JP2015052490A - 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム - Google Patents

形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム Download PDF

Info

Publication number
JP2015052490A
JP2015052490A JP2013184657A JP2013184657A JP2015052490A JP 2015052490 A JP2015052490 A JP 2015052490A JP 2013184657 A JP2013184657 A JP 2013184657A JP 2013184657 A JP2013184657 A JP 2013184657A JP 2015052490 A JP2015052490 A JP 2015052490A
Authority
JP
Japan
Prior art keywords
measurement
unit
image
imaging
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013184657A
Other languages
English (en)
Inventor
山田 智明
Tomoaki Yamada
智明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013184657A priority Critical patent/JP2015052490A/ja
Publication of JP2015052490A publication Critical patent/JP2015052490A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】スキャン速度を低下させることなく、測定対象の形状測定を高精度で行うことができる、形状測定装置を提供する。
【解決手段】本発明の形状測定装置は、測定光を測定対象の測定領域に照射する照射部と、測定光が照射された測定領域の像を形成する撮像光学系であって、当該撮像光学系の入射瞳または射出瞳の大きさが互いに異なる条件によって像を形成する撮像光学系と、撮像光学系により形成された前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像部と、撮像部が生成した画像データに基づいて、測定対象の3次元空間内の位置を算出する位置算出部とを有する。
【選択図】図1

