(cycloolefin copolymer, COC), 폴리아미드(polyamide, PA), 폴리에틸렌(polyethylene, PE), 폴리프로필렌(polypropylene, PP), 폴리페닐렌 에테르(polyphenylene ether, PPE), 폴리스티렌(polystyrene, PS), 폴리옥시메틸렌(polyoxymethylene, POM), 폴리에테르에테르케톤(polyetheretherketone, PEEK), 폴리테트라프로오르에틸렌(polytetrafluoroethylene, PTFE), 폴리비닐클로라이드(polyvinylchloride, PVC), 폴리비닐리덴 플로라이드(polyvinylidene fluoride, PVDF), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate, PBT), 불소화에틸렌프로필렌(fluorinated ethylenepropylene, FEP), 퍼플로로알콕시알칸(perfluoralkoxyalkane, PFA), 및 그의 조합물로 구성된 군으로부터 선택되는 열 가소성 수지 또는 열 경화성 수지 재질을 포함하는 것을 특징으로 하는 PCR 칩.
  16. 제14항에 있어서, 상기 제3 판의 관통 개구 유입부는 지름 1.0 mm 내지 3.0 mm에서 선택되고, 상기 관통 개구 유출부는 지름 1.0 mm 내지 1.5 mm에서 선택되고, 상기 제3 판의 두께는 0.1 mm 내지 2 mm에서 선택되고, 상기 제2 판의 두께는 100 ㎛ 내지 200 ㎛에서 선택되고, 상기 관통 개구 채널의 폭은 0.5 mm 내지 3 mm에서 선택되고, 상기 관통 개구 채널의 길이는 20 mm 내지 40 mm에서 선택되는 것을 특징으로 하는 PCR 칩.
PCT/KR2011/004395 2010-07-30 2011-06-16 광 투과성 열 블록을 포함하는 pcr 장치 WO2012015165A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0074385 2010-07-30
KR20100074385 2010-07-30

Publications (2)

Publication Number Publication Date
WO2012015165A2 true WO2012015165A2 (ko) 2012-02-02
WO2012015165A3 WO2012015165A3 (ko) 2012-04-19

Family

ID=45530555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004395 WO2012015165A2 (ko) 2010-07-30 2011-06-16 광 투과성 열 블록을 포함하는 pcr 장치

Country Status (1)

Country Link
WO (1) WO2012015165A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062033A1 (ko) * 2012-10-19 2014-04-24 나노바이오시스(주) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
KR20140084754A (ko) * 2012-12-27 2014-07-07 나노바이오시스 주식회사 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
CN111304051A (zh) * 2020-02-20 2020-06-19 珠海黑马生物科技有限公司 一种pcr仪及使用方法
WO2020132131A1 (en) * 2018-12-21 2020-06-25 Kryptos Biotechnologies, Inc. Method and system for heating and temperature measurement using patterned thin films
US11628452B2 (en) * 2018-08-24 2023-04-18 Zoetis Services Llc Microfluidic rotor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062468A1 (en) * 2002-10-01 2004-04-01 National Cheng Kung University Integrated analytical biochip and manufacturing method thereof
US20070166204A1 (en) * 2005-10-05 2007-07-19 Dongqing Li Disposable reactor module and detection system
KR20090133079A (ko) * 2008-06-23 2009-12-31 (주)바이오니아 중합효소 연쇄반응 블록 및 이를 이용한 연속형 실시간 모니터링 장치
US20100038522A1 (en) * 2008-06-17 2010-02-18 National Inst of Adv Industrial Sci and Technology Device for detecting emission light of micro-object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040062468A1 (en) * 2002-10-01 2004-04-01 National Cheng Kung University Integrated analytical biochip and manufacturing method thereof
US20070166204A1 (en) * 2005-10-05 2007-07-19 Dongqing Li Disposable reactor module and detection system
US20100038522A1 (en) * 2008-06-17 2010-02-18 National Inst of Adv Industrial Sci and Technology Device for detecting emission light of micro-object
KR20090133079A (ko) * 2008-06-23 2009-12-31 (주)바이오니아 중합효소 연쇄반응 블록 및 이를 이용한 연속형 실시간 모니터링 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOUNG, S. R. ET AL. PROCEEDINGS OF THE 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS 16 January 2000, BANGKOK, THAILAND, pages 691 - 694 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014062033A1 (ko) * 2012-10-19 2014-04-24 나노바이오시스(주) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
KR20140084754A (ko) * 2012-12-27 2014-07-07 나노바이오시스 주식회사 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR102028381B1 (ko) * 2012-12-27 2019-10-04 주식회사 미코바이오메드 식중독 검출용 프라이머 세트를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
US11628452B2 (en) * 2018-08-24 2023-04-18 Zoetis Services Llc Microfluidic rotor device
WO2020132131A1 (en) * 2018-12-21 2020-06-25 Kryptos Biotechnologies, Inc. Method and system for heating and temperature measurement using patterned thin films
US11648563B2 (en) 2018-12-21 2023-05-16 Kryptos Biotechnologies, Inc. Method and system for heating and temperature measurement using patterned thin films
CN111304051A (zh) * 2020-02-20 2020-06-19 珠海黑马生物科技有限公司 一种pcr仪及使用方法
CN111304051B (zh) * 2020-02-20 2023-08-11 珠海黑马生物科技有限公司 一种pcr仪及使用方法

