KR20150032289A - 측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터 - Google Patents

측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터 Download PDF

Info

Publication number
KR20150032289A
KR20150032289A KR1020157000787A KR20157000787A KR20150032289A KR 20150032289 A KR20150032289 A KR 20150032289A KR 1020157000787 A KR1020157000787 A KR 1020157000787A KR 20157000787 A KR20157000787 A KR 20157000787A KR 20150032289 A KR20150032289 A KR 20150032289A
Authority
KR
South Korea
Prior art keywords
pointer
measurement
feature
assembly
control system
Prior art date
Application number
KR1020157000787A
Other languages
English (en)
Other versions
KR101676971B1 (ko
Inventor
더블유 토마스 노박
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Publication of KR20150032289A publication Critical patent/KR20150032289A/ko
Application granted granted Critical
Publication of KR101676971B1 publication Critical patent/KR101676971B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

표면(16)상의 피쳐(14A)를 측정하는 측정 어셈블리(12)는 계측 시스템(18), 가동자 어셈블리(19), 포인터(22) 및 제어 시스템(24)을 포함한다. 계측 시스템(18)은 측정 빔(26)을 생성하고, 가동자 어셈블리(19)는 계측 시스템(18)의 방향을 선택적으로 조정한다. 포인터(22)는 휴대용이며 표면(16)상에 포인터 스폿(36)을 형성하도록 표면(16)에 선택적으로 지향될 수 있는 포인터 빔(22A)을 생성한다. 또한, 제어 시스템(24)은 측정 빔(26)이 포인터 스폿(36)에 대략 지향될 때까지 측정 빔(26)의 방향을 이동시키도록 가동자 어셈블리(19)를 제어한다.