Description

本発明は、測定対象(被測定物)の3次元形状を測定するための、形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラムに関する。
工業製品等の物体の表面形状を測定する技術は従来から種々提案されており、接触式の測定プローブを用いて測定対象(被測定物)の形状を3次元で測定する形状測定装置が知られている。また、測定プローブとしては、上記の接触式のものの他に、光切断方式を用いた非接触プローブがある。この光切断方式の測定プローブを用いた形状測定装置では、測定対象に所定の投影パターン(例えば、スリット光)を投影して測定対象を撮像し、その撮像画像から各画像位置(各画素)の基準面からの高さを算出し、測定対象の3次元表面形状を測定するようになっている(特許文献1を参照)。
特開平7−218231号公報
光切断方式の形状測定装置では、測定対象にスリット光を照射したとき、測定対象の表面状態によってスリット光の反射状態が変化する。このため、カメラで撮像した光切断線上の各点には測定対象の1点だけではなく、その点の近傍の複数点で反射(所謂、多重反射)したスリット光がノイズとして入射し、その結果、測定対象の形状を正確に測定できなくなることがある。
この問題に対処するために、上記特許文献1に記載の形状測定装置では、光切断線を撮像するカメラと測定対象との間に偏光フィルタを配置し、この偏光フィルタをカメラの光軸を中心として所定角度αずつ回転しながら、各角度ごとに撮像された光切断線の光量分布の非正規度を計算する。そして、光切断線の光量分布が正規分布に最も近付いた状態で形状測定を行なうことにより、測定対象の3次元形状を高精度に測定するようにしている。
しかしながら、上記の特許文献1に記載の3次元形状測定装置では、測定位置を変える毎に偏光フィルタをカメラの光軸を中心として所定角度αずつ回転し、各角度ごとに撮像された光切断線の光量分布の非正規度を計算するため、その分、測定対象全体を測定するために費やす時間が多くなるという問題があった。
本発明は上記課題を解決するためになされたものであり、本発明の目的は、測定対象の形状測定を行う際に、測定時間が長時間化することなく、測定対象の形状測定を高精度で行うことができる、形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラムを提供することにある。
本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が互いに異なる条件によって前記像を形成する撮像光学系と、前記撮像光学系により形成された前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像部と、前記撮像部が生成した前記画像データに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出部とを有する形状測定装置である。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が互いに異なる条件によって像を形成する撮像光学系と、前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像部と、前記入射瞳または前記射出瞳の大きさがそれぞれ互いに異なる条件で形成された前記測定領域の複数の像を、前記撮像部でそれぞれ撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算部と、前記撮像部が生成した前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算部が演算した比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出部とを有する形状測定装置である。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が互いに異なる複数の条件で前記測定領域の像を形成する撮像光学系と、前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像部と、前記撮像部が生成した前記画像データに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出部とを有し、前記位置算出部は、前記撮像部から入力される前記画像データのうち、前記撮像光学系の前記入射瞳または前記射出瞳の大きさが最も小さい状態によって前記撮像部が撮像した像の画像データを少なくとも用いて前記測定対象の3次元空間内の位置を算出する形状測定装置である。
また、本発明の一実施形態は、構造物の形状に関する構造物設計情報を作製する設計装置と、前記構造物設計情報に基づいて前記構造物を作製する成形装置と、作成された前記構造物の形状を、撮像画像に基づいて測定する請求項1から請求項12のいずれか一項に記載の形状測定装置と、前記測定によって得られた形状情報と、前記構造物設計情報とを比較する検査装置とを含む構造物製造システムである。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が互いに異なる条件によって前記像を形成する撮像光学系とを有する形状測定装置に用いられる形状測定方法であって、前記撮像光学系により形成された前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、前記撮像ステップにおいて生成される前記画像データのうち、前記撮像光学系の前記入射瞳または前記射出瞳の大きさがある大きさよりも小さい状態によって前記撮像ステップにおいて撮像された像の画像データを少なくとも用いて前記測定対象の3次元空間内の位置を算出する位置算出ステップとを有する形状測定方法である。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が互いに異なる条件によって像を形成する撮像光学系とを有する形状測定装置に用いられる形状測定方法であって、前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、前記入射瞳または前記射出瞳の大きさがそれぞれ互いに異なる条件で形成された前記測定領域の複数の像を、前記撮像ステップにおいて撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算ステップと、前記撮像ステップにおいて生成された前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算ステップにおいて演算された比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出ステップとを有する形状測定方法である。
また、本発明の一実施形態は、構造物の形状に関する構造物設計情報を作製する工程と、前記構造物設計情報に基づいて前記構造物を作製する工程と、作成された前記構造物の形状を、請求項14または請求項15に記載の形状測定方法を用いて測定する工程と、前記測定によって得られた形状情報と、前記構造物設計情報とを比較する工程とを含む構造物製造方法である。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、当該撮像光学系の入射瞳または射出瞳の大きさが互いに異なる条件によって前記像を形成する撮像光学系とを有する形状測定装置のコンピュータに、前記撮像光学系により形成された前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、前記撮像ステップにおいて生成される前記画像データのうち、前記撮像光学系の前記入射瞳または前記射出瞳の大きさがある大きさよりも小さい状態によって前記撮像ステップにおいて撮像された像の画像データを少なくとも用いて前記測定対象の3次元空間内の位置を算出する位置算出ステップとを実行させるための形状測定プログラムである。
また、本発明の一実施形態は、測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、当該撮像光学系の入射瞳または射出瞳の大きさが互いに異なる条件によって像を形成する撮像光学系とを有する形状測定装置のコンピュータに、前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、前記入射瞳または前記射出瞳の大きさがそれぞれ互いに異なる条件で形成された前記測定領域の複数の像を、前記撮像ステップにおいて撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算ステップと、前記撮像ステップにおいて生成された前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算ステップにおいて演算された比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出ステップとを実行させるための形状測定プログラムである。
本発明によれば、測定対象の形状測定を行う際に、スキャン速度を低下させることなく、測定対象の形状測定を高精度で行うことができる。
本実施形態の形状測定装置の構成の一例を示す概要図である。 本実施形態の撮像光学系において開口絞りを変化させる例を示す模式図である。 本実施形態の開口数に応じた撮像画像の一例を示す模式図である。 本実施形態による形状測定装置の具体的な構成の一例を示す構成図である。 本実施形態における回転機構の構成の一例を示す構成図である。 本実施形態の照射部と撮像部の第1の構成例を示す構成図である。 本実施形態の照射部と撮像部の第2の構成例を示す構成図である。 本実施形態による形状測定装置の構成の一例を示す概略ブロック図である。 本実施形態の形状測定装置における球体の測定の一例を示す模式図である。 本実施形態の比較演算部と位置算出部における処理方法の一例を示す図である。 本実施形態における形状測定装置の測定手順を示す図である。 本実施形態における撮像部の変形例を示す構成図である。 本実施形態の形状測定装置における複雑な形状の測定の一例を示す模式図である。 本実施形態による形状測定装置を備えた構造物製造システムの構成の一例を示すブロック図である。 構造物製造システムにおける処理の流れの一例を示すフローチャートである。 本実施形態の多重反射光の例について説明するための模式図である。 本実施形態の散乱光による多重反射光の例について説明するための模式図である。
以下、本発明の実施形態による形状測定装置について図面を参照して説明する。
[概要]
図1は、本発明の概要について説明するための図であり、形状測定装置100の概略構成を示す図である。図1に示す形状測定装置100は、形状測定装置本体1と、この形状測定装置本体1を制御する制御装置4とで構成されている。制御装置4は、制御線を介して形状測定装置本体1に接続されており、形状測定装置本体1の動作を制御する。形状測定装置本体1は、回転機構13及びヘッド駆動部14(図4)と、光切断プローブ2とを備えている。
この形状測定装置100では、測定対象3の表面に光切断プローブの照射部21からライン光(測定光)を照射し、このライン光により測定対象3の表面に形成される光切断線の像を撮像カメラ22により撮像する。なお、ライン光とは、照射部21から測定対象3の表面に照射される直線状の測定光を意味し、このライン光により測定対象3の表面に光切断線が投影される。つまり、測定対象3の表面に投影されたライン光(測定光)が光切断線となる。
制御装置4は、撮像カメラ22が撮像した光切断線の撮像画像を基に、測定対象3の3次元形状を示す3次元点群データを生成する。
この測定対象3を撮像カメラ22により撮像する場合に、例えば、図16(A)に示すように、測定対象3の縁などがL字形の形状であるとすると、照射部21から照射されたライン光の光束Laが面SF1で反射して光束Lbとなり、この光束Lbが面SF2で反射して光束Lcとなり、この多重反射した光束Lcが撮像カメラ22に入射して撮像されることがある。例えば、図16(B)に示すように、本来の光束Ldによる像Sdとともに、光束Lcによる像Smが、撮像カメラ22により撮像されてしまうことがある。
また、例えば、図17に示すように、照射部21から照射される光束Laを、測定対象3の面SF1に対して法線方向から照射する場合においても、点Aにおいて光束Lb(散乱光)が発生し、発生した光束Lbが面SF2で反射し光束Lc(多重反射光)として撮像カメラ22に入射し、この光束Lcによる像が撮像カメラ22で撮像されてしまうことがある。このように、この光束Lcの像Smが撮像されると、この像Smにより異常な点群データが生成されてしまい、正常な形状測定を行えなくなる。
この問題を回避するために、本実施形態の形状測定装置100では、撮像光学系の開口数(numerical aperture, NA)を変化させ、測定領域の像と多重反射光の像のそれぞれの変化の違いから、多重反射光の像を見分ける。
例えば、図2は、撮像光学系において開口絞りを変化させる例を示す図であり、撮像レンズ(単に、レンズとも呼ぶ)82の前面の瞳の位置の近傍に開口絞り81を配置した例である。この図において、図2(A)は、開口絞り81の開口が大きい場合(レンズの開口数(NA)が大きい場合)を示し、図2(B)は、開口絞り81の開口が小さい場合(レンズの開口数(NA)が小さい)の例を示している。なお、撮像素子24の撮像面は撮像光学系の光軸に対して傾いて配置されており、撮像面と共役な面は光束Laに沿って存在している。
なお、開口絞り81は、測定対象の像を形成する光学系の瞳の位置に配置された開口径を可変する絞りだけに限られない。たとえば、測定対象3の像を形成する光学系の瞳と、光学的に共役な関係を有する位置に配置しているものでよい。更には、光学的に瞳と共役な関係を有する位置の近傍であっても良く、像を形成する開口数が変わるようなものであれば良い。
この図2に示す例では、測定対象3の面SF1の点Aに、光束Laにより光切断線が紙面と垂直な方向に形成されており、測定対象3の面SF2に、光束Lbによる偽のライン光(光切断線)Bが紙面と垂直な方向に形成されている。また、この撮像光学系では、測定対象3の面SF1の点Aにおける光切断線にピントが合わされており、測定対象3の面SF2の光切断線Bにはピントが合っていないものとする。
そして、図2(A)に示す開口絞り81の開口が大きい場合において、光束Laにより形成された点Aにおける光切断線から反射される光束Ld(拡散光)は、開口絞り81及びレンズ82を介して、撮像素子24上の撮像面上に像Sdを結像する。また、光束Lbにより形成された光切断線(ライン光)Bから反射される光束Lc(多重反射光)は、開口絞り81及びレンズ82を介して、撮像素子24上の撮像面上に像Smを結像する。この場合、像Smは、光切断線Bに光学系のピントが合っていないため、ピントが合わない広がりを持った像Smとなる(コントラストが低くなる)。
一方、図2(B)に示す開口絞り81の開口が小さい場合において、光束Laにより形成された点Aにおける光切断線から反射される光束Ldは、図2(A)の場合と同様に、開口絞り81及びレンズ82を介して、撮像素子24上の撮像面上に像Sdを結像する。また、光束Lbにより形成された光切断線Bから反射される光束Lcは、開口絞り81及びレンズ82を介して、撮像素子24上の撮像面上に像Smを結像する。
この図2(B)における光束Lcの像Smは、光切断線Bに光学系のピントが合っていないため、広がりを持った像Smとなるが、開口絞り81の開口が小さく焦点深度が深くなるため、図2(A)の像Smに比べて広がりが小さくなる(コントラストが高くなる)。
