KR20150067071A - Block copolymer - Google Patents

Block copolymer Download PDF

Info

Publication number
KR20150067071A
KR20150067071A KR1020140175412A KR20140175412A KR20150067071A KR 20150067071 A KR20150067071 A KR 20150067071A KR 1020140175412 A KR1020140175412 A KR 1020140175412A KR 20140175412 A KR20140175412 A KR 20140175412A KR 20150067071 A KR20150067071 A KR 20150067071A
Authority
KR
South Korea
Prior art keywords
block
block copolymer
chain
atom
group
Prior art date
Application number
KR1020140175412A
Other languages
Korean (ko)
Other versions
KR101768291B1 (en
Inventor
김정근
이정규
이제권
이미숙
박노진
구세진
최은영
윤성수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480074140.1A priority Critical patent/CN105934456B/en
Priority to EP14868022.6A priority patent/EP3101043B1/en
Priority to PCT/KR2014/012035 priority patent/WO2015084132A1/en
Priority to JP2016536817A priority patent/JP6361893B2/en
Publication of KR20150067071A publication Critical patent/KR20150067071A/en
Priority to TW104132162A priority patent/TWI563007B/en
Priority to PCT/KR2015/010332 priority patent/WO2016053009A1/en
Priority to JP2017517282A priority patent/JP6637495B2/en
Priority to TW104132169A priority patent/TWI609408B/en
Priority to CN201580059713.8A priority patent/CN107077066B9/en
Priority to EP15845665.7A priority patent/EP3214102B1/en
Priority to EP15847598.8A priority patent/EP3202802B1/en
Priority to JP2017517288A priority patent/JP6538159B2/en
Priority to TW104132166A priority patent/TWI583710B/en
Priority to CN201580059699.1A priority patent/CN107078026B/en
Priority to US15/515,432 priority patent/US10287430B2/en
Priority to PCT/KR2015/010330 priority patent/WO2016053007A1/en
Priority to PCT/KR2015/010334 priority patent/WO2016053010A1/en
Priority to PCT/KR2015/010327 priority patent/WO2016053005A1/en
Priority to CN201580059546.7A priority patent/CN107075050B/en
Priority to US15/515,821 priority patent/US10703897B2/en
Priority to CN201580060150.4A priority patent/CN107075055B/en
Priority to EP15847157.3A priority patent/EP3202800B1/en
Priority to US15/514,929 priority patent/US10370529B2/en
Priority to US15/514,939 priority patent/US10310378B2/en
Priority to JP2017517261A priority patent/JP6532941B2/en
Priority to PCT/KR2015/010335 priority patent/WO2016053011A1/en
Priority to EP15845720.0A priority patent/EP3203496B1/en
Priority to JP2017517270A priority patent/JP6538157B2/en
Priority to US15/515,818 priority patent/US10281820B2/en
Priority to TW104132150A priority patent/TWI591086B/en
Priority to US15/515,812 priority patent/US10377894B2/en
Priority to EP15847536.8A priority patent/EP3225641B1/en
Priority to TW104132194A priority patent/TWI609029B/en
Priority to JP2017517268A priority patent/JP6633062B2/en
Priority to TW104132197A priority patent/TWI577703B/en
Priority to JP2017517277A priority patent/JP6538158B2/en
Priority to EP15846126.9A priority patent/EP3203497B1/en
Priority to PCT/KR2015/010338 priority patent/WO2016053014A1/en
Priority to CN201580060099.7A priority patent/CN107075052B/en
Priority to CN201580060097.8A priority patent/CN107075054B/en
Priority to US15/173,674 priority patent/US10202481B2/en
Application granted granted Critical
Publication of KR101768291B1 publication Critical patent/KR101768291B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/48Halogenated derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/215Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring having unsaturation outside the six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/16Halogens
    • C08F12/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/12Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/16Halogens
    • C08F212/20Fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/26Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • C08F220/301Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety and one oxygen in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/14Chemical modification with acids, their salts or anhydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • B81C1/00428Etch mask forming processes not provided for in groups B81C1/00396 - B81C1/0042
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00531Dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0147Film patterning
    • B81C2201/0149Forming nanoscale microstructures using auto-arranging or self-assembling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/30Esters containing oxygen in addition to the carboxy oxygen containing aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Abstract

The present invention relates to a block copolymer and a use thereof. The present invention can provide a block copolymer which has an excellent self-assembly property and thus can be effectively applied to various uses; and a use thereof. The block copolymer comprises a first block and a second block which is different with the first block.

Description

블록 공중합체{BLOCK COPOLYMER}BLOCK COPOLYMER < RTI ID = 0.0 >

본 출원은 블록 공중합체 및 그 용도에 관한 것이다.The present application relates to block copolymers and uses thereof.

블록 공중합체는 서로 다른 화학적 구조를 가지는 고분자 블록들이 공유 결합을 통해 연결되어 있는 분자 구조를 가지고 있다. 블록 공중합체는 상분리에 의해서 스피어(sphere), 실린더(cylinder) 또는 라멜라(lamella) 등과 같은 주기적으로 배열된 구조를 형성할 수 있다. 블록 공중합체의 자기 조립 현상에 의해 형성된 구조의 도메인의 크기는 광범위하게 조절될 수 있으며, 다양한 형태의 구조의 제작이 가능하여 고밀도 자기저장매체, 나노선 제작, 양자점 또는 금속점 등과 같은 다양한 차세대 나노 소자나 자기 기록 매체 또는 리소그라피 등에 의한 패턴 형성 등에 응용될 수 있다.The block copolymer has a molecular structure in which polymer blocks having different chemical structures are linked via covalent bonds. The block copolymer can form a periodically arranged structure such as a sphere, a cylinder or a lamella by phase separation. The size of the domain of the structure formed by the self-assembling phenomenon of the block copolymer can be widely controlled, and various types of structures can be manufactured. Thus, various next-generation nano-structures such as high density magnetic storage media, nanowire fabrication, And can be applied to pattern formation by devices, magnetic recording media, lithography, or the like.

본 출원은 블록 공중합체, 그 블록 공중합체를 포함하는 고분자막, 상기 고분자막의 형성 방법 및 패턴 형성 방법 등을 제공한다.The present application provides a block copolymer, a polymer membrane including the block copolymer, a method of forming the polymer membrane, a pattern forming method, and the like.

블록 공중합체는, 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함할 수 있다. 상기에서 제 1 또는 제 2 블록은 후술하는 측쇄 사슬을 포함할 수 있다. 이하, 본 명세서에서 제 1 및 제 2 블록 중에서 어느 하나의 블록만 측쇄 사슬을 포함하는 경우에 상기 측쇄 사슬을 포함하는 블록은 블록은 제 1 블록으로 호칭할 수 있다. 블록 공중합체는 상기 제 1 및 제 2 블록만을 포함하는 디블록 공중합체이거나, 제 1 및 제 2 블록 외에 다른 블록을 추가로 포함하는 블록 공중합체일 수 있다.The block copolymer may include a first block and a second block different from the first block. The first or second block may include a side chain chain described later. Hereinafter, in the present specification, when any one of the first and second blocks includes a side chain, the block including the side chain may be referred to as a first block. The block copolymer may be a diblock copolymer containing only the first and second blocks, or may be a block copolymer further comprising other blocks besides the first and second blocks.

블록 공중합체는 공유 결합으로 연결된 2개 또는 그 이상의 고분자 사슬을 포함하기 때문에 상분리가 일어나게 된다. 본 출원에서는 블록 공중합체가 하기 파라미터를 만족함으로써 상기 상분리가 매우 효과적으로 일어나고, 그에 따라 미세상분리(microphase seperation)에 의한 나노 스케일의 구조를 형성할 수 있다. 본 출원에서는 분자량 등과 같은 상기 블록 공중합체의 크기나, 블록간의 상대적 비율의 조절을 통해 상기 상분리에 의해 형성되는 나노 구조의 형태 및 크기를 자유롭게 조절할 수 있다. 본 출원의 블록 공중합체의 이를 통해 구형, 실린더, 자이로이드(gyroid), 라멜라 및 반전 구조 등의 상분리 구조를 다양한 크기로 자유롭게 형성할 수 있다. 본 발명자들은, 블록 공중합체가 하기 파라미터를 만족함으로써, 상기와 같은 자기 조립성 내지는 상분리 특성이 크게 향상되는 점을 확인하였다. 적절한 파라미터의 충족을 통해 블록 공중합체가 수직 배향성을 나타내도록 할 수 있음을 밝혀내었다. 본 출원에서 용어 수직 배향은, 블록 공중합체의 배향성을 나타내는 것이고, 블록 공중합체에 의해 형성되는 나노 구조체의 배향이 기판 방향과 수직한 배향을 의미할 수 있다. 블록 공중합체의 자기 조립된 구조를 다양한 기판 위에 수평 혹은 수직으로 조절하는 기술은 블록 공중합체의 실제적 응용에서 매우 큰 비중을 차지한다. 통상적으로 블록 공중합체의 막에서 나노 구조체의 배향은 블록 공중합체를 형성하고 있는 블록 중에서 어느 블록이 표면 혹은 공기 중에 노출되는 가에 의해 결정된다. 일반적으로 다수의 기판이 극성이고, 공기는 비극성이기 때문에 블록 공중합체의 블록 중에서 더 큰 극성을 가지는 블록이 기판에 웨팅(wetting)하고, 더 작은 극성을 가지는 블록이 공기와의 계면에서 웨팅(wetting)하게 된다. 따라서, 블록 공중합체의 서로 다른 특성을 가지는 블록이 동시에 기판측에 웨팅하도록 하기 위하여 다양한 기술이 제안되어 있으며, 가장 대표적인 기술은 중성 표면 제작을 적용한 배향의 조절이다. 그렇지만, 본 출원의 하나의 측면에서는, 하기의 파라미터를 적절하게 조절하게 되면, 블록 공중합체가 중성 표면 처리 등을 포함한 수직 배향을 달성하기 위한 것으로 알려진 공지의 처리가 수행되지 않은 기판에 대해서도 수직 배향이 가능하다. 예를 들면, 본 출원의 하나의 측면에 따른 블록 공중합체는, 특별한 전처리가 수행되어 있지 않은 친수성 표면이나, 소수성 표면 모두에 대하여도 수직 배향성을 나타낼 수 있다. 또한, 본 출원의 추가적인 측면에서는 상기와 같은 수직 배향을 열적 숙성(thermal annealing)에 의해서 넓은 영역에 단 시간 내에 유도할 수도 있다.Since the block copolymer contains two or more chains of chains linked by covalent bonds, phase separation occurs. In this application, the block copolymer satisfies the following parameters and the phase separation can be performed very effectively, thereby forming a nanoscale structure by microphase seperation. In the present application, the shape and size of the nanostructure formed by the phase separation can be freely controlled by controlling the size of the block copolymer such as the molecular weight and the relative ratio of the blocks. Through the use of the block copolymer of the present application, phase separation structures such as spheres, cylinders, gyroids, lamellas, and inverted structures can be freely formed in various sizes. The inventors of the present invention have confirmed that the above self-assembly property or phase separation property can be greatly improved by satisfying the following parameters of the block copolymer. It has been found that the block copolymer can be made to exhibit vertical orientation through the satisfaction of appropriate parameters. In the present application, the term " vertical orientation " refers to the orientation of the block copolymer, and the orientation of the nanostructure formed by the block copolymer may mean an orientation perpendicular to the substrate direction. The technique of adjusting the self-assembled structure of the block copolymer horizontally or vertically on various substrates occupies a very large proportion in the practical application of the block copolymer. Usually, the orientation of the nanostructure in the film of the block copolymer is determined by which of the blocks forming the block copolymer is exposed to the surface or air. In general, since a plurality of substrates are polar and air is non-polar, a block having a larger polarity among the blocks of the block copolymer is wetted to the substrate, and a block having a smaller polarity is wetted at the interface with air ). Therefore, various techniques have been proposed to allow the blocks having different characteristics of the block copolymer to be wetted simultaneously on the substrate side, and the most representative technique is the adjustment of the orientation using neutral surface preparation. However, in one aspect of the present application, by properly adjusting the following parameters, it is possible to obtain a perpendicular orientation even for a substrate on which a known process is not performed, in which the block copolymer is known to achieve vertical alignment including neutral surface treatment and the like This is possible. For example, a block copolymer according to one aspect of the present application may exhibit vertical orientation both on a hydrophilic surface on which no particular pretreatment has been performed, or on a hydrophobic surface. Further, in a further aspect of the present application, such a vertical orientation may be induced in a short period of time by thermal annealing.

본 출원의 블록 공중합체는, XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 특정한 경향을 나타낼 수 있다. The block copolymer of the present application may exhibit a specific tendency by XRD analysis (X-ray diffraction analysis, X-ray diffraction analysis).

즉, 상기 언급한 바와 같이 블록 공중합체의 적어도 하나의 블록이 측쇄 사슬을 포함하는 경우에, 상기 측쇄 사슬의 사슬 형성 원자의 수(n)는, 상기 X선 회절 분석에 의해 구해지는 산란 벡터(q)와 하기 수식 1을 만족할 수 있다.That is, in the case where at least one block of the block copolymer includes a side chain chain as described above, the number (n) of chain-forming atoms of the side chain is determined by the scattering vector q) and the following equation (1).

[수식 1][Equation 1]

3 nm-1 내지 5 nm-1 = nq/(2×π)3 nm -1 to 5 nm -1 = nq / (2 x π)

수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다. 또한, 수식 1에서π는 원주율을 의미한다. In the formula 1, n is the number of the chain-forming atoms and q is the smallest scattering vector (q) in which the peak is observed in the X-ray diffraction analysis of the block copolymer, or a peak of the largest peak area is observed Is a scattering vector (q). In Equation (1),? Represents the circularity.

본 출원에서 용어 사슬 형성 원자는, 블록 공중합체에 결합되어 있는 상기 측쇄 사슬을 형성하는 원자로서, 상기 사슬의 직쇄 구조를 형성하는 원자를 의미한다. 상기 측쇄 사슬은 직쇄형 또는 분지형일 수 있으나, 사슬 형성 원자의 수는 가장 긴 직쇄를 형성하고 있는 원자의 수만으로 계산되며, 상기 사슬 형성 원자에 결합되어 있는 다른 원자(예를 들면, 사슬 형성 원자가 탄소 원자인 경우에 그 탄소 원자에 결합하고 있는 수소 원자 등)는 계산되지 않는다. 예를 들어, 분지형 사슬인 경우에 상기 사슬 형성 원자의 수는 가장 긴 사슬 부위를 형성하고 있는 사슬 형성 원자의 수로 계산될 수 있다. 예를 들어, 측쇄 사슬이 n-펜틸기인 경우에 사슬 형성 원자는 모두 탄소로서 그 수는 5이고, 측쇄 사슬이 2-메틸펜틸기인 경우에도 사슬 형성 원자는 모두 탄소로서 그 수는 5이다. 상기 사슬 형성 원자로는, 탄소, 산소, 황 또는 질소 등이 예시될 수 있고, 적절한 사슬 형성 원자는 탄소, 산소 또는 질소이거나, 탄소 또는 산소일 수 있다. 상기 사슬 형성 원자의 수는 8 이상, 9 이상, 10 이상, 11 이상 또는 12 이상일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30 이하, 25 이하, 20 이하 또는 16 이하일 수 있다.In the present application, the term chain-forming atom means an atom which forms the side-chain chain bonded to the block copolymer, and which forms a straight-chain structure of the chain. The side chain may be linear or branched, but the number of chain-forming atoms is calculated by the number of atoms forming the longest straight chain, and other atoms bonded to the chain-forming atoms (for example, A hydrogen atom bonded to the carbon atom in the case of a carbon atom, etc.) is not calculated. For example, in the case of a branched chain, the number of chain forming atoms may be calculated as the number of chain forming atoms forming the longest chain region. For example, when the side chain is an n-pentyl group, all of the chain-forming atoms are carbon atoms, and the number of the chain-forming atoms is 5 even when the side chain is a 2-methylpentyl group. The chain-forming atom may be exemplified by carbon, oxygen, sulfur or nitrogen, and a suitable chain-forming atom may be carbon, oxygen or nitrogen, or carbon or oxygen. The number of chain-forming atoms may be 8 or more, 9 or more, 10 or more, 11 or more, or 12 or more. The number of the chain-forming atoms may be 30 or less, 25 or less, 20 or less, or 16 or less.

상기 수식 1의 확인을 위한 XRD 분석은 블록 공중합체 시료에 X선을 투과시킨 후에 산란 벡터에 따른 산란 강도를 측정하여 수행할 수 있다. XRD 분석은 블록 공중합체에 대하여 특별한 전 처리 없이 수행할 수 있으며, 예를 들면, 블록 공중합체를 적절한 조건에서 건조한 후에 X선에 투과시켜 수행할 수 있다. X선으로는 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 적용할 수 있다. 측정 기기(예를 들면, 2D marCCD)를 사용하여 시료에서 산란되어 나오는 2D 회절 패턴을 이미지로 얻고, 얻어진 회절 패턴을 피팅(fitting)하여 산란 벡터 및 반높이 너비 등을 구할 수 있다.XRD analysis for confirming the above formula 1 can be performed by passing X-rays through a block copolymer sample and measuring the scattering intensity according to the scattering vector. XRD analysis can be performed on the block copolymer without any special pretreatment, for example, after the block copolymer is dried under suitable conditions and then transmitted through X-rays. An X-ray having a vertical size of 0.023 mm and a horizontal size of 0.3 mm can be applied. A 2D diffraction pattern that is scattered in the sample is obtained as an image using a measuring device (for example, 2D marCCD), and the obtained diffraction pattern is fitted to obtain a scattering vector and a half-height width.

상기 회절 패턴의 피팅은 XRD 분석에 의해 얻어진 결과를 최소 좌승법을 적용한 수치 분석학적인 방식으로 수행할 수 있다. 상기 방식에서는 XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)한 후, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구할 수 있다. 상기 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.9 이상, 0.92 이상, 0.94 이상 또는 0.96 이상이다. XRD 분석으로부터 상기와 같은 정보를 얻을 수 있는 방식은 공지이며, 예를 들면, 오리진(origin) 등의 수치 해석 프로그램을 적용할 수 있다.The fitting of the diffraction pattern can be performed by a numerical analytical method in which the result obtained by XRD analysis is applied by the least-squares method. In this method, a portion showing the smallest intensity in the XRD diffraction pattern is taken as a baseline, and the intensity of the XRD pattern peak is set to a Gaussian and the scattering vector and the half height width can be obtained from the fitted results. The R square at the time of Gaussian fitting is at least 0.9, at least 0.92, at least 0.94, or at least 0.96. The manner of obtaining the above information from the XRD analysis is known, and for example, a numerical analysis program such as an origin can be applied.