Description

측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터{MEASUREMENT ASSEMBLY, METHOD FOR MEASURING A FEATURE ON A SURFACE, METHOD FOR MANUFACTURING A STRUCTURE AND POINTER}
본 발명은 계측 시스템(metrology system)을 포함하는 측정 시스템, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터에 관한 것이다.
본 출원은 2012년 6월 14일에 출원된 "LASER POINTER TO DIRECT LASER METROLOGY MEASURING SYSTEM"이란 명칭의 미국 출원 번호 제61/659,885호에 대해 우선권 주장을 한 것이다. 허용되는 한, 미국 출원 번호 제61/659,885호의 내용은 본 명세서에서 참조로서 인용된다.
레이저 계측 시스템과 같은 계측 시스템은 다양한 목적으로 이용될 수 있다. 예를 들어, 레이저 계측 시스템은 제조된 부품에 대한 정밀한 치수 측정 및/또는 검증을 위해 이용될 수 있다. 제조된 부품이 점점 더 작아지고, 또한 보다 복합한 세부 사항을 포함함에 따라, 향상된 측정 시스템에 대한 요구가 증가한다.
(선행 기술 문헌)
(특허 문헌)
특허 문헌 1 : 미국 특허 제4,733,609호
특허 문헌 2 : 미국 특허 제4,824,251호
특허 문헌 3 : 미국 특허 제4,830,486호
특허 문헌 4 : 미국 특허 제4,969,736호
특허 문헌 5 : 미국 특허 제5,114,226호
특허 문헌 6 : 미국 특허 제7,139,446호
특허 문헌 7 : 미국 특허 제7,925,134호
특허 문헌 8 : 일본 특허 제2,664,399호
특허 문헌 9 : 미국 특허 출원 공개 제2006-0222314호
불행하게도, 현재 이용 가능한 계측 시스템은 전체적으로 만족스럽지 못하다. 예를 들어, 특정의 계측 시스템에서, 오퍼레이터는 비디오 사용자 인터페이스 스크린상에서 측정될 피쳐를 식별하고 선택하는 것이 요구된다. 이러한 시스템에서, 선택은 스크린상에서 피쳐를 센터링하고, 버튼을 누르거나, 또는 터치 스크린을 이용하는 경우, 피쳐가 나타나는 위치에서 스크린을 단지 터치하는 것을 수반할 수 있다. 그러나, 이 선택 처리는 계측 시스템이 측정될 피쳐를 나타내거나 또는 표시하도록 구동되어야 하므로 다소 저속일 수 있다. 또한, 선택 처리는 정확한 피쳐가 선택되는 것이 확실해지도록 카메라를 주밍(zooming)하는 것을 더 포함할 수 있다.
본 발명은 표면상의 피쳐를 측정하는 측정 어셈블리(measurement assembly)에 관한 것이다. 일 실시예에서, 측정 시스템은 계측 시스템, 가동자 어셈블리, 포인터 및 제어 시스템을 포함한다. 계측 시스템은 측정 빔을 생성하고, 가동자 어셈블리는 계측 시스템의 적어도 일부 및 측정의 빔의 방향을 선택적으로 이동시킨다. 포인터는 피쳐를 식별하도록 선택적으로 위치할 수 있는 포인터 빔을 생성한다. 예를 들어, 표면에 지향된 포인터 빔은 표면상에 피쳐를 식별하도록 사용될 수 있는 포인터 스폿을 형성한다. 이와 달리, 포인터 빔은 피쳐를 식별하기 위해 사전 결정된 경로로 이동될 수 있다. 특정의 실시예에서, 포인터는 취급 및 조작이 용이한 휴대용 디바이스이다.
또한, 제어 시스템은 측정 빔이 식별된 피쳐에 대략 지향될 때까지 측정 빔의 방향을 이동시키기 위해 가동자 어셈블리를 제어한다. 예를 들어, 제어 시스템은 측정 빔이 포인터 스폿에 대략 지향될 때까지 측정 빔의 방향을 이동시키기 위해 가동자 어셈블리를 제어할 수 있다.
일 실시예에서, 제어 시스템은 측정 빔의 방향을 이동시키기 위해 가동자 어셈블리를 제어함에 따라 측정 빔이 표면상의 포인터 스폿을 대략 추종한다. 이러한 설계에 의해, 포인터는 측정될 후속의 피쳐를 신속하고 용이하게 표시하고 식별하는데 사용될 수 있다. 다른 방식으로 기술하면, 포인터 스폿은 피쳐 간에 이동될 수 있는 한편, 계측 시스템은 피쳐 간에 포인터 스폿을 자동으로 추종하거나 또는 추적하도록 제어된다.
추가적으로, 측정 시스템은 포인터 스폿의 상대 위치를 결정하도록 제어 시스템에 피드백 정보를 제공하는 피드백 디바이스를 포함할 수 있다. 또한, 이 실시예에서, 제어 시스템은 측정 빔이 포인터 스폿에 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하도록 피드백 정보를 사용할 수 있다. 일 실시예에서, 피드백 디바이스는 뷰 필드(field of view)를 갖는 촬상 장치(예를 들어, 카메라)이다. 이 실시예에서, 카메라는 포인터 스폿이 뷰 필드 내에 있는 경우 검출하기 위한 제어 시스템에 피드백 정보를 제공할 수 있다. 또한, 이 실시예에서, 제어 시스템은 측정 빔이 포인터 스폿에 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하도록 피드백 정보를 사용할 수 있다.
또 다른 실시예에서, 본 발명은 (i) 계측 시스템으로 측정 빔을 생성하는 단계와, (ii) 가동자 어셈블리로 측정 빔의 방향을 선택적으로 이동시키는 단계와, (iii) 표면상에 포인터 스폿을 형성하도록 포인터로부터의 포인터 빔을 표면에 지향하는 단계와, (iv) 측정 빔이 포인터 스폿에 대략 지향될 때까지 측정 빔의 방향을 이동시키도록 제어 시스템으로 가동자 어셈블리를 제어하는 단계를 포함한다.
이러한 설계에 의해, 포인터는 측정될 하나 이상의 피쳐를 신속하고 용이하게 표시하는데 사용될 수 있다. 이에 따라, 포인터를 사용함으로써 측정될 피쳐를 선택하기 위해 계측 시스템을 이동시키는 저속이고 불편한 처리가 극복된다.
본 발명의 신규한 특징 뿐만 아니라, 구조 및 동작에 대한 본 발명 자체는 첨부되는 상세한 설명과 함께 취해지는 첨부 도면으로부터 가장 잘 이해될 것이고, 도면에서 유사한 참조 부호는 유사한 부분을 지칭한다.
도 1은 객체 및 제 1 위치에 포인팅된 측정 빔 및 제 1 피쳐에서의 포인터 빔을 갖고 본 발명의 특징을 갖는 측정 어셈블리의 실시예의 간략화된 개략도이고,
도 2는 객체 및 제 1 피쳐에 포인팅된 측정 빔 및 포인터 빔을 갖는 도 1의 측정 어셈블리의 간략화된 개략도이고,
도 3은 객체 및 제 1 피쳐에 포인팅된 측정 빔 및 제 2 피쳐에 포인팅된 포인터 빔을 갖는 도 1의 측정 어셈블리의 간략화된 개략도이고,
도 4는 객체 및 포인터 빔을 추종하도록 이동되는 측정 빔을 갖는 도 1의 측정 어셈블리의 간략화된 개략도이고,
도 5는 도 1 내지 도 3의 측정 어셈블리의 사용의 일례를 도시하는 플로우차트이고,
도 6은 본 발명의 특징을 갖는 구조체 제조 시스템의 블록도이고,
도 7은 도 6의 구조체 제조 시스템의 처리 흐름을 나타내는 플로우차트이다.
도 1은 객체(10), 및 그 객체(10)의 표면(16)상에 존재하는 하나 이상의 피쳐(14A, 14B, 14C, 14D)(이러한 4개의 피쳐가 도 1에 구체적으로 도시되어 있음)를 측정하는데 사용될 수 있는 측정 어셈블리(12)의 제 1 실시예의 간략화된 개략도이다. 일 실시예에서, 측정 어셈블리(12)는 객체(10)의 표면(16)상에서의 하나 이상의 피쳐(14A-14D)의 크기 및/또는 위치(예를 들어, X-Y-Z 좌표), 또는 객체(10)의 위치 또는 배향을 정확하게 측정하는데 사용될 수 있다.
측정 어셈블리(12)의 구성요소의 설계는 측정 어셈블리(12)에 대해 원하는 용도에 따라 가변될 수 있다. 도 1에서, 측정 어셈블리(12)는 측정 빔(26)을 생성하는 계측 시스템(18), 측정 빔(26)을 이동시키는 가동자 어셈블리(19), 피드백 디바이스(20), 포인터 빔(22A)을 생성하는 포인터(22) 및 제어 시스템(24)을 포함한다. 본 명세서에서 제공된 바와 같이, 포인터(22)는 포인터 빔(22A)을 표면(16)에 지향하도록 조작되어 표면(16)상에 포인터 스폿(36)을 생성할 수 있다. 또한, 제어 시스템(24)은 측정 빔(26)이 포인터 스폿(36)에 대략 지향될 때까지 측정 빔(26)의 방향을 이동시키기 위해 가동자 어셈블리(19)를 제어한다. 이러한 설계에 의해, 포인터(22)는 측정될 하나 이상의 피쳐(14A-14D)를 신속하고, 정확하며, 용이하게 표시(식별)하는데 사용될 수 있다. 이에 따라, 측정 어셈블리(12)는 피쳐(14A-14D)를 신속하고 정확하게 측정할 수 있고, 피쳐(14A-14D) 사이에서 신속하게 이동할 수 있다. 또한, 포인터(22)를 사용함으로써 측정될 피쳐(14A-14D)를 선택하기 위해 계측 시스템(18)을 이동시키는 저속이고 불편한 처리가 극복된다.
본 명세서에서 제공된 도면의 일부는 X축, Y축 및 Z축을 지정하는 배향 시스템을 포함한다. 배향 시스템은 단지 참조를 위한 것이고 가변될 수 있음에 주목해야 한다. 또한, 이들 축은 제 1, 제 2, 또는 제 3 축으로서 달리 지칭될 수 있다.
객체(10) 및/또는 객체(10)상에서의 피쳐(14A-14D)의 타입은 가변될 수 있다. 예를 들어, 피쳐(14A-14D)는 홀, 에지, 표면, 볼, 돌출부, 와이어, 또는 다른 것이 될 수 있다. 비제한적인 예로서, 객체(10)는 객체(10)의 품질을 평가하는데 측정을 필요로 하는 하나 이상의 피쳐(14A-14D)를 갖는 제조 부품, 자연적인 객체, 또는 어셈블리일 수 있다. 이와 달리, 예를 들어, 객체(10)는 제조 또는 어셈블리 처리 동안 모니터링되는 부품 또는 어셈블리일 수 있다. 측정, 제조 또는 어셈블리 처리의 스케일은 작거나(예를 들어, 1 밀리미터) 또는 클(예를 들어, 수십 미터) 수 있다.
도 1에서 작은 원으로서 하나 이상의 피쳐(14A-14D)를 예시하는 것은 단지 설명을 위한 것이며, 피쳐(14A-14D)는 표면(16)상에서 임의의 크기 및 형상을 가질 수 있음에 주목해야 한다.
도 1에서, 객체(10)는 공간에 고정되어 있지 않은 것으로서 도시되어 있다. 그러나, 예를 들어, 객체(10)는 측정 및/또는 어셈블리 처리 동안 객체(10)를 유지하고, 조작하며, 이동시키는 자동화된 이동 디바이스(도시되지 않음)에 의해 유지될 수 있다.
일 실시예에서, 계측 시스템(18)은 객체(10)의 표면(16)상에서의 피쳐(14A-14D)의 크기 및/또는 위치를 정확하게 측정하는 레이저 기반 계측 시스템이다. 이와 달리, 계측 시스템(18)은 상이한 설계를 가질 수 있고 및/또는 계측 시스템(18)은 다른 적절한 목적을 위해 사용될 수 있다.