例えば、図3は、開口数に応じた撮像画像の例を示す図である。図3(A)は、開口数が大きい場合の画像の例であり、画像中の像Sdは、拡散光による光切断線(測定光)の像を示し、像Smは、多重反射光による光切断線の画像を示している。
この図3(A)の画像において、拡散光による像Sdは、コントラストが高く撮像されており、多重反射光による像Smは、コントラストが低く撮像されている。
また、図3(B)は、開口数が小さい場合の画像の例であり、画像中の像Sdは、拡散光による光切断線(測定光)の像を示し、像Smは、多重反射光による光切断線(測定光)の像を示している。この図3(B)の画像において、拡散光による像Sdは、図3(A)と同様に、コントラストが高く撮像されており、コントラストの変化が少ない。また、図3(B)の画像において、多重反射光による像Smは、図3(A)の像Smに比較して、広がりが小さくなるとともにコントラストが高くなっている。
この図3(A)及び(B)に示すように、拡散光による光切断線の像Sdは、開口数を変化させることにより、開口数に応じて明るささが変化するが、そのコントラストは殆ど変化しない。一方、多重反射光による像Smは、開口数を変化させることにより、開口数に応じて明るさが変化するとともに、そのコントラストも大きく変化する。
これにより、形状測定装置100は、開口絞り81の開口の大きさを変化させることにより、コントラストの変化が少ない像Sdを、拡散光により生じた正規の像であると判定できる。また、コントラストが大きく変化する像Smを、多重反射光により生じた偽の像であると判定できる。
次に、本実施形態の形状測定装置100の概略の構成について説明する。図1に示す形状測定装置100において、照射部21は、ライン光(測定光)を測定対象3の測定領域に照射する。撮像光学系23は、開口絞り81により開口数を変化させることにより、瞳(入射瞳または射出瞳)の大きさが互いに異なる条件によって測定領域の像を形成する。撮像素子24は、異なる開口数により形成された測定領域の像S1及び像S2を撮像し、撮像した測定領域の画像の画像データG1及びG2を生成する。この画像データG1及びG2は、制御装置4内の比較演算部56と位置算出部57とに入力される。
比較演算部56は、画像データG1と画像データG2とを比較演算し、拡散光による像が撮像されている領域情報を設定する。そして、位置算出部57は、撮像素子24が生成した2つの画像データG1及びG2のうちの少なくとも一つの画像データと、比較演算部56が設定した領域情報とに基づいて、測定対象3の3次元空間内の位置を算出する。
つまり、形状測定装置100は、撮像光学系23の開口絞り81の開口の大きさを変化させ、異なる2つの開口数での画像データを取得する。そして、比較演算部56は、それぞれの画像データを比較し、画像内の像のコントラストの差が小さい場合に、この像を拡散光による正常な像として判定し、位置算出部57により点群データを生成する。一方、比較演算部56は、画像内の像のコントラストの差が大きい場合に、この像を多重反射光による異常な像として、画像データを生成しない。
これにより、形状測定装置100では、スキャン速度を低下させることなく、拡散光以外の光の影響により異常な点群データが混入することを回避できる。
[形状測定装置100の全体構成]
次に、形状測定装置100の具体的な構成例について説明する。図4は、本実施形態による形状測定装置の具体的な構成例を示す図である。この図4に示す形状測定装置100は、測定対象3の3次元形状を測定する3次元形状計測装置(例えば、座標測定機(CMM:Coordinate Measuring Machine))である。
つまり、形状測定装置100は、光切断法を用いることで、測定対象3の表面に一本のライン光(測定光)からなるライン状投影パターンを投影し、測定対象3表面の全域(より正確には、ユーザにより設定される測定領域)を走査させる毎に投影方向と異なる角度から測定対象3に投影されたライン状投影パターンを撮像する。そして、この形状測定装置100は、撮像された測定対象3表面の撮像画像よりライン状投影パターンの長手方向の画素毎に三角測量の原理等を用いて測定対象3表面の基準平面からの高さを算出し、測定対象3表面の3次元形状を求める装置である。
図4において、形状測定装置100は、形状測定装置本体1及び制御装置4を備えている。形状測定装置本体1は、回転機構13及びヘッド駆動部14を有する駆動部11(図8)と、位置検出部12(図8)と、ヘッド部17と、定盤18と、光切断プローブ2とを備えている。なお、ここでは、測定対象3は、一例として、球体を示しており、定盤18の上に配置されている。定盤18は、石製又は鋳鉄製からなるものであり、上面が水平に保たれたものとなっている。
ヘッド駆動部14は、制御装置4から供給される駆動信号に基づいて、互いが直交するX軸、Y軸、Z軸の直交3軸の方向にヘッド部17を移動させる。ヘッド駆動部14は、X軸移動部141、Y軸移動部142、及びZ軸移動部143を備えている。ここで、XY平面とは、定盤18の上面と平行な面を規定するものである。すなわち、X軸方向とは、定盤18上における一方向を規定するものであり、Y軸方向とは、定盤18の上面においてX軸方向に直交する方向を規定するものであり、Z軸方向とは、定盤18の上面に直交する方向を規定するものである。
X軸移動部141は、ヘッド部17をX軸方向に駆動するX軸用モータを備え、定盤18上の所定の範囲内でX軸方向にヘッド部17を移動させる。Y軸移動部142は、ヘッド部17をY軸方向に駆動するY軸用モータを備え、定盤18上の所定の範囲内でY軸方向にヘッド部17を移動させる。また、Z軸移動部143は、ヘッド部17をZ軸方向に駆動するZ軸用モータを備え、所定の範囲内でZ軸方向にヘッド部17を移動させる。
なお、ヘッド部17は、光切断プローブ2の上部に位置し、回転機構13を介して光切断プローブ2を支持している。すなわち、ヘッド駆動部14は、互いに直交する3次元座標系の座標軸方向それぞれに、光切断プローブ2を移動させる。
図5は、本実施形態における回転機構13の構成を示す図である。
図5に示すように、回転機構13は、ヘッド部17と光切断プローブ2との間に配置され、ヘッド駆動部14に対して光切断プローブ2を回転可能に支持する。すなわち、回転機構13は、測定対象3の表面に対して光切断プローブ2を任意の角度に回転可能とする。
また、回転機構13は、A回転軸131、B回転軸132、及びC回転軸133を備えている。なお、回転機構13は、A回転軸131、B回転軸132、及びC回転軸133の各軸を回転させる駆動モータを備えており、制御装置4から供給される駆動信号に基づいて、光切断プローブ2を任意の角度に回転させる。
A回転軸131は、A回転軸131の下に取り付けられたB回転軸132及びC回転軸133を含めて光切断プローブ2を360度の範囲でZ軸回転させる回転軸である。B回転軸132は、A回転軸131下部に取り付けられ、C回転軸133を含めて光切断プローブ2を上下方向に−90〜+90度の範囲で回転させる機構である。C回転軸133は、B回転軸132に取り付けられ、光切断プローブ2を360度の範囲で回転させる機構である。
図5に示すように、光切断プローブ2は、測定対象3にライン光を照射する照射部21と、ライン光の照射方向とは異なる方向から測定対象3に照射されたライン光の像を撮像する撮像カメラ22とを有している。照射部21と撮像カメラ22はそれぞれ筐体に固定されている。そのため、照射部21によるライン光の照射方向と撮像カメラ22による撮影方向の相対的な方向の差は常に固定されている状態である。
照射部21は、図示しないシリンドリカルレンズや細い帯状の切り欠きを有したスリット板等から構成され、光源からの照明光を受けて扇状のライン光を生じさせるものである。光源としては、LEDやSLD等を用いることができる。
撮像カメラ22は、撮像光学系23とCCD等の撮像素子24を有して構成される。この撮像カメラ22では、撮像光学系23を介して、照射部21の光照射方向とは異なる方向から測定対象3の表面に投影されるライン光(光切断線)を、撮像素子24により撮像する。すなわち、撮像カメラ22は、ライン光が照射されることで光切断線が現れた測定対象3の表面を撮像する。
また、撮像カメラ22は、後述のように駆動部11を駆動させてライン光が所定間隔で走査される毎に測定対象3を撮像するようになっている。なお、照射部21及び撮像カメラ22の位置は、測定対象3の表面上のライン光(光切断線)の撮像カメラ22に対する入射方向と、照射部21の光照射方向とが、所定角度θをなすように規定されている。なお、本実施形態では、上記所定角度θが、例えば、45度に設定されている。
図6は、照射部21と撮像カメラ22の第1の構成例を示す図である。図6(A)に示すように、光切断プローブ2は、測定対象3にライン光を照射する照射部21と、ライン光が照射されることで光切断線が現れた測定対象3の表面の像を撮像する撮像カメラ22と、を主体に構成される。また、光切断プローブ2には、撮像カメラ22により撮像された画像データに基づいて測定対象3の形状を測定する制御部41が接続されている。
照射部21は、光源71から出射した光が透過するコンデンサレンズ72と、コンデンサレンズ72を透過した光を扇状のライン光74aに整形する整形レンズ73と、を含む。本実施形態においては、照射部21は測定対象3に対してライン光74aを照射するようになっている。
撮像カメラ22は、照射部21の光照射方向とは異なる方向から測定対象3の表面に投影されるライン光74aを撮像するためのものであり、後述のように移動部542(図8)によりライン光74aが所定間隔走査される毎に測定対象3を撮像するようになっている。
撮像カメラ22は、撮像光学系23として、開口絞り81と、撮像レンズ82とを含む。撮像レンズ82は単数のレンズ又は複数枚のレンズ(図7参照)から構成され、測定対象3からの光束74bを受光して撮像素子24の撮像面上に測定対象3の像を結像させる。
撮像素子24は、撮像面上に結像したライン光を含む測定対象3の像を光電変換して画像信号(画像データ)を生成し、画像信号を制御部41に出力する。
本実施形態においては、撮像レンズ82を含む撮像光学系23の光軸に対して撮像素子24を、シャインプルーフの法則に従って傾けることでライン光74aの面に常に合焦する状態とし、測定対象3の全面を精度良く測定できるようにしている。また、撮像光学系23の像面とライン光74aによる測定対象3の光切断面は略共役となっている。撮像素子24は、例えば複数の画素構造を有したCCDから構成されている。なお、本実施形態では、撮像素子24は高精度の形状測定を行うためのものであり、例えば1000×1000の画素数を有している。
また、撮像レンズ82の前面に開口絞り81が配置され、この開口絞り81は、撮像光学系23を通過するレンズの開口数を変化させるために使用される。この開口絞り81は、撮像光学系23の光軸に垂直に配置されるとともに、この絞り調整部25によりレンズ82の開口数が調整される。
本実施形態では、例えば、開口絞り81の開口を大きく設定して、測定対象3の表面上のライン光(光切断線)を撮像して第1の画像データを得る。その後、開口絞り81の開口を小さく設定して、測定対象3の表面上のライン光(光切断線)を撮像して第2の画像データを得る。
なお、開口絞り81は、図6(A)に示すように、レンズ82の前面の瞳の位置(射出瞳)の近傍に開口絞り81を配置する他に、図6(B)に示すように、レンズ82の後面の瞳の位置(入射瞳)の近傍に開口絞り81を配置することもできる。
さらには、図7に示すように、複数のレンズ82a及び82bが使用される場合には、開口絞り81を、入射瞳の位置と射出瞳の位置の中間の位置に配置することができる。
(形状測定装置100の各部の詳細な構成の説明)
次に、図8を参照して、形状測定装置100の構成を詳細に説明する。
図8は、本実施形態による形状測定装置100の構成を示す概略ブロック図である。なお、この図において、図1〜図7と同じ構成部分には、同じ符号を付してその説明を省略する。
図8において、形状測定装置100は、形状測定装置本体1と制御装置4とを備えている。
また、形状測定装置本体1は、駆動部11、位置検出部12、及び光切断プローブ2を備えている。駆動部11は、回転機構13とヘッド駆動部14とを備え、制御装置4から供給される駆動信号に基づいて、光切断プローブ2の位置及び姿勢を変更させる。すなわち、駆動部11は、光切断プローブ2と測定対象3とを相対移動させる。
位置検出部12は、回転位置検出部15とヘッド位置検出部16とを備えている。ヘッド位置検出部16は、ヘッド駆動部14のX軸、Y軸、及びZ軸方向の位置をそれぞれ検出するX軸用エンコーダ、Y軸用エンコーダ、及びZ軸用エンコーダを備える。ヘッド位置検出部16は、それらのエンコーダによってヘッド駆動部14の位置を検出し、ヘッド駆動部14の位置を示す信号を後述の座標検出部51に供給する。
回転位置検出部15は、A回転軸131、B回転軸132、及びC回転軸133の回転位置をそれぞれ検出するエンコーダを備える。回転位置検出部15は、それらのエンコーダを用いて、A回転軸131、B回転軸132、及びC回転軸133の回転位置を検出し、検出した回転位置を示す信号を座標検出部51に供給する。
光切断プローブ2は、上述したように、光切断方式により測定対象3の表面形状を検出するために、照射部21及び撮像カメラ22を備えている。照射部21は、測定対象3に直線上の光があたるように、測定対象3に直線状のライン光を照射する。
撮像カメラ22は、照射部21からの照射光により測定対象3の表面に形成される光切断線を測定光として撮像する。ここで、光切断線は、測定対象3の断面形状に応じて形成される。そして、撮像カメラ22は、測定対象3の表面に形成される陰影パターンを撮像し、撮像した画像情報を間隔調整部52に供給する。これにより、制御装置4は、形状測定データを取得する。
また、光切断プローブ2は、開口絞り81の開口の大きさを調整する絞り調整部25を備えており、この絞り調整部25は、比較演算部56からの制御信号を間隔調整部52を介して受信することにより、撮像光学系23内の開口絞り81の開口の大きさを変化させる。
(制御装置4の説明)
続いて、制御装置4について説明する。
制御装置4は、制御部41と、入力装置42と、ジョイスティック43と、モニタ44とを備えている。
入力装置42は、ユーザが各種指示情報を入力するキーボードなどを備える。入力装置42は、入力された指示情報を検出し、検出した指示情報を記憶部58に記憶させる。
ジョイスティック43は、ユーザの操作を受けて、その操作に応じて駆動部11を駆動させる制御信号を生成して駆動制御部53に供給する。このように、ジョイスティック43は、ユーザの操作情報を出力し、出力した情報に基づいて光切断プローブ2を配置させる制御指令情報として、入力することができる。
モニタ44は、データ出力部60から供給された測定データ(全測定ポイントの座標値)等を受け取る。モニタ44は、受け取った測定データ等を表示する。また、モニタ44は、計測画面、指示画面等を表示する。
制御部41は、形状測定装置100における測定対象3の形状測定動作を制御するとともに、測定対象3表面の基準平面からの高さを算出し、測定対象3の3次元形状を求める演算処理を行う。また、制御部41は、座標検出部51、間隔調整部52、駆動制御部53、測定制御部54、形状測定部55、記憶部58、データ出力部60、及びハードディスク61を備えている。
座標検出部51は、回転位置検出部15及びヘッド位置検出部16から出力される6軸座標信号によって、光切断プローブ2の位置、及び光切断プローブ2の姿勢を検知する。