Also Published As

Publication number Publication date
WO2012015165A3 (ko) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2016105073A1 (ko) 반복 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
WO2012015165A2 (ko) 광 투과성 열 블록을 포함하는 pcr 장치
WO2015119470A1 (ko) 일 방향 슬라이딩 구동 수단을 구비하는 pcr 장치 및 이를 이용하는 pcr 방법
WO2014148877A1 (ko) 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR20120139206A (ko) 박막형 열 블록 및 박막형 pcr 칩을 포함하는 휴대용 실시간 pcr 장치
KR20120137054A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 칩 및 이를 포함하는 pcr 장치
KR101456646B1 (ko) 식중독균 검출용 키트 및 이를 이용한 식중독균 검출 방법
JP5655232B2 (ja) 搬送ヒータを有する熱サイクルシステム
WO2020027565A1 (ko) 복수의 열 블록을 구비한 핵산 증폭 장치
US20130230915A1 (en) Pasting Edge Heater
KR20120139205A (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 플루이딕 pcr 장치
KR20130086893A (ko) 광 투과성 열 블록을 포함하는 pcr 장치
TW201930853A (zh) 多色螢光偵測裝置
WO2014035167A1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
WO2014104771A1 (ko) 식중독 검출용 프라이머 세트를 포함하는 마이크로 pcr 칩, 이를 포함하는 실시간 pcr 장치, 및 이를 이용한 식중독 검출 방법
KR20130086894A (ko) 광 투과성 열 블록을 포함하는 pcr 칩, 및 이를 포함하는 pcr 장치
KR20110137090A (ko) 광투과형 온도제어장치 및 이를 구비하는 실시간 검출형 중합 효소 연쇄 반응 장치
WO2014104770A1 (ko) 식중독 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 식중독 검출 방법
WO2014014268A1 (ko) 금속 나노입자를 이용하여 전기화학적 신호를 검출하는 실시간 pcr 장치
WO2013180406A1 (ko) 혈청 타입별 구제역 검출용 프라이머 세트, 이를 이용한 pcr 장치, 및 이를 이용한 구제역 검출 방법
WO2014062033A1 (ko) 마이크로 pcr 칩 및 이를 포함하는 실시간 pcr 장치
WO2014017821A1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
WO2014035163A1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법
KR20130081948A (ko) 인플루엔자 a 바이러스 검출용 키트 및 이를 이용한 인플루엔자 a 바이러스의 검출 방법
KR101969076B1 (ko) 광 노이즈 제거 수단이 구현된 실시간 pcr 칩 및 이를 포함하는 pcr 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812695

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812695

Country of ref document: EP

Kind code of ref document: A2