일 실시예에서, 계측 시스템(18)은 객체(10)의 표면(16)에 지향될 수 있는 측정 빔(26)을 생성하는 레이저 소스(18A)(점선 박스로서 도시됨)를 포함한다. 일 실시예에서, 측정 빔(26)은 적외선 범위에 있는 파장을 갖는다. 비제한적인 예로서, 측정 빔(26)은 대략 750nm와 2 마이크로미터 사이의 파장을 가질 수 있다. 이와 달리, 측정 빔(26)은 가시광선 또는 자외선 범위와 같이, 적외선 범위 밖의 파장을 포함할 수 있다.
도 1에서, 측정 빔(26)이 현재 표면(16)상에 조사되는 부분은 측정 포인트(28)(작은 양의 부호로 표시됨)로 지칭될 수 있음에 주목해야 한다. 도 1에서, 이 시점에서 측정 빔(26)은 피쳐 중의 하나가 아닌 표면(16)상의 제 1 위치에 포인팅된다.
특정의 실시예에서, 표면(16)에 지향된 측정 빔(26)은 표면(16)으로부터 계측 시스템(18)을 향해 복귀 빔(26R)으로서 다시 반사 및/또는 분산될 수 있다. 이 실시예에서, 계측 시스템(18)은 반사 빔(26R)을 수신하고 검출하며, 반사 빔(26R) 및 측정 포인트(28)에 관한 측정 신호를 제어 시스템(24)에 제공하는 검출기(16B)(점선 박스로서 도시됨)를 포함할 수 있다. 일 실시예에서, 반사 빔(26R)은 레퍼런스 빔(도시되지 않음)과 간섭하여 측정 신호를 생성한다.
적절한 계측 시스템(18)의 예가 본 명세서에서 참조로서 인용되는 특허 문헌 1 내지 8에 개시되어 있다. 적절한 계측 시스템(18)의 다른 비제한적인 예는 (본 명세서에서 참조로서 인용되는) 특허 문헌 9에 개시된 바와 같은 레이저 트랙커(tracker)이다.
가동자 어셈블리(19)는 계측 시스템(18)의 적어도 일부를 선택적으로 이동시키고 위치 지정시키며 측정 빔(26)의 방향을 선택적으로 조정(조향)한다. 이러한 설계에 의해, 가동자 어셈블리(19)는 측정 빔(26)이 측정될 원하는 위치(예를 들어, 피쳐(14A-14D))에 지향되도록 계측 시스템(18)을 선택적으로 이동시킬 수 있다. 비제한적인 예로서, 가동자 어셈블리(19)는 측정 빔(26)이 (i) 제 1 피쳐(14A)에 포인팅하여 제 1 피쳐(14A)를 측정하고, (ii) 제 2 피쳐(14B)에 포인팅하여 제 2 피쳐(14B)를 측정하고, (iii) 제 3 피쳐(14C)에 포인팅하여 제 3 피쳐(14C)를 측정하고, (i) 제 4 피쳐(14d)에 포인팅하여 제 4 피쳐(14D)를 측정하도록 계측 시스템(18)을 선택적으로 이동시킬 수 있다.
일 실시예에서, 가동자 어셈블리(19)는 2개의 축, 즉, Y축 및 Z축 주위에서 계측 시스템(18)을 선택적으로 이동시킨다. 이와 달리, 가동자 어셈블리(19)는 2 회전 자유도(rotational degrees of freedom)보다 크거나 작은 자유도로 계측 시스템(18)의 일부를 이동시키도록 설계될 수 있고, 및/또는 계측 시스템(18)의 위치에 이동 조정을 제공할 수 있다.
가동자 어셈블리(19)는 하나 이상의 회전 액추에이터, 선형 액추에이터, 또는 다른 타입의 액추에이터를 포함할 수 있다. 가동자 어셈블리(19)는 제어 시스템(24)에 의해 제어될 수 있다.
피드백 디바이스(20)는 측정 포인트(28) 및/또는 포인터 스폿(36)의 상대 위치를 결정하도록 제어 시스템(24)에 의해 사용되는 피드백 정보를 제공한다. 또한, 이 실시예에서, 제어 시스템(24)은 측정 빔(26)이 포인터 스폿(36)에 지향되기 위해 얼마나 많은 이동이 요구되는지, 및/또는 포인터(22)가 이동되는 경우에도 포인터 스폿(36)에 측정 빔(26)이 계속해서 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하도록 피드백 정보를 사용할 수 있다.
일 실시예에서, 피드백 디바이스(20)는 뷰 필드(30)(직사각형 박스로서 도시됨)를 갖는 촬상 장치(예를 들어, 카메라)이다. 뷰 필드(30)는 또한 때때로 검출 가능한 영역으로 지칭된다. 이 실시예에서, 카메라(20)는 포인터 스폿(36)이 뷰 필드(30) 내에 있는 경우 제어 시스템(24)에 피드백 정보를 제공할 수 있다. 특정의 실시예에서, 카메라는 측정 빔(26) 및 포인터 빔(22A)의 파장에 대해 감지하는 이미지 센서를 포함한다. 적절한 센서는 CCD(charge coupled device) 또는 CMOS(complementary metal oxide semiconductor)를 포함한다.
일 실시예에서, 측정 빔(26)이 표면(16)상에 조사되는 곳을 뷰 필드(30)가 항상 둘러싸도록 카메라(20)의 광학장치가 정렬된다. 이와 같은 설계에 의해, 제어 시스템(24)은 피드백 정보를 사용하여 측정 포인트(28)의 위치와, 카메라(20)의 뷰 필드(30) 내에 포인터 스폿(36)이 있는 경우에 포인터 스폿(36)의 위치를 식별할 수 있다.
특정의 실시예에서, 피드백 디바이스(20)는 또한 비디오 스크린(33)(피드백 디바이스(20)로부터 멀리 떨어져 도시됨)상에 디스플레이되는 뷰 필드(30)의 이미지(32)를 계속해서 생성한다. 사용자는 가동자 어셈블리(19)를 제어하기 위한 정보를 수동으로 입력하도록 비디오 스크린(33)을 비디오 사용자 인터페이스로서 사용할 수 있다.
도 1에서, 이미지(32)는 측정 포인트 이미지(28A)가 포인터 스폿 이미지(36A)로부터 이격되어 있는 것을 도시한다. 피드백 정보에 의해, 제어 시스템(24)은 표면(16)상의 포인터 스폿(36)에 측정 빔(26)이 포인팅될 때까지 측정 빔(26)을 폐루프 방식으로 이동시키도록 가동자 어셈블리(19)를 제어할 수 있다. 또한, 도 1에서, 피쳐 이미지(14AA, 14CA, 14DA)는 또한 캡쳐된 이미지(32) 내에 있다.
추가적으로, 특정의 실시예에서, 가동자 어셈블리(19)는 측정 빔(26)과 피드백 디바이스(20)를 동시에 이동시킨다. 도 1에서, 피드백 디바이스(20)는 계측 시스템(18)에 고정되어 함께 이동된다.
포인터(22)는 포인터 스폿(36)을 생성하도록 표면(16)에 지향될 수 있는 포인터 빔(22A)을 생성한다. 특정의 실시예에서, 포인터(22)는 휴대용이며 육안에 대해 밝고 가시적인 포인터 스폿(36)을 생성하기 위해 표면(16)에 포인터 빔(22A)을 지향하도록 사람의 손에 의해 수동으로 조작될 수 있다. 이와 달리, 포인터(22)는 포인터 베이스(도시되지 않음)상에 탑재될 수 있고 및/또는 포인터(22)는 휴대용 방식 이외의 방식으로 제어될 수 있다.
포인터(22)의 설계는 측정 어셈블리(12) 및/또는 계측 시스템(18)의 특정의 설계 요건을 맞추도록 가변될 수 있다. 도 1에서, 포인터(22)는 포인터 하우징(40), 포인터 레이저 소스(42)(점선 박스로서 도시됨), 및 하나 이상의 제어 스위치(44)를 포함하는 레이저 포인터이다.
특정의 실시예에서, 포인터 레이저 소스(42)는 가시광 파장 범위에 있는 포인터 빔(22A)을 생성한다. 비제한적인 예로서, 포인터 빔(22A)은 대략 600 나노미터부터 660 나노미터 범위의 파장을 가질 수 있다. 추가적으로, 레이저 포인터(22)에 대한 사양은 사용될 국가의 애플리케이션의 적절한 범위에 있어야 한다. 예를 들어, 일본에서는, 1mW 초과의 최대 파워를 갖는 레이저 포인터가 일본법에 의해 공지되어 있으므로, 레이저 포인터(22)는 1mW(클래스 2)의 최대 파워를 갖도록 제한되어야 한다.
제어 스위치(44)는 포인터(22) 및 제어 시스템(24)의 제어를 허용한다. 예를 들어, 하나 이상의 제어 스위치(44)는 (i) 온/오프 파워 버튼(44A), (ii) 측정되는 표면(16)상에서의 원하는 피쳐에 포인터 빔(22A)이 포인팅되는 경우 제어 시스템(24)에 표시하는데 사용될 수 있는 표시자 스위치(44B), 및/또는 (iii) 측정 빔(26)이 포인터 스폿(36)을 추종하도록(추적하도록) 가동자 어셈블리(19)가 제어되어야 함을 제어 시스템(24)에 표시하는 추종 스위치(44C)를 포함할 수 있다.
도 1에서, 포인터 스폿(36)은 사용자(도시되지 않음)에 의해 제 1 피쳐(14A)에 지향되도록 제어됨에 주목해야 한다. 추가적으로, 도 1에서, 포인터 스폿(36)은 작은 도트로서 도시되어 있음에 또한 주목해야 한다. 추가적으로, 포인터 스폿(36)은 상이한 크기 및 형상을 가질 수 있다.
추가적으로, 특정의 실시예에서, 포인터 빔(22A)은 표면(16)상에서의 포인터 스폿(36)이 제어 시스템(24)에 의해 고유하게 인식 가능한 방식으로 암호화된다. 일 실시예에서, 포인터 빔(22A)은 카메라(20)에 의해 용이하게 식별되도록 펄싱(pulse)될 수 있다. 예를 들어, 포인터 빔(22A)은 카메라(20)의 프레임 레이트의 대략 절반인 레이트로 펄싱될 수 있다. 카메라(20)의 프레임 레이트가 대략 초 당 30 프레임인 경우(프로그레시브 스캔 타입), 포인터 빔(22A)은 대략 초 당 15 프레임으로 펄싱될 수 있다. 이 예에서, 카메라(20)의 다른 이미지(32)마다 포인터 스폿(36)을 포함할 것이고, 제어 시스템(24)의 전자 장치는 이 타이밍 패턴을 인식하도록 프로그램될 수 있다. 이와 달리, 포인터(22)의 포인터 빔(22A)은 다른 적절한 방식으로 암호화될 수 있다.
제어 시스템(24)은 측정 어셈블리(12)에서 각종 구성요소의 동작을 제어한다. 제어 시스템(24)은 하나 이상의 전자 프로세서 및 회로를 포함할 수 있다.
일 실시예에서, 제어 시스템(24)은 포인터(22), 계측 시스템(18), 가동자 어셈블리(19), 및 피드백 디바이스(20)와 전기적으로 통신한다. 비제한적인 예로서, 포인터(22)는 무선 주파수(RF), 적외선(IR)을 통해, 또는 직접적인 와이어 접속에 의해 제어 시스템(24)과 통신할 수 있다. 또 다른 실시예에서, 포인터(22)는 제어 시스템(24)과 통신하도록 포인터 빔(22A)의 펄스 레이트를 조정할 수 있다. 이 실시예에서, 예를 들어, 표시자 버튼(44B)이 구동되는 경우, 포인터 빔(22A)의 펄싱은 포인터 빔(22A)이 측정될 피쳐(14A)("표시된 피쳐")를 강조하여 표시하도록 변경될 수 있다. 예를 들어, 표시자 버튼(44B)의 구동 시에, 이전의 예(대략 초 당 30 프레임의 프레임 레이트 및 대략 초 당 15 프레임의 펄스 레이트)로부터, 포인터 빔(22A)의 펄스 레이트는 대략 초 당 10 프레임으로 플래쉬(flash)하도록 변경되어, 원하는 측정 포인트를 시그널링할 수 있다.