ここで、6軸座標信号とは、X軸、Y軸、Z軸の直交3軸、及びA回転軸131、B回転軸132、C回転軸133の3軸の座標を示す信号である。
つまり、座標検出部51は、ヘッド位置検出部16から出力される直交3軸の座標信号によって、光切断プローブ2の位置、すなわち水平方向における観察位置(光軸中心位置)と上下方向における観察位置とを検知する。また、座標検出部51は、回転位置検出部15から出力される回転位置を示す信号によって、光切断プローブ2の姿勢を検知する。
また、座標検出部51は、光切断プローブ2の位置、及び光切断プローブ2の姿勢を示す情報として、6軸の座標情報を形状測定部55に供給する。また、座標検出部51は、光切断プローブ2の6軸の座標情報に基づいて、光切断プローブ2の移動経路、移動速度などを検出する。
間隔調整部52は、予め定められた所定のサンプリング周波数で、撮像カメラ22から画像情報を受け取る。そして、間隔調整部52は、フレームが間引かれた画像情報を形状測定部55に供給する。
駆動制御部53は、ジョイスティック43からの操作信号に基づいて、又は、測定制御部54からの指令信号に基づいて、ヘッド駆動部14及び回転機構13に駆動信号を出力して、駆動部11を移動させる制御を行う。
測定制御部54は、法線算出部541と、移動部542とを含む。測定制御部54は、移動部542により、光切断プローブ2が測定対象の測定位置に光切断線の像を投影し、かつ撮像できる位置になるよう測定対象3に対する光切断プローブ2の相対位置を制御する。また、測定制御部54は、記憶部58から測定条件テーブルに登録された測定対象3の測定範囲の情報、例えば、測定開始点(最初の測定ポイント)位置やデータ取得ピッチ等を読み出す。
また、測定制御部54は、法線算出部541により、検出値(3次元座標値の点群データ)に基づいて、ライン光における測定対象3の法線方向を示す法線ベクトルを算出し、算出した法線ベクトルに基づいて、ライン光を照射する光切断プローブ2の向き(姿勢)を制御する。
この場合に、法線算出部541は、形状記憶部581から読み出した、現在の相対位置に対する3次元座標値の点群データと現在より過去に算出された(例えば、1つ前の)相対位置に対する3次元座標値の点群データとに基づいて、現在の相対位置における法線ベクトルを算出する。すなわち、法線算出部541は、連続する2枚のライン光の撮像画像から測定対象3の測定面の法線方向(面の傾斜情報)を示す法線ベクトルを算出する。
また、測定制御部54は、法線算出部541により、光切断プローブ2を測定方向に移動させる間に形状測定部55によって得られた複数回の点群データの測定結果に基づいて、法線ベクトルを算出し、この法線ベクトルの方向に基づいて光切断プローブ2の姿勢を制御する。例えば、本実施形態の形状測定装置100では、法線算出部541により算出した法線ベクトルの向きと、ライン光の照射方向とが一致する向きになるように光切断プローブ2を制御することができる。
例えば、図9は、本実施形態の形状測定装置100における球体(測定対象)3の測定例を示す図である。この図において、形状測定装置100では、測定制御部54により、光切断プローブ2を測定位置P3から測定位置P6まで移動させ、球体(測定対象)3の形状を測定する。なお、測定経路R1は、測定位置P3から測定位置P6までの測定を行う際の経路を示す。
この図9に示すように、ユーザによって、測定位置P3に光切断プローブ2が移動され、光切断線の照射方向が指定された場合、測定制御部54は、測定対象3(球体)の法線方向を算出する。次に、測定制御部54は、算出した法線方向、光切断線の照射方向、及びデータ取得ピッチに基づいてプローブ角度を含む次画像取得位置を計算して、測定経路R1に示すように、連続的に計測を実行させる。
また、測定制御部54の移動部542は、照射部21が測定対象3に測定光を照射する照射方向と、撮像カメラ22が撮像する撮像方向との相対的な方向を保持しつつ、照射方向と撮像方向とを測定対象3に対して移動させる。また、測定制御部54は、形状測定部55によって点群データを繰り返し算出させる際に、変更させた相対位置(光切断プローブ2の測定位置及び姿勢)に対応する光切断プローブ2の座標値データ(6軸の座標情報)を経路記憶部582に記憶させる。測定制御部54は、再び同じ測定対象3の形状を測定させる場合に、経路記憶部582から読み出した相対位置の経路に基づいて、光切断プローブ2の6軸の座標情報を変更させて、形状測定部55に点群データを繰り返し算出させることができる。
形状測定部55は、間隔調整部52から供給されたフレームが間引かれた画像情報を受け取る。また、形状測定部55は、座標検出部51から供給された光切断プローブ2の6軸の座標情報を受け取る。そして、形状測定部55は、間隔調整部52から供給された画像情報と、座標検出部51から供給された6軸の座標情報と、比較演算部56が設定した領域情報(拡散光による正常な像が撮像された領域の情報)とに基づき、各測定ポイントの座標値(3次元座標値)の点群データを算出する。つまり、形状測定部55は、撮像カメラ22が取得した画像データと、比較演算部56が設定した領域情報とに基づいて測定対象3の形状を算出する。
形状測定部55におけるこの点群データの具体的な算出方法は、以下の通りである。まず、形状測定部55は、受け取った光切断プローブ2の6軸の座標情報から、光切断プローブ2に固定された照射部21の座標と、撮像カメラ22の座標とを算出する。
ここで、照射部21は、光切断プローブ2に固定されているので、照射部21の照射角度は、光切断プローブ2に対して固定である。また、撮像カメラ22も光切断プローブ2に固定されているので、撮像カメラ22の撮像角度は、光切断プローブ2に対して固定である。
形状測定部55は、照射した光が測定対象3にあたった点を、撮像された画像の画素毎に、三角測量を用いて算出する。ここで、照射した光が測定対象3にあたった点の座標は、照射部21の座標から照射部21の照射角度で描画される直線と、撮像カメラ22の座標から撮像カメラ22の撮像角度で描画される直線(光軸)とが交わる点の座標である。
これによって、形状測定装置100は、測定対象3に照射されるライン光を所定の方向に走査させることにより、形状測定部55により、光が照射された位置の座標を算出することができる。つまり、測定対象3の表面形状を求めることができる。形状測定部55は、測定対象3の形状をライン光の像の位置に基づいて算出された点群の位置情報である点群データを出力する。形状測定部55は、算出した3次元座標値の点群データを記憶部58に記憶させる。
形状測定部55は、上述した比較演算部56と、位置算出部57とを有して構成される。また、比較演算部56は、判定部561を備え、位置算出部57は、画像データ抽出部571と、点群算出部572と、点群抽出部573とを有している。
比較演算部56は、撮像カメラ22の撮像素子24が撮像した画像データ、つまり、開口絞り81の異なる開口数により得られた2つの画像データどうしの差を比較演算する。例えば、比較演算部56は、撮像カメラ22が生成した2つの画像データどうしを画素毎に画素値の差分を取得し、取得された差分に基づいて領域情報(拡散光による正常な像が撮像された領域の情報)を取得する。
なお、撮像カメラ22により取得した画像データに、多重反射光による画像が含まれない場合もあり、この場合は、比較演算部56により2つの画像の比較演算を行う必要がない。このため、比較演算部56の判定部561は、画像データ内に所定のしきい値を超える画素値を含む画像領域が複数存在するか否かを判定する。そして、比較演算部56は、判定部561の判定結果に基づいて、比較演算の要否を判定する。つまり、画像データ内に複数の画像(より正確には、拡散光による像と多重反射光による画像)が存在しない場合には、多重反射光による画像が存在しないので、画像データの比較演算を行うことなく、撮像された画像の画像データから点群データを生成する。
また、位置算出部57は、撮像カメラ22が生成した画像データについて、比較演算部56が設定した領域情報に基づいて、測定対象3の3次元空間内の位置を算出する。また、位置算出部57内の画像データ抽出部571は、比較演算部56が取得した領域情報に基づいて撮像素子24が生成した画像データから測定光の像の少なくとも一部を含む画像データを抽出する。点群算出部572は、画像データ抽出部571が抽出した画像データに基づいて点群データを生成することにより測定対象3の3次元形状内の位置を算出する。
また、点群抽出部573は、後述するように、比較演算部56において領域情報が設定される前に、点群算出部572により画像データ(拡散光の像と多重反射の像を含む画像データ)の点群データが生成される場合に使用される。この点群抽出部573は、画像データから点群データが算出された後に、比較演算部56が設定した領域情報を基に、この領域情報が示す領域に含まれる点群データを抽出して出力する。
つまり、点群抽出部573は、撮像カメラ22が生成した2つの画像データのうち少なくとも一つの画像データに基づいて測定対象の3次元形状内の位置を示す点群データを予め算出し、その後に、比較演算部56により取得された領域情報に基づいて、領域情報が示す領域に対応する点群データを抽出する。そして、抽出した点群データを、測定対象3の形状を示す点群データとして出力する。
例えば、図10は、上記の比較演算部56における比較演算と、位置算出部57における点群データの生成処理の流れを図で示したものである。この図10において、図10(A)は、画像データG1と画像データG2とを比較演算し、領域情報(拡散光による正常な像が撮像された領域の情報)を設定した後に点群データの生成を行う例である。一方、図10(B)は、画像データG1の点群データを生成した後に、画像データG1と画像データG2とを比較演算して領域情報を設定し、その後に、画像データG1の点群データから、領域情報が示す領域の点群データを抽出する例である。
図10(A)に示す例では、最初に、判定部561により、画像データG1と画像データG2との比較が行われ、比較演算部56において比較演算を行うことが決定されたものとする(ステップS11)。
次に、比較演算部56は、画像データG1と画像データG2の画素データの比較演算を行う(ステップS12)。そして、比較演算部56は、比較演算結果により、画像データG1に対して点群データの生成を行う領域情報を設定する(ステップS13)。つまり、比較演算部56は、画像データG1に対して、領域情報が示す領域Rを設定する。
その後、位置算出部57は、画像データG1の領域R内の画像データに対して点群データの生成処理を行う(ステップS14)。
なお、図10(A)に示す処理において、比較演算部56が領域情報を設定する画像データは、画像データG2であってもよい。
一方、図10(B)に示す例では、最初に、位置算出部57が、画像データG1に対して点群データの生成処理を行う(ステップS21)。位置算出部57は、算出した点群データを記憶部58に保存する。
次に、判定部561により、画像データG1と画像データG2との比較が行われ、比較演算部56において比較演算を行うことが決定されたものとする(ステップS22)。なお、判定部561において、比較演算を行わないことが決定された場合は、ステップS21において算出した画像データG1の点群データが、そのまま、3次元の形状の測定データとして使用される。
続いて、比較演算部56は、画像データG1と画像データG2との画素データの比較演算を行う(ステップS23)。そして、比較演算部56は、比較演算結果により、点群データを出力する領域情報を設定する(ステップS24)。つまり、比較演算部56は、画像データG1において、点群データを出力する範囲を示す領域Rを設定する。
その後、位置算出部57は、ステップS21において算出した画像データG1の点群データから、領域R内に含まれる点群データを抽出して出力する(ステップS25)。
なお、図10(B)に示す処理において、位置算出部57が点群データを算出する画像データは、画像データG2であってもよい。
上記の10(A)の処理方法は、10(B)の処理方法に比べて点群データの生成数が少なくて済む利点があり、また、上記の10(B)の処理方法は、画像データG1に対する点群データの生成処理を、比較演算を行う場合と行わない場合とにおいて統一して行える利点がある。
なお、上述した例では、比較演算部56が領域情報を設定する場合に、点群データの生成を行う領域を設定するようにしているが、逆に、比較演算部56は、点群データの生成しない除外領域を設定するようにしてもよい。この点群データの生成しない除外領域を設定する場合、位置算出部57は、画像データから除外領域を排除して点群データの生成処理を行う。
また、本実施形態の形状測定装置100では、開口絞り81の開口の大きさを2つに設定し(レンズ82の開口数を2つに設定し)、それぞれの開口数において画像データを取得する例を示したが、これに限定されない。例えば、開口絞り81の開口の大きさを3つ又は4つ以上に設定して、それぞれの開口数に対応した複数の画像データを取得し、これらの複数の画像データを比較するようにしてもよい。
図8に戻り、記憶部58は、例えば、RAM(Random Access Memory)などのメモリであり、入力装置42から供給された各種指示情報を測定条件テーブルとして記憶する。ここで、測定条件テーブルには、測定範囲の情報、例えば、測定対象3の測定開始点(最初の測定ポイント)や測定終了点の座標値や、測定開始位置での測定目標方向や、各測定ポイントの初期値を示すデータ(例えば、露光量の初期値)や、データ取得ピッチなどの項目が含まれる。また、記憶部58は、形状測定部55から供給された3次元座標値の点群データを測定データとして記憶する。また、記憶部58は、座標検出部51から供給された各測定ポイントの座標値データ(6軸の座標情報)を経路情報として記憶する。また、記憶部58は、測定対象3のCADデータ(設計情報)を記憶する。
なお、記憶部58は、形状記憶部581と、経路記憶部582と、CADデータ記憶部583と、を備えている。形状記憶部581は、上述した形状測定部55から供給された3次元座標値の点群データを測定データとして記憶する。つまり、形状記憶部581は、後述する測定制御部54によって制御された相対位置に対応させて形状測定部55が算出した算出値(形状)である点群データを記憶する。
ここで、相対位置とは、光切断プローブ2の測定位置及び姿勢(向き)のことであり、光切断プローブ2と測定対象3との相対的な位置を示し、測定対象3が固定されている場合には、光切断プローブ2の測定位置を示す。
経路記憶部582は、変更させた上述の相対位置(各測定ポイント)に対応する光切断プローブ2の座標値データ(6軸の座標情報)を相対位置の経路情報として記憶する。CADデータ記憶部583は、測定対象3のCADデータ(設計情報)を記憶する。
データ出力部60は、記憶部58から測定データ(全測定ポイントの座標値)等を読み出す。データ出力部60は、その測定データ(全測定ポイントの座標値)等をモニタ44に供給する。また、データ出力部60は、測定データ(全測定ポイントの座標値)等をプリンタ(不図示)へ出力する。
ハードディスク61は、磁気記憶装置などの不揮発性の記憶装置であり、記憶部58に記憶されている情報を保存しておく目的のために記憶する。記憶部58に記憶されている情報は、例えば、形状記憶部581に記憶されている点群データや、経路記憶部582に記憶されている経路情報や、CADデータ記憶部583に記憶されている設計情報(CADデータ)などである。これらの情報は、測定制御部54によって、記憶部58から読み出されて、ハードディスク61に記憶される。また、ハードディスク61に記憶されている情報は、測定制御部54によって、ハードディスク61から読み出され、記憶部58に記憶されて、測定の際に使用されてもよい。