수식 1에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 다른 예시에서 수식 1에서 도입되는 산란 벡터(q)는, 예를 들면, 0.5 nm-1 내지 10 nm-1의 범위 내의 산란 벡터(q)일 수 있다. 상기 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 수식 1에 도입되는 산란 벡터(q)는 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다.The scattering vector q introduced in Equation 1 may be, for example, a scattering vector q within a range of 0.5 nm -1 to 10 nm -1 . In another example, the scattering vector q introduced in Equation 1 may be, for example, a scattering vector q within the range of 0.5 nm -1 to 10 nm -1 . In another example, the scattering vector q introduced into Equation 1 may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more. Scattering vector (q) to be introduced into the formula 1 In another example 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less, 3.5 nm -1 or 3 nm -1 or less.

수식 1은, 블록 공중합체가 자기 조립되어 상분리 구조를 형성하였을 경우에 상기 측쇄 사슬이 포함되어 있는 블록간의 간격(D)과 상기 측쇄 사슬의 사슬 형성 원자의 수의 관계를 나타내며, 측쇄 사슬을 가지는 블록 공중합체에서 상기 측쇄 사슬의 사슬 형성 원자의 수가 상기 수식 1을 만족하는 경우에 상기 측쇄 사슬이 나타내는 결정성이 증대되고, 그에 따라 블록 공중합체의 상분리 특성 내지는 수직 배향성이 크게 향상될 수 있다. 상기 수식 1에 따른 nq/(2×π)는, 다른 예시에서 4.5 nm-1 이하일 수도 있다. 상기에서 측쇄 사슬이 포함되어 있는 블록간의 간격(D, 단위: nm)은, 수식 D=2×π/q로 계산될 수 있고, 상기에서 D는 상기 블록간의 간격(D, 단위: nm)이고, π 및 q는 수식 1에서 정의된 바와 같다. Formula (1) represents the relationship between the distance (D) between the blocks containing the side chain chain and the number of chain forming atoms of the side chain chain when the block copolymer is self-assembled to form a phase separation structure, When the number of chain-forming atoms of the side chain in the block copolymer satisfies the above-mentioned formula 1, the crystallinity represented by the side chain is increased and consequently the phase-separating property or the vertical orientation of the block copolymer can be greatly improved. The nq / (2 x pi) according to the above formula 1 may be 4.5 nm -1 or less in another example. The interval (D, unit: nm) between the blocks including the side chain in the above can be calculated by the following equation: D = 2 x? / Q where D is the interval , < / RTI > and < RTI ID = 0.0 > q < / RTI >

상기 파라미터는, 예를 들면, 블록 공중합체의 구조의 제어를 통해 달성할 수 있다. The above parameters can be achieved, for example, by controlling the structure of the block copolymer.

예를 들면, 상기 파라미터를 만족하는 블록 공중합체는, 상기 제 1 블록 또는 제 2 블록에 사슬 형성 원자를 가지는 측쇄 사슬을 포함할 수 있다. 이하 본 명세서에서는 설명의 편의를 위하여 측쇄 사슬이 포함되는 블록을 제 1 블록으로 호칭할 수 있다.For example, the block copolymer satisfying the above-mentioned parameters may include side chain chains having chain forming atoms in the first block or the second block. Hereinafter, for convenience of description, a block including a side chain may be referred to as a first block.

예를 들면 상기 언급된 파라미터를 만족시키는 블록 공중합체의 제 1 블록과 제 2 블록 중 적어도 하나 또는 모두는 적어도 방향족 구조를 포함할 수 있다. 제 1 블록과 제 2 블록은 모두 방향족 구조를 포함할 수 있으며, 이러한 경우에 제 1 및 제 2 블록에 포함되는 방향족 구조는 동일하거나 상이할 수 있다. 또한, 상기 언급된 파라미터 중 하나 이상을 만족시키는 블록 공중합체의 제 1 및 제 2 블록 중에서 적어도 하나는 상기 측쇄 사슬을 포함하거나, 후술하는 하나 이상의 할로겐 원자를 포함할 수 있는데, 이러한 측쇄 사슬과 할로겐 원자는 상기 방향족 구조에 치환되어 있을 수 있다. 본 출원의 블록 공중합체는 2개의 블록을 포함하거나, 그 이상의 블록을 포함할 수 있다. For example, at least one or both of the first block and the second block of the block copolymer satisfying the above-mentioned parameters may comprise at least an aromatic structure. The first block and the second block may all include an aromatic structure, and in this case, the aromatic structures included in the first and second blocks may be the same or different. In addition, at least one of the first and second blocks of the block copolymer satisfying at least one of the above-mentioned parameters may include the side chain chain or may include at least one halogen atom described later, The atom may be substituted in the aromatic structure. The block copolymer of the present application may comprise two blocks or may comprise more blocks.

기술한 바와 같이 상기 블록 공중합체의 제 1 블록 및/또는 제 2 블록은 방향족 구조를 포함할 수 있다. 이러한 방향족 구조는 제 1 및 제 2 블록 중에서 어느 하나의 블록에만 포함되거나, 양 블록에 모두 포함될 수 있다. 양 블록이 모두 방향족 구조를 포함하는 경우에 각 블록이 포함하는 방향족 구조는 서로 동일하거나 상이할 수 있다.As described above, the first block and / or the second block of the block copolymer may include an aromatic structure. The aromatic structure may be included in only one of the first and second blocks, or may be included in both blocks. When both blocks include an aromatic structure, the aromatic structures included in each block may be the same or different from each other.

본 명세서에서 용어, 방향족 구조, 아릴기 또는 아릴렌기는, 특별히 달리 규정하지 않는 한, 벤젠 고리를 가지거나, 2개 이상의 벤젠 고리가 하나 또는 2개의 탄소 원자를 공유하면서 연결되어 있거나, 또는 임의의 링커에 의해 연결되어 있는 구조를 포함하는 화합물 또는 그 유도체로부터 유래하는 구조, 1가 잔기 또는 2가 잔기를 의미할 수 있다. 상기 아릴기 또는 아릴렌기는, 예를 들면, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 아릴기일 수 있다. 아릴기 또는 아릴렌기로는, 벤젠(benzene) 등이나, 나프탈렌(naphthalene), 아조벤젠(azobenzene), 안트라센(anthracene), 페난스렌(phenanthrene), 테트라센(tetracene), 파이렌(pyrene) 또는 벤조파이렌(benzopyrene) 등으로부터 유래된 1가 또는 2가 잔기 등도 예시될 수 있다.As used herein, the term aromatic structure, aryl group or arylene group, unless otherwise specified, includes a benzene ring, or two or more benzene rings are linked together sharing one or two carbon atoms, A structure derived from a compound including a structure linked by a linker or a derivative thereof, a monovalent residue or a divalent residue. The aryl group or arylene group may be, for example, an aryl group having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms. Examples of the aryl group or the arylene group include benzene and the like, naphthalene, azobenzene, anthracene, phenanthrene, tetracene, pyrene, A monovalent or divalent residue derived from benzopyrene or the like may be exemplified.

상기 방향족 구조는 블록 주쇄에 포함되어 있는 구조이거나, 혹은 블록 주쇄에 측쇄 형태로 연결되어 있는 구조일 수 있다. 각 블록이 포함할 수 있는 방향족 구조의 적절한 제어를 통해 전술한 파라미터의 조절이 가능할 수 있다.The aromatic structure may be a structure contained in a block main chain or a structure in which a block main chain is connected in a side chain form. Adjustment of the above-described parameters may be possible through appropriate control of the aromatic structure that each block may contain.

예를 들어, 전술한 파라미터의 조절을 위하여 블록 공중합체의 제 1 블록에는 사슬 형성 원자가 8개 이상인 사슬이 측쇄에 연결되어 있을 수 있다. 본 명세서에서 용어 사슬과 측쇄 사슬은 서로 동일한 대상을 지칭할 수 있다. 제 1 블록이 방향족 구조를 포함하는 경우에, 상기 사슬은 상기 방향족 구조에 연결되어 있을 수 있다.For example, in order to control the above-mentioned parameters, the first block of the block copolymer may have chains with more than eight chain forming atoms connected to the side chains. In the present specification, the term chain and side chain chain may refer to the same object. When the first block comprises an aromatic structure, the chain may be connected to the aromatic structure.

용어 측쇄 사슬은, 고분자의 주쇄에 연결된 사슬을 의미할 수 있다. 측쇄 사슬은, 상기 언급한 바와 같이 8개 이상, 9개 이상, 10개 이상, 11개 이상 또는 12개 이상의 사슬 형성 원자를 포함하는 사슬일 수 있다. 상기 사슬 형성 원자의 수는, 또한 30개 이하, 25개 이하, 20개 이하 또는 16개 이하일 수 있다. 사슬 형성 원자는, 탄소, 산소, 질소 또는 황 원자일 수 있고, 적절하게는 탄소 또는 산소일 수 있다.The term branched chain may refer to a chain connected to the backbone of the polymer. The side chain chain may be a chain containing at least 8, at least 9, at least 10, at least 11 or at least 12 chain forming atoms as mentioned above. The number of chain-forming atoms may also be not more than 30, not more than 25, not more than 20, or not more than 16. The chain forming atom may be a carbon, oxygen, nitrogen or sulfur atom, and may suitably be carbon or oxygen.

측쇄 사슬로는, 알킬기, 알케닐기 또는 알키닐기와 같은 탄화수소 사슬이 예시될 수 있다. 상기 탄화 수소 사슬의 탄소 원자 중에서 적어도 하나는 황 원자, 산소 원자 또는 질소 원자로 대체되어 있을 수 있다. As the branched chain, a hydrocarbon chain such as an alkyl group, an alkenyl group or an alkynyl group can be exemplified. At least one of the carbon atoms of the hydrocarbon chain may be replaced by a sulfur atom, an oxygen atom or a nitrogen atom.

측쇄 사슬이 방향족 구조에 연결되는 경우에 상기 사슬은 방향족 구조에 직접 연결되어 있거나, 혹은 링커를 매개로 연결되어 있을 수 있다. 상기 링커로는, 산소 원자, 황 원자, -NR1-, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)- 등이 예시될 수 있고, 상기에서 R1은 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있으며, X1은 단일 결합, 산소 원자, 황 원자, -NR2-, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있고, 상기에서 R2는, 수소, 알킬기, 알케닐기, 알키닐기, 알콕시기 또는 아릴기일 수 있다. 적절한 링커로는 산소 원자가 예시될 수 있다. 측쇄 사슬은, 예를 들면, 산소 원자 또는 질소 원자를 매개로 방향족 구조에 연결되어 있을 수 있다.When the side chain is connected to an aromatic structure, the chain may be directly connected to the aromatic structure or may be connected via a linker. The linker is an oxygen atom, a sulfur atom, -NR 1 -, -S (= O) 2 -, a carbonyl group, an alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - and the like can be exemplified, in the above R 1 is hydrogen, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or an aryl can be date, X 1 is a single bond, an oxygen atom, a sulfur atoms, -NR 2 -, -S (= O) 2 -, alkylene, alkenylene, or alkynylene may be an, at the R 2 is a hydrogen atom, alkyl group, alkenyl group, alkynyl group, alkoxy group or aryl date . Suitable linkers may be exemplified by oxygen atoms. The side chain may be connected to the aromatic structure via, for example, an oxygen atom or a nitrogen atom.

방향족 구조가 블록의 주쇄에 측쇄 형태로 연결되어 있는 경우에 상기 방향족 구조도 상기 주쇄에 직접 연결되어 있거나, 링커를 매개로 연결되어 있을 수 있다. 이 경우 링커로는, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)- 등이 예시될 수 있고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기일 수 있다. 방향족 구조를 주쇄에 연결하는 적절한 링커로는, -C(=O)-O- 또는 -O-C(=O)- 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.When the aromatic structure is connected to the main chain of the block in the form of a side chain, the aromatic structure may be directly connected to the main chain or may be connected via a linker. In this case, linker, oxygen atom, sulfur atom, -S (= O) 2 - , a carbonyl group, an alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 - C (= O) - and the like can be exemplified, wherein X 1 may be a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, an alkylene group, an alkenylene group or an alkynylene group. Suitable linkers connecting the aromatic structure to the backbone include, but are not limited to, -C (= O) -O- or -OC (= O) -.

다른 예시에서 블록 공중합체의 제 1 및/또는 제 2 블록에 포함되는 방향족 구조는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자를 포함할 수 있다. 할로겐 원자의 수는, 예를 들면, 30개 이하, 25개 이하, 20개 이하, 15개 이하 또는 10개 이하일 수 있다. 할로겐 원자로는, 불소 또는 염소 등이 예시될 수 있고, 불소 원자의 사용이 유리할 수 있다. 이와 같이 할로겐 원자를 포함하는 방향족 구조를 가지는 블록은 다른 블록과의 적절한 상호 작용을 통해 효율적으로 상분리 구조를 구현할 수 있다.In another example, the aromatic structure included in the first and / or second block of the block copolymer may comprise one or more, two or more, three or more, four or more, or five or more halogen atoms. The number of halogen atoms may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less. Examples of the halogen atom include fluorine or chlorine, and the use of a fluorine atom may be advantageous. As described above, a block having an aromatic structure containing a halogen atom can efficiently realize a phase separation structure through proper interaction with other blocks.

할로겐 원자를 포함하는 방향족 구조로는, 탄소수 6 내지 30, 탄소수 6 내지 25, 탄소수 6 내지 21, 탄소수 6 내지 18 또는 탄소수 6 내지 13의 방향족 구조를 예시할 수 있지만, 이에 제한되는 것은 아니다. Examples of the aromatic structure containing a halogen atom include, but are not limited to, aromatic structures having 6 to 30 carbon atoms, 6 to 25 carbon atoms, 6 to 21 carbon atoms, 6 to 18 carbon atoms, or 6 to 13 carbon atoms.

블록 공중합체에서 제 1 및 제 2 블록이 모두 방향족 구조를 포함하는 경우에, 적절한 상분리 구조의 구현을 위하여 제 1 블록은 할로겐 원자를 포함하지 않는 방향족 구조를 포함하고, 제 2 블록은 할로겐 원자를 포함하는 방향족 구조를 포함할 수 있다. 또한, 상기 제 1 블록의 방향족 구조에는 상기 언급한 측쇄 사슬이 직접 또는 산소나 질소를 포함하는 링커를 매개로 연결되어 있을 수 있다.In the case where both the first and second blocks in the block copolymer include an aromatic structure, the first block includes an aromatic structure not containing a halogen atom and the second block contains a halogen atom Containing aromatic structure. The aromatic structure of the first block may be linked to the above-mentioned side chain chain directly or via a linker including oxygen or nitrogen.

블록 공중합체가 측쇄 사슬을 가지는 블록을 포함하는 경우에 이 블록은 예를 들면, 하기 화학식 1로 표시되는 블록일 수 있다. When the block copolymer comprises a block having a side chain chain, this block may be, for example, a block represented by the following general formula (1).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

화학식 1에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.Wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms and X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, a carbonyl group, an alkylene group, an alkenylene group, C (= O) -X 1 - or -X 1 -C (= O) -, wherein X 1 represents an oxygen atom, a sulfur atom, -S (═O) 2 -, an alkylene group, And Y is a monovalent substituent group comprising a ring structure having a chain having 8 or more chain forming atoms linked thereto.

본 출원에서 용어 단일 결합은 그 부위에 별도의 원자가 존재하지 않는 것을 의미한다. 예를 들어, 화학식 1에서 X가 단일 결합이라면, Y가 직접 고분자 사슬에 연결된 구조가 구현될 수 있다.The term single bond in the present application means that no separate atom is present at that site. For example, when X in the general formula (1) is a single bond, a structure in which Y is directly connected to a polymer chain can be realized.

본 명세서에서 용어 알킬기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄, 분지쇄 또는 고리형의 알킬기일 수 있으며, 이는 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다(단, 전술한 측쇄 사슬이 알킬기인 경우에 상기 알킬기는, 8개 이상, 9개 이상, 10개 이상, 11개 이상 또는 12개 이상의 탄소 원자를 포함할 수 있고, 이 알킬기의 탄소 원자의 수는, 30개 이하, 25개 이하, 20개 이하 또는 16개 이하일 수 있다.).As used herein, unless otherwise specified, the alkyl group may be a straight, branched or cyclic alkyl group of 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms Which may optionally be substituted by one or more substituents, provided that when the side chain is an alkyl group, the alkyl group may have 8 or more, 9 or more, 10 or more, 11 or 12 or more carbons Atoms, and the number of carbon atoms of the alkyl group may be 30 or less, 25 or less, 20 or less, or 16 or less).

본 명세서에서 용어 알케닐기 또는 알키닐기는, 특별히 달리 규정하지 않는 한, 탄소수 2 내지 20, 탄소수 2 내지 16, 탄소수 2 내지 12, 탄소수 2 내지 8 또는 탄소수 2 내지 4의 직쇄, 분지쇄 또는 고리형의 알케닐기 또는 알키닐기일 수 있으며, 이는 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다(단, 전술한 측쇄 사슬로서의 알케닐기 또는 알키닐기는, 8개 이상, 9개 이상, 10개 이상, 11개 이상 또는 12개 이상의 탄소 원자를 포함할 수 있고, 이 알케닐기 또는 알키닐기의 탄소 원자의 수는, 30개 이하, 25개 이하, 20개 이하 또는 16개 이하일 수 있다.).As used herein, the term alkenyl or alkynyl group means a straight, branched or cyclic alkyl group having 2 to 20 carbon atoms, 2 to 16 carbon atoms, 2 to 12 carbon atoms, 2 to 8 carbon atoms or 2 to 4 carbon atoms, Alkenyl group or alkynyl group which may optionally be substituted by one or more substituents, provided that the above-mentioned alkenyl or alkynyl group as the side chain is at least 8, at least 9, at least 10, at least 11, Or more than 12 carbon atoms, and the number of carbon atoms of the alkenyl group or alkynyl group may be 30 or less, 25 or less, 20 or less, or 16 or less).

본 명세서에서 용어 알킬렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄, 분지쇄 또는 고리형의 알킬렌기일 수 있으며, 이는 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.The term alkylene group as used herein includes, unless otherwise specified, a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms, or 1 to 4 carbon atoms Which may optionally be substituted by one or more substituents.

본 명세서에서 용어 알케닐렌기 또는 알키닐렌기는, 특별히 달리 규정하지 않는 한, 탄소수 1 내지 20, 탄소수 1 내지 16, 탄소수 1 내지 12, 탄소수 1 내지 8 또는 탄소수 1 내지 4의 직쇄, 분지쇄 또는 고리형의 알킬렌기일 수 있으며, 이는 임의로 하나 이상의 치환기에 의해 치환되어 있을 수 있다.The term alkenylene group or alkynylene group as used herein means a straight chain, branched chain or ring having 1 to 20 carbon atoms, 1 to 16 carbon atoms, 1 to 12 carbon atoms, 1 to 8 carbon atoms or 1 to 4 carbon atoms, Lt; / RTI > alkylene group, which may optionally be substituted by one or more substituents.