본 명세서에서 제공된 바와 같이, 특정의 실시예에서, 제어 시스템(24)은 카메라(20)로부터 정보를 수신하고 표시된 피쳐(14A)(예를 들어, 포인터 스폿(36)의 위치)와 측정 포인트(28) 사이의 상대 위치를 결정한다. 또한, 제어 시스템(24)은 측정 빔(26)이 표시된 피쳐(14A)(예를 들어, 포인터 스폿(36))에 대략 지향될 때까지 측정 빔(26)의 방향을 이동시키기 위해 가동자 어셈블리(19)를 제어한다. 또한, 제어 시스템(24)이 측정 빔(26)의 방향을 이동시키기 위해 가동자 어셈블리(19)를 제어함에 따라 측정 빔(26)은 표면(16)상에서의 포인터 스폿(36)을 대략 추종할 수 있다. 이 설계에 의해, 제어 시스템(24)은 포인터 스폿(36)상의 측정 빔(26) 사이에서 효과적이고 연속적인 정렬을 보장하도록 이용될 수 있다.
도 1에 도시된 예에서, 제 1 피쳐(14A)를 측정하도록 요구된다. 도 1에 도시된 시점에서, 포인터 빔(22A)은 제 1 피쳐(14A)에 지향되고 측정 빔(26)은 그렇지 않다. 본 발명에 의해, 표시자 버튼(44B)은 측정 빔(26)을 적절하게 이동시키기 위해 가동자 어셈블리(19)를 제어하는 것을 제어 시스템(24)에 표시하도록 구동될 수 있다.
이와 달리, 측정되도록 요구되는 피쳐(14A-14D)를 표시하는데 다른 적절한 방법이 이용될 수 있다. 하나의 비제한적인 다른 방법은 측정될 피쳐(14A)를 식별하기 위해 사전 결정된 경로로 포인터 빔(22A)(및 포인터 스폿)을 이동시키는 것을 포함한다. 예를 들어, 사용 동안, 오퍼레이터가 포인터(22) 및 포인터 빔(22A)을 이동시킴에 따라 포인터 스폿(36)이 측정될 피쳐(14A-14D)를 식별하기 위해 피쳐(14A-14D)를 교차하는 "X"를 트레이싱할 수 있다. 이 예에서, 사전 결정된 경로는 "X"이다. 측정 어셈블리(12)의 전자 장치, 예를 들어, 제어 시스템(24)은 제조된 부품(10)의 표면(10)상에서 생성된 "X"가, 예를 들어, "X"의 중심에서 측정될 피쳐(14A-14D)의 표시로서 인식되도록 프로그램된다.
이와 달리, 사전 결정된 경로가 원인 경우, 오퍼레이터가 포인터(22) 및 포인터 빔(22A)을 이동시킴에 따라 포인터 스폿(36)이 측정될 피쳐(14A-14D)를 식별하기 위해 피쳐(14A-14D)를 둘러싸는 "O"를 트레이싱할 수 있다. 이 예에서, 측정 어셈블리(12)의 전자 장치, 예를 들어, 제어 시스템(24)은 제조된 부품(10)의 표면(10)상에서 생성된 "O"가, 예를 들어, "O"의 중심에서 측정될 피쳐(14A-14D)의 표시로서 인식되도록 프로그램된다. 이 설계에 의해, 예를 들어, 피쳐(14A-14D)가 측정될 홀을 포함하는 경우, 포인터(22), 및 그에 따른 포인터 빔(22A)은 포인터 빔(22A)으로부터의 포인터 스폿(36)이 홀 근처의 원을 트레이싱하도록 이동되어, 트레이싱된 원의 내부에서 측정될 홀 피쳐를 표시할 수 있다. 이러한 표시의 형태는 포인터 스폿(36)이 보이지 않을 수 있는 피쳐를 식별하는데 효과적일 것이다. 보다 구체적으로, 포인터 스폿(36)은 홀에 직접 포인팅하는 경우에는 보이지 않을 수 있다. 따라서, 홀 근처의 원의 아웃라인을 트레이싱함으로써 홀이 식별될 수 있다.
사전 결정된 경로는 본 명세서에서 제공된 예 이외의 다른 형상을 가질 수 있음에 주목해야 한다. 예를 들어, 사전 결정된 경로는 통상적으로 직사각형 형상일 수 있다.
또한, 측정될 피쳐(14A-14D)가 홀 또는 에지와 같이, 구별되는 경우, 계측 시스템(18)은 측정 빔(26)을 이용하는 스캐닝에 의해 피쳐(14A-14D)의 위치를 정확하게 개선할 수 있다.
이와 같은 설계에 의해, 실제로, 오퍼레이터가 포인터(22)를 이동시킴에 따라 포인터 스폿(36)은 특정의 피쳐(14A-14D)를 정확하게 표시하도록 피쳐 간에 이동된다. 몇몇 실시예에서, 계측 시스템(18)은 표시된 피쳐(14A-14D)를 단지 대략적인 것으로서 인식하도록 프로그램될 수 있다. 이후, 모든 피쳐(14A-14D)가 포인터(22)를 이용하여 적절히 표시된 후에, 계측 시스템(18)은 하나씩 자동으로 피쳐(14A-14D)의 정확한 위치를 결정하는데 사용될 수 있다.
본 발명에 의해, 측정 어셈블리(12) 및 계측 시스템(18)의 셋업의 용이성이 크게 개선될 수 있고, 셋업 시간은 다른 현재 이용 가능한 계측 시스템으로 가능한 것보다 훨씬 신속하게 될 수 있다. 따라서, 측정 어셈블리(12)는 피쳐(14A-14D)가 객체(10)상에서 불필요한 지연 없이 신속하게 정확하게 측정될 수 있도록 한다.
도 2는 도 1의 피쳐(14A, 14B, 14C, 14D)를 포함하는 객체(10) 및 계측 시스템(18), 가동자 어셈블리(19), 피드백 디바이스(20), 포인터(22) 및 제어 시스템(24)을 포함하는 측정 어셈블리(12)의 간략화된 개략도이다. 도 1 및 도 2를 비교하면, 가동자 어셈블리(19)는 측정 빔(26)이 포인터 빔(22A)과 함께 제 1 피쳐(14A)에 지향되도록 측정 빔(26)을 이동시켰다. 이 시점에서, 측정 빔(26)은 포인터 빔(22A)과 함께 제 1 피쳐(14A)에서 정렬되고, 계측 시스템(18)은 제 1 피쳐(14A)의 원하는 측정을 수행하는데 사용될 수 있다.
도 3은 도 1의 피쳐(14A, 14B, 14C, 14D)를 포함하는 객체(10) 및 계측 시스템(18), 가동자 어셈블리(19), 피드백 디바이스(20), 포인터(22) 및 제어 시스템(24)을 포함하는 측정 어셈블리(12)의 간략화된 개략도이다. 도 2 및 도 3을 비교하면, 포인터 빔(22A)이 제 2 피쳐(14B)에 포인팅하도록 이동하는 한편 계측 시스템(18)은 제 1 피쳐(14A)의 원하는 측정을 수행하고 있다. 이 시점에서, 사용자가 포인터(22)를 통해, 측정 빔(26)이 제 2 피쳐(14B)에 지향되도록 측정 빔(26)을 이동시키기 위해 가동자 어셈블리(19)를 제어하도록 제어 시스템(24)에 표시할 수 있다.
도 4는 도 1의 피쳐(14A, 14B, 14C, 14D)를 포함하는 객체(10) 및 계측 시스템(18), 가동자 어셈블리(19), 피드백 디바이스(20), 포인터(22) 및 제어 시스템(24)을 포함하는 측정 어셈블리(12)의 간략화된 개략도이다. 이 시점에서, 제어 시스템(24)은 제 2 피쳐(14B)로부터 제 3 피쳐(14C)로 표면(16)상에서 포인터 빔(22A)의 이동을 추적하여 측정 빔(26)을 이동시키도록 가동자 어셈블리(19)를 제어하고 있다. 다른 방식으로 기술하면, 측정 빔(26) 및 포인터 빔(22A)이 정렬되는 경우, 측정 빔(26)이 표면(16)상에서의 포인터 스폿(36)을 계속해서 추종하도록 계측 시스템(18)이 조정 가능하다.
일단 포인터(22)가 원하는 피쳐(14A-14D)에 포인팅되면, 사용자는 계측 시스템(18)이 원하는 측정을 수행하도록 포인터(22)를 통해 제어 시스템(24)에 지시할 수 있다.
또한, 상기 실시예에서 포인터 스폿(36)의 형상은 원형 스폿으로 제한되지 않으며, 예를 들어, 스타 형상, 라인 형상, 사각형 또는 다른 형상일 수 있다. 피드백 디바이스(20)는 형상을 인식함으로써 포인터(22)에 의한 포인터 스폿(36)의 위치를 검출할 수 있다.
추가적으로, 피드백 디바이스(20)(예를 들어, 카메라)는 필터를 포함하도록 설계될 수 있다. 필터는 광의 바람직하지 않은 파장을 차단하는 한편, 대략 포인터 빔(22A)의 파장에서 광을 투과시키도록 설계될 수 있다.
또한, 포인터 빔(22A)의 파장은 고정된 파장으로 제한되지 않고, 또한, 예를 들면, 변경 가능한 파장일 수 있다. 예를 들어, 포인터 빔(22A)의 파장은 조사된 포인터 빔(22A)의 표면(16)의 컬러에 근거하여 변경될 수 있다. 보다 구체적으로, 예를 들어, 포인터 빔(22A)의 파장과 표면(16)의 컬러 사이의 유사성으로 인해, 피드백 디바이스(20)에 의해 포인터 빔(22A)의 포인터 스폿(36)에 대한 결정의 정확도가 감소되는 경우, 포인터 빔(22A)의 파장이 변경될 수 있다.
또한, 피드백 디바이스(20)(예를 들어, 카메라)는 셔터를 포함할 수 있다. 셔터는 노광 시간을 제어하는데 사용될 수 있다. 포인터 빔(22A)의 노광 값이 사전 결정된 셔터 속도에서 높아지는 경우, 셔터는 노광 값의 양을 제어할 수 있다.
또한, 본 발명은 계측 시스템과 타겟, 예를 들어, 코너 큐브, 구형, 또는 다른 레퍼런스 사이에서 측정하는 계측 시스템에 또한 적응될 수 있다. 적절한 계측 시스템(18)의 비제한적인 일례는 (본 명세서에서 참조로서 인용되는) 특허 문헌 9에 개시된 바와 같은 레이저 트랙커이다.
추가적으로, 본 발명에서 사용자는 인간으로 제한되지 않는다. 예를 들어, 다른 비제한적인 예에서, 포인터(22)는 인간 타입의 로봇, 예를 들어, 로봇 암에 의해 조작되고 제어될 수 있다.
또한, 포인터(22)는 표면(16)상에서의 포인터 스폿(36)의 위치에서 사용자에 의한 포인터(22)의 진동의 영향을 저감하는 안정화 기능을 포함하도록 변경될 수 있다.
도 5는 본 명세서에서 제공된 측정 어셈블리(12)의 사용의 일례를 도시하는 플로우차트이다. 보다 구체적으로, 도 5는 측정 어셈블리(12)의 사용의 일례를 나타낸다. 본 명세서에서 제공된 단계가 특정의 순서로 포함된다 하더라도, 이러한 단계의 나열은 임의의 방식으로 제한되지 않는다는 것에 주목해야 한다. 예를 들어, 본 발명의 의도된 범위를 변경하지 않고, 특정의 단계가 결합되거나 제거될 수 있거나, 또는 본 명세서에서 개시된 순서와 상이한 순서로 수행될 수 있다.
우선, 단계(501)에서, 측정되도록 요구되는 하나 이상의 피쳐를 포함하는 객체가 식별되거나 선택된다.
단계(503)에서, 측정 빔이 객체에 포인팅되고, 카메라가 객체의 이미지를 캡쳐한다. 카메라는 뷰 필드의 영역을 변경할 수 있다.
단계(505)에서, 사용자는 측정되도록 요구되는 제 1 피쳐에 포인터 빔을 지향하도록 포인터를 조작할 수 있다. 다른 방식으로 서술하면, 사용자는 측정되도록 요구되는 제 1 피쳐에 포인터 빔을 수동으로 지향하도록 포인터를 수동으로 이동시킬 수 있다. 포인터는 사용자의 지시, 예를 들어, 사용자의 팔의 이동에 의해 측정되도록 요구되는 제 1 피쳐에 포인터 빔을 지향한다.
단계(507)에서, 사용자는 포인터를 통해, 측정 빔을 이동시켜 포인터 스폿상에 정렬하도록 제어 시스템에 표시할 수 있다. 이후에, 제어 시스템은 측정 빔의 방향의 이동을 자동으로 제어한다. 특정의 실시예에서, 제어 시스템은 측정 빔의 방향이 사용자에 의한 방향 지시 없이 이동되도록 제어한다. 본 발명에서 이동 빔을 몇 차례 포인터 스폿상에서 정렬할 수 있다. 예를 들어, 하나는 개략적인 정렬이고, 개략적인 정렬 이후에, 다른 하나는 세세한 정렬이다. 개략적인 정렬과 세세한 정렬 사이에 이동 길이가 상이할 수 있다. 개략적인 정렬과 세세한 정렬 사이에 카메라의 뷰 필드도 상이할 수 있다. 특정의 실시예에서, 개략적인 정렬에 대한 카메라의 뷰 필드는 세세한 정렬에 대한 카메라의 뷰 필드보다 넓다.