[形状データを作成するまでの手順]
次に、図11を参照して、形状測定装置100が測定対象3を光切断プローブ2によりスキャンし形状データを作成するまでの手順を説明する。
図11は、本実施形態における形状測定装置100の測定手順を示す図である。なお、この図11に示す例は、上記の判定部561により、比較演算部56で比較演算を行うと判定される場合の例である。
この図11において、まず、測定オブジェクト(被測定物)である測定対象3が、ユーザによって測定台に設置される(ステップS101)。つまり、測定対象3は、形状測定装置100の定盤18上における稼動範囲の測定有効空間に設置される。
次に、ユーザが、ヘッド駆動部14及び回転機構13を測定開始位置に移動させる(ステップS102)。つまり、光切断プローブ2が、測定開始位置に移動させられる。すなわち、光切断プローブ2から照射されるライン光が測定対象3の測定開始位置に照射されるように、例えば、移動ツマミ(入力装置42の一部)、又はジョイスティック43を用いて6軸座標を調整され、駆動制御部53は、移動ツマミ又はジョイスティック43からの操作信号に基づいて、ヘッド駆動部14及び回転機構13を移動及び回転させる。そして、駆動制御部53は、移動ツマミ又はジョイスティック43からの操作信号に基づいて、登録位置として設定された駆動部11の測定開始位置を記憶部58に記憶させる。これにより、形状測定装置100は、測定開始位置が設定される。
ヘッド駆動部14及び回転機構13を測定開始位置に移動させる場合、ライン光(光切断線)は、光切断プローブ2内の撮像カメラ22によりモニタされ、画像中心位置に撮像されるように微調整されてもよい。なお、光切断プローブ2は、形状測定装置100に取り付け前に単体校正が実施され、ライン光が計測カメラの中心位置にある場合が、ワーキングディスタンスの中心となるように予め校正されている。
次に、光切断線の照射方向(測定目標方向)が、ユーザによって指定される(ステップS103)。つまり、ユーザによって、C回転軸133を移動ツマミ又はジョイスティック43により光切断線の長手方向を測定対象3に合わせて、光切断線の照射方向が、調整される。この場合、スキャン方向(光切断プローブ2の移動方向)は、光切断線の長手方向と垂直な方向となる。
ここで、駆動制御部53は、移動ツマミ又はジョイスティック43からの操作信号に基づいて、回転機構13のC回転軸133を回転させるとともに、登録位置として設定された測定開始位置での測定目標方向を記憶部58に記憶させる。
次に、形状測定装置100では、測定データ取得距離、又は測定終了条件が、ユーザによって指定される(ステップS104)。つまり、入力装置42又はジョイスティック43により、測定データ取得距離、又は測定終了条件が指定され、入力装置42又はジョイスティック43は、指定された測定データ取得距離、又は測定終了条件を記憶部58に記憶させる。
次に、形状測定装置100では、測定対象3の表面のデータ取得ピッチの初期値がユーザによって指定される(ステップS105)。つまり、入力装置42又はジョイスティック43を用いて、データ測定ピッチが指定され、入力装置42又はジョイスティック43は、指定されたデータ測定ピッチを記憶部58に記憶させる。
以上により、形状測定装置100において、測定対象3の形状を測定するための設定が完了する。
次に、形状測定装置100は、測定対象3の形状の測定を開始する(ステップS106)。つまり、測定制御部54は、上述で設定された測定条件テーブルを記憶部58から読み出して、測定条件テーブルに基づいて測定対象3の形状の測定を開始する。形状測定装置100は、以下のように、光切断プローブ2の位置及び姿勢(上述の相対位置)を変更させて、形状測定部55に点群の位置情報である点群データを繰り返し算出させる。
測定対象3の形状の測定において、まず、形状測定装置100は、測定終了条件に達したかを判定する(ステップS107)。つまり、測定制御部54は、ステップS104の処理において指定された測定終了条件に達したか否かを判定する。測定制御部54は、測定終了条件に達したと判定した場合に、ステップS115に処理を進める。また、測定制御部54は、測定終了条件に達していないと判定した場合に、ステップS108に処理を進める。
次に、ステップS108において、形状測定装置100は、6軸の現座標情報、光切断の画像を取得する。つまり、測定制御部54は、測定条件テーブルに基づいて測定開始位置に光切断プローブ2の位置を移動及び姿勢を変更させる。そして、測定制御部54は、座標検出部51に6軸の現座標情報を取得させるとともに、間隔調整部52を介して撮像カメラ22に測定光の画像を取得させる。
なお、撮像カメラ22によって画像が取得されるのと同期して、座標検出部51は、位置検出部12が検出した移動後の(現在の)6軸の座標情報をラッチし、形状測定部55に供給する。また、撮像カメラ22によって取得された画像は、間隔調整部52を介して形状測定部55に供給される。
この撮像カメラ22により測定対象3の表面に投影されたライン光(光切断線)の画像を取得する場合に、比較演算部56は、測定制御部54を介して撮像カメラ22の撮像光学系23内の開口絞り81の開口の大きさを変化させることにより、開口数が異なる光束により得られる画像データG1と画像データG2とを取得する(ステップS109)。続いて、比較演算部56は、画像データG1と画像データG2の画素データの比較演算を行う(ステップS110)。そして、比較演算部56は、比較演算結果により、点群データの生成を行う領域情報を設定する(ステップS111)。
その後、位置算出部57は、画像データG1中の領域情報が示す領域内の画像データに対して点群データの生成処理を行う(ステップS112)。
次に、形状測定装置100は、前画像、現画像の点群位置から測定対象3の表面の法線を推定する(ステップS113)。つまり、測定制御部54内の法線算出部541は、形状記憶部581から1つ前の測定位置(相対位置)に対する算出値である前画像の点群データと、現在の測定位置(相対位置)に対する算出値である現画像の点群データとを読み出す。そして、測定制御部54は、形状記憶部581から読み出した、前画像の点群データと現画像の点群データとに基づいて、現在の測定位置(相対位置)における法線ベクトルを算出する。移動部542は、法線算出部541により算出された法線ベクトルと、ステップS105において指定されたデータ取得ピッチとに基づいて、次画像取得位置を6軸の座標位置として算出する。
次に、形状測定装置100は、測定制御部54により6軸を制御して、次画像取得位置に駆動部11を移動させる(ステップS114)。つまり、測定制御部54は、移動部542により算出された6軸の座標を指令値として、駆動制御部53により駆動部11を移動させる。これにより、駆動制御部53は、駆動部11を検出値に応じて6軸の座標に移動させ、光切断プローブ2を次画像取得位置に移動させる。
また、測定制御部54は、移動させた次画像取得位置に対応する座標情報(光切断プローブ2の座標情報)を経路記憶部582に記憶させる。すなわち、測定制御部54は、形状測定部55に点群の位置情報を繰り返し算出させる際に、変更させた測定位置(相対位置)に対応する光切断プローブ2の座標情報を経路記憶部582に記憶させる。
次に、形状測定装置100は、ステップS107において、測定終了条件に達するまで、上述のステップS108〜S114を繰り返し処理させる。
そして、形状測定装置100は、ステップS107の処理において、測定終了条件に達したと判定された場合に、ステップS115の処理に移行し、形状測定装置100は、測定制御部54により、点群データをハードディスク61にセーブする(記憶させる)。つまり、測定制御部54は、形状記憶部581に記憶されている測定対象3の形状情報である点群データをハードディスク61に記憶させる(ステップS115)。
なお、測定制御部54は、経路記憶部582に記憶されている経路情報(上述の相対位置の経路)をハードディスク61に記憶させてもよい。
また、測定制御部54は、再び形状測定部55に測定対象3の形状を測定させる場合に、経路記憶部582から読み出した経路情報に基づいて光切断プローブ2の座標情報を変更させて、形状測定部55に点群の位置情報を繰り返し算出させてもよい。この場合、測定制御部54は、ハードディスク61に記憶されている経路情報を読み出して使用してもよいし、ハードディスク61に記憶されている経路情報を経路記憶部582に記憶させて、使用してもよい。
[撮像カメラ22の変形例]
上述した撮像カメラ22は、撮像光学系23内の開口絞り81の開口の大きさを調整することにより、瞳の大きさを変化させている。これに対して、図12の撮像カメラの変形例に示すように、撮像カメラ22’として、開口絞り81の開口の大きさが異なる2つの撮像光学系23A及び23Bを用いた2眼構成とすることができる。例えば、撮像光学系23Aは、開口絞り81の開口の大きさが大きく設定されており、撮像光学系23Bは、開口絞り81の開口の大きさが小さく設定されている。なお、照射部21についても、撮像光学系23A及び23Bのそれぞれに対応して設けるようにする。
そして、撮像カメラ22’が測定対象3の表面をスキャンする際には、撮像光学系23Aと23Bは、スキャン速度に応じた時間差を持って、測定対象3の表面上のライン光(光切断線)を撮像する。つまり、測定対象3の表面上の同じ測定点P1を測定するために、撮像光学系23Aの光軸OAaと撮像光学系23Bの光軸OAbのそれぞれが、測定対象3の測定点P1の位置に移動した時点で、ライン光(光切断線)の撮像を行う。
このように、撮像カメラ22’を2眼構成にすることにより、撮像光学系23A及び23Bにおいて、開口絞り81の開口の大きさを調整するための機構とその制御部が不要になる。
なお、照射部21を1つのみとし、撮像光学系23A及び23Bのそれぞれの光軸の方向を、測定点P1の方向に合わせることにより、撮像素子24Aと撮像素子24Bとが、測定点P1上のライン光(光切断線)を同時に撮像するようにしてもよい。この場合は、照射部21を1つにすることができるとともに、2つの画像データを同時に取得できる利点がある。
以上、本実施形態の形状測定装置100について説明したが、上述した形状測定装置100では、図13に示すように、測定対象3の測定面が複雑な形状である場合においても、スキャン速度を低下させることなく、多重反射光、正反射光或いは散乱光により撮影される像を除外して、測定対象3の表面形状を正確に測定することができる。
例えば、図13(A)は、測定面の法線ベクトルを算出し、この法線ベクトルの向きとライン光L1の照射方向とが一致するように光切断プローブ2の姿勢を制御する場合の例である。この場合に、形状測定装置100では、例えば、散乱光に起因する多重反射光の影響を除去して、測定対象3の表面形状形を正確に測定することができる。
また、本実施形態の形状測定装置100では、図13(B)に示すように、ライン光L1の照射方向と法線ベクトル方向とを一致させることなく、一定の照射角度のまままでライン光L1を測定面に照射して撮像を行うこともできる。この場合に、形状測定装置100では、例えば、多重反射光や散乱光による影響を排除して、測定対象3の表面形状形を正確に測定することができる。
[構造物製造システムの例]
次に、上述した形状測定装置100を備えた構造物製造システムの例について説明する。
図14は、本発明の実施形態による形状測定装置100を備える構造物製造システム200の構成を示すブロック図である。構造物製造システム200は、上述した形状測定装置100と、設計装置110と、成形装置120と、構造物製造制御装置(検査装置)150と、リペア装置140とを備える。
設計装置110は、構造物の形状に関する設計情報を作製し、作成した設計情報を成形装置120に送信する。また、設計装置110は、作成した設計情報を構造物製造制御装置150の後述する座標記憶部151に記憶させる。ここで、設計情報とは、構造物の各位置の座標を示す情報である。
成形装置120は、設計装置110から入力された設計情報に基づいて上記構造物を作製する。成形装置120の成形工程には、鋳造、鍛造、または切削等が含まれる。
形状測定装置100は、作製された構造物(測定対象3)の座標を測定し、測定した座標を示す情報(形状情報)を構造物製造制御装置150へ送信する。
構造物製造制御装置150は、座標記憶部151と、検査部152とを備える。座標記憶部151には、前述の通り、設計装置110により設計情報が記憶される。検査部152は、座標記憶部151から設計情報を読み出す。検査部152は、形状測定装置100から受信した座標を示す情報(形状情報)と座標記憶部151から読み出した設計情報とを比較する。
検査部152は、比較結果に基づき、構造物が設計情報通りに成形されたか否かを判定する。換言すれば、検査部152は、作成された構造物が良品であるか否かを判定する。
検査部152は、構造物が設計情報通りに成形されていない場合、修復可能であるか否か判定する。修復できる場合、検査部152は、比較結果に基づき、不良部位と修復量を算出し、リペア装置140に不良部位を示す情報と修復量を示す情報とを送信する。
リペア装置140は、構造物製造制御装置150から受信した不良部位を示す情報と修復量を示す情報とに基づき、構造物の不良部位を加工する。
図15は、構造物製造システム200による処理の流れを示したフローチャートである。
まず、設計装置110が、構造物の形状に関する設計情報を作製する(ステップS201)。次に、成形装置120は、設計情報に基づいて上記構造物を作製する(ステップS202)。次に、形状測定装置100は、作製された上記構造物の形状を測定する(ステップS203)。次に、構造物製造制御装置150の検査部152は、形状測定装置100で得られた形状情報と、上記設計情報とを比較することにより、構造物が設計情報通りに作成されたか否か検査する(ステップS204)。
次に、構造物製造制御装置150の検査部152は、作成された構造物が良品であるか否かを判定する(ステップS205)。作成された構造物が良品である場合(ステップS205;YES)、構造物製造システム200はその処理を終了する。一方、作成された構造物が良品でない場合(ステップS205;NO)、構造物製造制御装置150の検査部152は、作成された構造物が修復できるか否か判定する(ステップS206)。
作成された構造物が修復できると検査部152が判断した場合(ステップS206;YES)、リペア装置140は、構造物の再加工を実施し(ステップS207)、ステップS203の処理に戻る。一方、作成された構造物が修復できないと検査部152が判断した場合(ステップS206;NO)、構造物製造システム200はその処理を終了する。以上で、本フローチャートの処理を終了する。
以上により、上記の形状測定装置100は、測定対象3の形状測定を行う際に、スキャン速度を低下させることなく、測定対象の形状測定を高精度で行うことができるので、上記の構造物製造システム200は、作成された構造物が良品であるか否かを迅速かつ正確に判定することができる。また、構造物製造システム200は、構造物が良品でない場合、構造物の再加工を実施し、修復することができる。
以上、本発明の実施形態について説明したが、ここで、本発明と上述した実施形態との対応関係について補足して説明する。すなわち、本発明における制御装置は、制御装置4が対応し、本発明における形状測定装置は、形状測定装置100が対応する。また、本発明における照射部は、光切断プローブ2の照射部21が対応し、本発明における撮像部は、撮像素子24或いは撮像素子24A及び24Bが対応する。