또한, 화학식 1에서 X는 다른 예시에서 -C(=O)O- 또는 -OC(=O)-일 수 있다.Further, X in the general formula (1) may be -C (= O) O- or -OC (= O) - in another example.

화학식 1에서 Y는 전술한 사슬을 포함하는 치환기이고, 상기는, 예를 들면, 탄소수 6 내지 18 또는 탄소수 6 내지 12의 방향족 구조를 포함하는 치환기일 수 있다. 상기에서 사슬은, 예를 들면, 8개 이상, 9개 이상, 10개 이상, 11개 이상 또는 12개 이상의 탄소 원자를 포함하는 직쇄 알킬기일 수 있다. 이 알킬기는, 30개 이하, 25개 이하, 20개 이하 또는 16개 이하의 탄소 원자를 포함할 수 있다. 이러한 사슬은, 상기 방향족 구조에 직접 또는 상기 언급한 링커를 매개로 연결되어 있을 수 있다.In the general formula (1), Y is a substituent containing the above-mentioned chain, and may be, for example, a substituent containing an aromatic structure having 6 to 18 carbon atoms or 6 to 12 carbon atoms. The chain may be, for example, a straight chain alkyl group containing at least 8, at least 9, at least 10, at least 11, or at least 12 carbon atoms. The alkyl group may contain up to 30, up to 25, up to 20 or up to 16 carbon atoms. Such a chain may be directly connected to the aromatic structure or via the above-mentioned linker.

제 1 블록은 다른 예시에서 하기 화학식 2로 표시될 수 있다.The first block may be represented by the following formula (2) in another example.

[화학식 2](2)

Figure pat00002
Figure pat00002

화학식 2에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 -C(=O)-O-이고, P는 탄소수 6 내지 12의 아릴렌기이고, Q는 산소 원자이며, Z는 사슬 형성 원자가 8개 이상인 상기 사슬이다.R is hydrogen or an alkyl group having 1 to 4 carbon atoms, X is -C (= O) -O-, P is an arylene group having 6 to 12 carbon atoms, Q is an oxygen atom, Z is a chain- Lt; RTI ID = 0.0 > 8 < / RTI >

화학식 3에서 P는 다른 예시에서 페닐렌일 수 있고, Z는 다른 예시에서 탄소수 9 내지 20, 탄소수 9 내지 18 또는 탄소수 9 내지 16의 직쇄 알킬기일 수 있다. 상기에서 P가 페닐렌인 경우에 Q는 상기 페닐렌의 파라 위치에 연결되어 있을 수 있다. 상기에서 알킬기, 아릴렌기, 페닐렌기 및 사슬은 임의로 하나 이상의 치환기로 치환되어 있을 수 있다.In Formula (3), P may be phenylene in another example, and Z may be a straight chain alkyl group having 9 to 20 carbon atoms, 9 to 18 carbon atoms, or 9 to 16 carbon atoms in another example. In the above, when P is phenylene, Q may be connected to the para position of the phenylene. In the above, the alkyl group, arylene group, phenylene group and chain may be optionally substituted with one or more substituents.

블록 공중합체가 할로겐 원자를 포함하는 방향족 구조를 가지는 블록을 포함하는 경우에 상기 블록은 예를 들면, 하기 화학식 3으로 표시되는 블록일 수 있다. When the block copolymer includes a block having an aromatic structure containing a halogen atom, the block may be, for example, a block represented by the following formula (3).

[화학식 3] (3)

Figure pat00003
Figure pat00003

화학식 3에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이다.In formula 3 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - and, in the X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenyl group or alkynyl group, and W is at least one halogen Is an aryl group containing an atom.

화학식 3에서 X2는 다른 예시에서 단일 결합이거나, 알킬렌기일 수 있다.X 2 in Formula (3) may be a single bond or an alkylene group in another example.

화학식 3에서 W의 아릴기는, 탄소수 6 내지 12의 아릴기이거나, 페닐기일 수 있고, 이러한 아릴기 또는 페닐기는 1개 이상, 2개 이상, 3개 이상, 4개 이상 또는 5개 이상의 할로겐 원자를 포함할 수 있다. 상기에서 할로겐 원자의 수는, 예를 들면, 30개 이하, 25개 이하, 20개 이하, 15개 이하 또는 10개 이하일 수 있다. 할로겐 원자로는 불소 원자가 예시될 수 있다.In formula (3), the aryl group of W may be an aryl group having 6 to 12 carbon atoms or may be a phenyl group, and the aryl group or phenyl group may have one or more, two or more, three or more, four or five or more halogen atoms . The number of halogen atoms in the above may be, for example, 30 or less, 25 or less, 20 or less, 15 or less, or 10 or less. As the halogen atom, a fluorine atom may be exemplified.

화학식 3의 블록은 다른 예시에서 하기 화학식 4로 표시될 수 있다. The block of formula (3) may be represented by the following formula (4) in another example.

[화학식 4] [Chemical Formula 4]

Figure pat00004
Figure pat00004

화학식 4에서 X2는, 화학식 2에서 정의한 바와 같고, R1 내지 R5는 각각 독립적으로 수소, 알킬기, 할로알킬기 또는 할로겐 원자이고, R1 내지 R5가 포함하는 할로겐 원자의 수는 1개 이상이다.In formula (4), X 2 is as defined in formula (2), R 1 to R 5 are each independently hydrogen, an alkyl group, a haloalkyl group or a halogen atom, and the number of halogen atoms contained in R 1 to R 5 is 1 or more to be.

화학식 4에서 R1 내지 R5는 각각 독립적으로 수소 원자, 탄소수 1 내지 4의 알킬기 또는 탄소수 1 내지 4의 할로알킬기 또는 할로겐일 수 있고, 상기에서 할로겐은 염소 또는 불소일 수 있다.In formula (4), R 1 to R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a haloalkyl group having 1 to 4 carbon atoms, or halogen, wherein the halogen may be chlorine or fluorine.

화학식 4에서 R1 내지 R5의 2개 이상, 3개 이상, 4개 이상, 5개 이상 또는 6개 이상은 할로겐을 포함할 수 있다. 상기 할로겐수의 상한은 특별히 제한되지 않고, 예를 들면, 12개 이하, 8개 이하 또는 7개 이하일 수 있다.In Formula 4, at least 2, at least 3, at least 4, at least 5 or at least 6 of R 1 to R 5 may contain a halogen. The upper limit of the number of halogen atoms is not particularly limited and may be, for example, 12 or less, 8 or less, or 7 or less.

블록 공중합체는 상기와 같은 2종의 블록 중 어느 하나 또는 모두를 다른 블록과 함께 포함하거나, 상기 2종의 블록만을 포함하는 블록 공중합체일 수 있다.The block copolymer may be a block copolymer containing either one or both of the above two types of blocks together with another block or containing only the two types of blocks.

블록 공중합체를 제조하는 방식은 특별히 제한되지 않는다. 블록 공중합체는, 예를 들면, LRP(Living Radical Polymerization) 방식으로 중합할 있고, 그 예로는 유기 희토류 금속 복합체를 중합 개시제로 사용하거나, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 알칼리 금속 또는 알칼리토금속의 염 등의 무기산염의 존재 하에 합성하는 음이온 중합, 유기 알칼리 금속 화합물을 중합 개시제로 사용하여 유기 알루미늄 화합물의 존재 하에 합성하는 음이온 중합 방법, 중합 제어제로서 원자 이동 라디칼 중합제를 이용하는 원자이동 라디칼 중합법(ATRP), 중합 제어제로서 원자이동 라디칼 중합제를 이용하되 전자를 발생시키는 유기 또는 무기 환원제 하에서 중합을 수행하는 ARGET(Activators Regenerated by Electron Transfer) 원자이동 라디칼 중합법(ATRP), ICAR(Initiators for continuous activator regeneration) 원자이동 라디칼 중합법(ATRP), 무기 환원제 가역 부가-개열 연쇄 이동제를 이용하는 가역 부가-개열 연쇄 이동에 의한 중합법(RAFT) 또는 유기 텔루륨 화합물을 개시제로서 이용하는 방법 등이 있으며, 이러한 방법 중에서 적절한 방법이 선택되어 적용될 수 있다. The manner of producing the block copolymer is not particularly limited. The block copolymer is polymerized by, for example, an LRP (Living Radical Polymerization) method. Examples thereof include an organic rare earth metal complex as a polymerization initiator or an organic alkali metal compound as a polymerization initiator to form an alkali metal or alkaline earth metal , An anion polymerization method in which an organic alkali metal compound is used as a polymerization initiator and synthesized in the presence of an organoaluminum compound, an anion polymerization method using an atom transfer radical polymerization agent as a polymerization initiator, (ATRP), Atomic Transfer Radical Polymerization (ATRP), and ICAR (Atomization Transfer), which perform polymerization under an organic or inorganic reducing agent that generates electrons using an atom transfer radical polymerization agent as a polymerization initiator. Initiators for continuous activator regeneration) Atom Transfer Radical Polymerization (ATRP) (RAFT) using a reversible addition-cleavage chain transfer agent using a reducing agent addition-cleavage chain transfer agent, or a method using an organic tellurium compound as an initiator. Among these methods, an appropriate method can be selected and applied.

예를 들면, 상기 블록 공중합체는, 라디칼 개시제 및 리빙 라디칼 중합 시약의 존재 하에, 상기 블록을 형성할 수 있는 단량체들을 포함하는 반응물을 리빙 라디칼 중합법으로 중합하는 것을 포함하는 방식으로 제조할 수 있다. 블록공중합체의 제조 과정은, 예를 들면 상기 과정을 거쳐서 생성된 중합 생성물을 비용매 내에서 침전시키는 과정을 추가로 포함할 수 있다. For example, the block copolymer can be prepared in a manner that includes polymerizing a reactant containing monomers capable of forming the block in the presence of a radical initiator and a living radical polymerization reagent by living radical polymerization . The preparation of the block copolymer may further include, for example, a step of precipitating the polymerization product produced through the above process in the non-solvent.

라디칼 개시제의 종류는 특별히 제한되지 않고, 중합 효율을 고려하여 적절히 선택할 수 있으며, 예를 들면, AIBN(azobisisobutyronitrile) 또는 2,2'-아조비스-2,4-디메틸발레로니트릴(2,2'-azobis-(2,4-dimethylvaleronitrile)) 등의 아조 화합물이나, BPO(benzoyl peroxide) 또는 DTBP(di-t-butyl peroxide) 등과 같은 과산화물 계열을 사용할 수 있다.The kind of the radical initiator is not particularly limited and may be appropriately selected in consideration of the polymerization efficiency. For example, AIBN (azobisisobutyronitrile) or 2,2'-azobis-2,4-dimethylvaleronitrile (2,2 ' -azobis- (2,4-dimethylvaleronitrile), and peroxides such as benzoyl peroxide (BPO) or di-t-butyl peroxide (DTBP).

리빙 라디칼 중합 과정은, 예를 들면, 메틸렌클로라이드, 1,2-디클로로에탄, 클로로벤젠, 디클로로벤젠, 벤젠,톨루엔, 아세톤, 클로로포름, 테트라하이드로퓨란, 디옥산, 모노글라임, 디글라임, 디메틸포름아미드, 디메틸술폭사이드 또는 디메틸아세트아미드 등과 같은 용매 내에서 수행될 수 있다.The living radical polymerization process can be carried out in the presence of a base such as, for example, methylene chloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene, benzene, toluene, acetone, chloroform, tetrahydrofuran, dioxane, monoglyme, diglyme, Amide, dimethylsulfoxide or dimethylacetamide, and the like.

비용매로는, 예를 들면, 메탄올, 에탄올, 노르말 프로판올 또는 이소프로판올 등과 같은 알코올, 에틸렌글리콜 등의 글리콜, n-헥산, 시클로헥산, n-헵탄 또는 페트롤리움 에테르 등과 같은 에테르 계열이 사용될 수 있으나, 이에 제한되는 것은 아니다.Examples of the non-solvent include ethers such as alcohols such as methanol, ethanol, n-propanol or isopropanol, glycols such as ethylene glycol, n-hexane, cyclohexane, n-heptane or petroleum ether, But is not limited thereto.

상기와 같은 블록 공중합체는, 기본적으로 우수한 상분리 특정 내지는 자기 조립 특성을 나타내고, 수직 배향성도 우수하다. 본 출원인들은, 상기 언급된 블록 공중합체가 하기 기술하는 파라미터 중 하나 이상을 추가로 만족하는 경우에 상기 우수한 특성이 보다 향상되는 것을 확인하였다.The block copolymer as described above exhibits excellent phase separation or self-assembling properties and is superior in vertical alignment. Applicants have found that the excellent properties are further improved when the above-mentioned block copolymers further satisfy one or more of the parameters described below.

예를 들면, 본 출원의 하나의 측면의 블록 공중합체는, 소수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)의 인플레인상(in plane) 회절 패턴을 나타내는 막을 형성할 수 있다. 상기 블록 공중합체는, 친수성 표면상에서 스침각 입사 소각 산란(GISAXS, Grazing Incidence Small Angle X ray Scattering)에서 인플레인상 회절 패턴을 나타내는 막을 형성할 수 있다. For example, a block copolymer of one aspect of the present application can form a film exhibiting an in-plane diffraction pattern of Grazing Incidence Small Angle X-ray Scattering (GISAXS) on a hydrophobic surface have. The block copolymer may form a film exhibiting an inflation impingement diffraction pattern on a hydrophilic surface by Grazing Incidence Small Angle X-ray Scattering (GISAXS).

본 출원에서 GISAXS에서 인플레인상의 회절 패턴을 나타낸다는 것은 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낸다는 것을 의미할 수 있다. 이러한 피크는, 블록 공중합체의 수직 배향성에 의해 확인된다. 따라서, 인플레인상 회절 패턴을 나타내는 블록 공중합체는 수직 배향성을 가진다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있다.Indicating the diffraction pattern of inflation in GISAXS in the present application may mean that it exhibits a peak perpendicular to the X coordinate in the GISAXS diffraction pattern in the GISAXS analysis. This peak is confirmed by the vertical orientation of the block copolymer. Therefore, the block copolymer exhibiting the inflation-induced diffraction pattern has vertical orientation. In a further example, the peak identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and when there are a plurality of peaks, the scattering vector (q values) of the peak may be identified with an integer ratio.

본 출원에서 용어 수직은, 오차를 감안한 표현이고, 예를 들면, ±10도, ±8도, ±6도, ±4도 또는 ±2도 이내의 오차를 포함하는 의미일 수 있다.The term vertical in the present application is an expression in consideration of an error, and may mean an error including, for example, errors within ± 10 degrees, ± 8 degrees, ± 6 degrees, ± 4 degrees, or ± 2 degrees.

친수성과 소수성의 표면 상에서 모두 인플레인상의 회절 패턴을 나타내는 막을 형성할 수 있는 블록 공중합체는 수직 배향을 유도하기 위하여 별도의 처리를 수행하지 않은 다양한 표면상에서 수직 배향 특성을 나타낼 수 있다. 본 출원에서 용어 소수성 표면은, 순수(purified water)에 대한 젖음각이 5도 내지 20도의 범위 내에 있는 표면을 의미한다. 소수성 표면의 예로는, 산소 플라즈마, 황산 또는 피라나 용액으로 처리된 실리콘의 표면이 예시될 수 있지만, 이에 제한되는 것은 아니다. 본 출원에서 용어 친수성 표면은, 순수(purified water)에 대한 상온 젖음각이 50도 내지 70도의 범위 내에 있는 표면을 의미한다. 친수성 표면으로는, 산소 플라즈마로 처리한 PDMS(polydimethylsiolxane)의 표면, HMDS(hexamethyldisilazane) 처리한 실리콘의 표면 또는 불산(Hydrogen fluoride, HF) 처리한 실리콘의 표면 등이 예시될 수 있지만, 이에 제한되는 것은 아니다.A block copolymer capable of forming a film exhibiting a diffraction pattern on inflation on both hydrophilic and hydrophobic surfaces can exhibit vertical orientation characteristics on various surfaces without performing any separate treatment to induce vertical orientation. The term hydrophobic surface in the present application means a surface having a wetting angle with respect to purified water in the range of 5 to 20 degrees. Examples of hydrophobic surfaces include, but are not limited to, surfaces of silicon treated with oxygen plasma, sulfuric acid or pyran solution. The term hydrophilic surface in the present application means a surface having a room temperature wetting angle with respect to purified water in the range of 50 to 70 degrees. Examples of the hydrophilic surface include a surface of PDMS (polydimethylsiloxane) treated with oxygen plasma, a surface of silicon treated with HMDS (hexamethyldisilazane), a surface of silicon treated with hydrofluoric acid (HF), etc. However, no.

특별히 달리 규정하지 않는 한, 본 출원에서 젖음각 등과 같이 온도에 의해 변할 수 있는 물성은 상온에서 측정한 수치이다. 용어 상온은, 가온되거나, 감온되지 않은 자연 그대로의 온도이고, 약 10℃ 내지 30℃, 약 25℃ 또는 약 23℃의 온도를 의미할 수 있다. Unless otherwise specified, physical properties that may vary with temperature, such as wetting angle in the present application, are values measured at room temperature. The term ambient temperature is a natural, non-warming or non-warming temperature and may refer to a temperature of about 10 ° C to 30 ° C, about 25 ° C, or about 23 ° C.

친수성 또는 소수성 표면상에 형성되어 스침각 입사 소각 산란(GISAXS)상에서 인플레인상 회절 패턴을 나타내는 막은 열적 숙성(thermal annealing)을 거친 막일 수 있다. 스침각 입사 소각 산란(GISAXS)를 측정하기 위한 막은, 예를 들면, 상기 블록 공중합체를 약 0.7 중량%의 농도로 용매(예를 들면, 플루오르벤젠(flourobenzene)에 희석하여 제조한 코팅액을 약 25 nm의 두께 및 2.25 cm2의 코팅 면적(가로: 1.5 cm, 세로: 1.5 cm)으로 해당 친수성 또는 소수성 표면에 코팅하고, 이러한 코팅막을 열적 숙성시켜서 형성할 수 있다. 열적 숙성은, 예를 들면, 상기 막을 약 160℃의 온도에서 약 1 시간 동안 유지하여 수행할 수 있다. 스침각 입사 소각 산란(GISAXS)은 상기와 같이 형성된 막에 약 0.12 내지 0.23도의 범위 내의 입사각에서 X선을 입사시켜서 측정할 수 있다. 공지의 측정 기기(예를 들면, 2D marCCD)로 막으로부터 산란되어 나오는 회절 패턴을 얻을 수 있다. 상기 회절 패턴을 통해 인플레인상의 회절 패턴의 존재 여부를 확인하는 방식은 공지이다.The film exhibiting the inflation impression diffraction pattern on the hydrophilic or hydrophobic surface and on the sagittal incident incidence scattering (GISAXS) may be a thermal annealed film. The film for measuring the fine angle incident incidence scattering (GISAXS) can be obtained, for example, by coating a coating solution prepared by diluting the above block copolymer with a solvent (for example, flourobenzene) at a concentration of about 0.7 wt% (thickness: 1.5 cm, length: 1.5 cm) and a thickness of 2.25 cm < 2 >. The thermal aging can be performed by, for example, The film may be maintained at a temperature of about 160 DEG C for about 1 hour. The grinding angle incident incidence angle scattering (GISAXS) is measured by incidence of X-rays at an incident angle within the range of about 0.12 to 0.23 degrees A diffraction pattern emerging from the film can be obtained with a known measuring device (for example, 2D marCCD). A method of confirming the presence of a diffraction pattern of inflation impression through the diffraction pattern is as follows: Jiyida.