단계(509)에서, 피쳐상에서 측정 빔이 정렬된 후에, 측정 빔은 피쳐상에서 측정을 수행할 수 있다.
다음에, 단계(511)에서, 사용자는 포인터를 통해, 측정 빔을 이동시켜 후속하는 피쳐로 포인터 스폿을 추종하도록 제어 시스템에 지시할 수 있다.
다음에, 본 명세서에서 기술된 측정 장치(계측 시스템(18))가 제공된 구조체 제조 시스템에 대해 설명할 것이다.
도 6은 구조체 제조 시스템(700)의 비제한적인 예의 블록도이다. 구조체 제조 시스템은 적어도 하나의 재료로부터 선박, 항공기 등과 같은 적어도 구조체를 생성하고, 프로파일 측정 장치(100)에 의해 구조체를 검사하기 위한 것이다. 본 발명의 구조체 제조 시스템(700)은 본 명세서의 실시예에서 기술된 바와 같은 프로파일 측정 장치(100), 설계 장치(610), 성형 장치(620), 제어기(630)(검사 장치), 및 수리 장치(640)를 포함한다. 제어기(630)는 좌표 저장 섹션(631) 및 검사 섹션(632)을 포함한다.
설계 장치(610)는 구조체의 형상에 대해 설계 정보를 생성하고 생성된 설계 정보를 성형 장치(620)에 전송한다. 또한, 설계 장치(610)는 제어기(630)의 좌표 저장 섹션(631)이 생성된 설계 정보를 저장하도록 한다. 설계 정보는 구조체의 각 위치의 좌표를 표시하는 정보를 포함한다.
성형 장치(620)는 설계 장치(610)로부터 입력된 설계 정보에 근거하여 구조체를 생성한다. 성형 장치(620)에 의한 성형 처리는 캐스팅, 단조(forging), 절단 등과 같은 처리를 포함한다. 프로파일 측정 장치(100)는 생성된 구조체(측정 객체)의 좌표를 측정하고, 측정된 좌표(형상 정보)를 표시하는 정보를 제어기(630)에 전송한다.
제어기(630)의 좌표 저장 섹션(631)은 설계 정보를 저장한다. 제어기(630)의 검사 섹션(632)은 좌표 저장 섹션(631)으로부터 설계 정보를 판독한다. 검사 섹션(632)은 프로파일 측정 장치(100)로부터 수신된 좌표(형상 정보)를 표시하는 정보를 좌표 저장 섹션(631)으로부터 판독된 설계 정보와 비교한다. 측정 결과에 근거하여, 검사 섹션(632)은 구조체가 설계 정보에 따라 성형되는지 여부를 판정한다. 즉, 검사 섹션(632)은 생성된 구조체가 무결함인지 여부를 판정한다. 구조체가 설계 정보에 따라 성형되지 않는 경우, 검사 섹션(632)은 구조체가 수리 가능한지 여부를 판정한다. 수리 가능한 경우, 검사 섹션(632)은 비교 결과에 근거하여 결함 부분 및 수리량을 계산하고, 결함 부분을 표시하는 정보 및 수리량을 표시하는 정보를 수리 장치(640)에 전송한다.
수리 장치(640)는 제어기(630)로부터 수신된 결함 부분을 표시하는 정보 및 수리량을 표시하는 정보에 근거하여 구조체의 결함 부분의 처리를 수행한다.
도 7은 구조체 제조 시스템(700)의 처리 흐름을 나타내는 플로우차트이다. 구조체 제조 시스템(700)에 대해, 먼저, 설계 장치(610)는 구조체의 형상에 대해 설계 정보를 생성한다(단계 S101). 다음에, 성형 장치(620)는 설계 정보에 근거하여 구조체를 생성한다(단계 S102). 그 다음에, 프로파일 측정 장치(100)는 생성된 구조체를 측정하여 그 형상 정보를 획득한다(단계 S103). 그 다음에, 제어기(630)의 검사 섹션(632)은 프로파일 측정 장치(100)로부터 획득된 형상 정보를 설계 정보와 비교함으로써 설계 정보에 따라 구조체가 진정으로 생성되는지 여부를 검사한다(단계 S104).
그 다음에, 제어기(630)의 검사 섹션(632)은 생성된 구조체가 결함이 있는지 여부를 판정한다(단계 S105). 검사 섹션(632)이 생성된 구조체가 결함이 없는 것으로 판정한 경우(단계 S105에서 "예"), 구조체 제조 시스템(700)은 처리를 종료한다. 한편, 검사 섹션(632)이 생성된 구조체가 결함이 있는 것으로 판정한 경우(단계 S105에서 "아니오"), 생성된 구조체가 수리 가능한지 여부를 판정한다(단계 S106).
검사 섹션(632)이 생성된 구조체가 수리 가능한 것으로 판정한 경우(단계 S106에서 "예"), 수리 장치(640)는 구조체에 대해 재처리를 수행하고(단계 S107), 구조체 제조 시스템(700)은 처리를 단계(S103)로 복귀시킨다. 검사 섹션(632)이 생성된 구조체가 수리 불가능한 것으로 판정한 경우(단계 S106에서 "아니오"), 구조체 제조 시스템(700)은 처리를 종료한다. 그에 따라, 구조체 제조 시스템(700)은 도 7의 플로우차트에 의해 도시된 전체 처리를 종료한다.
실시예의 구조체 제조 시스템(700)에 대해, 실시예에서의 프로파일 측정 장치(100)가 구조체의 좌표를 정확하게 측정할 수 있으므로, 생성된 구조체가 무결함인지 여부를 판정할 수 있다. 또한, 구조체가 결함이 있는 경우, 구조체 제조 시스템(700)은 구조체를 수리하도록 구조체에 대해 재처리를 수행할 수 있다.
또한, 실시예에서는 수리 장치(640)에 의해 수행된 수리 처리가 성형 장치(620)가 성형 처리를 재차 수행하게 하는 것으로 대체될 수 있다. 이러한 경우, 제어기(630)의 검사 섹션(632)이 구조체가 수리 가능한 것으로 판정한 경우, 성형 장치(620)는 성형 처리(단조, 절단 등)를 재차 수행한다. 특히, 예를 들어, 성형 장치(620)는 절단을 행했어야 하지만 절단하지 않는 구조체의 부분에 대해 절단 처리를 수행한다. 이에 의해, 구조체 제조 시스템(700)이 구조체를 정확하게 생성하는 것이 가능해진다.
상기 실시예에서, 구조체 제조 시스템(700)은 프로파일 측정 장치(100), 설계 장치(610), 성형 장치(620), 제어기(630)(검사 장치), 및 수리 장치(640)를 포함한다. 그러나, 본 개시 내용은 이러한 구성으로 제한되지 않는다. 예를 들어, 본 발명에 따른 구조체 제조 시스템은 본 명세서에서 기술된 것보다 적은 구성요소를 포함할 수 있다.
측정 어셈블리(12)의 다수의 예시적인 측면 및 실시예가 앞서 기술되었으나, 당 분야에서 통상의 지식을 가진 자라면 특정의 변경, 치환, 추가 및 그 세부 결합을 인지할 것이다. 후술하는 첨부된 특허청구범위 및 본 명세서에서 도입된 특허청구범위는 모든 이러한 변형, 치환, 추가 및 그 세부 결합이 진정한 사상 및 범위 내에 있도록 이들을 포함하는 것으로 해석되어야 한다.
(측정자의 핑거 팁(Finger Tip)의 디스플레이)
상기 기술된 실시예에서, 측정될 객체가 포인터(22)에 의해 계측 시스템(18)에 표시된다 하더라도, 이에 제한되지 않는다. 예를 들어, 측정자(측정을 수행하는 사람)이 객체에 접촉하거나 또는 접촉 위치에서 객체를 터치하고, 그 다음에 계측 시스템(18)은 접촉 위치를 인식하고, 측정 빔의 방향이 접촉 위치에 대해 지향되거나 포인팅되는 구성을 제공하는 것이 가능하다.
이와 달리, 패턴을 갖는 패터닝된 빔(구조화된 광)이 사전 결정된 공간을 향해 투영되는 후술하는 구성을 제공하는 것이 가능하다. 패턴은 사전 결정된 규칙성으로 패터닝된 빔의 강도가 변경되는 줄무늬가 있는 패턴일 수 있고, 또는 패턴은 어떠한 규칙성도 갖지 않되 사전 결정된 광 강도의 빔으로 조사된 영역 및 빔으로 조사되지 않은 영역을 갖는 랜덤 패턴일 수 있다.
이 경우에, 사전 결정된 공간에 존재하는 측정자상으로 패턴이 투영된다. 측정자의 표면상으로 투영된 패턴은 피드백 디바이스(20)(카메라와 같은 결상 장치에 의해 예시됨)에 의해 결상된다. 사전 결정된 공간을 향해 투영된 패턴은 측정자와 카메라 사이의 거리에 따라 변화한다. 측정자와 카메라 사이의 거리는 측정자상으로 투영될 패턴과 측정자의 표면상에 실제로 형성된 패턴 사이의 차이에 근거하여 계산되고 측정자에 대한 3 차원 정보는 계산된 거리에 근거하여 획득된다.
상기 경우에, 사전 결정된 공간에서 측정자의 위치가 인식되고, 또한 측정자가 측정될 객체와 접촉하는 위치가 인식된다. 예를 들어, 측정자의 핑거(예를 들어, 인덱스 핑거)가 측정될 객체와 접촉하는 접촉 위치가 인식된다. 계측 시스템(18)이 측정 빔을 조사하는 조사 방향이 접촉 위치와 상이한 경우(측정 빔이 접촉 위치에 지향되지 않음), 측정 빔이 접촉 위치에 실질적으로 지향되도록 측정 빔의 조사 방향이 변경된다.
이와 달리, 상기 경우에, 측정자가 객체와 접촉하지 않는 것이 가능하다. 예를 들어, 측정자가 사전 결정된 공간에서 핑거 팁을 이동시키는 경우, 핑거 팁의 이동에 따라 측정 빔의 조사 방향을 이동시킬 수 있다. 또한 이와 달리, 객체는 핑거 팁의 이동이 지향되는 방향을 따라 핑거 팁의 10cm 앞의 위치로 설정될 수 있다.
(개략적인 이동 메커니즘 및 세세한 이동 메커니즘)
상기 기술된 실시예에서, 포인터(22)에 의한 포인터 빔(22A)의 조사 위치와 계측 시스템(18)에 의해 조사된 측정 빔(26)의 조사 방향 사이의 차이는 (카메라와 같은) 피드백 디바이스(20)에 의해 획득된 포인터 스폿 이미지(36A)로부터 계산되고, 계측 시스템(18)의 측정 빔(26)의 조사 방향은 포인터(22)의 포인터 빔(22A)의 조사 위치에 지향된다. 그러나, 계측 시스템(18)으로부터 측정 빔(26)의 조사 방향을 제어하는 방법은 이것으로 제한되지 않는다.
예를 들어, 포인터(22)상에서 위치 식별 버튼(도면에 도시되지 않음)을 제공하는 것이 가능하고, 위치 식별 버튼이 눌려지는 경우, 계측 시스템(18)상으로 사운드 또는 무선파가 조사되고, 그 다음에 계측 시스템(18)이 측정 빔의 조사 방향과 위치 식별 버튼의 위치 사이의 차이를 검출하여 측정 빔이 위치 식별 버튼의 위치에 실질적으로 지향되도록 측정 빔의 조사 방향을 변경한다. 그 다음에, 포인터 빔(22A)은 피드백 디바이스(20)(카메라)로 포인터 빔(22A)에 의해 형성된 포인터 스폿(36)의 이미지를 획득하도록 객체상으로 조사되고, 계측 시스템(18)의 측정 빔의 조사 방향은 카메라와 같은 피드백 디바이스(20)에 의해 획득된 포인터 스폿 이미지(36A)에 근거하여 변경된다.
즉, 계측 시스템(18)으로부터 측정 빔(26)의 조사 방향을 제어하는 방법은, 예를 들면, 카메라의 뷰 필드의 외부에 배치되고 측정 빔이 조사 방향을 따라 조사되는 조사 위치를 식별할 수 있는 개략적인 이동 메커니즘과, 카메라의 뷰 필드 내부의 조사 위치를 식별할 수 있는 세세한 이동 메커니즘을 제공함으로써 실현될 수 있다. 개략적인 이동 메커니즘으로만 조사 위치를 식별하는 것도 가능하다.
12 : 측정 어셈블리
18 : 계측 시스템
19 : 가동자 어셈블리
22 : 포인터
22A : 포인터 빔
24 : 제어 시스템
26 : 측정 빔
36 : 포인터 스폿