また、本発明における撮像光学系は、撮像光学系23或いは撮像光学系23A及び23Bが対応し、本発明における可変開口絞りは、開口絞り81が対応する。また、本発明における比較演算部は、形状測定部55内の比較演算部56が対応し、本発明における位置算出部は、形状測定部55内の位置算出部57が対応し、本発明における判定部は、比較演算部56内の判定部561が対応する。また、本発明における移動部は、測定制御部54内の移動部542が対応する。また、本発明における測定光は、照射部21から測定対象3の表面に照射されるライン光が対応し、このライン光により測定対象3の表面に光切断線が形成される。
(1)そして、上記実施形態において、形状測定装置100は、測定光を測定対象3の測定領域に照射する照射部21と、測定光が照射された測定領域の像を形成する撮像光学系23であって、当該撮像光学系23の入射瞳または射出瞳の大きさが互いに異なる条件によって像を形成する撮像光学系23と、撮像光学系23により形成された測定領域の像を撮像し、撮像した測定領域の像の画像データを生成する撮像部(撮像素子24)と、撮像部(撮像素子24)が生成した画像データに基づいて、測定対象3の3次元空間内の位置を算出する位置算出部57とを有し、位置算出部57は、撮像部(撮像素子24)から入力される画像データのうち、撮像光学系23の入射瞳または射出瞳の大きさがある大きさよりも小さい状態によって撮像部(撮像素子24)が撮像した像の画像データを少なくとも用いて測定対象3の形状を算出する。
このような構成の形状測定装置100であれば、照射部21は、測定光を測定対象3の測定領域に照射する。撮像部(撮像素子24)は、撮像光学系23が形成する測定領域の像を撮像し、測定領域の像の画像データを生成する。この撮像光学系23は、例えば、開口絞り81により開口数(NA)を変化させることにより、当該撮像光学系23の瞳の大きさが互いに異なる条件によって像を形成する。そして、位置算出部57は、撮像部(撮像素子24)から入力される画像データのうち、撮像光学系23の瞳がある大きさよりも小さい状態によって撮像部(撮像素子24)が撮像した像の画像データを用いて測定対象3の3次元空間内の位置を算出する。
このように、形状測定装置100では、撮像光学系23の瞳のある大きさよりも小さい状態によって撮像部(撮像素子24)が撮像した像の画像データを用いて測定対象3の3次元空間内の位置を算出する。これにより、形状測定装置100は、スキャン速度を低下させることなく、測定対象3の形状測定を高精度で行うことができる。
また、逆に位置算出部57は、撮像部(撮像素子24)から入力される画像データのうち、撮像光学系23の入射瞳または射出瞳の大きさがある大きさよりも大きい状態によって撮像部(撮像素子24)が撮像した像の画像データを用い、多重反射光による像を検出し、検出された像を排除した撮像部(撮像素子24)が撮像した画像データにより測定対象3の形状を算出してもよい。
(2)また、上記実施形態において、形状測定装置100は、測定光を測定対象3の測定領域に照射する照射部21と、測定光が照射された測定領域の像を形成する撮像光学系23であって、当該撮像光学系23の入射瞳または射出瞳の大きさが互いに異なる条件によって像を形成する撮像光学系23と、撮像光学系23が形成する測定領域の像を撮像し、撮像した測定領域の像の画像データを生成する撮像部(撮像素子24)と、入射瞳または射出瞳の大きさがそれぞれ互いに異なる条件で形成された測定領域の複数の像を、撮像部(撮像素子24)でそれぞれ撮像することにより生成される測定領域の複数の画像データに対して、比較演算する比較演算部56と、撮像部(撮像素子24)が生成した複数の画像データのうち少なくとも一つの画像データと、比較演算部56が演算した比較結果とに基づいて、測定対象3の3次元空間内の位置を算出する位置算出部57とを有する。
このような構成の形状測定装置100であれば、撮像部(撮像素子24)は、瞳の大きさが異なるそれぞれの条件の基で複数の画像データを生成し、比較演算部56は、この複数の画像データの差異を比較する。そして、位置算出部57は、撮像部(撮像素子24)が生成した画像データと、比較演算部56の比較結果とに基づいて、測定対象3の3次元空間内の位置を算出する。
これにより、位置算出部57は、撮像部(撮像素子24)が生成した画像データと、比較演算部56の比較結果とに基づいて、測定対象3の3次元空間内の位置を算出することができる。
(3)また、上記実施形態において、撮像光学系は、入射瞳または射出瞳の大きさがそれぞれ相互に異なり、同一の測定領域を視野に持つ複数の撮像光学系23A及び23Bを有し、撮像部は、複数の撮像光学系23A及び23Bのそれぞれに対応する複数の撮像部(撮像素子24A及び24B)を有し、比較演算部56は、複数の撮像部(撮像素子24A及び24B)がそれぞれ生成した画像データどうしを比較する。
このような構成の形状測定装置100であれば、撮像光学系は、図12に示すように、入射瞳または射出瞳の大きさが異なり、同一の測定領域を視野に持つ撮像光学系23A及び23Bで構成される。また、撮像光学系23A及び23Bのそれぞれに対応して撮像部(撮像素子24A及び24B)が設けられる。
これにより、撮像カメラは、開口絞り81の開口の大きさを調整することなく、入射瞳または射出瞳の大きさがそれぞれ相互に異なる画像データを取得できる。
(4)また、上記実施形態において、撮像光学系23は、入射瞳または射出瞳の大きさを可変にする可変開口絞り(開口絞り81)を有し、撮像部(撮像素子24)は、可変開口絞り(開口絞り81)による開口の大きさを変更する前の像と、変更した後の像とをそれぞれ撮像して、撮像した像の画像データをそれぞれ生成し、比較演算部56は、撮像部(撮像素子24)が生成した複数の画像データどうしを比較する。
このような構成の形状測定装置100であれば、撮像光学系23は、可変開口絞り(開口絞り81)を有する。撮像部(撮像素子24)は、可変開口絞り(開口絞り81)による開口の大きさを変更する前の画像と、変更した後の画像とをそれぞれ撮像して、それぞれの画像データを生成する。比較演算部56は、撮像部(撮像素子24)が生成した画像データどうしを比較する。
これにより、撮像カメラ22は、1つの可変開口絞り(開口絞り81)の開口の大きさを調整することにより、瞳の大きさが異なる複数の画像データを取得できる。
(5)また、上記実施形態において、比較演算部56は、撮像部(撮像素子24)が生成した画像データ内の測定光の画像の位置を示す位置情報を、複数の画像データどうしを比較することにより、画像データ内における領域情報を取得し、位置算出部57は、撮像部(撮像素子24)が生成した複数の画像データのうち少なくとも一つの画像データと、比較演算部56が取得した領域情報とに基づいて、測定対象3次元空間内の位置を算出する。
このような構成の形状測定装置100であれば、比較演算部56は、入射瞳または射出瞳の大きさがそれぞれ互いに異なる条件で形成された複数の画像データを比較し、画像データ内において、測定対象の位置情報を取得するために用いる領域情報を設定する。位置算出部57は、撮像部(撮像素子24)が生成した複数の画像データのうち少なくとも一つの画像データと、比較演算部56が設定した領域情報とに基づいて、測定対象3の3次元空間内の位置を算出する。
これにより、位置算出部57は、比較演算部56が設定した領域情報に基づいて、画像データ内において、拡散光により生成された測定光の像が撮像された領域を特定して、測定対象3の3次元空間内の位置を算出することができる。
(6)また、上記実施形態において、位置算出部57は、比較演算部56が取得した領域情報に基づいて撮像部(撮像素子24)が生成した画像データから測定光の像の少なくとも一部を含む画像データを抽出し、抽出した画像データに基づいて点群情報を生成することにより測定対象3の3次元形状内の位置を算出する。
このような構成の形状測定装置100であれば、位置算出部57は、比較演算部56が設定した領域情報に基づいて、画像データから測定光の像(拡散光の像)を含む画像データの領域を抽出し、この抽出した領域の画像データから点群情報を生成して、測定対象3の3次元形状内の位置を算出する。
これにより、形状測定装置100は、画像データから測定光の像(拡散光の像)を含む画像データの領域を抽出し、この抽出した領域の画像データを基に、測定対象3の3次元形状内の位置を算出することができる。
(7)また、上記実施形態において、位置算出部57は、撮像部(撮像素子24)が生成した複数の画像データのうち少なくとも一つの画像データに基づいて測定対象の3次元形状内の位置を示す点群情報を算出するとともに、比較演算部56が取得した領域情報に基づいて、算出した点群情報から領域情報に対応する3次元空間内の領域に含まれる点群情報を抽出または除去することにより、測定対象3の形状を示す点群情報として出力する。
このような構成の形状測定装置100であれば、位置算出部57は、撮像部(撮像素子24)が生成した少なくとも一つの画像データについて測定対象3の点群データを算出する。その後に、位置算出部57は、比較演算部56により取得された領域情報に対応する点群データを、上記算出した点群データから抽出または除去する。
これにより、形状測定装置100では、画像データから点群データの算出処理を行った後に、この算出した点群データから、領域情報に対応する正常な点群データの抽出、または、異常な点群データの除去を行うことができる。
(8)また、上記実施形態において、比較演算部56は、撮像部(撮像素子24)が生成した複数の画像データどうしを画素毎に画素値の差分を取得し、この取得された差分に基づいて領域情報を取得する。
このような構成の形状測定装置100であれば、比較演算部56は、複数の画像データどうしを画素毎の差分(例えば、明るさの差分)をとり比較することにより、領域情報を設定することができる。
(9)また、上記実施形態において、比較演算部56は、撮像部(撮像素子24)が生成した複数の画像データ間において対応する画素毎に、画像データの画素値の差分を算出することにより、領域情報を取得する。
このような構成の形状測定装置100であれば、比較演算部56は、撮像部(撮像素子24)が生成した複数の画像データ間において、対応する画素毎の差分(例えば、明るさの差分)を算出し比較することにより、領域情報を設定することができる。
(10)また、上記実施形態において、画像データには、画素値を示す情報が含まれ、撮像部(撮像素子24)が生成した画像データ内に所定のしきい値を超える画素値を含む画像領域が複数存在するか否かを判定する判定部561を備え、比較演算部56は、判定部561の判定結果に基づいて、比較演算の要否を判定する。
このような構成の形状測定装置100であれば、判定部561は、撮像部(撮像素子24)が生成した画像データ内に所定のしきい値を超える画素値を含む画像領域が複数存在するか否かを判定し、この判定結果に基づいて、比較演算の要否を判定する。
これにより、比較演算部56では、画像データ内に多重反射光の像の画像データが含まれていない場合に、複数の画像データについての比較演算を省略することができる。
(11)また、上記実施形態において、形状測定装置100は、照射部21が測定光を照射する照射方向と、撮像部(撮像素子24)が撮像する撮像方向との相対的な方向を保持しつつ、照射方向と撮像方向とを測定対象3に対して移動させる移動部542を備える。
このような構成の形状測定装置100であれば、移動部542は、照射部21と撮像カメラ22(撮像光学系23及び撮像素子24)の相対位置関係を一定に保持し、測定対象3と照射部21とを相対的に移動させる。つまり、移動部542は、光切断プローブ2が測定対象3の表面上のライン光の像を撮像する際の相対位置(より正確には、測定対象3に対する光切断プローブ2の測定位置及び姿勢)が一定になるよう光切断プローブ2を制御する。
これにより、位置算出部57は、三角測量の原理を用いて、測定対象3の形状を示す点群データを容易に生成することができる。
(12)また、上記実施形態において、形状測定装置100は、測定光を測定対象3の測定領域に照射する照射部21と、測定光が照射された測定領域の像を形成する撮像光学系23であって、当該撮像光学系23の入射瞳または射出瞳の大きさが互いに異なる複数の条件で測定領域の像を形成する撮像光学系23と、撮像光学系23が形成する測定領域の像を撮像し、撮像した測定領域の像の画像データを生成する撮像部(撮像素子24)と、撮像部(撮像素子24)が生成した画像データに基づいて、測定対象3の3次元空間内の位置を算出する位置算出部57とを有し、位置算出部57は、撮像部(撮像素子24)から入力される画像データのうち、撮像光学系23の入射瞳または射出瞳の大きさが最も小さい状態によって撮像部が撮像した像の画像データを少なくとも用いて測定対象3の3次元空間内の位置を算出する。
このような構成の形状測定装置100であれば、照射部21は、測定光を測定対象3の測定領域に照射する。撮像部(撮像素子24)は、撮像光学系23が形成する測定領域の像を撮像し、測定領域の像の画像データを生成する。この撮像光学系23は、例えば、開口数(NA)を変化させることにより、当該撮像光学系23の入射瞳または射出瞳の大きさが互いに異なる条件によって像を形成する。そして、位置算出部57は、撮像部(撮像素子24)から入力される画像データのうち、撮像光学系23の入射瞳または射出瞳の大きさが最も小さい状態によって撮像部(撮像素子24)が撮像した像の画像データを用いて測定対象3の3次元空間内の位置を算出する。
これにより、形状測定装置100では、スキャン速度を低下させることなく、測定対象の形状測定を高精度で行うことができる。
以上、本発明の実施形態について説明したが、上記の実施形態において、制御部41の各部は専用のハードウェアにより実現されるものであってもよく、また、メモリ及びCPU(Central Processing Unit)を備えて、プログラムによって実現されてもよい。
また、上述の形状測定装置100は内部に、コンピュータシステムを有している。そして、上述した測定対象3の形状を測定する処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD−ROM、DVD−ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
以上、本発明の実施の形態について説明したが、本発明の形状測定装置、及び構造物製造システムは、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
例えば、機械的な開口絞り81により瞳を物理的に変形させる他、液晶フィルタ等により開口数を変化させる方法も可能である。また、画素毎に異なる指向性をもつマイクロレンズを作りこむことにより画素毎に変化を与えても良い。さらには、エレクトロクロミック素子を用いて開口数を変化させるようにしてもよい。
1…形状測定装置本体、2…光切断プローブ、3…測定対象、21…照射部、22,22’…撮像カメラ、23,23A,23B…撮像光学系、24,24A,24B…撮像素子(撮像部)、25…絞り調整部、41…制御部、55…形状測定部、56…比較演算部、57…位置算出部、81…開口絞り、82…撮像レンズ、100…形状測定装置、110…設計装置、120…成形装置、150…構造物製造制御装置、200…構造物製造システム、541…法線算出部、542…移動部、561…判定部、571…画像データ抽出部、572…点群算出部、573…点群抽出部