스침각 입사 소각 산란(GISAXS)에서 전술한 피크를 나타내는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있고, 그러한 특성이 목적에 따라 효과적으로 조절될 수 있다.The block copolymer exhibiting the aforementioned peaks in the fine angle incident incidence scattering (GISAXS) can exhibit excellent self-assembling properties, and such properties can be effectively controlled according to the purpose.

다른 측면에서 본 출원의 블록 공중합체는, 전술한 XRD 분석(X선 회절 분석, X-ray Diffraction analysis) 시에 소정 범위의 산란 벡터(q) 내에서 적어도 하나의 피크를 나타낼 수 있다.In another aspect, the block copolymer of the present application may exhibit at least one peak within a predetermined range of the scattering vector (q) in the above-described XRD analysis (X-ray diffraction analysis, X-ray diffraction analysis).

예를 들면, 상기 블록 공중합체는, X선 회절 분석에서 0.5 nm-1 내지 10 nm-1의 산란 벡터(q) 범위 내에서 적어도 하나의 피크를 나타낼 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 0.7 nm-1 이상, 0.9 nm-1 이상, 1.1 nm-1 이상, 1.3 nm-1 이상 또는 1.5 nm-1 이상일 수 있다. 상기 피크가 나타나는 산란 벡터(q)은 다른 예시에서 9 nm-1 이하, 8 nm-1 이하, 7 nm-1 이하, 6 nm-1 이하, 5 nm-1 이하, 4 nm-1 이하, 3.5 nm-1 이하 또는 3 nm-1 이하일 수 있다. For example, the block copolymer may exhibit at least one peak within the range of the scattering vector (q) of 0.5 nm -1 to 10 nm -1 in the X-ray diffraction analysis. The scattering vector q at which the peak appears may be 0.7 nm -1 or more, 0.9 nm -1 or more, 1.1 nm -1 or more, 1.3 nm -1 or 1.5 nm -1 or more in another example. In another example, the scattering vector q at which the peak appears may be 9 nm -1 or less, 8 nm -1 or less, 7 nm -1 or less, 6 nm -1 or less, 5 nm -1 or less, 4 nm -1 or less, 3.5 nm -1 or 3 nm -1 or less.

상기 산란 벡터(q)의 범위 내에서 확인되는 피크의 반높이 너비(Full width at half maximum, FWHM)는, 0.2 내지 0.9 nm-1의 범위 내일 수 있다. 상기 반높이 너비는 다른 예시에서 0.25 nm-1 이상, 0.3 nm-1 이상 또는 0.4 nm-1 이상일 수 있다. 상기 반높이 너비는 다른 예시에서 0.85 nm-1 이하, 0.8 nm-1 이하 또는 0.75 nm-1 이하일 수 있다. The full width at half maximum (FWHM) of the peak identified within the range of the scattering vector (q) may be in the range of 0.2 to 0.9 nm -1 . The half-height width may be at least 0.25 nm -1, at least 0.3 nm -1, or at least 0.4 nm -1 in other examples. The half-height width may be 0.85 nm -1 or less, 0.8 nm -1 or 0.75 nm -1 or less in other examples.

본 출원에서 용어 반높이 너비는, 최대 피크의 강도의 1/2의 강도를 나타내는 위치에서의 피크의 너비(산란 벡터(q)의 차이)를 의미할 수 있다. 상기 반높이 너비 등을 구하는 방식은 전술한 바와 같다.The term half-height width in the present application may mean the width of the peak (the difference in the scattering vector q) at a position showing the intensity of 1/2 of the intensity of the maximum peak. The half-height width and the like are determined as described above.

상기 산란 벡터(q)의 범위 내에서 상기 반높이 너비의 피크를 나타내는 블록 공중합체는, 자기 조립에 적합한 결정성 부위를 포함할 수 있다. 이에 따라서 상기 기술한 산란 벡터(q)의 범위 내에서 확인되는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다.The block copolymer exhibiting the half height width peak within the range of the scattering vector (q) may include a crystalline portion suitable for self-assembly. Accordingly, the block copolymer identified within the range of the above-described scattering vector (q) can exhibit excellent self-assembling properties.

상기 파라미터의 확인을 위한 XRD 분석을 수행하는 방식은 전술한 바와 같다.
The method of performing the XRD analysis for confirming the parameters is as described above.

본 출원의 하나의 측면에서는, 블록 공중합체의 제 1 블록의 표면 에너지와 상기 제 2 블록의 표면 에너지의 차이의 절대값이 10 mN/m 이하, 9 mN/m 이하, 8 mN/m 이하, 7.5 mN/m 이하 또는 7 mN/m 이하일 수 있다. 상기 표면 에너지의 차이의 절대값은 1.5 mN/m, 2 mN/m 또는 2.5 mN/m 이상일 수 있다. 이러한 범위의 표면 에너지의 차이의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. 상기에서 제 1 블록은, 예를 들면, 전술한 측쇄 사슬을 가지는 블록일 수 있다. In one aspect of the present application, the absolute value of the difference between the surface energy of the first block of the block copolymer and the surface energy of the second block is 10 mN / m or less, 9 mN / m or less, 8 mN / m or less, 7.5 mN / m or less or 7 mN / m or less. The absolute value of the difference in surface energy may be 1.5 mN / m, 2 mN / m or 2.5 mN / m or more. The structure in which the first block and the second block having the absolute value of the difference in surface energy in this range are connected by covalent bonding can induce effective microphase seperation by phase separation due to proper non-availability. The first block may be, for example, a block having the above-described side chain.

표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정할 수 있다. 구체적으로 표면 에너지는 측정하고자 하는 대상 시료(블록 공중합체 또는 단독 중합체)를 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시킨 코팅액을 기판에 약 50nm의 두께와 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 상온에서 약 1 시간 정도 건조시킨 후에 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시킨 막에 대하여 측정할 수 있다. 열적 숙성을 거친 상기 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하고, 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구한다. 그 후, 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구할 수 있다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구할 수 있다.Surface energy can be measured using a Drop Shape Analyzer (DSA100, KRUSS). Specifically, the surface energy of a sample solution (block copolymer or homopolymer) to be measured is diluted with fluorobenzene to a solid concentration of about 2% by weight, and the coating solution is applied to the substrate with a thickness of about 50 nm and a coating area of 4 cm 2 (2 cm in length, 2 cm in length) and dried at room temperature for about 1 hour and then thermally annealed at 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle is repeated 5 times to obtain an average value of the obtained five contact angle values and similarly, The process of dropping the known diiodomethane and determining the contact angle thereof is repeated five times, and an average value of the obtained five contact angle values is obtained. Thereafter, the surface energy can be obtained by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical value of the surface energy for each block of the block copolymer can be obtained by the method described above for a homopolymer produced only of the monomers forming the block.

블록 공중합체가 전술한 측쇄 사슬을 포함하는 경우에 상기 측쇄 사슬이 포함되어 있는 블록은 다른 블록에 비하여 높은 표면 에너지를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 측쇄 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 높은 표면 에너지를 가질 수 있다. 이러한 경우에 제 1 블록의 표면 에너지는, 약 20 mN/m 내지 40 mN/m의 범위 내에 있을 수 있다. 상기 제 1 블록의 표면 에너지는, 22 mN/m 이상, 24 mN/m 이상, 26 mN/m 이상 또는 28 mN/m 이상일 수 있다. 상기 제 1 블록의 표면 에너지는, 38 mN/m 이하, 36 mN/m 이하, 34 mN/m 이하 또는 32 mN/m 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 표면 에너지의 차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다. When the block copolymer includes the above-described side chain chain, the block including the side chain chain may have a higher surface energy than other blocks. For example, if the first block of the block copolymer comprises a side chain, the first block may have a higher surface energy than the second block. In this case, the surface energy of the first block may be in the range of about 20 mN / m to 40 mN / m. The surface energy of the first block may be greater than or equal to 22 mN / m, greater than or equal to 24 mN / m, greater than or equal to 26 mN / m, or greater than or equal to 28 mN / m. The surface energy of the first block may be 38 mN / m or less, 36 mN / m or less, 34 mN / m or less, or 32 mN / m or less. The first block is included, and the block copolymer showing the difference in surface energy as the second block and the like can exhibit excellent self-assembling properties.

블록 공중합체에서 제 1 블록과 제 2 블록의 밀도의 차이의 절대값은 0.25 g/cm3 이상, 0.3 g/cm3 이상, 0.35 g/cm3 이상, 0.4 g/cm3 이상 또는 0.45 g/cm3 이상일 수 있다. 상기 밀도의 차이의 절대값은 0.9 g/cm3 이상, 0.8 g/cm3 이하, 0.7 g/cm3 이하, 0.65 g/cm3 이하 또는 0.6 g/cm3 이하일 수 있다. 이러한 범위의 밀도차의 절대값을 가지는 제 1 블록과 제 2 블록이 공유 결합에 의해 연결된 구조는, 적절한 비상용성으로 인한 상분리에 의해 효과적인 미세상분리(microphase seperation)를 유도할 수 있다. The absolute value of the difference between the density of the first block and the second block in the block copolymer is 0.25 g / cm 3 or more, 0.3 g / cm 3 or more, 0.35 g / cm 3 or more, 0.4 g / cm 3 or more, or 0.45 g / cm < 3 >. The absolute value of the density difference may be 0.9 g / cm 3 or more, 0.8 g / cm 3 or less, 0.7 g / cm 3 or less, 0.65 g / cm 3 or less, or 0.6 g / cm 3 or less. The structure in which the first block having the absolute value of the density difference in this range and the second block are connected by the covalent bond can induce an effective microphase seperation by phase separation due to suitable non-availability.

상기 블록 공중합체의 각 블록의 밀도는 공지의 부력법을 이용하여 측정할 수 있으며, 예를 들면, 에탄올과 같이 공기 중에서의 질량과 밀도를 알고 있는 용매 내에서의 블록 공중합체의 질량을 분석하여 밀도를 측정할 수 있다. The density of each block of the block copolymer can be measured by a known buoyancy method. For example, the mass of the block copolymer in a solvent such as ethanol, which is known in mass and density in air, is analyzed The density can be measured.

블록 공중합체가 전술한 측쇄 사슬을 포함하는 경우에 상기 측쇄 사슬이 포함되어 있는 블록은 다른 블록에 비하여 낮은 밀도를 가질 수 있다. 예를 들어, 블록 공중합체의 제 1 블록이 측쇄 사슬을 포함한다면, 제 1 블록은 제 2 블록에 비하여 낮은 밀도를 가질 수 있다. 이러한 경우에 제 1 블록의 밀도는, 약 0.9 g/cm3 내지 1.5 g/cm3 정도의 범위 내에 있을 수 있다. 상기 제 1 블록의 밀도는, 0.95 g/cm3 이상일 수 있다. 상기 제 1 블록의 밀도는, 1.4 g/cm3 이하, 1.3 g/cm3 이하, 1.2 g/cm3 이하, 1.1 g/cm3 이하 또는 1.05 g/cm3 이하일 수 있다. 이러한 제 1 블록이 포함되고, 제 2 블록과 상기와 같은 밀도차이를 나타내는 블록 공중합체은, 우수한 자기 조립 특성을 나타낼 수 있다. 상기 언급된 표면 에너지와 밀도는, 상온에서 측정한 수치일 수 있다.When the block copolymer includes the above-described side chain chain, the block including the side chain chain may have a lower density than other blocks. For example, if the first block of the block copolymer comprises a side chain, the first block may have a lower density than the second block. In this case, the density of the first block may be in the range of about 0.9 g / cm 3 to about 1.5 g / cm 3 . The density of the first block may be 0.95 g / cm < 3 > or more. The density of the first block is 1.4 g / cm < 3 > 1.3 g / cm < 3 > 1.2 g / cm < 3 > 1.1 g / cm < 3 > Or 1.05 g / cm < 3 > ≪ / RTI > Such a first block is included, and a block copolymer exhibiting such a density difference with the second block can exhibit excellent self-assembling properties. The above-mentioned surface energy and density may be values measured at room temperature.

블록 공중합체는, 부피 분율이 0.4 내지 0.8의 범위 내에 있는 블록과, 부피 분율이 0.2 내지 0.6의 범위 내에 있는 블록을 포함할 수 있다. 블록 공중합체가 측쇄 사슬을 포함하는 경우, 상기 측쇄 사슬을 가지는 블록의 부피 분율이 0.4 내지 0.8의 범위 내에 있을 수 있다. 예를 들어, 측쇄 사슬이 제 1 블록에 포함되는 경우에 제 1 블록의 부피 분율이 0.4 내지 0.8의 범위 내이고, 제 2 블록의 부피 분율이 0.2 내지 0.6의 범위 내에 있을 수 있다. 제 1 블록과 제 2 블록의 부피 분율의 합은 1일 수 있다. 상기와 같은 부피 분율로 각 블록을 포함하는 블록 공중합체는 우수한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 각 블록의 부피 분율은 각 블록의 밀도와 GPC(Gel Permeation Chromatogrph)에 의해 측정되는 분자량을 토대로 구할 수 있다. The block copolymer may include a block having a volume fraction falling within a range of 0.4 to 0.8 and a block having a volume fraction falling within a range of 0.2 to 0.6. When the block copolymer comprises a side chain chain, the volume fraction of the block having the side chain chain may be in the range of 0.4 to 0.8. For example, when the side chain is included in the first block, the volume fraction of the first block may be in the range of 0.4 to 0.8, and the volume fraction of the second block may be in the range of 0.2 to 0.6. The sum of the volume fractions of the first block and the second block may be one. The block copolymer containing each block in the above volume fraction can exhibit excellent self-assembling properties. The volume fraction of each block of the block copolymer can be determined based on the density of each block and the molecular weight measured by GPC (Gel Permeation Chromatography).

블록 공중합체의 수평균분자량(Mn (Number Average Molecular Weight))은, 예를 들면, 3,000 내지 300,000의 범위 내에 있을 수 있다. 본 명세서에서 용어 수평균분자량은, GPC(Gel Permeation Chromatograph)를 사용하여 측정한 표준 폴리스티렌에 대한 환산 수치이고, 본 명세서에서 용어 분자량은 특별히 달리 규정하지 않는 한 수평균분자량을 의미한다. 분자량(Mn)은 다른 예시에서는, 예를 들면, 3000 이상, 5000 이상, 7000 이상, 9000 이상, 11000 이상, 13000 이상 또는 15000 이상일 수 있다. 분자량(Mn)은 또 다른 예시에서 250000 이하, 200000 이하, 180000 이하, 160000이하, 140000이하, 120000이하, 100000이하, 90000이하, 80000이하, 70000이하, 60000이하, 50000이하, 40000이하, 30000 이하 또는 25000 이하 정도일 수 있다. 블록 공중합체는, 1.01 내지 1.60의 범위 내의 분산도(polydispersity, Mw/Mn)를 가질 수 있다. 분산도는 다른 예시에서 약 1.1 이상, 약 1.2 이상, 약 1.3 이상 또는 약 1.4 이상일 수 있다.The number average molecular weight (Mn) of the block copolymer may be in the range of, for example, 3,000 to 300,000. In the present specification, the term number average molecular weight refers to a value converted to standard polystyrene measured using GPC (Gel Permeation Chromatograph). In the present specification, the term molecular weight refers to a number average molecular weight unless otherwise specified. The molecular weight (Mn) may be, for example, 3000 or more, 5000 or more, 7000 or more, 9000 or more, 11000 or more, 13000 or more, or 15000 or more in other examples. In another example, the molecular weight (Mn) is not more than 250,000, less than 200,000, less than or equal to 180,000, less than or equal to 160,000, less than or equal to 140000, less than or equal to 120000, less than or equal to 100000, less than or equal to 90000, less than or equal to 80000, less than or equal to 70000, Or 25,000 or less. The block copolymer may have a polydispersity (Mw / Mn) in the range of 1.01 to 1.60. In another example, the degree of dispersion may be at least about 1.1, at least about 1.2, at least about 1.3, or at least about 1.4.

이러한 범위에서 블록 공중합체는 적절한 자기 조립 특성을 나타낼 수 있다. 블록 공중합체의 수평균 분자량 등은 목적하는 자기 조립 구조 등을 감안하여 조절될 수 있다. In this range, the block copolymer can exhibit proper self-assembling properties. The number average molecular weight of the block copolymer and the like can be adjusted in consideration of the desired self-assembling structure and the like.

블록 공중합체가 상기 제 1 및 제 2 블록을 적어도 포함할 경우에 상기 블록 공중합체 내에서 제 1 블록, 예를 들면, 전술한 측쇄 사슬을 포함하는 블록의 비율은 10몰% 내지 90몰%의 범위 내에 있을 수 있다.When the block copolymer contains at least the first and second blocks, the ratio of the first block in the block copolymer, for example, the block including the above-described side chain chain is from 10 mol% to 90 mol% Lt; / RTI >

본 출원은 또한 상기 블록 공중합체를 포함하는 고분자 막에 대한 것이다. 상기 고분자 막은 다양한 용도에 사용될 수 있으며, 예를 들면, 다양한 전자 또는 전자 소자, 상기 패턴의 형성 공정 또는 자기 저장 기록 매체, 플래쉬 메모리 등의 기록 매체 또는 바이오 센서 등에 사용될 수 있다. The present application is also directed to a polymer membrane comprising said block copolymer. The polymer membrane can be used for various purposes, for example, various electronic or electronic devices, a process of forming the pattern, a recording medium such as a magnetic storage medium, a flash memory, or a biosensor.

하나의 예시에서 상기 고분자 막에서 상기 블록 공중합체는, 자기 조립을 통해 스피어(sphere), 실린더(cylinder), 자이로이드(gyroid) 또는 라멜라(lamellar) 등을 포함하는 주기적 구조를 구현하고 있을 수 있다. 이러한 구조는, 수직 배향되어 있을 수 있다. 예를 들면, 블록 공중합체에서 상기 제 1 또는 제 2 블록 또는 그와 공유 결합된 다른 블록의 세그먼트 내에서 다른 세그먼트가 라멜라 형태 또는 실린더 형태 등과 같은 규칙적인 구조를 형성하고 있을 수 있고, 이러한 구조는 수직 배향되어 있을 수 있다.In one example, the block copolymer in the polymer membrane may be self-assembled to implement a cyclic structure including a sphere, a cylinder, a gyroid or a lamellar, . Such a structure may be vertically oriented. For example, in a block copolymer, other segments within the segments of the first or second block or other covalently bonded blocks may form a regular structure such as a lamellar or cylinder shape, And may be vertically oriented.