Claims (26)

  1. 표면상의 피쳐(feature)를 측정하도록 구성된 측정 어셈블리(measurement assembly)로서,
    측정 빔을 생성하도록 구성된 계측 시스템(metrology system)과,
    상기 측정 빔의 방향을 이동시키기 위해 상기 계측 시스템의 적어도 일부를 선택적으로 이동시키도록 구성된 가동자 어셈블리(mover assembly)와,
    상기 피쳐에서 포인터 빔의 포인터 스폿(pointer spot)의 위치를 식별하도록 구성된 검출기와,
    상기 검출기에 의해 식별된 위치에 근거하여 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하도록 구성된 제어 시스템을 포함하는
    측정 어셈블리.
  2. 제 1 항에 있어서,
    상기 제어 시스템은 표시자 신호에 근거하여 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하는 것을 개시하도록 구성되는
    측정 어셈블리.
  3. 제 1 항에 있어서,
    상기 제어 시스템은 포인터 스폿의 상기 위치의 변화에 근거하여 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하도록 구성되는
    측정 어셈블리.
  4. 제 3 항에 있어서,
    상기 제어 시스템은 표시자 신호에 근거하여 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하는 것을 개시하도록 구성되는
    측정 어셈블리.
  5. 제 1 항에 있어서,
    상기 표면에 지향된 상기 포인터 빔은 상기 표면상에서 포인터 스폿을 형성하고, 상기 제어 시스템은 상기 측정 빔이 상기 포인터 스폿에 대략 지향될 때까지 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하도록 구성되는
    측정 어셈블리.
  6. 제 5 항에 있어서,
    상기 피쳐에 상기 포인터 빔을 생성하도록 구성된 포인터를 더 포함하며,
    상기 포인터는, 상기 포인터 스폿이 측정될 상기 표면상의 피쳐에 대략 지향되면 상기 계측 시스템에 선택적으로 표시하는 것이 제어되도록 구성되는 표시자를 포함하는
    측정 어셈블리.
  7. 제 5 항에 있어서,
    상기 포인터 스폿에 관해 상기 제어 시스템에 피드백 정보를 제공하도록 구성되는 피드백 디바이스를 더 포함하는
    측정 어셈블리.
  8. 제 7 항에 있어서,
    상기 피드백 디바이스는 검출 가능한 영역을 포함하며, 상기 제어 시스템은 상기 피드백 디바이스의 상기 검출 가능한 영역 내부에서 상기 포인터 스폿의 방향을 결정하도록 구성되는
    측정 어셈블리.
  9. 제 7 항에 있어서,
    상기 제어 시스템은 상기 피드백 디바이스로부터 상기 피드백 정보를 수신하고 상기 측정 빔이 상기 포인터 스폿에 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하도록 구성되는
    측정 어셈블리.
  10. 제 9 항에 있어서,
    상기 포인터 빔은 펄싱되어 상기 표면상에서의 상기 포인터 스폿이 상기 피드백 정보로부터 상기 제어 시스템에 의해 식별되는
    측정 어셈블리.
  11. 제 1 항에 있어서,
    상기 가동자 어셈블리는 2 회전 자유도로 상기 계측 시스템을 이동시키도록 구성되는
    측정 어셈블리.
  12. 제 1 항에 있어서,
    상기 피쳐에 상기 포인터 빔을 생성하도록 구성되며, 휴대용 디바이스인 포인터를 더 포함하는
    측정 어셈블리.
  13. 표면상의 피쳐를 측정하도록 구성된 측정 어셈블리로서,
    측정 빔을 생성하도록 구성된 계측 시스템과,
    상기 측정 빔의 방향을 이동시키기 위해 상기 계측 시스템의 적어도 일부를 선택적으로 이동시키도록 구성된 가동자 어셈블리와,
    뷰 필드(field of view)를 가지며, 상기 피쳐에서 포인터 빔의 포인터 스폿의 위치를 식별하고 상기 뷰 필드에 관한 피드백 정보를 제공하도록 구성되는 카메라와,
    상기 카메라로부터 상기 피드백 정보를 수신하도록 구성되는 제어 시스템을 포함하며,
    상기 제어 시스템은 상기 포인터 스폿이 상기 카메라의 상기 뷰 필드 내에 있는지 여부를 판정하고, 상기 제어 시스템은 상기 포인터 스폿이 상기 카메라의 상기 뷰 필드 내에 있다고 판정하는 경우에, 상기 측정 빔이 상기 포인터 스폿에 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하고, 상기 제어 시스템은 상기 카메라에 의해 식별된 위치에 근거하여 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하도록 구성되는
    측정 어셈블리.
  14. 제 13 항에 있어서,
    상기 제어 시스템은 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어함에 따라 상기 측정 빔이 상기 표면상에서 상기 포인터 스폿을 대략 추종하도록 구성되는
    측정 어셈블리.
  15. 제 14 항에 있어서,
    상기 피쳐에 상기 포인터 빔을 생성하도록 구성된 포인터를 더 포함하고, 상기 포인터는, 상기 포인터 스폿이 측정될 상기 표면상의 피쳐에 대략 지향되면 상기 계측 시스템에 선택적으로 표시하는 것이 제어되도록 구성되는 표시자를 포함하는
    측정 어셈블리.
  16. 제 13 항에 있어서,
    상기 포인터 빔은 펄싱되어 상기 포인터 스폿이 상기 피드백 정보로부터 상기 제어 시스템에 의해 식별되는
    측정 어셈블리.
  17. 표면상의 피쳐를 측정하는 방법으로서,
    계측 시스템으로 측정 빔을 생성하는 단계와,
    가동자 어셈블리로 상기 측정 빔의 방향을 선택적으로 이동시키는 단계와,
    상기 피쳐를 식별하기 위해 포인터로부터의 포인터 빔을 상기 피쳐에 지향하는 단계와,
    상기 측정 빔이 상기 식별된 피쳐에 대략 지향될 때까지 상기 측정 빔의 방향을 이동시키기 위해 제어 시스템으로 상기 가동자 어셈블리를 제어하는 단계를 포함하는
    표면상의 피쳐를 측정하는 방법.
  18. 제 17 항에 있어서,
    상기 포인터 빔을 지향하는 단계에서, 상기 표면상에 포인터 스폿을 형성하고, 상기 제어하는 단계는, 상기 측정 빔이 상기 포인터 스폿에 대략 지향될 때까지 상기 측정 빔의 방향을 이동시키는 단계를 포함하는
    표면상의 피쳐를 측정하는 방법.
  19. 제 18 항에 있어서,
    상기 제어하는 단계는, 상기 측정 빔이 상기 표면상에서의 상기 포인터 스폿을 대략 추종하도록 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하는 단계를 포함하는
    표면상의 피쳐를 측정하는 방법.
  20. 제 18 항에 있어서,
    피드백 디바이스로 상기 포인터 스폿에 관한 피드백 정보를 생성하는 단계를 더 포함하며, 상기 피드백 정보가 상기 제어 시스템에 제공되는
    표면상의 피쳐를 측정하는 방법.
  21. 제 18 항에 있어서,
    상기 제어하는 단계는, 상기 측정 빔이 상기 포인터 스폿에 지향되기 위해 얼마나 많은 이동이 요구되는지를 결정하는 단계를 포함하는
    표면상의 피쳐를 측정하는 방법.
  22. 제 17 항에 있어서,
    상기 포인터 빔을 지향하는 단계는, 상기 피쳐를 표시하기 위해 사전 결정된 경로로 상기 포인터 빔을 이동시키는 단계를 포함하는
    표면상의 피쳐를 측정하는 방법.
  23. 구조체를 제조하는 방법으로서,
    설계 정보에 근거하여 상기 구조체를 생성하는 단계와,
    청구항 17의 방법을 이용하여 구조체의 형상 정보를 획득하는 단계와,
    상기 획득된 형상 정보를 상기 설계 정보와 비교하는 단계를 포함하는
    구조체를 제조하는 방법.
  24. 제 23 항에 있어서,
    상기 비교 결과에 근거하여 상기 구조체를 재처리하는 단계를 더 포함하는
    구조체를 제조하는 방법.
  25. 제 23 항에 있어서,
    상기 구조체를 재처리하는 단계는, 상기 구조체를 재차 생성하는 단계를 포함하는
    구조체를 제조하는 방법.
  26. 계측 시스템을 이용하여 측정되는 표면상의 피쳐를 식별하기 위해 선택적으로 위치하도록 구성되는 포인터 빔을 생성하도록 구성되는 포인터로서,
    상기 포인터 스폿이 측정될 상기 표면상의 피쳐에 대략 지향되는 조건 하에서 상기 계측 시스템을 선택적으로 표시하는 것이 제어되도록 구성되고, 상기 계측 시스템과 전기적으로 통신하는 표시자를 포함하며,
    상기 계측 시스템은 측정 빔을 생성하도록 구성되고, 상기 계측 시스템은 상기 측정 빔의 방향을 이동시키기 위해 상기 계측 시스템의 적어도 일부를 선택적으로 이동시키도록 구성되는 가동자 어셈블리와, 상기 측정 빔이 상기 식별된 피쳐에 대략 지향될 때까지 상기 측정 빔의 방향을 이동시키기 위해 상기 가동자 어셈블리를 제어하도록 구성되는 제어 시스템을 포함하는
    포인터.
KR1020157000787A 2012-06-14 2013-06-14 측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터 KR101676971B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261659885P 2012-06-14 2012-06-14
US61/659,885 2012-06-14
US13/797,420 US8937725B2 (en) 2012-06-14 2013-03-12 Measurement assembly including a metrology system and a pointer that directs the metrology system
US13/797,420 2013-03-12
PCT/JP2013/067014 WO2013187532A1 (en) 2012-06-14 2013-06-14 Measurement assembly, method for measuring a feature on a surface, method for manufacturing a structure and pointer