Claims (13)

  1. 測定光を測定対象の測定領域に照射する照射部と、
    前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が異なる条件で前記像を形成する撮像光学系と、
    前記撮像光学系により形成された前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像部と、
    前記撮像部が生成した前記画像データに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出部とを有する
    形状測定装置。
  2. 前記前記撮像光学系の開口数がそれぞれ異なる条件で形成された前記測定領域の複数の像を、前記撮像部でそれぞれ撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算部を有し、
    前記位置算出部は、前記撮像部が生成した前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算部が演算した比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する
    請求項1に記載の形状測定装置。
  3. 前記比較演算部は、
    前記撮像部が生成した前記画像データ内の前記測定光の画像の位置を示す位置情報を、前記複数の画像データどうしを比較することにより、前記画像データ内における領域情報を取得し、
    前記位置算出部は、
    前記撮像部が生成した前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算部が取得した前記領域情報とに基づいて、前記測定対象の3次元空間内の位置を算出する
    請求項2に記載の形状測定装置。
  4. 前記位置算出部は、
    前記比較演算部が取得した領域情報に基づいて前記撮像部が生成した前記画像データから前記測定光の像の少なくとも一部を含む画像データを抽出し、抽出した前記画像データに基づいて点群情報を生成することにより前記測定対象の3次元形状内の位置を算出する
    請求項3に記載の形状測定装置。
  5. 前記位置算出部は、
    前記撮像部が生成した前記複数の前記画像データのうち少なくとも一つの前記画像データに基づいて前記測定対象の3次元形状内の位置を示す点群情報を算出するとともに、前記比較演算部が取得した領域情報に基づいて、算出した前記点群情報から前記領域情報に対応する3次元空間内の領域に含まれる点群情報を抽出または除去することにより、前記測定対象の形状を示す点群情報として出力する
    請求項3または請求項4に記載の形状測定装置。
  6. 前記比較演算部は、
    前記撮像部が生成した前記複数の前記画像データどうしを画素毎に画素値の差分を取得し、前記取得された差分に基づいて前記領域情報を取得する
    請求項3から請求項5のいずれか一項に記載の形状測定装置。
  7. 前記比較演算部は、
    前記撮像部が生成した前記複数の前記画像データ間において対応する画素毎に、画像データの画素値の差分を算出することにより、前記領域情報を取得する
    請求項6に記載の形状測定装置。
  8. 前記画像データには、画素値を示す情報が含まれ、
    前記撮像部が生成した前記画像データ内に所定のしきい値を超える画素値を含む画像領域が複数存在するか否かを判定する判定部
    を備え、
    前記比較演算部は、
    前記判定部の判定結果に基づいて、前記比較演算の要否を判定する
    請求項2から請求項7のいずれか一項に記載の形状測定装置。
  9. 前記照射部が前記測定光を照射する照射方向と、前記撮像部が撮像する撮像方向との相対的な方向を保持しつつ、前記照射方向と前記撮像方向とを前記測定対象に対して移動させる移動部
    を備える請求項1から請求項8のいずれか一項に記載の形状測定装置。
  10. 構造物の形状に関する構造物設計情報を作製する設計装置と、
    前記構造物設計情報に基づいて前記構造物を作製する成形装置と、
    作成された前記構造物の形状を、撮像画像に基づいて測定する請求項1から請求項9のいずれか一項に記載の形状測定装置と、
    前記測定によって得られた形状情報と、前記構造物設計情報とを比較する検査装置と
    を含む構造物製造システム。
  11. 測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が異なる条件で像を形成する撮像光学系とを有する形状測定装置に用いられる形状測定方法であって、
    前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、
    前記撮像光学系の入射瞳または射出瞳の大きさがそれぞれ互いに異なる条件によって形成された前記測定領域の複数の像を、前記撮像ステップにおいて撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算ステップと、
    前記撮像ステップにおいて生成された前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算ステップにおいて演算された比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出ステップと
    を有する形状測定方法。
  12. 構造物の形状に関する構造物設計情報を作製する工程と、
    前記構造物設計情報に基づいて前記構造物を作製する工程と、
    作成された前記構造物の形状を、請求項11に記載の形状測定方法を用いて測定する工程と、
    前記測定によって得られた形状情報と、前記構造物設計情報とを比較する工程と
    を含む構造物製造方法。
  13. 測定光を測定対象の測定領域に照射する照射部と、前記測定光が照射された測定領域の像を形成する撮像光学系であって、開口数が異なる条件で像を形成する撮像光学系とを有する形状測定装置のコンピュータに、
    前記撮像光学系が形成する前記測定領域の像を撮像し、撮像した前記測定領域の像の画像データを生成する撮像ステップと、
    前記撮像光学系の入射瞳または射出瞳の大きさがそれぞれ互いに異なる条件で形成された前記測定領域の複数の像を、前記撮像ステップにおいて撮像することにより生成される前記測定領域の複数の前記画像データに対して、比較演算する比較演算ステップと、
    前記撮像ステップにおいて生成された前記複数の前記画像データのうち少なくとも一つの前記画像データと、前記比較演算ステップにおいて演算された比較結果とに基づいて、前記測定対象の3次元空間内の位置を算出する位置算出ステップと
    を実行させるための形状測定プログラム。
JP2013184657A 2013-09-06 2013-09-06 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム Pending JP2015052490A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013184657A JP2015052490A (ja) 2013-09-06 2013-09-06 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013184657A JP2015052490A (ja) 2013-09-06 2013-09-06 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム

Publications (1)

Publication Number Publication Date
JP2015052490A true JP2015052490A (ja) 2015-03-19

Family

ID=52701628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013184657A Pending JP2015052490A (ja) 2013-09-06 2013-09-06 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム

Country Status (1)

Country Link
JP (1) JP2015052490A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174730A (ja) * 2015-03-20 2016-10-06 カシオ計算機株式会社 描画装置及び爪形状検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174730A (ja) * 2015-03-20 2016-10-06 カシオ計算機株式会社 描画装置及び爪形状検出方法

Similar Documents

Publication Publication Date Title
JP4896373B2 (ja) 立体3次元計測システムおよび方法
JP5709851B2 (ja) 画像測定プローブと操作方法
JP5911904B2 (ja) 形状および位置の光学的計測のための構造化光システムに関する正確な画像取得
US9488469B1 (en) System and method for high-accuracy measurement of object surface displacement using a laser displacement sensor
US20170160077A1 (en) Method of inspecting an object with a vision probe
JP2005514606A5 (ja)
TWI623724B (zh) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP2015072197A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
KR20140114300A (ko) 형상 측정 장치
JP5948729B2 (ja) 形状測定装置
JP2021193400A (ja) アーチファクトを測定するための方法
JP2008241643A (ja) 3次元形状測定装置
JP2013064644A (ja) 形状測定装置、形状測定方法、構造物製造システム及び構造物の製造方法
JP2007093412A (ja) 3次元形状測定装置
JP2014153149A (ja) 形状測定装置、構造物製造システム、形状測定方法、及びプログラム
TW201835852A (zh) 三維檢測裝置以及用於三維檢測的方法
JP2014145735A (ja) 形状測定装置、構造物製造システム、評価装置、形状測定方法、構造物製造方法、及び形状測定プログラム
JP2014126381A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
Lee et al. 3D foot scanner based on 360 degree rotating-type laser triangulation sensor
JP2015052490A (ja) 形状測定装置、構造物製造システム、形状測定方法、構造物製造方法、及び形状測定プログラム
CN112805607A (zh) 计测装置、计测方法和显微镜系统
JP2012026816A (ja) 寸法測定方法および装置
JP2016095243A (ja) 計測装置、計測方法、および物品の製造方法
JP2005274309A (ja) 三次元物体の検査方法および検査装置
US20190113336A1 (en) Multi-Directional Triangulation Measuring System with Method