본 출원의 상기 고분자막은 전술한 인플레인상 회절 패턴, 즉 GISAXS 분석 시에 GISAXS 회절 패턴에서 X좌표에 수직한 피크를 나타낼 수 있다. 추가적인 예시에서 상기 GISAXS 회절 패턴의 X좌표에서 확인되는 피크은, 적어도 2개 이상일 수 있고, 복수의 피크가 존재하는 경우에 그 피크의 산란 벡터(q값)들은 정수비를 가지면서 확인될 수 있다.The polymer membrane of the present application can exhibit a peak perpendicular to the X coordinate in the above-described inflation impression diffraction pattern, that is, the GISAXS diffraction pattern in the GISAXS analysis. In a further example, the peak identified in the X coordinate of the GISAXS diffraction pattern may be at least two or more, and when there are a plurality of peaks, the scattering vector (q values) of the peak may be identified with an integer ratio.

본 출원은 또한 상기 블록 공중합체를 사용하여 고분자 막을 형성하는 방법에 대한 것이다. 상기 방법은 상기 블록 공중합체를 포함하는 고분자막을 자기 조립된 상태로 기판상에 형성하는 것을 포함할 수 있다. 예를 들면, 상기 방법은 상기 블록 공중합체 또는 그를 포함하는 코팅액을 도포하여 층을 형성하고, 이를 숙성하는 과정을 포함할 수 있다. 상기에서 숙성 공정은 열적 숙성(thermal annealing) 공정이거나, 용매 숙성(solvent annealing) 공정일 수 있다.The present application also relates to a method for forming a polymer film using the block copolymer. The method may include forming a polymer membrane including the block copolymer on a substrate in a self-assembled state. For example, the method may include coating the block copolymer or a coating solution containing the block copolymer to form a layer, and then aging the layer. The aging process may be a thermal annealing process or a solvent annealing process.

열적 숙성은, 예를 들면, 블록 공중합체의 상전이온도 또는 유리전이온도를 기준으로 수행될 수 있고, 예를 들면, 상기 유리전이온도 또는 상전이온도 이상의 온도에서 수행될 수 있다. 이러한 열적 숙성이 수행되는 시간은 특별히 제한되지 않으며, 예를 들면, 약 1분 내지 72시간의 범위 내에서 수행될 수 있지만, 이는 필요에 따라서 변경될 수 있다. 열적 숙성 과정에서 열처리 온도는, 예를 들면, 100℃ 내지 250℃ 정도일 수 있으나, 이는 사용되는 블록 공중합체를 고려하여 변경될 수 있다.Thermal aging can be performed based on, for example, the phase transition temperature or the glass transition temperature of the block copolymer, and can be performed at, for example, a temperature above the glass transition temperature or the phase transition temperature. The time at which such thermal aging is performed is not particularly limited, and can be performed within a range of, for example, about 1 minute to 72 hours, but this can be changed as required. The heat treatment temperature in the thermal aging process may be, for example, about 100 ° C to 250 ° C, but may be changed in consideration of the block copolymer to be used.

또한, 상기 용매 숙성 공정은, 적절한 상온의 비극성 용매 및/또는 극성 용매 내에서, 약 1분 내지 72 시간 동안 수행될 수도 있다.Further, the solvent aging step may be performed in a non-polar solvent and / or a polar solvent at a suitable room temperature for about 1 minute to 72 hours.

본 출원은 또한 패턴 형성 방법에 대한 것이다. 상기 방법은, 예를 들면, 기판 및 상기 기판의 표면에 형성되어 있고, 자기 조립된 상기 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 제 1 또는 제 2 블록을 선택적으로 제거하는 과정을 포함할 수 있다. 상기 방법은 상기 기판에 패턴을 형성하는 방법일 수 있다. 예를 들면 상기 방법은, 상기 블록 공중합체를 포함하는 고분자 막을 기판에 형성하고, 상기 막 내에 존재하는 블록 공중합체의 어느 하나 또는 그 이상의 블록을 선택적으로 제거한 후에 기판을 식각하는 것을 포함할 수 있다. 이러한 방식으로, 예를 들면, 나노 스케일의 미세 패턴의 형성이 가능하다. 또한, 고분자 막 내의 블록 공중합체의 형태에 따라서 상기 방식을 통하여 나노 로드 또는 나노 홀 등과 같은 다양한 형태의 패턴을 형성할 수 있다. 필요하다면, 패턴 형성을 위해서 상기 블록 공중합체와 다른 공중합체 혹은 단독 중합체 등이 혼합될 수 있다. 이러한 방식에 적용되는 상기 기판의 종류는 특별히 제한되지 않고, 필요에 따라서 선택될 수 있으며, 예를 들면, 산화 규소 등이 적용될 수 있다. The present application also relates to a method of pattern formation. The above method is a method for selectively removing the first or second block of the block copolymer in a laminate having a substrate and a polymer film formed on the surface of the substrate and self-assembled with the block copolymer . ≪ / RTI > The method may be a method of forming a pattern on the substrate. For example, the method may include forming a polymeric film comprising the block copolymer on a substrate, selectively removing one or more blocks of the block copolymer present in the film, and then etching the substrate . In this way, it is possible to form, for example, a nanoscale fine pattern. In addition, various patterns such as nano-rods, nano-holes, and the like can be formed through the above-described method depending on the type of the block copolymer in the polymer film. If necessary, the block copolymer may be mixed with another copolymer or homopolymer for pattern formation. The type of the substrate to be applied to this method is not particularly limited and may be selected as required. For example, silicon oxide or the like may be applied.

예를 들면, 상기 방식은 높은 종횡비를 나타내는 산화 규소의 나노 스케일의 패턴을 형성할 수 있다. 예를 들면, 산화 규소 상에 상기 고분자막을 형성하고, 상기 고분자막 내의 블록 공중합체가 소정 구조를 형성하고 있는 상태에서 블록 공중합체의 어느 한 블록을 선택적으로 제거한 후에 산화 규소를 다양한 방식, 예를 들면, 반응성 이온 식각 등으로 에칭하여 나노로드 또는 나노 홀의 패턴 등을 포함한 다양한 형태를 구현할 수 있다. 또한, 이러한 방법을 통하여 종횡비가 큰 나노 패턴의 구현이 가능할 수 있다.For example, the method can form a nanoscale pattern of silicon oxide that exhibits a high aspect ratio. For example, the polymer film is formed on silicon oxide, and one block of the block copolymer is selectively removed while the block copolymer in the polymer film forms a predetermined structure. Thereafter, the silicon oxide is removed in various ways, for example, , Reactive ion etching, or the like to form various patterns including patterns of nano-rods or nano holes. In addition, it is possible to realize a nano pattern having a large aspect ratio through such a method.

예를 들면, 상기 패턴은, 수십 나노미터의 스케일에서 구현될 수 있으며, 이러한 패턴은, 예를 들면, 차세대 정보전자용 자기 기록 매체 등을 포함한 다양한 용도에 활용될 수 있다.For example, the pattern can be implemented in a scale of several tens of nanometers, and such a pattern can be utilized for various purposes including, for example, a next-generation information electronic magnetic recording medium and the like.

예를 들면, 상기 방식에 의하면 약 10 nm 내지 40 nm의 폭을 가지는 나노 구조물, 예를 들면, 나노 선들이 약 20 nm 내지 80 nm의 간격을 두고 배치되어 있는 패턴을 형성할 수 있다. 다른 예시에서는 약 10 nm 내지 40 nm의 너비, 예를 들면 직경을 가지는 나노 홀들이 약 20 nm 내지 80 nm의 간격을 형성하면 배치되어 있는 구조의 구현도 가능하다.For example, the method can form a pattern in which nanostructures having a width of about 10 nm to 40 nm, for example, nanowires are disposed at intervals of about 20 nm to 80 nm. In another example, it is possible to implement a structure in which a width of about 10 nm to 40 nm, for example, nano holes having a diameter of about 20 nm to 80 nm is formed.

또한, 상기 구조에서 나노 선이나 나노 홀들이 큰 종횡비(aspect ratio)를 가지도록 할 수 있다.Also, in the above structure, the nanowires and nano holes can have a large aspect ratio.

상기 방법에서 블록 공중합체의 어느 한 블록을 선택적으로 제거하는 방식은 특별히 제한되지 않고, 예를 들면, 고분자막에 적정한 전자기파, 예를 들면, 자외선 등을 조사하여 상대적으로 소프트한 블록을 제거하는 방식을 사용할 수 있다. 이 경우 자외선 조사 조건은 블록 공중합체의 블록의 종류에 따라서 결정되며, 예를 들면, 약 254 nm 파장의 자외선을 1분 내지 60 분 동안 조사하여 수행할 수 있다.The method of selectively removing one block of the block copolymer in the above method is not particularly limited. For example, a method of removing a relatively soft block by irradiating an appropriate electromagnetic wave, for example, ultraviolet light, Can be used. In this case, the ultraviolet ray irradiation conditions are determined depending on the type of the block of the block copolymer, and can be performed, for example, by irradiating ultraviolet light having a wavelength of about 254 nm for 1 minute to 60 minutes.

자외선 조사에 이어서 고분자 막을 산 등으로 처리하여 자외선에 의해 분해된 세그먼트를 추가로 제거하는 단계를 수행할 수도 있다.Following the ultraviolet irradiation, the polymer membrane may be treated with an acid or the like to further remove the segment decomposed by ultraviolet rays.

선택적으로 블록이 제거된 고분자막을 마스크로 하여 기판을 에칭하는 단계는 특별히 제한되지 않고, 예를 들면, CF4/Ar 이온 등을 사용한 반응성 이온 식각 단계를 통해 수행할 수 있고, 이 과정에 이어서 산소 플라즈마 처리 등에 의해 고분자막을 기판으로부터 제거하는 단계를 또한 수행할 수 있다.The step of selectively etching the substrate using the polymer film from which the block is removed is not particularly limited and may be performed by, for example, a reactive ion etching step using CF 4 / Ar ions, etc., followed by an oxygen plasma Removing the polymer membrane from the substrate by treatment or the like.

본 출원은, 자기 조립 특성 내지는 상분리 특성이 우수하여 다양한 용도에서 효과적으로 사용될 수 있는 블록 공중합체 및 그 용도를 제공할 수 있다.The present application can provide a block copolymer and its use that can be used effectively in various applications because of its excellent self-assembly property or phase separation property.

도 1 내지 6은 고분자막의 SEM 사진을 보여주는 도면이다.
도 7 및 8은, GISAXS 회절 패턴을 나타내는 도면이다.
도 9 내지 11은 고분자막의 SEM 사진을 보여주는 도면이다.
도 12 내지 14는 GISAXS 회절 패턴을 나타내는 도면이다.
1 to 6 are SEM photographs of a polymer membrane.
Figs. 7 and 8 are diagrams showing a GISAXS diffraction pattern. Fig.
9 to 11 are SEM photographs of the polymer membrane.
12 to 14 are diagrams showing a GISAXS diffraction pattern.

이하 본 출원에 따르는 실시예 및 비교예를 통하여 본 출원을 보다 상세히 설명하나, 본 출원의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present application will be described in detail by way of examples and comparative examples according to the present application, but the scope of the present application is not limited by the following examples.

1. One. NMRNMR 측정 Measure

NMR 분석은 삼중 공명 5 mm 탐침(probe)을 가지는 Varian Unity Inova(500 MHz) 분광계를 포함하는 NMR 분광계를 사용하여 상온에서 수행하였다. NMR 측정용 용매(CDCl3)에 분석 대상 물질을 약 10 mg/ml 정도의 농도로 희석시켜 사용하였고, 화학적 이동은 ppm으로 표현하였다. NMR analysis was performed at room temperature using an NMR spectrometer including a Varian Unity Inova (500 MHz) spectrometer with a triple resonance 5 mm probe. NMR measurement solvent (CDCl3) Was diluted to a concentration of about 10 mg / ml, and the chemical shift was expressed in ppm.

<적용 약어><Application Abbreviation>

br = 넓은 신호, s = 단일선, d = 이중선, dd = 이중 이중선, t = 삼중선, dt = 이중 삼중선, q = 사중선, p = 오중선, m = 다중선.
br = broad signal, s = singlet, d = doublet, dd = doublet, t = triplet, dt = double triplet, q = quartet, p = octet, m = polyline.

2. GPC(2. GPC ( GelCome PermeationPermeation ChromatographChromatograph ))

수평균분자량(Mn) 및 분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였다. 5 mL 바이얼(vial)에 실시예 또는 비교예의 블록 공중합체 또는 거대 개시제 등의 분석 대상 물일을 넣고, 약 1 mg/mL 정도의 농도가 되도록 THF(tetrahydro furan)에 희석한다. 그 후, Calibration용 표준 시료와 분석하고자 하는 시료를 syringe filter(pore size: 0.45 ㎛)를 통해 여과시킨 후 측정하였다. 분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, 시료의 elution time을 calibration curve와 비교하여 중량평균분자량(Mw) 및 수평균분자량(Mn)을 각각 구하고, 그 비율(Mw/Mn)로 분자량분포(PDI)를 계산하였다. GPC의 측정 조건은 하기와 같다. The number average molecular weight (Mn) and molecular weight distribution were measured using GPC (Gel Permeation Chromatography). Add a sample to be analyzed such as a block copolymer or a macroinitiator of the example or comparative example into a 5 mL vial and dilute with tetrahydrofuran (THF) to a concentration of about 1 mg / mL. After that, the calibration standard sample and the sample to be analyzed were filtered through a syringe filter (pore size: 0.45 μm) and then measured. The analytical program used was a ChemStation from Agilent Technologies. The elution time of the sample was compared with a calibration curve to determine the weight average molecular weight (Mw) and the number average molecular weight (Mn), and the molecular weight distribution (PDI ) Were calculated. The measurement conditions of GPC are as follows.

<GPC 측정 조건> &Lt; GPC measurement condition >

기기 : Agilent technologies 사의 1200 series Devices: 1200 series from Agilent Technologies

컬럼 : Polymer laboratories 사의 PLgel mixed B 2개 사용Column: Using PLgel mixed B from Polymer laboratories

용매 : THFSolvent: THF

컬럼온도 : 35℃Column temperature: 35 ° C

샘플 농도 : 1mg/mL, 200L 주입Sample concentration: 1 mg / mL, 200 L injection

표준 시료 : 폴리스티렌(Mp : 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
Standard samples: Polystyrene (Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)

3. GISAXS(3. GISAXS ( GrazingGrazing IncidenceIncidence SmallSmall AngleAngle X  X rayray ScatteringScattering ))

스침각 입사 소각 산란(GISAXS) 분석은, 포항가속기 3C 빔라인을 이용하여 수행하였다. 분석 대상인 블록 공중합체를 플루오로벤젠(fluorobezene)에 약 0.7 중량%의 고형분 농도로 희석시켜 코팅액을 제조하고, 상기 코팅액을 기재상에 약 5 nm의 두께로 스핀 코팅하였다. 코팅 면적은 2.25cm2 정도로 조정하였다(가로 길이: 1.5 cm, 세로 길이: 1.5 cm). 코팅된 고분자막을 상온에서 약 1시간 동안 건조시키고, 다시 약 160°C의 온도에서 약 1 시간 동안 열적 숙성(thermal annealing)시켜서 상분리 구조를 유도하였다. 이어서, 상분리 구조가 형성된 막을 형성하였다. 막의 임계각과 기재의 임계각 사이의 각도에 해당하는 약 0.12도 내지 0.23도의 범위 내의 입사각으로 막에 X선을 입사시킨 후에 검출기(2D marCCD)로 막에서 산란되어 나오는 X선 회절 패턴을 얻었다. 이 때 막으로부터 검출기까지의 거리는 약 2m 내지 3m의 범위 내에서 막에 형성된 자기 조립 패턴이 잘 관찰되는 범위로 선택하였다. 기재로는 친수성 표면을 가지는 기재(피라나(piranha) 용액으로 처리되어 순수에 대한 상온 젖음각이 약 5도인 실리콘 기판) 또는 소수성 표면을 가지는 기재(HMDS(hexamethyldisilazane)로 처리되어 순수에 대한 상온 젖음각이 약 60도인 실리콘 기판)를 사용하였다.
The GISAXS analysis was performed using a Pohang accelerator 3C beamline. The block copolymer to be analyzed was diluted with fluorobenzene to a solid concentration of about 0.7 wt% to prepare a coating solution, and the coating solution was spin-coated on the substrate to a thickness of about 5 nm. The coating area is 2.25 cm2 (Width: 1.5 cm, length: 1.5 cm). The coated polymer membrane was dried at room temperature for about 1 hour and then thermally annealed at about 160 ° C for about 1 hour to induce phase separation structure. Then, a film having a phase separation structure was formed. An X-ray diffraction pattern was obtained by scattering in a film with a detector (2D marCCD) after the X-ray was incident on the film at an incident angle within the range of about 0.12 to 0.23 degrees corresponding to the angle between the critical angle of the film and the critical angle of the substrate. At this time, the distance from the film to the detector was selected within a range of about 2 m to 3 m so that the self-assembly pattern formed on the film was well observed. The substrate may be a substrate having a hydrophilic surface (a silicon substrate treated with a solution of piranha and having a room temperature wetting angle of about 5 degrees relative to pure water) or a substrate having a hydrophobic surface (HMDS (hexamethyldisilazane) A silicon substrate having a recessed angle of about 60 degrees) was used.

4. 4. XRDXRD 분석 방법 Analysis method

XRD 분석은 포항가속기 4C 빔라인에서 시료에 X선을 투과시켜 산란 벡터(q)에 따른 산란 강도를 측정함으로써 측정하였다. 시료로는, 특별한 전처리 없이 합성된 블록 공중합체를 정제한 후에 진공 오븐에서 하루 정도 유지함으로써 건조시킨 분말 상태의 블록 공중합체를 XRD측정용 셀에 넣어서 사용하였다. XRD 패턴 분석 시에는, 수직 크기가 0.023 mm이고, 수평 크기가 0.3 mm인 X선을 이용하였고, 검출기로는 2D marCCD를 이용하였다. 산란되어 나오는 2D 회절패턴을 이미지로 얻었다. 얻어진 회절 패턴을 최소 좌승법을 적용한 수치 분석학적인 방식으로 분석하여 산란 벡터 및 반높이 너비 등의 정보를 얻었다. 상기 분석 시에는 오리진(origin) 프로그램을 적용하였으며, XRD 회절 패턴에서 가장 최소의 강도(intensity)를 보이는 부분을 베이스라인(baseline)으로 잡아 상기에서의 강도(intensity)를 0으로 되게 한 상태에서 상기 XRD 패턴 피크의 프로파일을 가우시안 피팅(Gaussian fitting)하고, 피팅된 결과로부터 상기 산란 벡터와 반높이 너비를 구하였다. 가우시안 피팅 시에 R 제곱(R square)은 적어도 0.96 이상이 되도록 하였다.
The XRD analysis was performed by measuring the scattering intensity according to the scattering vector (q) by passing X-rays through the sample at the Pohang accelerator 4C beamline. As a sample, a block copolymer synthesized in the absence of a specific pretreatment was purified and then dried in a vacuum oven for one day to obtain a powdery block copolymer, which was used in an XRD measurement cell. For XRD pattern analysis, an X-ray with a vertical size of 0.023 mm and a horizontal size of 0.3 mm was used and a 2D marCCD was used as a detector. A scattered 2D diffraction pattern was obtained as an image. The obtained diffraction patterns were analyzed by numerical analytical method using the minimum left - hand method to obtain information such as the scattering vector and the half - height width. In the analysis, an origin program was applied. A portion having the smallest intensity in the XRD diffraction pattern was taken as a baseline, and the intensity was set to be 0, The profile of the XRD pattern peak was subjected to Gaussian fitting, and the above scattering vector and half height width were obtained from the fitted results. The R square was at least 0.96 at the time of Gaussian fitting.