Publications (2)

Publication Number Publication Date
KR20150032289A true KR20150032289A (ko) 2015-03-25
KR101676971B1 KR101676971B1 (ko) 2016-11-16

Family

ID=49755617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157000787A KR101676971B1 (ko) 2012-06-14 2013-06-14 측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터

Country Status (5)

Country Link
US (1) US8937725B2 (ko)
JP (1) JP6137203B2 (ko)
KR (1) KR101676971B1 (ko)
CN (1) CN104380138B (ko)
WO (1) WO2013187532A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531823B2 (ja) * 2015-04-02 2019-06-19 株式会社ニコン 撮像システム、撮像装置、撮像方法、及び撮像プログラム
JP7300871B2 (ja) * 2019-04-05 2023-06-30 キヤノンマシナリー株式会社 測定装置および測定方法
US20230194259A1 (en) * 2020-10-09 2023-06-22 Virtek Vision International Inc Control of an optical indicator system through manipulation of physical objects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719622A (en) * 1996-02-23 1998-02-17 The Regents Of The University Of Michigan Visual control selection of remote mechanisms
US20040085522A1 (en) * 2002-10-31 2004-05-06 Honig Howard L. Display system with interpretable pattern detection
KR20110028927A (ko) * 2009-09-14 2011-03-22 삼성전자주식회사 영상처리장치 및 영상처리장치의 제어 방법
KR20120043502A (ko) * 2010-10-26 2012-05-04 한국과학기술원 구조물 변위 측정 시스템 및 방법