5. 표면 에너지의 측정5. Measurement of surface energy

표면 에너지는 물방울형 분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 측정하였다. 측정하고자 하는 물질(중합체)을 플루오르벤젠(flourobenzene)에 약 2 중량%의 고형분 농도로 희석시켜 코팅액을 제조하고, 제조된 코팅액을 실리콘 웨이퍼에 약 50 nm의 두께 및 4 cm2의 코팅 면적(가로: 2cm, 세로: 2cm)으로 스핀 코팅하였다. 코팅층을 상온에서 약 1 시간 동안 건조하고, 이어서 약 160°C에서 약 1시간 동안 열적 숙성(thermal annealing)시켰다. 열적 숙성을 거친 막에 표면 장력(surface tension)이 공지되어 있는 탈이온화수를 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 동일하게, 표면 장력이 공지되어 있는 디요오드메탄(diiodomethane)을 떨어뜨리고 그 접촉각을 구하는 과정을 5회 반복하여, 얻어진 5개의 접촉각 수치의 평균치를 구하였다. 구해진 탈이온화수와 디요오드메탄에 대한 접촉각의 평균치를 이용하여 Owens-Wendt-Rabel-Kaelble 방법에 의해 용매의 표면 장력에 관한 수치(Strom 값)를 대입하여 표면 에너지를 구하였다. 블록 공중합체의 각 블록에 대한 표면 에너지의 수치는, 상기 블록을 형성하는 단량체만으로 제조된 단독 중합체(homopolymer)에 대하여 상기 기술한 방법으로 구하였다.
Surface energy was measured using a Drop Shape Analyzer (product of DSU100, KRUSS). The material to be measured (polymer) was diluted with flourobenzene to a solid concentration of about 2% by weight to prepare a coating solution. The coating solution was applied to a silicon wafer at a thickness of about 50 nm and a coating area of 4 cm 2 : 2 cm, length: 2 cm). The coating layer was dried at room temperature for about 1 hour and then subjected to thermal annealing at about 160 ° C for about 1 hour. The process of dropping the deionized water whose surface tension is known in the film subjected to thermal aging and obtaining the contact angle thereof was repeated 5 times to obtain an average value of the obtained five contact angle values. In the same manner, the process of dropping the diiodomethane having known surface tension and determining the contact angle thereof was repeated five times, and an average value of the obtained five contact angle values was obtained. The surface energy was determined by substituting the value (Strom value) of the surface tension of the solvent by the Owens-Wendt-Rabel-Kaelble method using the average value of the contact angle with the deionized water and diiodo methane obtained. The numerical values of surface energy for each block of the block copolymer were obtained by the method described above with respect to a homopolymer made only of the monomer forming the block.

6. 부피 6. Volume 분율의Fractional 측정 Measure

블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였으며, 구체적으로는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에 분석하고자 하는 시료를 넣고, 그 질량을 통해 계산하였다. The volume fraction of each block of the block copolymer was calculated based on the density at room temperature of each block and the molecular weight measured by GPC. The density was measured using a buoyancy method. Specifically, a sample to be analyzed was put into a solvent (ethanol) having a known mass and density in the air, and the mass was calculated.

제조예Manufacturing example 1.  One. 모노머(A)의Of the monomer (A) 합성 synthesis

하기 화학식 A의 화합물(DPM-C12)은 다음의 방식으로 합성하였다. 250 mL의 플라스크에 히드로퀴논(hydroquinone)(10.0g, 94.2 mmol) 및 1-브로모도데칸(1-Bromododecane)(23.5 g, 94.2 mmol)을 넣고, 100 mL의 아세토니트릴(acetonitrile)에 녹인 후 과량의 포타슘 카보네이트(potassium carbonate) 첨가하고, 75oC에서 약 48시간 동안 질소 조건하에서 반응시켰다. 반응 후 잔존하는 포타슘 카보네이트를 필터링하여 제거하고 반응에 사용한 아세토니트릴도 제거하였다. 여기에 DCM(dichloromethane)과 물의 혼합 용매를 첨가하여 워크업하고, 분리한 유기층을 모아서 MgSO4에 통과시켜 탈수하였다. 이어서, 컬럼 크로마토그래피에서 DCM(dichloromethane)을 사용하여 흰색 고체상의 목적물(4-도데실옥시페놀)(9.8 g, 35.2 mmol)을 약 37%의 수득률로 얻었다.The compound (DPM-C12) shown below was synthesized in the following manner. Hydroquinone (10.0 g, 94.2 mmol) and 1-bromododecane (23.5 g, 94.2 mmol) were placed in a 250-mL flask and dissolved in 100 mL of acetonitrile. Potassium carbonate was added and reacted at 75 ° C for about 48 hours under nitrogen. After the reaction, the remaining potassium carbonate was filtered off and acetonitrile used in the reaction was removed. A mixed solvent of DCM (dichloromethane) and water was added thereto to work up, and the separated organic layers were collected and dehydrated by passing through MgSO 4 . Subsequently, the title compound (4-dodecyloxyphenol) (9.8 g, 35.2 mmol) as white solid was obtained in a yield of about 37% using dichloromethane in column chromatography.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d6.77(dd, 4H); d4.45(s, 1H); d3.89(t, 2H); d1.75(p, 2H); d1.43(p, 2H); d1.33-1.26(m, 16H); d0.88(t, 3H). 1 H-NMR (CDCl 3) : d6.77 (dd, 4H); d4.45 (s, 1 H); d3.89 (t, 2H); d 1.75 (p, 2H); d1.43 (p, 2H); d 1.33-1.26 (m, 16H); d 0.88 (t, 3 H).

플라스크에 합성된 4-도데실옥시페놀(9.8 g, 35.2 mmol), 메타크릴산(6.0 g, 69.7 mmol), DCC(dicyclohexylcarbodiimide)(10.8 g, 52.3 mmol) 및 DMAP(p-dimethylaminopyridine)(1.7 g, 13.9 mmol)을 넣고, 120 mL의 메틸렌클로라이드를 첨가한 후, 질소 하 실온에서 24시간 동안 반응시켰다. 반응 종료 후에 반응 중에 생성된 염(urea salt)을 필터로 제거하고 잔존하는 메틸렌클로라이드도 제거하였다. 컬럼 크로마토그래피에서 헥산과 DCM(dichloromethane)을 이동상으로 사용하여 불순물을 제거하고, 다시 얻어진 생성물을 메탄올과 물의 혼합 용매(1:1 혼합)에서 재결정하여 흰색 고체상의 목적물(7.7 g, 22.2 mmol)을 63%의 수득률로 얻었다.(9.8 g, 35.2 mmol), methacrylic acid (6.0 g, 69.7 mmol), DCC (dicyclohexylcarbodiimide) (10.8 g, 52.3 mmol) and DMAP (p-dimethylaminopyridine) , 13.9 mmol), 120 mL of methylene chloride was added, and the reaction was allowed to proceed at room temperature under nitrogen for 24 hours. After completion of the reaction, the salt (urea salt) produced during the reaction was filtered off and the remaining methylene chloride was removed. The resulting product was recrystallized in a mixed solvent of methanol and water (1: 1 mixture) to obtain the title compound (7.7 g, 22.2 mmol) as a white solid. 1H-NMR (DMSO-d6) 63%. &Lt; / RTI &gt;

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.43(p, 2H); 1.34-1.27(m, 16H); d0.88(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d, 1.76 (p, 2H); d1.43 (p, 2H); 1.34-1.27 (m, 16H); d 0.88 (t, 3 H).

[화학식 A] (A)

Figure pat00005
Figure pat00005

화학식 A에서 R은 탄소수 12의 직쇄 알킬기이다.
In formula (A), R is a straight chain alkyl group having 12 carbon atoms.

제조예Manufacturing example 2.  2. 모노머(G)의Of the monomer (G) 합성 synthesis

1-브로모도데칸 대신 1-브로모부탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 G의 화합물은 합성하였다. 상기 화합물의 NMR 분석 결과는 하기와 같다.A compound of the following formula G was synthesized in the same manner as in Preparation Example 1 except that 1-bromobutane was used instead of 1-bromododecane. NMR analysis results of the above compound are as follows.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.95(t, 2H); d2.06(dd, 3H); d1.76(p, 2H); d1.49(p, 2H); d0.98(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.73 (dt, 1 H); d 3.95 (t, 2 H); d 2.06 (dd, 3 H); d, 1.76 (p, 2H); d1.49 (p, 2H); d0.98 (t, 3H).

[화학식 G] [Formula G]

Figure pat00006
Figure pat00006

화학식 G에서 R은 탄소수 4의 직쇄 알킬기이다.
In formula (G), R is a straight-chain alkyl group having 4 carbon atoms.

제조예Manufacturing example 3.  3. 모노머(B)의Of the monomer (B) 합성 synthesis

1-브로모도데칸 대신 1-브로모옥탄을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 B의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.< NMR 분석 결과> A compound of the following formula (B) was synthesized in the same manner as in Preparation Example 1 except that 1-bromo octane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below. & Lt; NMR analysis result & gt ;

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.76(p, 2H); d1.45(p, 2H); 1.33-1.29(m, 8H); d0.89(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d, 1.76 (p, 2H); d1.45 (p, 2H); 1.33-1.29 (m, 8H); d0.89 (t, 3H).

[화학식 B] [Chemical Formula B]

Figure pat00007
Figure pat00007

화학식 B에서 R은 탄소수 8의 직쇄 알킬기이다.
In formula (B), R is a straight chain alkyl group having 8 carbon atoms.

제조예Manufacturing example 4.  4. 모노머(C)의Of the monomer (C) 합성 synthesis

1-브로모도데칸 대신 1-브로모데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 C의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (C) was synthesized in the same manner as in Preparation Example 1 except that 1-bromododecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.72(dt, 1H); d3.94(t, 2H); d2.06(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.34-1.28(m, 12H); d0.89(t, 3H). 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.72 (dt, 1 H); d 3.94 (t, 2 H); d 2.06 (dd, 3 H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.34-1.28 (m, 12H); d0.89 (t, 3H).

[화학식 C] &Lt; RTI ID = 0.0 &

Figure pat00008
Figure pat00008

화학식 C에서 R은 탄소수 10의 직쇄 알킬기이다.
In formula (C), R is a straight chain alkyl group having 10 carbon atoms.

제조예Manufacturing example 5.  5. 모노머(D)의Of the monomer (D) 합성 synthesis

1-브로모도데칸 대신 1-브로모테트라데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 D의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (D) was synthesized in the same manner as in Preparation Example 1 except that 1-bromotetradecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.02(dd, 2H); d6.89(dd, 2H); d6.33(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.27(m, 20H); d0.88(t, 3H.) 1 H-NMR (CDCl 3) : d7.02 (dd, 2H); d 6.89 (dd, 2 H); d6.33 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.27 (m, 20H); d 0.88 (t, 3H.)

[화학식 D] [Chemical Formula D]

Figure pat00009
Figure pat00009

화학식 D에서 R은 탄소수 14의 직쇄 알킬기이다.
In formula (D), R is a straight chain alkyl group having 14 carbon atoms.

제조예Manufacturing example 6.  6. 모노머(E)의Of the monomer (E) 합성 synthesis

1-브로모도데칸 대신 1-브로모헥사데칸을 사용한 것을 제외하고는 제조예 1에 준한 방식으로 하기 화학식 E의 화합물을 합성하였다. 상기 화합물에 대한 NMR 분석 결과를 하기에 나타내었다.A compound of the following formula (E) was synthesized in the same manner as in Preparation Example 1 except that 1-bromohexadecane was used instead of 1-bromododecane. NMR analysis results for the above compounds are shown below.

<< NMRNMR 분석 결과>  Analysis results>

1H-NMR(CDCl3): d7.01(dd, 2H); d6.88(dd, 2H); d6.32(dt, 1H); d5.73(dt, 1H); d3.94(t, 2H); d2.05(dd, 3H); d1.77(p, 2H); d1.45(p, 2H); 1.36-1.26(m, 24H); d0.89(t, 3H) 1 H-NMR (CDCl 3) : d7.01 (dd, 2H); d 6.88 (dd, 2 H); d6.32 (dt, 1 H); d5.73 (dt, 1 H); d 3.94 (t, 2 H); d 2.05 (dd, 3H); d 1.77 (p, 2H); d1.45 (p, 2H); 1.36-1.26 (m, 24H); d0.89 (t, 3H)

[화학식 E] (E)

Figure pat00010
Figure pat00010

화학식 E에서 R은 탄소수 16의 직쇄 알킬기이다.
In formula (E), R is a straight chain alkyl group having 16 carbon atoms.

실시예Example 1. One.

제조예 1의 모노머(A) 2.0 g과 RAFT(Reversible Addition Fragmentation chain Transfer) 시약인 시아노이소프로틸디티오벤조에이트 64 mg, 라디칼 개시제인 AIBN(Azobisisobutyronitrile) 23 mg 및 벤젠 5.34 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 70℃에서 4시간 동안 RAFT(Reversible Addition?ragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 후, 감압 여과하여 건조시켜, 분홍색의 거대개시제를 제조하였다. 상기 거대 개시제의 수득률은 약 82.6 중량%였고, 수평균 분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 9,000 및 1.16이었다. 거대개시제 0.3 g, 펜타플루오로스티렌 모노머 2.7174 g 및 벤젠 1.306 mL를 10 mL Schlenk flask에 넣고 질소 분위기 하에서 상온에서 30분 동안 교반한 후 115℃에서 4시간 동안 RAFT(Reversible Addition?ragmentation chain Transfer) 중합 반응을 수행하였다. 중합 후 반응 용액을 추출 용매인 메탄올 250 mL 에 침전시킨 다음, 감압 여과하여 건조시켜 연한 분홍색의 블록공중합체를 제조하였다. 상기 블록 공중합체의 수득률은 약 18 중량%였고, 수평균분자량(Mn) 및 분자량분포(Mw/Mn)는 각각 16,300 및 1.13이었다. 상기 블록 공중합체는 제조예 1의 모노머(A)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
2.0 g of the monomer (A) of Preparation Example 1, 64 mg of cyanoisoproyldithiobenzoate as a reversible addition fragmentation chain transfer (RAFT) reagent, 23 mg of azobisisobutyronitrile (AIBN) as a radical initiator and 5.34 mL of benzene were dissolved in 10 mL of Schlenk flask and stirred at room temperature for 30 minutes under a nitrogen atmosphere. Reversible addition ramentation chain transfer (RAFT) polymerization was carried out at 70 ° C for 4 hours. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and dried under reduced pressure to give a giant initiator of pink color. The yield of the macromonomer was about 82.6% by weight and the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) were 9,000 and 1.16, respectively. 0.3 g of macroinitiator, 2.7174 g of pentafluorostyrene monomer, and 1.306 mL of benzene were placed in a 10 mL Schlenk flask and stirred at room temperature for 30 minutes under a nitrogen atmosphere. Reversible addition ramentation chain transfer (RAFT) polymerization The reaction was carried out. After the polymerization, the reaction solution was precipitated in 250 mL of methanol, which was an extraction solvent, and then dried under reduced pressure to obtain a pale pink block copolymer. The yield of the block copolymer was about 18% by weight, and the number average molecular weight (Mn) and the molecular weight distribution (Mw / Mn) were 16,300 and 1.13, respectively. The block copolymer includes a first block derived from the monomer (A) of Production Example 1 and a second block derived from the pentafluorostyrene monomer.

실시예Example 2. 2.

제조예 1의 모노머(A) 대신에 제조예 3의 모노머(B)를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 3의 모노머(B)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1, except that the monomer (B) of Production Example 3 was used instead of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (B) of Production Example 3 and a second block derived from the pentafluorostyrene monomer.

실시예Example 3. 3.

제조예 1의 모노머(A) 대신에 제조예 4의 모노머(C)를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 4의 모노머(C)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1, except that the monomer (C) of Production Example 4 was used instead of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (C) of Production Example 4 and a second block derived from the pentafluorostyrene monomer.

실시예Example 4. 4.

제조예 1의 모노머(A) 대신에 제조예 5의 모노머(D)를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 5의 모노머(D)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1, except that the monomer (D) of Production Example 5 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (D) of Production Example 5 and a second block derived from the pentafluorostyrene monomer.

실시예Example 5. 5.

제조예 1의 모노머(A) 대신에 제조예 6의 모노머(E)를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 6의 모노머(E)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1 except that the monomer (E) of Production Example 6 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer comprises a first block derived from the monomer (E) of Production Example 6 and a second block derived from the pentafluorostyrene monomer.

비교예Comparative Example 1. One.

제조예 1의 모노머(A) 대신에 제조예 2의 모노머(G)를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 제조예 2의 모노머(G)에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1 except that the monomer (G) of Production Example 2 was used in place of the monomer (A) of Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer includes a first block derived from the monomer (G) of Production Example 2 and a second block derived from the pentafluorostyrene monomer.

비교예Comparative Example 2. 2.

제조예 1에서의 모노머(A) 대신에 4-?메톡시페닐 메타크릴레이트를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 상기 4-메톡시페닐 메타크릴레이트에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
Except that 4-methoxyphenylmethacrylate was used in place of the monomer (A) in Production Example 1, a block copolymer was prepared using a macromonomer and pentafluorostyrene as monomers in the same manner as in Example 1 Respectively. The block copolymer comprises a first block derived from the 4-methoxyphenyl methacrylate and a second block derived from the pentafluorostyrene monomer.

비교예Comparative Example 3. 3.

제조예 1에서의 모노머(A) 대신에 도데실 메타크릴레이트를 사용하는 것을 제외하고는 실시예 1에 준하는 방식으로 거대개시제 및 펜타플루오로스티렌을 모노머로 하여 블록 공중합체를 제조하였다. 상기 블록 공중합체는 상기 도데실 메타크릴레이트에서 유래된 제 1 블록과 상기 펜타플루오로스티렌 모노머에서 유래된 제 2 블록을 포함한다.
A block copolymer was prepared in the same manner as in Example 1, except that dodecyl methacrylate was used instead of the monomer (A) in Production Example 1, using a macro initiator and pentafluorostyrene as monomers. The block copolymer comprises a first block derived from the dodecyl methacrylate and a second block derived from the pentafluorostyrene monomer.

상기 실시예 및 비교예의 각 거대 개시제 및 제조된 블록 공중합체에 대한 GPC 측정 결과를 하기 표 1에 정리하여 기재하였다. The results of GPC measurement of each of the macro initiators and the prepared block copolymers in the Examples and Comparative Examples are summarized in Table 1 below.


실시예Example 비교예Comparative Example
1One 22 33 44 55 1One 22 33 MI
MI
MnMn 90009000 93009300 85008500 87008700 94009400 90009000 78007800 80008000
PDIPDI 1.161.16 1.151.15 1.171.17 1.161.16 1.131.13 1.161.16 1.171.17 1.191.19 BCP
BCP
MnMn 1630016300 1990019900 1710017100 1740017400 1890018900 1880018800 1870018700 1670016700
PDIPDI 1.131.13 1.201.20 1.191.19 1.171.17 1.171.17 1.221.22 1.251.25 1.181.18 MI: 거대 개시제
BCP: 블록 공중합체
Mn: 수평균분자량
PDI: 분자량 분포
MI:
BCP: block copolymer
Mn: number average molecular weight
PDI: molecular weight distribution

시험예Test Example 1. X선  1. X-ray 회절diffraction 분석  analysis

상기 각 블록 공중합체에 대하여 상기 언급한 방식으로 XRD 패턴을 분석한 결과는 하기 표 1에 정리하여 기재하였다(비교예 3의 경우, 산란 벡터 0.5 nm-1 내지 10 nm-1의 범위 내에서 피크가 관찰되지 않았다).The results of analyzing the XRD patterns of each of the above-mentioned block copolymers in the above-mentioned manner are summarized in the following Table 1 (in the case of Comparative Example 3, the scattering vector was observed in the range of 0.5 nm -1 to 10 nm -1 , Was not observed).


실시예Example 비교예Comparative Example
1One 22 33 44 55 1One 22 33 q피크 값(단위: nm-1)q peak value (unit: nm -1 ) 1.961.96 2.412.41 2.152.15 1.831.83 1.721.72 4.424.42 3.183.18 -- 사슬형성원자Chain forming atom 1212 88 1010 1414 1616 44 1One 1212 n/Dn / D 3.753.75 3.083.08 3.453.45 4.244.24 4.444.44 2.822.82 1.981.98 반높이 너비(단위: nm-1)Half height width (unit: nm -1 ) 0.570.57 0.720.72 0.630.63 0.450.45 0.530.53 0.970.97 1.061.06 -- q 피크 값: 산란 벡터q peak value: scattering vector
사슬 형성 원자: 제 1 블록의 사슬 형성 원자의 수Chain forming atom: the number of chain forming atoms of the first block
n/D: 수식 1(n / D: Equation 1 ( nqnq /(2×π))에 의해 계산된 수치(n: 사슬 형성 원자의 수, q는 산란 벡터 0.5 / (2 x?)) (N: number of chain forming atoms, q is the scattering vector 0.5 nmnm -1-One 내지 10  To 10 nmnm -1-One 의 범위에서 가장 큰 피크 면적을 가지는 피크가 확인되는 산란 벡터 수치)Lt; RTI ID = 0.0 &gt; a &lt; / RTI &gt; peak having the largest peak area in the range of &

시험예Test Example 2. 자기 조립 특성의 평가 2. Evaluation of self-assembly characteristics

실시예 또는 비교예의 블록 공중합체를 플루오로벤젠(fluorobezene)에 0.7 중량%의 고형분 농도로 희석시켜 제조한 코팅액을 실리콘 웨이퍼상에 약 5 nm의 두께로 스핀 코팅(코팅 면적: 가로×세로 = 1.5cm×1.5cm)하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160°C의 온도에서 약 1 시간 동안 열적 숙성(thermal annealing)하여 자기 조립된 막을 형성하였다. 형성된 막에 대하여 SEM(Scanning electron microscope) 이미지를 촬영하였다. 도 1 내지 5는 실시예 1 내지 5에 대하여 촬영한 SEM 이미지이다. 도면으로부터 확인되는 바와 같이 실시예의 블록 공중합체의 경우, 라인 패턴으로 자기 조립된 고분자막이 효과적으로 형성되었다. 이에 대하여 비교예의 경우, 적절한 상분리가 유도되지 않았다. 예를 들어, 도 6은, 비교예 3에 대한 SEM 결과이고, 이로부터 효과적인 상분리가 유도되지 않았음을 확인할 수 있다.
The coating solution prepared by diluting the block copolymer of Example or Comparative Example to a solid content concentration of 0.7% by weight in fluorobenzene was spin-coated (coating area: width × length = 1.5) on the silicon wafer to a thickness of about 5 nm cm x 1.5 cm), dried at room temperature for about 1 hour, and then thermally annealed at about 160 ° C for about 1 hour to form a self-assembled film. Scanning electron microscope (SEM) images were taken of the formed film. Figs. 1 to 5 are SEM images taken with respect to Examples 1 to 5. Fig. As can be seen from the figure, in the case of the block copolymer of the examples, the self-assembled polymer film in the line pattern was effectively formed. In contrast, in the case of the comparative example, proper phase separation was not induced. For example, FIG. 6 shows the SEM results for Comparative Example 3, which shows that effective phase separation was not induced.

시험예Test Example 2.  2. GISAXSGISAXS 회절diffraction 패턴의 확인 Identification of patterns

실시예 1에서 제조된 블록 공중합체에 대하여 친수성 표면으로서, 순수에 대한 상온 젖음각이 5도인 표면에 대하여 상기 기재된 방식으로 GISAXS(Grazing Incidence Small Angle X ray Scattering)를 측정한 결과는 도 7에 기재하였고, 소수성 표면으로서 순수에 대한 상온 젖음각이 60도인 표면에 대하여 측정한 GISAXS(Grazing Incidence Small Angle X ray Scattering)의 결과를 도 8에 나타내었다. 도 7 및 8로부터 어느 경우이던지 GISAXS에서 인플레인상의 회절 패턴을 나타내는 것을 확인할 수 있다. 이로부터 본 출원의 블록 공중합체는 다양한 기재에 대하여 수직 배향성을 나타낼 수 있음을 확인할 수 있다. The results of measuring the GISAXS (Grazing Incidence Small Angle X-ray Scattering) on the surface of the hydrophilic surface of the block copolymer prepared in Example 1 at a room temperature wetting angle of 5 degrees with respect to pure water as described above are shown in FIG. 7 And the results of GISAXS (Grazing Incidence Small Angle X-ray Scattering) measured on a surface having a room temperature wetting angle of 60 degrees for pure water as a hydrophobic surface are shown in FIG. From FIGS. 7 and 8, it can be seen that the GISAXS shows a diffraction pattern of inflation in either case. From this, it can be confirmed that the block copolymer of the present application can exhibit vertical alignment with respect to various substrates.

추가로 실시예 1에서 제조된 블록 공중합체에 대하여 상기와 같은 방식으로 고분자막을 형성시켰다. 고분자막은 각각 순수에 대한 상온 젖음각이 5도인 피라나 용액으로 처리된 실리콘 기판, 상기 젖음각이 약 45도인 실리콘 옥사이드 기판 및 상기 젖음각이 약 60도인 HMDS (hexamethyldisilazane) 처리 실리콘 기판에 형성하였다. 도 9 내지 11은 각각 상기 젖음각이 5도, 45도 및 60도에 대하여 형성된 고분자막에 대한 SEM 이미지이다. 도면으로부터 상기 블록 공중합체는, 기재의 표면 특성과 무관하게 효과적으로 상분리 구조를 구현하는 것을 확인할 수 있다.
Further, a polymer membrane was formed on the block copolymer prepared in Example 1 in the same manner as described above. The polymer film was formed on a silicon substrate treated with a pyranase solution having a room temperature wetting angle of 5 degrees for pure water, a silicon oxide substrate having a wetting angle of about 45 degrees and a hexamethyldisilazane (HMDS) treated silicon substrate having the wetting angle of about 60 degrees. FIGS. 9 to 11 are SEM images of the polymer membrane formed with respect to the wiping angles of 5 degrees, 45 degrees, and 60 degrees, respectively. From the figure, it can be confirmed that the block copolymer realizes a phase separation structure effectively regardless of the surface characteristics of the substrate.

시험예Test Example 3. 블록 공중합체의 물성 평가 3. Evaluation of physical properties of block copolymer

상기 제조된 각 블록 공중합체의 특성을 상기 언급한 방식으로 평가한 결과를 하기 표 2에 정리하여 기재하였다. The results of evaluation of the properties of each of the above-prepared block copolymers in the above-mentioned manner are summarized in Table 2 below.


실시예Example 비교예Comparative Example Ref
Ref
1One 22 33 44 55 1One 22 33
제1 블록

The first block
SESE 30.8330.83 31.4631.46 27.3827.38 26.92426.924 27.7927.79 37.3737.37 48.9548.95 19.119.1 38.338.3
DeDe 1One 1.041.04 1.021.02 0.990.99 1.001.00 1.111.11 1.191.19 0.930.93 1.051.05 VFVF 0.660.66 0.570.57 0.600.60 0.610.61 0.610.61 0.730.73 0.690.69 0.760.76 -- 제2 블록

The second block

SESE 24.424.4 24.424.4 24.424.4 24.424.4 24.424.4 24.424.4 24.424.4 24.424.4 41.841.8
DeDe 1.571.57 1.571.57 1.571.57 1.571.57 1.571.57 1.571.57 1.571.57 1.571.57 1.181.18 VFVF 0.340.34 0.430.43 0.400.40 0.390.39 0.390.39 0.270.27 0.310.31 0.240.24 -- SE 차이SE difference 6.436.43 7.067.06 2.982.98 3.393.39 3.393.39 12.9812.98 24.5524.55 5.35.3 3.53.5 De 차이De Difference 0.570.57 0.530.53 0.550.55 0.570.57 0.570.57 0.460.46 0.380.38 0.640.64 0.130.13 SE: 표면 에너지(단위: mN/m)
De: 밀도(단위: g/cm3)
VF: 부피 분율
SE 차이: 제 1 블록의 표면 에너지와 제 2 블록의 표면 에너지의 차이의 절대값
De 차이: 제 1 블록의 밀도와 제 2 블록의 밀도의 차이의 절대값
사슬 형성 원자: 제 1 블록의 사슬 형성 원자의 수
n/D: 수식 1(nq/(2×π))에 의해 계산된 수치(n: 사슬 형성 원자의 수, q는 산란 벡터 0.5 nm-1 내지 10 nm-1의 범위에서 가장 큰 피크 면적을 가지는 피크가 확인되는 산란 벡터 수치)
Ref: 폴리스티렌-폴리메틸메타크리레이트 블록 공중합체(제 1 블록: 폴리스티렌 블록, 제 2 블록: 폴리메틸메타크릴레이트 블록)
SE: surface energy (unit: mN / m)
De: density (unit: g / cm 3 )
VF: volume fraction
SE difference: the absolute value of the difference between the surface energy of the first block and the surface energy of the second block
De difference: the absolute value of the difference between the density of the first block and the density of the second block
Chain forming atom: the number of chain forming atoms of the first block
(n: number of chain-forming atoms, q is the largest peak area in the range of 0.5 nm -1 to 10 nm -1 of the scattering vector), n / D is the numerical value calculated by the equation 1 (nq / Scattering vector value at which the branching peak is identified)
Ref: Polystyrene-polymethyl methacrylate block copolymer (first block: polystyrene block, second block: polymethyl methacrylate block)

시험예Test Example 4.  4.

실시예 1과 같은 방식으로 블록 공중합체를 제조하되, 단량체와 거대 개시제의 몰비의 조절을 통해 다른 부피 분율을 가지는 블록 공중합체를 제조하였다.In the same manner as in Example 1 Block copolymers were prepared, and block copolymers having different volume fractions were prepared by controlling the molar ratio of monomers to macro initiators.

제조된 블록 공중합체의 부피 분율은 하기와 같다. The volume fractions of the prepared block copolymers are as follows.

제1 블록의 부피 분획The volume fraction of the first block 제2 블록의 부피 분획The volume fraction of the second block 샘플 1Sample 1 0.70.7 0.30.3 샘플 2Sample 2 0.590.59 0.410.41 샘플 3Sample 3 0.480.48 0.520.52

상기에서 블록 공중합체의 각 블록의 부피 분율은, 각 블록의 상온에서의 밀도와 GPC(Gel Permeation chromatograph)에 의해 측정된 분자량을 토대로 계산하였다. 상기에서 밀도는, 부력법을 이용하여 측정하였으며, 구체적으로는 공기 중에서의 질량과 밀도를 알고 있는 용매(에탄올) 내에서의 질량을 통해 계산하였고, GPC는 전술한 방식에 따라 계산하였다. The volume fraction of each block of the block copolymer was calculated on the basis of the density at room temperature of each block and the molecular weight measured by GPC (Gel Permeation Chromatograph). The density was measured using the buoyancy method. Specifically, the density was calculated through mass in a solvent (ethanol) in which mass and density in air were known, and GPC was calculated according to the above-described method.

상기 각 샘플의 블록 공중합체를 플로로벤젠(fluorobezene)에 0.7 중량%의 고형분 농도로 희석시켜 제조한 코팅액을 실리콘 웨이퍼 상에 약 5 nm의 두께로 스핀 코팅(코팅 면적: 가로 길이=1.5cm, 세로 길이=1.5cm)하고, 상온에서 약 1시간 동안 건조시킨 후에 다시 약 160℃의 온도에서 약 1 시간 동안 열적 숙성(thermal annealing)하여 막을 형성하였다. 형성된 막에 대하여 상기 기술한 방식으로 GISAXS를 측정하고 그 결과를 도면에 나타내었다. 도 12 내지 14는 각각 샘플 1 내지 3에 대한 결과이고, 도면으로부터 GISAXS상에 인플레인 회절 패턴이 확인되는 것을 알 수 있고, 이로부터 수직 배향성을 가질 것을 예측할 수 있다.A coating solution prepared by diluting a block copolymer of each sample with 0.7% by weight of solid content in fluorobenzene was spin-coated on a silicon wafer to a thickness of about 5 nm (coating area: width = 1.5 cm, Vertical length = 1.5 cm), dried at room temperature for about 1 hour, and then subjected to thermal annealing at a temperature of about 160 DEG C for about 1 hour to form a film. GISAXS was measured for the formed film in the manner described above and the results are shown in the figure. Figs. 12 to 14 are the results for Samples 1 to 3, respectively, from which it can be seen that the infra-red diffraction pattern is confirmed on the GISAXS, from which it can be predicted to have a vertical orientation.

Claims (19)

측쇄 사슬을 가지는 제 1 블록과 상기 제 1 블록과는 다른 제 2 블록을 포함하고, 상기 측쇄 사슬의 사슬 형성 원자의 수(n)는 하기 수식 1을 만족하는 블록 공중합체:
[수식 1]
3 nm-1 내지 5 nm-1 = nq/(2吝)
수식 1에서 n은 상기 사슬 형성 원자의 수이고, q는, 상기 블록 공중합체에 대한 X선 회절 분석에서 피크가 관찰되는 가장 작은 산란 벡터(q)이거나, 혹은 가장 큰 피크 면적의 피크가 관찰되는 산란 벡터(q)이다.
And a second block different from the first block, wherein the number of chain-forming atoms (n) of the side chain chain satisfies the following formula (1): &lt; EMI ID =
[Equation 1]
3 nm -1 to 5 nm -1 = nq / (2 吝)
In the formula 1, n is the number of the chain-forming atoms and q is the smallest scattering vector (q) in which the peak is observed in the X-ray diffraction analysis of the block copolymer, or a peak of the largest peak area is observed Is a scattering vector (q).
제 1 항에 있어서, 수식 1의 산란 벡터(q)가 1 nm-1 내지 3 nm-1의 범위 내에 있는 블록 공중합체.The block copolymer according to claim 1, wherein the scattering vector (q) of the formula (1) is in the range of 1 nm -1 to 3 nm -1 . 제 1 항에 있어서, 제 1 블록의 부피 분율은 0.4 내지 0.8의 범위 내에 있고, 제 2 블록의 부피 분율은 0.2 내지 0.6의 범위 내에 있으며, 제 1 블록과 제 2 블록의 부피 분율의 합은 1인 블록 공중합체. The method of claim 1, wherein the volume fraction of the first block is in the range of 0.4 to 0.8, the volume fraction of the second block is in the range of 0.2 to 0.6, and the sum of the volume fractions of the first block and the second block is 1 In block copolymer. 제 1 항에 있어서, 제 1 블록은 방향족 구조를 포함하는 블록 공중합체.The block copolymer of claim 1, wherein the first block comprises an aromatic structure. 제 4 항에 있어서, 방향족 구조에는 측쇄 사슬인 사슬 형성 원자가 8개 이상인 직쇄 사슬이 연결되어 있는 블록 공중합체.5. The block copolymer according to claim 4, wherein the aromatic structure is linked with a straight chain having 8 or more chain-forming atoms as side chain chains. 제 5 항에 있어서, 직쇄 사슬은 방향족 구조에 산소 원자 또는 질소 원자를 매개로 연결되어 있는 블록 공중합체.6. The block copolymer according to claim 5, wherein the linear chain is connected to the aromatic structure through an oxygen atom or a nitrogen atom. 제 1 항에 있어서, 제 2 블록은 1개 이상의 할로겐 원자를 포함하는 방향족 구조를 가지는 블록 공중합체.The block copolymer according to claim 1, wherein the second block has an aromatic structure containing at least one halogen atom. 제 7 항에 있어서, 할로겐 원자는 불소 원자인 블록 공중합체.8. The block copolymer according to claim 7, wherein the halogen atom is a fluorine atom. 제 1 항에 있어서, 제 1 블록은 할로겐 원자를 포함하지 않는 방향족 구조를 포함하고, 제 2 블록은 할로겐 원자를 포함하는 방향족 구조를 포함하는 블록 공중합체.The block copolymer according to claim 1, wherein the first block comprises an aromatic structure not containing a halogen atom, and the second block comprises an aromatic structure containing a halogen atom. 제 9 항에 있어서, 제 1 블록의 방향족 구조에는 측쇄 사슬인 사슬 형성 원자가 8개 이상인 직쇄 사슬이 연결되어 있는 블록 공중합체.10. The block copolymer according to claim 9, wherein the aromatic structure of the first block is connected to a straight chain having 8 or more chain-forming atoms as side chain chains. 제 10 항에 있어서, 직쇄 사슬은 방향족 구조에 산소 원자 또는 질소 원자를 매개로 연결되어 있는 블록 공중합체.11. The block copolymer according to claim 10, wherein the linear chain is connected to the aromatic structure via an oxygen atom or a nitrogen atom. 제 1 항에 있어서, 제 1 블록은, 하기 화학식 1로 표시되는 블록 공중합체:
[화학식 1]
Figure pat00011