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4830486A (en) 1984-03-16 1989-05-16 Goodwin Frank E Frequency modulated lasar radar
US5114226A (en) 1987-03-20 1992-05-19 Digital Optronics Corporation 3-Dimensional vision system utilizing coherent optical detection
DE3886966T2 (de) 1987-03-20 1994-08-18 Digital Optronics Corp Bildsystem in drei Dimensionen mit kohärenter optischer Detektion.
US4733609A (en) 1987-04-03 1988-03-29 Digital Signal Corporation Laser proximity sensor
US4824251A (en) 1987-09-25 1989-04-25 Digital Signal Corporation Optical position sensor using coherent detection and polarization preserving optical fiber
US4969736A (en) 1988-06-17 1990-11-13 Slotwinski Anthony R Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
US7359782B2 (en) 1994-05-23 2008-04-15 Automotive Technologies International, Inc. Vehicular impact reactive system and method
US6292263B1 (en) 1998-02-18 2001-09-18 Minolta Co., Ltd. Three-dimensional measuring apparatus
JPH11230725A (ja) * 1998-02-18 1999-08-27 Minolta Co Ltd 3次元計測装置
JP4159153B2 (ja) * 1998-12-03 2008-10-01 株式会社トプコン 回転レーザ装置及び受光装置
JP2000242427A (ja) * 1999-02-22 2000-09-08 Hitachi Ltd 会議支援方法および装置
US6295051B1 (en) * 1999-06-02 2001-09-25 International Business Machines Corporation Intelligent boundless computer mouse system
AU2001259640A1 (en) * 2000-05-08 2001-11-20 Automotive Technologies International, Inc. Vehicular blind spot identification and monitoring system
US6629028B2 (en) * 2000-06-29 2003-09-30 Riken Method and system of optical guidance of mobile body
BE1014137A6 (nl) 2001-04-24 2003-05-06 Krypton Electronic Eng Nv Werkwijze en inrichting voor de verificatie en identificatie van een meetinrichting.
BE1014484A3 (nl) 2001-11-22 2003-11-04 Krypton Electronic Eng Nv Werkwijze en inrichting voor het vergroten van het meetvolume van een optisch meetsysteem.
US6944564B2 (en) 2002-05-08 2005-09-13 Metris N.V. Method for the automatic calibration-only, or calibration and qualification simultaneously of a non-contact probe
US7428061B2 (en) 2002-08-14 2008-09-23 Metris Ipr N.V. Optical probe for scanning the features of an object and methods thereof
US7009717B2 (en) 2002-08-14 2006-03-07 Metris N.V. Optical probe for scanning the features of an object and methods therefor
JP2004078682A (ja) * 2002-08-20 2004-03-11 Casio Comput Co Ltd 表示制御装置、情報端末装置、表示制御プログラム
EP1460377A3 (de) * 2003-03-21 2004-09-29 Leica Geosystems AG Verfahren und Vorrichtung zur Bildverarbeitung in einem geodätischen Messgerät
JP2004340880A (ja) * 2003-05-19 2004-12-02 Soatec Inc レーザ測定装置
US7463368B2 (en) 2003-09-10 2008-12-09 Metris Canada Inc Laser projection system, intelligent data correction system and method
EP1682936B1 (en) 2003-09-10 2016-03-16 Nikon Metrology NV Laser projection systems and method
US7139446B2 (en) 2005-02-17 2006-11-21 Metris Usa Inc. Compact fiber optic geometry for a counter-chirp FMCW coherent laser radar
US20060280415A1 (en) 2005-03-17 2006-12-14 Anthony Slotwinski Precision length standard for coherent laser radar
JP5016245B2 (ja) 2005-03-29 2012-09-05 ライカ・ゲオジステームス・アクチェンゲゼルシャフト 物体の六つの自由度を求めるための測定システム
US7724379B2 (en) * 2005-05-12 2010-05-25 Technodream21, Inc. 3-Dimensional shape measuring method and device thereof
US7299145B2 (en) 2005-08-16 2007-11-20 Metris N.V. Method for the automatic simultaneous synchronization, calibration and qualification of a non-contact probe
JP4661499B2 (ja) * 2005-09-28 2011-03-30 カシオ計算機株式会社 プレゼンテーション制御装置およびプレゼンテーションシステム
US8117668B2 (en) 2006-04-27 2012-02-14 Stephen James Crampton Optical scanning probe
JP4777182B2 (ja) * 2006-08-01 2011-09-21 キヤノン株式会社 複合現実感提示装置及びその制御方法、プログラム
US7535991B2 (en) * 2006-10-16 2009-05-19 Oraya Therapeutics, Inc. Portable orthovoltage radiotherapy
US7876457B2 (en) 2007-06-13 2011-01-25 Nikon Metrology Nv Laser metrology system and method
US8006394B2 (en) * 2007-09-05 2011-08-30 Musco Corporation Apparatus, method and system of precise identification of multiple points distributed throughout an area
US20090091532A1 (en) * 2007-10-04 2009-04-09 International Business Machines Corporation Remotely controlling computer output displayed on a screen using a single hand-held device
US7627448B2 (en) * 2007-10-23 2009-12-01 Los Alamost National Security, LLC Apparatus and method for mapping an area of interest
DE102008020772A1 (de) * 2008-04-21 2009-10-22 Carl Zeiss 3D Metrology Services Gmbh Darstellung von Ergebnissen einer Vermessung von Werkstücken
US8659749B2 (en) 2009-08-07 2014-02-25 Faro Technologies, Inc. Absolute distance meter with optical switch
US8422034B2 (en) * 2010-04-21 2013-04-16 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
EP2633364B1 (en) * 2010-10-25 2023-09-06 Nikon Corporation Apparatus, optical assembly, method for inspection or measurement of an object and method for manufacturing a structure
US20130060134A1 (en) * 2011-09-07 2013-03-07 Cardinal Health 414, Llc Czt sensor for tumor detection and treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719622A (en) * 1996-02-23 1998-02-17 The Regents Of The University Of Michigan Visual control selection of remote mechanisms
US20040085522A1 (en) * 2002-10-31 2004-05-06 Honig Howard L. Display system with interpretable pattern detection
KR20110028927A (ko) * 2009-09-14 2011-03-22 삼성전자주식회사 영상처리장치 및 영상처리장치의 제어 방법
KR20120043502A (ko) * 2010-10-26 2012-05-04 한국과학기술원 구조물 변위 측정 시스템 및 방법

Also Published As

Publication number Publication date
CN104380138A (zh) 2015-02-25
CN104380138B (zh) 2017-05-31
JP2015521727A (ja) 2015-07-30
US8937725B2 (en) 2015-01-20
WO2013187532A1 (en) 2013-12-19
JP6137203B2 (ja) 2017-05-31
KR101676971B1 (ko) 2016-11-16
US20130335749A1 (en) 2013-12-19

Similar Documents

Publication Publication Date Title
US10323927B2 (en) Calibration of a triangulation sensor
JP5679560B2 (ja) 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
US10955290B2 (en) Laser processing apparatus and output power checking method
TWI623724B (zh) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP5547105B2 (ja) 寸法測定装置、寸法測定方法及び寸法測定装置用のプログラム
US10088301B2 (en) Image measurement device
US10088302B2 (en) Image measurement device
US11285565B2 (en) Laser processing method
JP7090068B2 (ja) 非接触式プローブおよび動作の方法
US20150362310A1 (en) Shape examination method and device therefor
JP2013064644A (ja) 形状測定装置、形状測定方法、構造物製造システム及び構造物の製造方法
KR101676971B1 (ko) 측정 어셈블리, 표면상의 피쳐를 측정하는 방법, 구조체를 제조하는 방법 및 포인터
JP2015072197A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
US20200074618A1 (en) Image inspection apparatus
US9921401B2 (en) Measuring device with alignment and reference position for measurement object
JP6252178B2 (ja) 形状測定装置、姿勢制御装置、構造物製造システム、及び、形状測定方法
KR20000031904A (ko) 본딩 와이어 검사 방법 및 장치
JP2016148595A (ja) 形状測定装置および構造物の測定方法
JP2018044962A (ja) 三次元測定装置
Christoph et al. Coordinate Metrology
JP2015052490A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
Kogel-Hollacher et al. Interferometric surface inspection with movable measurement spot: high-speed OCT imaging for thickness and topography in industry
JP2022035960A (ja) 測定装置
JP2016156745A (ja) 計測方法および計測装置
KR20020050589A (ko) 검사장비 및 그의 오프셋 측정방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 4