화학식 1에서 R은 수소 또는 탄소수 1 내지 4의 알킬기이고, X는 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 카보닐기, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, Y는 8개 이상의 사슬 형성 원자를 가지는 사슬이 연결된 고리 구조를 포함하는 1가 치환기이다.
2. The block copolymer according to claim 1, wherein the first block is a block copolymer represented by the following formula (1)
[Chemical Formula 1]
Figure pat00011

Wherein R is hydrogen or an alkyl group having 1 to 4 carbon atoms and X is a single bond, an oxygen atom, a sulfur atom, -S (= O) 2 -, a carbonyl group, an alkylene group, an alkenylene group, C (= O) -X 1 - or -X 1 -C (= O) -, wherein X 1 represents an oxygen atom, a sulfur atom, -S (═O) 2 -, an alkylene group, And Y is a monovalent substituent group comprising a ring structure having a chain having 8 or more chain forming atoms linked thereto.
제 1 항에 있어서, 제 2 블록은 하기 화학식 3으로 표시되는 블록 공중합체:
[화학식 3]
Figure pat00012

화학식 3에서 X2는, 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기, 알키닐렌기, -C(=O)-X1- 또는 -X1-C(=O)-이고, 상기에서 X1은 단일 결합, 산소 원자, 황 원자, -S(=O)2-, 알킬렌기, 알케닐렌기 또는 알키닐렌기이고, W는 적어도 1개의 할로겐 원자를 포함하는 아릴기이.
2. The block copolymer according to claim 1, wherein the second block is a block copolymer represented by the following formula (3)
(3)
Figure pat00012

In formula 3 X 2 is a single bond, an oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenylene group, alkynylene group, -C (= O) -X 1 - or -X 1 -C (= O) - and, in the X 1 is a single bond, oxygen atom, sulfur atom, -S (= O) 2 - , alkylene group, alkenyl group or alkynyl group, and W is at least one halogen Aryl groups containing atoms.
제 1 항에 있어서, 수평균분자량이 3,000 내지 300,000의 범위 내에 있는 블록 공중합체. The block copolymer according to claim 1, wherein the number average molecular weight is in the range of 3,000 to 300,000. 제 1 항에 있어서, 분산도(Mw/Mn)가 1.01 내지 1.60의 범위 내에 있는 블록 공중합체.The block copolymer according to claim 1, wherein the dispersion degree (Mw / Mn) is in the range of 1.01 to 1.60. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막.A polymer membrane comprising the self-assembled block copolymer of claim 1. 제 16 항에 있어서, GISAXS에서 인플레인상 회절 패턴을 나타내는 고분자막.17. The polymer membrane according to claim 16, which exhibits an inflation impingement diffraction pattern in GISAXS. 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 기판상에 형성하는 것을 포함하는 고분자막의 형성 방법.A method for forming a polymer membrane, which comprises forming on a substrate a self-assembled polymer membrane comprising the block copolymer of claim 1. 기판 및 상기 기판의 표면에 형성되어 있는 자기 조립된 제 1 항의 블록 공중합체를 포함하는 고분자막을 가지는 적층체에서 상기 블록 공중합체의 제 1 또는 제 2 블록을 제거하는 단계를 포함하는 패턴 형성 방법.And removing the first or second block of the block copolymer in a laminate having a substrate and a polymer membrane including self-assembled block copolymer of claim 1 formed on the surface of the substrate.
KR1020140175412A 2013-12-06 2014-12-08 Block copolymer KR101768291B1 (en)

Priority Applications (41)

Application Number Priority Date Filing Date Title
CN201480074140.1A CN105934456B (en) 2013-12-06 2014-12-09 Block copolymer
EP14868022.6A EP3101043B1 (en) 2013-12-06 2014-12-09 Block copolymer
PCT/KR2014/012035 WO2015084132A1 (en) 2013-12-06 2014-12-09 Block copolymer
JP2016536817A JP6361893B2 (en) 2013-12-06 2014-12-09 Block copolymer
CN201580060150.4A CN107075055B (en) 2014-09-30 2015-09-30 Block copolymer
US15/514,939 US10310378B2 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517282A JP6637495B2 (en) 2014-09-30 2015-09-30 Manufacturing method of patterned substrate
TW104132169A TWI609408B (en) 2014-09-30 2015-09-30 Preparation method of patterned substrate
CN201580059713.8A CN107077066B9 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
EP15845665.7A EP3214102B1 (en) 2014-09-30 2015-09-30 Block copolymer
EP15847598.8A EP3202802B1 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517288A JP6538159B2 (en) 2014-09-30 2015-09-30 Block copolymer
TW104132166A TWI583710B (en) 2014-09-30 2015-09-30 Block copolymer
CN201580059699.1A CN107078026B (en) 2014-09-30 2015-09-30 Method for preparing patterned substrate
US15/515,432 US10287430B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
PCT/KR2015/010330 WO2016053007A1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
PCT/KR2015/010334 WO2016053010A1 (en) 2014-09-30 2015-09-30 Block copolymer
PCT/KR2015/010327 WO2016053005A1 (en) 2014-09-30 2015-09-30 Block copolymer
CN201580059546.7A CN107075050B (en) 2014-09-30 2015-09-30 Block copolymer
US15/515,821 US10703897B2 (en) 2014-09-30 2015-09-30 Block copolymer
TW104132162A TWI563007B (en) 2014-09-30 2015-09-30 Block copolymer
EP15847157.3A EP3202800B1 (en) 2014-09-30 2015-09-30 Block copolymer
US15/514,929 US10370529B2 (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
PCT/KR2015/010332 WO2016053009A1 (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517261A JP6532941B2 (en) 2014-09-30 2015-09-30 Block copolymer
PCT/KR2015/010335 WO2016053011A1 (en) 2014-09-30 2015-09-30 Block copolymer
EP15845720.0A EP3203496B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
JP2017517270A JP6538157B2 (en) 2014-09-30 2015-09-30 Block copolymer
US15/515,818 US10281820B2 (en) 2014-09-30 2015-09-30 Block copolymer
TW104132150A TWI591086B (en) 2014-09-30 2015-09-30 Block copolymer
US15/515,812 US10377894B2 (en) 2014-09-30 2015-09-30 Block copolymer
EP15847536.8A EP3225641B1 (en) 2014-09-30 2015-09-30 Block copolymer
TW104132194A TWI609029B (en) 2014-09-30 2015-09-30 Block copolymer
JP2017517268A JP6633062B2 (en) 2014-09-30 2015-09-30 Manufacturing method of patterned substrate
TW104132197A TWI577703B (en) 2014-09-30 2015-09-30 Method of manufacturing patterned substrate
JP2017517277A JP6538158B2 (en) 2014-09-30 2015-09-30 Block copolymer
EP15846126.9A EP3203497B1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
PCT/KR2015/010338 WO2016053014A1 (en) 2014-09-30 2015-09-30 Method for producing patterned substrate
CN201580060099.7A CN107075052B (en) 2014-09-30 2015-09-30 Block copolymer
CN201580060097.8A CN107075054B (en) 2014-09-30 2015-09-30 Block copolymer
US15/173,674 US10202481B2 (en) 2013-12-06 2016-06-05 Block copolymer

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20130151867 2013-12-06
KR20130151866 2013-12-06
KR1020130151866 2013-12-06
KR20130151865 2013-12-06
KR1020130151867 2013-12-06
KR1020130151865 2013-12-06
KR1020130159994 2013-12-20
KR20130159994 2013-12-20
KR1020140131964 2014-09-30
KR20140131964 2014-09-30

Publications (2)

Publication Number Publication Date
KR20150067071A true KR20150067071A (en) 2015-06-17
KR101768291B1 KR101768291B1 (en) 2017-08-17

Family

ID=53514851

Family Applications (15)

Application Number Title Priority Date Filing Date
KR1020140175400A KR101780097B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer
KR1020140175406A KR101780098B1 (en) 2013-12-06 2014-12-08 Boack copolymer
KR1020140175403A KR101768288B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175404A KR101763009B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175414A KR101780100B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175413A KR101780099B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175411A KR101762487B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175412A KR101768291B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175401A KR101763008B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer
KR1020140175415A KR101780101B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175408A KR101768289B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175407A KR101763010B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175405A KR101770882B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175410A KR101768290B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175402A KR101832025B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer

Family Applications Before (7)

Application Number Title Priority Date Filing Date
KR1020140175400A KR101780097B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer
KR1020140175406A KR101780098B1 (en) 2013-12-06 2014-12-08 Boack copolymer
KR1020140175403A KR101768288B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175404A KR101763009B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175414A KR101780100B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175413A KR101780099B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175411A KR101762487B1 (en) 2013-12-06 2014-12-08 Block copolymer

Family Applications After (7)

Application Number Title Priority Date Filing Date
KR1020140175401A KR101763008B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer
KR1020140175415A KR101780101B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175408A KR101768289B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175407A KR101763010B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175405A KR101770882B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175410A KR101768290B1 (en) 2013-12-06 2014-12-08 Block copolymer
KR1020140175402A KR101832025B1 (en) 2013-12-06 2014-12-08 Monomer and block copolymer

Country Status (2)

Country Link
KR (15) KR101780097B1 (en)
TW (14) TWI586691B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200020231A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200020240A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200020224A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200025827A (en) * 2018-08-31 2020-03-10 주식회사 엘지화학 Preparation method of patterened substrate
KR20200025828A (en) * 2018-08-31 2020-03-10 주식회사 엘지화학 Preparation method of patterened substrate

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6496318B2 (en) 2013-12-06 2019-04-03 エルジー・ケム・リミテッド Block copolymer
CN105960422B (en) 2013-12-06 2019-01-18 株式会社Lg化学 Block copolymer
EP3078687B1 (en) 2013-12-06 2020-06-03 LG Chem, Ltd. Block copolymer
EP3078688B1 (en) 2013-12-06 2020-03-04 LG Chem, Ltd. Block copolymer
WO2015084120A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Monomer and block copolymer
CN105934454B (en) 2013-12-06 2019-01-18 株式会社Lg化学 Block copolymer
WO2015084123A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2015084132A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
TWI586691B (en) * 2013-12-06 2017-06-11 Lg化學股份有限公司 Block copolymer
CN105873968B (en) 2013-12-06 2018-09-28 株式会社Lg化学 Block copolymer
WO2015084126A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2015084121A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
WO2015084127A1 (en) 2013-12-06 2015-06-11 주식회사 엘지화학 Block copolymer
EP3078693B1 (en) 2013-12-06 2021-01-27 LG Chem, Ltd. Block copolymer
CN105899557B (en) 2013-12-06 2018-10-26 株式会社Lg化学 Block copolymer
US10377894B2 (en) 2014-09-30 2019-08-13 Lg Chem, Ltd. Block copolymer
WO2016053011A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
WO2016052994A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
WO2016052999A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
EP3202800B1 (en) 2014-09-30 2021-12-29 LG Chem, Ltd. Block copolymer
CN107075056B (en) 2014-09-30 2019-10-08 株式会社Lg化学 Block copolymer
WO2016053005A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Block copolymer
US10370529B2 (en) 2014-09-30 2019-08-06 Lg Chem, Ltd. Method of manufacturing patterned substrate
CN107075028B (en) 2014-09-30 2020-04-03 株式会社Lg化学 Block copolymer
WO2016053014A1 (en) 2014-09-30 2016-04-07 주식회사 엘지화학 Method for producing patterned substrate
US11299596B2 (en) 2016-11-30 2022-04-12 Lg Chem, Ltd. Laminate
KR102096272B1 (en) * 2016-11-30 2020-04-02 주식회사 엘지화학 Block copolymer
KR102183698B1 (en) 2016-11-30 2020-11-26 주식회사 엘지화학 Preparation method for polymer layer
WO2018101741A1 (en) 2016-11-30 2018-06-07 주식회사 엘지화학 Laminate
KR102088444B1 (en) * 2016-11-30 2020-03-12 주식회사 엘지화학 Polymer copolymer
KR102096274B1 (en) * 2016-11-30 2020-04-02 주식회사 엘지화학 Block copolymer
KR101946775B1 (en) 2016-11-30 2019-02-12 주식회사 엘지화학 Block copolymer
KR102096271B1 (en) * 2016-11-30 2020-05-27 주식회사 엘지화학 Block copolymer
KR102096270B1 (en) * 2017-07-14 2020-04-02 주식회사 엘지화학 Compositon for neural layer
EP3640296B1 (en) 2017-07-14 2021-12-01 LG Chem, Ltd. Neutral layer composition
KR102277770B1 (en) * 2017-07-14 2021-07-15 주식회사 엘지화학 Method for planarization of block copolymer layer and method for forming pattern
EP3640298B1 (en) 2017-07-14 2022-03-09 LG Chem, Ltd. Neutral layer composition
TWI805617B (en) 2017-09-15 2023-06-21 南韓商Lg化學股份有限公司 Laminate
CN111295283B (en) * 2017-11-07 2023-04-07 株式会社Lg化学 Polymer composition
KR102436923B1 (en) * 2018-01-26 2022-08-26 주식회사 엘지화학 Block copolymer containing photo-sensitive moiety
KR102484628B1 (en) * 2018-08-16 2023-01-04 주식회사 엘지화학 Compositon for neural layer
KR102550419B1 (en) 2018-08-16 2023-07-04 주식회사 엘지화학 Block copolymer
KR102484629B1 (en) * 2018-08-16 2023-01-04 주식회사 엘지화학 Compositon for neural layer
KR102484627B1 (en) * 2018-08-16 2023-01-04 주식회사 엘지화학 Pinning layer composition
KR102484626B1 (en) * 2018-08-16 2023-01-04 주식회사 엘지화학 Preparation method of substrate
KR20210103167A (en) 2020-02-13 2021-08-23 삼성전자주식회사 Semiconductor package

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121116B2 (en) * 1992-05-21 2000-12-25 出光興産株式会社 Styrene block copolymer and method for producing the same
US5728431A (en) * 1996-09-20 1998-03-17 Texas A&M University System Process for forming self-assembled polymer layers on a metal surface
ATE478901T1 (en) 1998-12-30 2010-09-15 Lubrizol Advanced Mat Inc BRANCHED BLOCK COPOLYMERS FOR THE TREATMENT OF THE SURFACE OF KERATIN
JP4625901B2 (en) * 2000-11-08 2011-02-02 独立行政法人産業技術総合研究所 Syndiotactic aromatic vinyl block copolymer and process for producing the same
JP4453814B2 (en) * 2003-11-12 2010-04-21 Jsr株式会社 Polymerizable compound and mixture, and method for producing liquid crystal display device
JP2010115832A (en) 2008-11-12 2010-05-27 Panasonic Corp Method for promoting self-formation of block copolymer and method for forming self-formation pattern of block copolymer using the method for promoting self-formation
CN101492520A (en) * 2009-03-04 2009-07-29 中国科学院上海有机化学研究所 Diblock copolymer containing full-fluorine cyclobutyl aryl aether block and uses thereof
JP5505371B2 (en) * 2010-06-01 2014-05-28 信越化学工業株式会社 Polymer compound, chemically amplified positive resist material, and pattern forming method
US9541830B2 (en) * 2011-09-06 2017-01-10 Cornell University Block copolymers and lithographic patterning using same
TWI586691B (en) * 2013-12-06 2017-06-11 Lg化學股份有限公司 Block copolymer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200020231A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200020240A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200020224A (en) * 2018-08-16 2020-02-26 주식회사 엘지화학 Preparation method of patterened substrate
KR20200025827A (en) * 2018-08-31 2020-03-10 주식회사 엘지화학 Preparation method of patterened substrate
KR20200025828A (en) * 2018-08-31 2020-03-10 주식회사 엘지화학 Preparation method of patterened substrate

Also Published As

Publication number Publication date
TWI591085B (en) 2017-07-11
TWI596124B (en) 2017-08-21
KR101768291B1 (en) 2017-08-17
TW201538547A (en) 2015-10-16
TWI596125B (en) 2017-08-21
KR101780097B1 (en) 2017-09-19
KR20150066487A (en) 2015-06-16
KR20150067069A (en) 2015-06-17
KR20150067073A (en) 2015-06-17
TWI598368B (en) 2017-09-11
KR101832025B1 (en) 2018-02-23
KR101768288B1 (en) 2017-08-17
TW201536818A (en) 2015-10-01
TWI596128B (en) 2017-08-21
KR101763009B1 (en) 2017-08-03
TWI557173B (en) 2016-11-11
KR101762487B1 (en) 2017-07-27
TWI597300B (en) 2017-09-01
KR20150067068A (en) 2015-06-17
TW201534651A (en) 2015-09-16
KR20150067074A (en) 2015-06-17
KR101768289B1 (en) 2017-08-30
TW201536824A (en) 2015-10-01
TW201538549A (en) 2015-10-16
TW201536822A (en) 2015-10-01
KR101770882B1 (en) 2017-08-24
KR20150066488A (en) 2015-06-16
KR20150067072A (en) 2015-06-17
TW201602214A (en) 2016-01-16
TWI586691B (en) 2017-06-11
KR101763008B1 (en) 2017-08-14
KR20150067065A (en) 2015-06-17
KR20150066489A (en) 2015-06-16
KR20150067064A (en) 2015-06-17
TWI596119B (en) 2017-08-21
TW201536823A (en) 2015-10-01
TW201538548A (en) 2015-10-16
TW201538552A (en) 2015-10-16
KR101780101B1 (en) 2017-09-19
TW201538546A (en) 2015-10-16
KR20150066486A (en) 2015-06-16
KR101768290B1 (en) 2017-08-18
KR101780099B1 (en) 2017-09-19
KR20150067070A (en) 2015-06-17
TWI586692B (en) 2017-06-11
KR20150067066A (en) 2015-06-17
KR101763010B1 (en) 2017-08-03
TWI532780B (en) 2016-05-11
TWI596127B (en) 2017-08-21
KR101780098B1 (en) 2017-09-19
KR20150067067A (en) 2015-06-17
TWI596126B (en) 2017-08-21
TW201538550A (en) 2015-10-16
TWI596152B (en) 2017-08-21
KR101780100B1 (en) 2017-09-19
TW201534652A (en) 2015-09-16
TW201538551A (en) 2015-10-16

Similar Documents

Publication Publication Date Title
KR101768291B1 (en) Block copolymer
KR101749416B1 (en) Block copolymer
JP6419820B2 (en) Block copolymer
JP6410327B2 (en) Block copolymer
JP6361893B2 (en) Block copolymer
JP6432847B2 (en) Block copolymer
JP2017533303A (en) Block copolymer
JP2016540084A (en) Block copolymer
US11028201B2 (en) Polymer composition
KR101804007B1 (en) Block copolymer
KR20190052743A (en) Laminate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant